

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

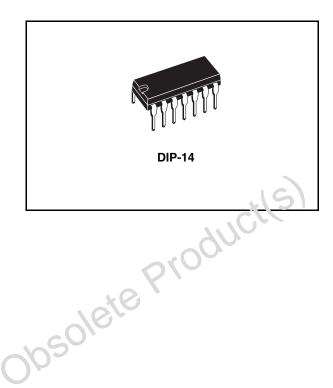
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



ST491A

Low power high speed RS-485/RS-422 transceiver

Features

- Low supply current: 5mA max
- Designed for RS485 interface applications
- -7V to 12V common mode input voltage range
- 70mV typical input hysteresis
- Designed for 25Mbps operation
- Operate from a single 5V supply
- ±4kV ESD protection
- Current limiting and thermal shutdown for driver overload protection

Description

The ST491A is a low power transceiver for RS-485 and RS-422 communications. The device contains one driver and one receiver in full duplex configuration. The ST491A draws 5mA (typ.) of supply current when unloaded and operates from a single 5V supply.

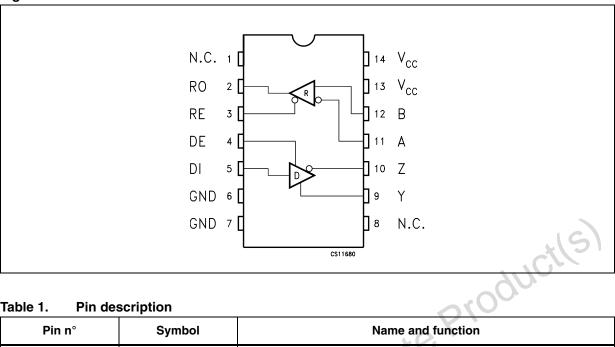
Driver is short-circuit current limited and is protected against excessive power dissipation by thermal shutdown circuitry that place in driver outputs into a high-impedance state. The receiver input has a fail-safe feature that guarantees a logic high output if both inou's are open circuit.

Order code

)bsolete

Part number	Temperature range	Package	Packaging
ST491ACN	0 to 70 °C	DIP-14	25parts per tube / 40tube per box

Contents ST491A


Contents

1	Pin configuration 3
2	Truth tables 4
3	Maximum ratings
4	Electrical characteristics 6
5	Test circuit and typical characteristics9
6	Package mechanical data14
7	Revision history
Obsc	Pin configuration 3 Truth tables 4 Maximum ratings 5 Electrical characteristics 6 Test circuit and typical characteristics 9 Package mechanical data 14 Revision history 16

ST491A Pin configuration

Pin configuration 1

Figure 1. Pin connections

Pin description Table 1.

Pin n°	Symbol	Name and function
1	NC	Not connected
2	RO	Receiver output.
3	RE	Receiver output enable
4	DE	Driver output enable
5	DI	Inverting driver input
6	GND	Ground
7	GND	Ground
8	NC	Not connected
9	Υ	Non-inverting driver output
10	Z	Inverting driver output
1,1	A	Inverting receiver input
12	В	Non-inverting receiver input
13	V _{CC}	Supply voltage
14	V _{CC}	Supply voltage

Truth tables ST491A

2 Truth tables

Table 2. Truth table (driver)

Inp	outs	Out	puts
DI	DE	Υ	Z
L	Н	L	Н
Н	Н	Н	L
Х	L	Z	Z

Note: X = Don't care; Z = High impedance

Table 3. Truth table (receiver)

Inp	Outputs	
A-B	RE	RO
≥ -0.2V	L	H
between -0.2V to 0.2V	L	210 ?
≤0.2V	L	L
OPEN	L	Н
Х	Н	Z

Note: ?=Irrelevant; X = Don't care; Z = High impedance

ST491A **Maximum ratings**

Maximum ratings 3

Table 4. **Absolute maximum ratings**

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	7	V
V _{DI}	Driver input voltage	-0.5 to 7	V
V_Y , V_Z	Driver output voltage	-7.5 to 12.5	V
V _A , V _B	Receiver input voltage	-7.5 to 12.5	V
V _{RO}	Receiver output voltage	-0.3 to (V _{CC} + 0.3)	V
ESD	Human body model	3.5	KV

Note:

obsolete Product(s). Absolute maximum ratings are those values beyond which damage to the device may occur. Electrical characteristics ST491A

4 Electrical characteristics

Table 5. Electrical characteristics

(V_{CC} = 4.5V to 5.5V, T_A = -40 to 85°C, unless otherwise specified. Typical values are referred to T_A=25°C)

Symbol	Parameter	Min.	Тур.	Max.	Unit
I _{SUPPLY}	No load supply current		2	5	mA
C _{IN}	Input capacitance		1.8		pF
C _{YZ}	Driver output capacitance		1.2		pF
C _{OUT}	Output capacitance		2.3		pF

 Table 6.
 Transmitter electrical characteristics

(V_{CC} = 4.5V to 5.5V, T_A = -40 to 85°C, unless otherwise specified. Typical values are referred to T_A=25°C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{OD1}	Differential drive output (no load)			77	V_{CC}	V
V _{OD2}	Differential drive output (with load)	R _L = 54Ω (RS-422) (<i>Figure 1.</i>)	1.5	2.6	5	V
V_{OD3}	Differential drive output (with load)	R _L = 100Ω (RS-422) (<i>Figure 1</i> .)	2	3		V
ΔV_{OD}	Change in magnitude of driver differential output voltage for complementary output states	R _L = 54Ω or 100Ω (<i>Figure 1.</i>)		0	0.2	V
V _{OC}	Driver common mode output voltage	$R_L = 54\Omega$ (Figure 1.)	1		3	V
ΔV _{OC}	Change in magnitude of driver common mode output voltage	$R_L = 54\Omega$ (<i>Figure 1</i> .)		0	0.2	V
I _{OFF}	Power off output current	$V_{CC} = 0V, V_{O} = -7V \text{ to } 12V$			± 100	μΑ
I _{OSD}	Driver short circuit output current	V _O =-7V to 12V	± 35		±250	mA
V _{IL}	Input logic threshold low				0.8	V
V _{IH}	Input logic threshold high		2			V

Table 7. Receiver electrical characteristics $(V_{CC}=4.5V \text{ to } 5.5V, T_A=-40 \text{ to } 85^{\circ}\text{C}, \text{ unless otherwise specified. Typical values are referred to } T_A=25^{\circ}\text{C})$

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
1	Input current (A, B)	Other input = 0V	V _{IN} =12V		0.5	1	mA
I _{IN}	input current (A, b)	$V_{CC} = 0 \text{ or } 5.25V$	V _{IN} =-7V		-0.35	-0.8	шд
V _{TH}	Receiver differential threshold voltage	V _{CM} = -7V to 12V		-0.2		0.2	٧
ΔV_{TH}	Receiver input hysteresis	V _{CM} = 0V			70		mV
V _{OH}	Receiver output high voltage	I _{OUT} = -8mA, V _{ID} = 200mV		3.5	4.7		٧
V _{OL}	Receiver output low voltage	I _{OUT} = 8mA, V _{ID} = -200mV			0.3	0.5	٧
R _{RIN}	Receiver input resistance	$V_{CM} = -7V \text{ to } 12V$		12	24		ΚΩ

Table 8. Driver switching characteristics $(V_{CC} = 4.5V \text{ to } 5.5V, T_A = -40 \text{ to } 85^{\circ}\text{C}, \text{ unless otherwise specified. Typical values are referred to } T_A = 25^{\circ}\text{C})$

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
D_{R}	Maximum data rate	Jitter <5%	25	50		Mbps
t _{PLH} t _{PHL}	Propagation delay input to output	$R_{L}=54\Omega$, $C_{L1}=C_{L2}=50$ pF, (<i>Figure 1.</i>)		10	16	ns
t _{SKEW}	Differential output delay skew	R _L = 54Ω, C _{L1} =C _{L2} =50pF, (<i>Figure 1.</i>)		1	3	ns
t _{TLH} t _{THL}	Rise or fall differential time	$R_L = 54\Omega$, $C_{L1} = C_{L2} = 50$ pF, (<i>Figure 1</i> .)		8	12	ns
t _{PZL}	Output enable time	C _L = 50pF, S1 Closed		14	25	ns
t_{PZH}	Output enable time	C _L = 50pF, S2 Closed		14	25	ns
t_{PHZ}	Output disable time	C _L = 15pF, S2 Closed		10	25	ns
t_{PLZ}	Output disable time	C _L = 15pF, S1 Closed		16	25	ns
psolf	ste r					

Electrical characteristics ST491A

Table 9. Receiver switching characteristics $(V_{CC} = 4.5V \text{ to } 5.5V, T_A = -40 \text{ to } 85^{\circ}\text{C}, \text{ unless otherwise specified. Typical values are referred to } T_A = 25^{\circ}\text{C})$

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{PLH} t _{PHL}	Propagation delay input to output	C _L = 15pF, (<i>Figure 2.</i> , <i>Figure 4.</i>)		19	30	ns
t _{SKD}	It _{PLH -} t _{PHL} I Receiver output skew	C _L = 15pF, (<i>Figure 2., Figure 4.</i>)		1	3	ns
t _{TLH} t _{THL}	Rise or fall time	C _L = 15pF, (<i>Figure 2., Figure 4.</i>)		6		ns
t _{PZL}	Output enable time	C _{RL} = 15pF, S1 Closed		6	12	ns
t _{PZH}	Output enable time	C _{RL} = 15pF, S2 Closed		7	12	ns
t _{PHZ}	Output disable time	C _{RL} = 15pF, S2 Closed		6	12	ns
t _{PLZ}	Output disable time	C _{RL} = 15pF, S1 Closed		6	12	ns
		C _{RL} = 15pF, S2 Closed C _{RL} = 15pF, S1 Closed				

5 Test circuit and typical characteristics

Figure 2. Driver DC test load

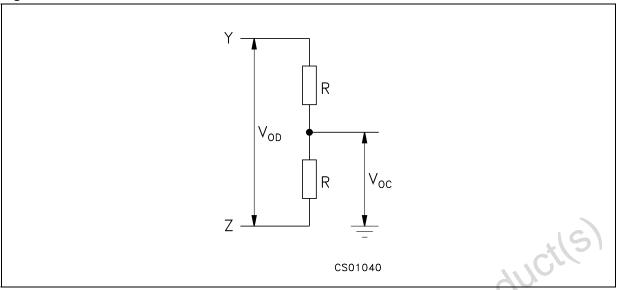


Figure 3. Receiver timing test load

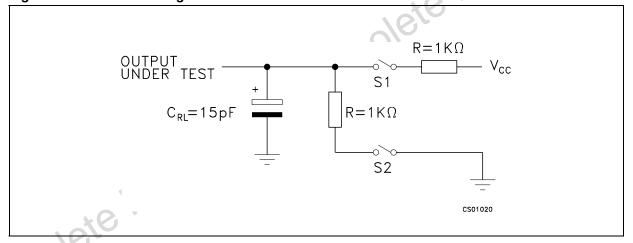


Figure 4. Driver/receiver timing test circuit

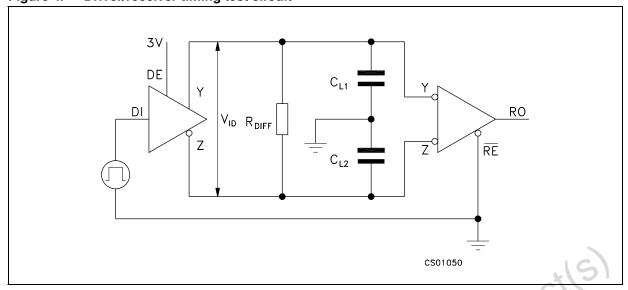


Figure 5. Driver timing test load

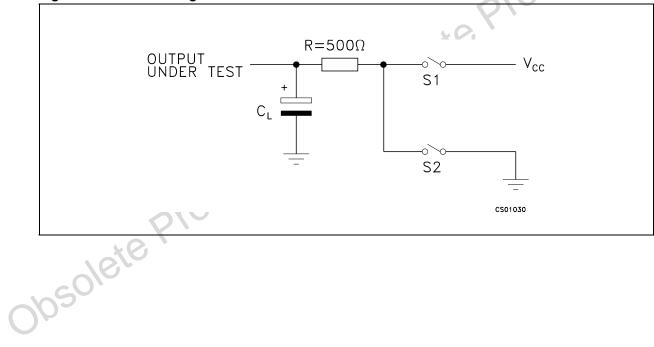


Figure 6. Driver propagation delay

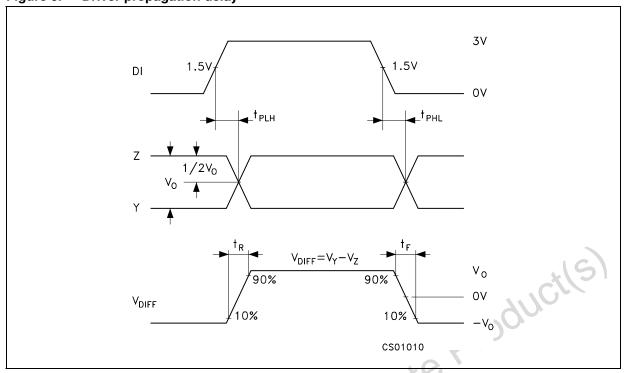


Figure 7. Receiver propagation delay

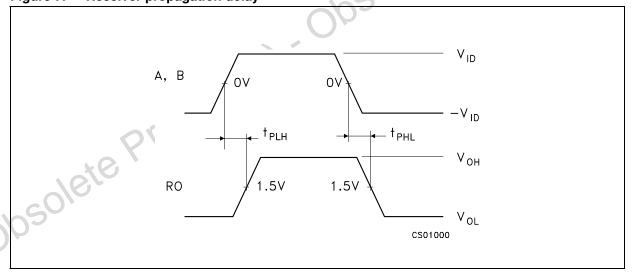


Figure 8. Receiver output current vs. output Figure 9. Receiver output current vs. output low voltage (output low) high voltage (output high)

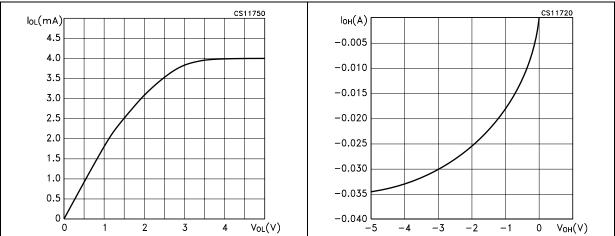


Figure 10. Driver diff. output voltage vs common mode voltage (diff. output low)

Figure 11. Driver diff. output voltage vs common mode voltage (diff. output high)

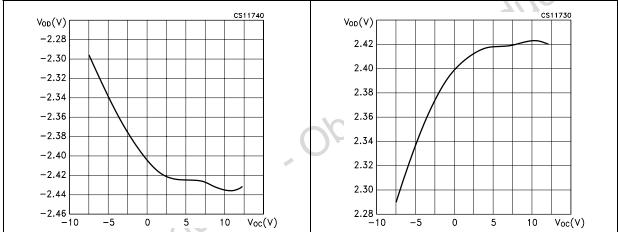
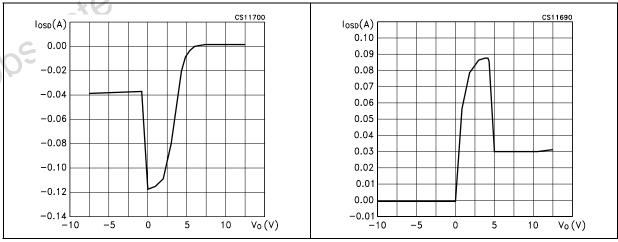



Figure 12. Driver short circuit current vs line voltage (output high)

Figure 13. Receiver high level output voltage vs. temperature

577

-0.4 | -10

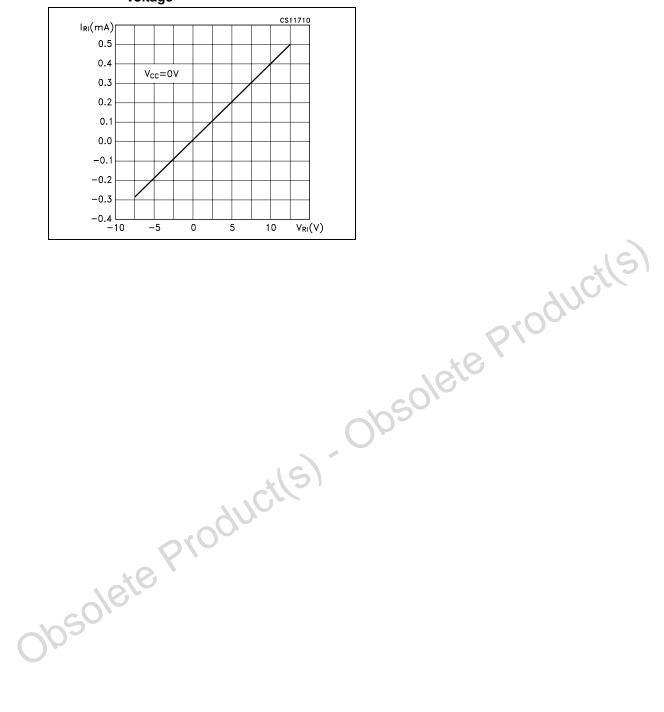
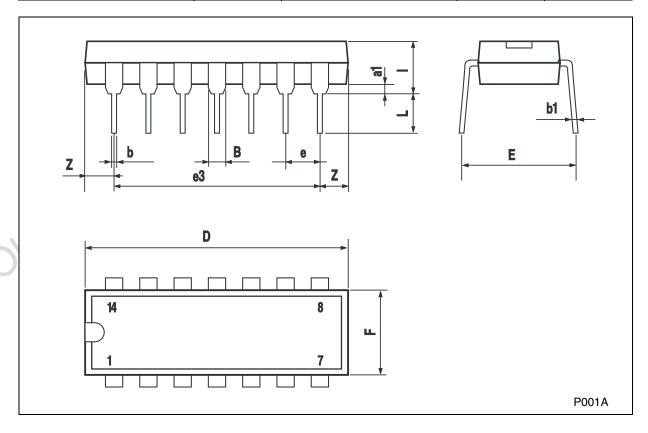


Figure 14. Receiver input current vs input voltage

57

6 Package mechanical data


In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

Obsolete Product(s). Obsolete Product(s)

Plastic DIP-14 MECHANICAL DATA

DIM.		mm.		inch		
DIIVI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	1.39		1.65	0.055		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		15.24			0.600	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z	1.27		2.54	0.050		0.100

577

Revision history ST491A

7 Revision history

Table 10. Revision history

Date	Revision	Changes
10-May-2005	3	Mistake on Figure 1.
04-Jul-2005	4	Mistake on Figure 1 and Table 1 (Pin 13).
28-Apr-2006	5	Order codes has been updated and new template.
28-May-2007	6	Order codes has been updated.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

