

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



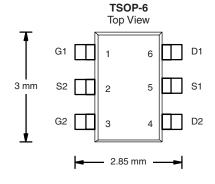






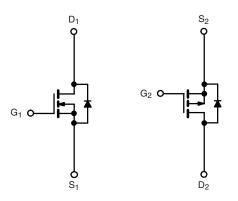


# N- and P-Channel 20-V (D-S) MOSFET


| PRODUCT SUMMARY |                     |                                            |                    |  |  |  |  |
|-----------------|---------------------|--------------------------------------------|--------------------|--|--|--|--|
|                 | V <sub>DS</sub> (V) | $R_{DS(on)}(\Omega)$                       | I <sub>D</sub> (A) |  |  |  |  |
| N-Channel       |                     | 0.080 at V <sub>GS</sub> = 4.5 V           | 3.0                |  |  |  |  |
|                 | 20                  | 0.100 at V <sub>GS</sub> = 2.5 V           | 2.6                |  |  |  |  |
|                 |                     | 0.128 at V <sub>GS</sub> = 1.8 V           | 2.3                |  |  |  |  |
| P-Channel       | - 20                | 0.145 at V <sub>GS</sub> = - 4.5 V         | - 2.2              |  |  |  |  |
|                 |                     | 0.200 at V <sub>GS</sub> = - 2.5 V         | - 1.8              |  |  |  |  |
|                 |                     | $0.300 \text{ at V}_{GS} = -1.8 \text{ V}$ | - 1.5              |  |  |  |  |

#### **FEATURES**

- Halogen-free According to IEC 61249-2-21 Definition
- TrenchFET® Power MOSFETs: 1.8 V Rated
- Compliant to RoHS Directive 2002/95/EC




ROHS
COMPLIANT
HALOGEN
FREE



Ordering Information: Si3588DV-T1-E3 (Lead (Pb)-free)

Si3588DV-T1-GE3 (Lead (Pb)-free and Halogen-free)



N-Channel MOSFET

P-Channel MOSFET

| ABSOLUTE MAXIMUM RATINGS T <sub>A</sub> = 25 °C, unless otherwise noted |                        |                                   |             |              |           |              |      |
|-------------------------------------------------------------------------|------------------------|-----------------------------------|-------------|--------------|-----------|--------------|------|
|                                                                         |                        |                                   | N-Channel   |              | P-Channel |              |      |
| Parameter                                                               |                        | Symbol                            | 5 s         | Steady State | 5 s       | Steady State | Unit |
| Drain-Source Voltage                                                    |                        | $V_{DS}$                          | 20          |              | - 20      |              | V    |
| Gate-Source Voltage                                                     |                        | V <sub>GS</sub>                   | ± 8         |              |           | \ \ \ \ \    |      |
| 0 D 0 (T 150.00)3                                                       | T <sub>A</sub> = 25 °C | - I <sub>D</sub>                  | 3.0         | 2.5          | - 2.2     | - 0.57       |      |
| Continuous Drain Current (T <sub>J</sub> = 150 °C) <sup>a</sup>         | T <sub>A</sub> = 70 °C |                                   | 2.3         | 2.0          | - 1.8     | - 1.5        |      |
| Pulsed Drain Current                                                    |                        | I <sub>DM</sub>                   | ± 8         |              |           |              | Α    |
| Continuous Source Current (Diode Conduction) <sup>a</sup>               |                        | I <sub>S</sub>                    | 1.05        | 0.75         | - 1.05    | - 0.75       |      |
| Maximum Power Dissipation <sup>a</sup>                                  | T <sub>A</sub> = 25 °C | P <sub>D</sub>                    | 1.15        | 0.83         | 1.15      | 0.083        | W    |
|                                                                         | T <sub>A</sub> = 70 °C |                                   | 0.73        | 0.53         | 0.73      | 0.53         |      |
| Operating Junction and Storage Temperature Range                        |                        | T <sub>J</sub> , T <sub>stg</sub> | - 55 to 150 |              |           |              | °C   |

| THERMAL RESISTANCE RATINGS               |              |                   |         |         |      |  |  |
|------------------------------------------|--------------|-------------------|---------|---------|------|--|--|
| Parameter                                |              | Symbol            | Typical | Maximum | Unit |  |  |
| Maximum Junction-to-Ambient <sup>a</sup> | t ≤ 5 s      | R <sub>thJA</sub> | 93      | 110     |      |  |  |
|                                          | Steady State | ' 'thJA           | 130     | 150     | °C/W |  |  |
| Maximum Junction-to-Foot (Drain)         | Steady State | $R_{thJF}$        | 90      | 90      |      |  |  |

Notes:

a. Surface Mounted on 1" x 1" FR4 board.

# Vishay Siliconix

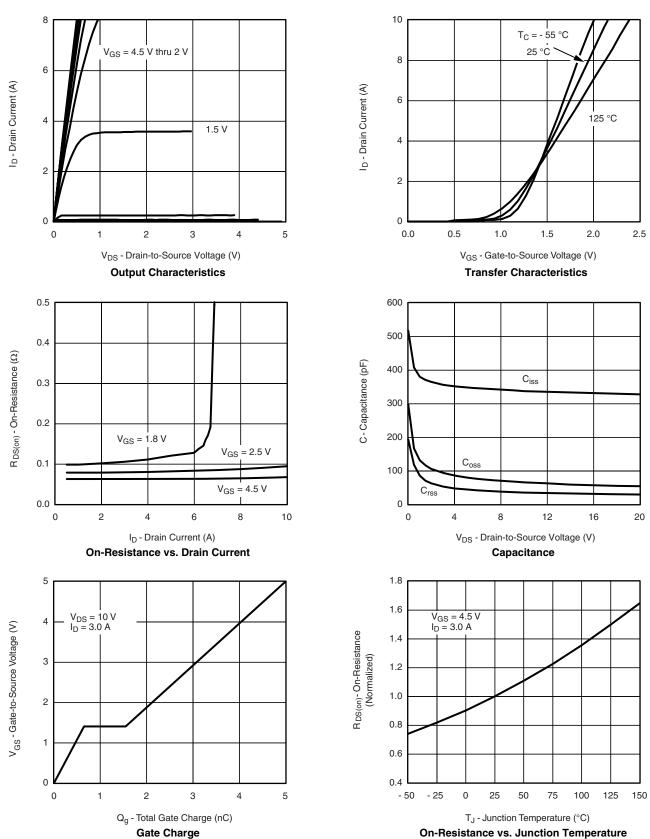


| <b>SPECIFICATIONS</b> T <sub>J</sub> = 25 $^{\circ}$ | C, unless o         | therwise noted                                                               |              |        |            |       |      |  |
|------------------------------------------------------|---------------------|------------------------------------------------------------------------------|--------------|--------|------------|-------|------|--|
| Parameter                                            | Symbol              | Test Conditions                                                              |              | Min.   | Тур.       | Max.  | Unit |  |
| Static                                               |                     |                                                                              |              |        |            |       |      |  |
| Gate Threshold Voltage                               | V <sub>GS(th)</sub> | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$                                         | N-Ch         | 0.45   |            |       | V    |  |
|                                                      | V GS(tn)            | $V_{DS} = V_{GS}, I_{D} = -250 \mu A$                                        | P-Ch         | - 0.45 |            |       | _ v  |  |
| Gate-Body Leakage                                    | ,                   | $V_{DS} = 0 \text{ V}, V_{GS} = \pm 8 \text{ V}$                             | N-Ch         |        |            | ± 100 | nA   |  |
|                                                      | I <sub>GSS</sub>    | V <sub>DS</sub> = 0 V, V <sub>GS</sub> = ± 8 V                               | P-Ch         |        |            | ± 100 |      |  |
| Zero Gate Voltage Drain Current                      |                     | V <sub>DS</sub> = 16 V, V <sub>GS</sub> = 0 V                                | N-Ch         |        |            | 1     |      |  |
|                                                      |                     | V <sub>DS</sub> = - 16 V, V <sub>GS</sub> = 0 V                              | P-Ch         |        |            | - 1   |      |  |
|                                                      | I <sub>DSS</sub>    | V <sub>DS</sub> = 16 V, V <sub>GS</sub> = 0 V, T <sub>J</sub> = 85 °C        | N-Ch         |        |            | 10    | - μΑ |  |
|                                                      |                     | V <sub>DS</sub> = - 16 V, V <sub>GS</sub> = 0 V, T <sub>J</sub> = 85 °C      | P-Ch         |        |            | - 10  |      |  |
|                                                      |                     | $V_{DS} \ge 5 \text{ V}, V_{GS} = 4.5 \text{ V}$                             | N-Ch         | 5      |            |       | А    |  |
| On-State Drain Current <sup>a</sup>                  | I <sub>D(on)</sub>  | $V_{DS} \le -5 \text{ V}, V_{GS} = -4.5 \text{ V}$                           | P-Ch         | - 5    |            |       |      |  |
|                                                      |                     | $V_{GS} = 4.5 \text{ V}, I_D = 3 \text{ A}$                                  | N-Ch         |        | 0.064      | 0.080 | -    |  |
|                                                      |                     | V <sub>GS</sub> = - 4.5 V, I <sub>D</sub> = - 2.2 A                          | P-Ch         |        | 0.115      | 0.145 |      |  |
|                                                      | _                   | V <sub>GS</sub> = 2.5 V, I <sub>D</sub> = 2.6 A                              | N-Ch         |        | 0.080      | 0.100 |      |  |
| Drain-Source On-State Resistance <sup>a</sup>        | R <sub>DS(on)</sub> | V <sub>GS</sub> = - 2.5 V, I <sub>D</sub> = - 1.8 A                          | P-Ch         |        | 0.163      | 0.200 | Ω    |  |
|                                                      |                     | V <sub>GS</sub> = 1.8 V, I <sub>D</sub> = 2.3 A                              | N-Ch         |        | 0.104      | 0.128 |      |  |
|                                                      |                     | V <sub>GS</sub> = - 1.8 V, I <sub>D</sub> = - 1.0 A                          | P-Ch         |        | 0.240      | 0.300 |      |  |
| _                                                    | ~                   | $V_{DS} = 5 \text{ V}, I_{D} = 3 \text{ A}$                                  | N-Ch         |        | 9          |       |      |  |
| Forward Transconductance <sup>a</sup>                | 9 <sub>fs</sub>     | V <sub>DS</sub> = - 5 V, I <sub>D</sub> = - 2.2 A                            | P-Ch         |        | 5          |       | S    |  |
| Diada Farmand Vallanda                               | V                   | I <sub>S</sub> = 1.05 A, V <sub>GS</sub> = 0 V                               | N-Ch         |        | 0.8        | 1.1   | .,   |  |
| Diode Forward Voltage <sup>a</sup>                   | V <sub>SD</sub>     | I <sub>S</sub> = - 1.05 A, V <sub>GS</sub> = 0 V                             | P-Ch         |        | - 0.8      | - 1.1 | V    |  |
| Dynamic <sup>b</sup>                                 |                     |                                                                              |              |        |            |       |      |  |
| Total Gate Charge                                    | Qg                  | N. Channal                                                                   | N-Ch         |        | 5          | 7.5   | nC   |  |
|                                                      |                     | N-Channel $V_{DS} = 10 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 3 \text{ A}$ | P-Ch         |        | 5          | 7.5   |      |  |
| Gate-Source Charge Gate-Drain Charge                 | Q <sub>gs</sub>     | V <sub>DS</sub> = 10 v, v <sub>GS</sub> = 1.0 v, v <sub>D</sub> = 0 / v      | N-Ch         |        | 0.65       |       |      |  |
|                                                      |                     | P-Channel                                                                    | P-Ch         |        | 1.0        |       |      |  |
|                                                      |                     | $V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -2.2 \text{ A}$    | N-Ch<br>P-Ch |        | 0.9<br>0.9 |       |      |  |
|                                                      |                     |                                                                              | N-Ch         |        | 12         | 20    |      |  |
| Turn-On Delay Time  Rise Time                        | t <sub>d(on)</sub>  | N-Channel                                                                    | P-Ch         |        | 12         | 20    |      |  |
|                                                      |                     | $V_{DD} = 10 \text{ V}, R_L = 10 \Omega$                                     | N-Ch         |        | 30         | 50    |      |  |
|                                                      |                     | $I_D\cong 0.5$ A, $V_{GEN}=4.5$ V, $R_g=6$ $\Omega$                          | P-Ch         |        | 29         | 50    |      |  |
| Turn-Off Delay Time                                  | t.c.m               | P-Channel                                                                    | N-Ch         |        | 28         | 50    | 1    |  |
|                                                      | t <sub>d(off)</sub> | $V_{DD} = -4 \text{ V}, R_L = 8 \Omega$                                      | P-Ch         |        | 24         | 45    | ns   |  |
| Fall Time                                            | t <sub>f</sub>      | $I_D \cong$ - 1 A, $V_{GEN}$ = - 4.5 V, $R_g$ = 6 $\Omega$                   | N-Ch         |        | 12         | 20    |      |  |
|                                                      |                     | -                                                                            | P-Ch         |        | 30         | 50    |      |  |
| Source-Drain                                         | t <sub>rr</sub>     | I <sub>F</sub> = 1.05 A, dl/dt = 100 A/μs                                    | N-Ch         |        | 20         | 40    |      |  |
| Reverse Recovery Time                                |                     | $I_F = -1.05 \text{ A}, dI/dt = 100 \text{ A/}\mu\text{s}$                   | P-Ch         |        | 20         | 40    |      |  |

#### Notes:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

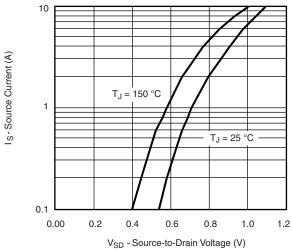
a. Pulse test; pulse width  $\leq 300~\mu s,$  duty cycle  $\leq 2~\%.$ 

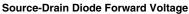

b. Guaranteed by design, not subject to production testing.

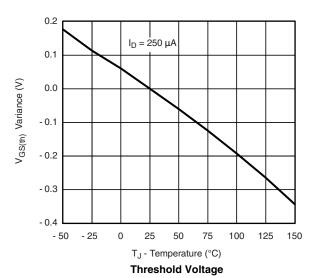






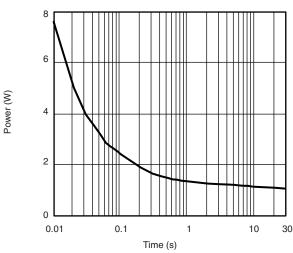

#### N-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted



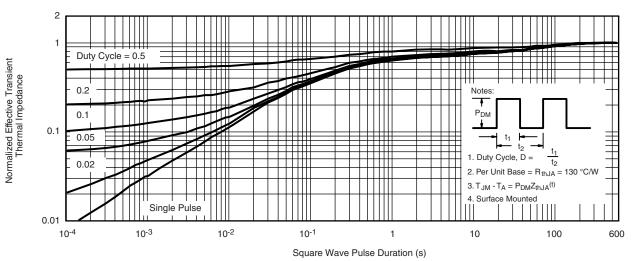


## Vishay Siliconix

# VISHAY

#### N-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted



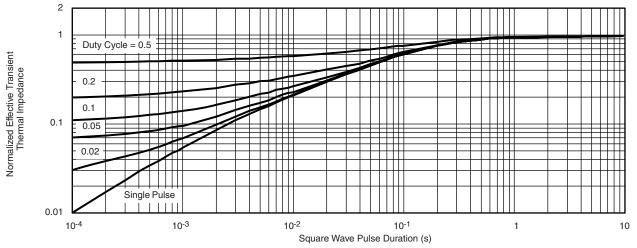



0.30
0.25
0.25
0.20
0.15
0.15
0.00
0.10
0.00
0.10
0.00
0.10
0.00
0.10
0.00
0.10
0.00
0.10
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0

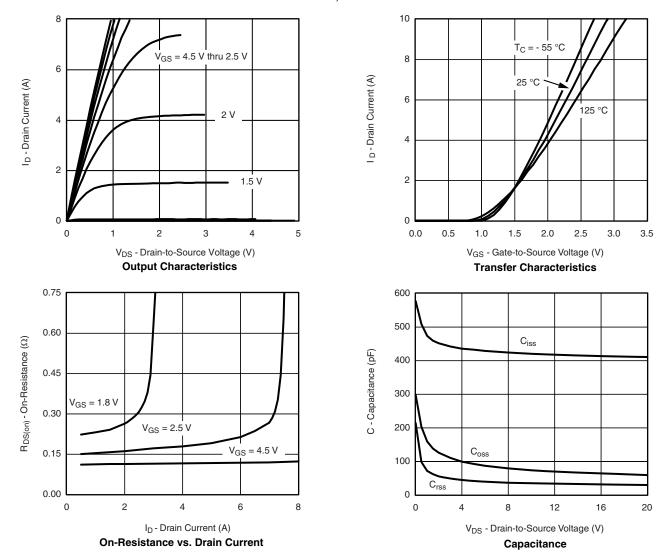
On-Resistance vs. Gate-to-Source Voltage




Single Pulse Power, Junction-to-Ambient



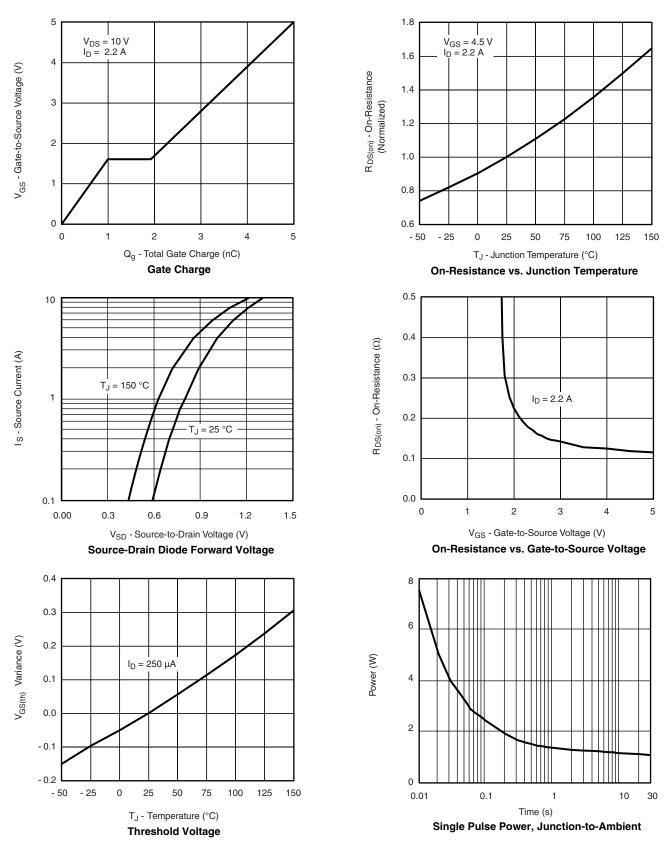
Normalized Thermal Transient Impedance, Junction-to-Ambient




#### N-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

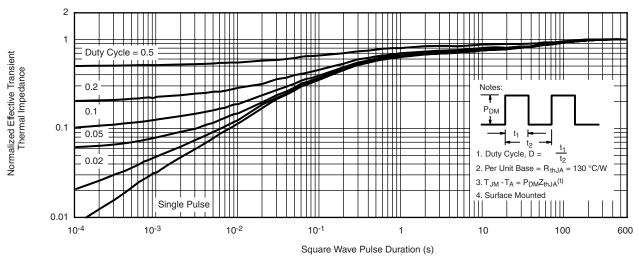


Normalized Thermal Transient Impedance, Junction-to-Foot

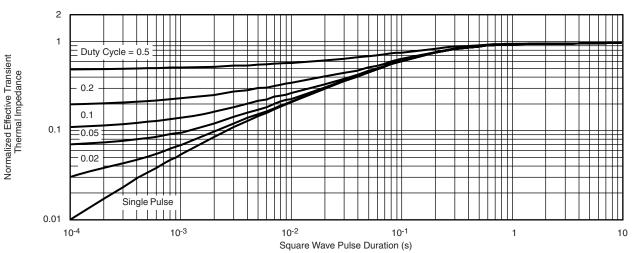

#### P-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted



## Vishay Siliconix


# VISHAY

#### P-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted






#### P-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted



Normalized Thermal Transient Impedance, Junction-to-Ambient



Normalized Thermal Transient Impedance, Junction-to-Foot

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?71332.



### **Legal Disclaimer Notice**

Vishay

#### **Disclaimer**

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.