# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



# Finisar

# Product Specification

# **CWDM GBIC Transceiver with APD Receiver**

# FTL-1619-XX

# **PRODUCT FEATURES**

- Up to 1.25 Gb/s bi-directional data links
- RoHS compliant and Lead Free
- Standard GBIC footprint
- Uncooled CWDM-rated DFB laser transmitter
- Class 1 laser safety
- Very low jitter
- Metal enclosure for lower EMI
- Extended voltage range
- Low power dissipation
- Extended operating temperature range: 0°C to 70°C



# APPLICATIONS

 Metro Access Rings and Pointto-Point for Gigabit Ethernet Networks and Fibre Channel SANs

Finisar's FTL-1619-xx CWDM GBIC transceivers are designed for operation in Metro Access Rings and Point-to-Point networks using Gigabit Ethernet<sup>1</sup> and Fibre Channel<sup>2</sup> networking equipment. The FTL-1619-xx is also designed to comply to GBIC Specification Revision  $5.5^{3*}$ . The transceiver is available in eight different CWDM wavelengths; and is RoHS compliant and lead-free per Directive 2002/95/EC<sup>4</sup> and Finisar Application Note AN-2038<sup>5</sup>. Digital diagnostics functions are available via an I<sup>2</sup>C serial bus.

# **PRODUCT SELECTION**

| Wavelength | XX | <b>Color Code Dot</b> | Wavelength | XX | <b>Color Code Dot</b> |
|------------|----|-----------------------|------------|----|-----------------------|
| 1470 nm    | 47 | Gray                  | 1550 nm    | 55 | Yellow                |
| 1490 nm    | 49 | Violet                | 1570 nm    | 57 | Orange                |
| 1510 nm    | 51 | Blue                  | 1590 nm    | 59 | Red                   |
| 1530 nm    | 53 | Green                 | 1610 nm    | 61 | Brown                 |

# I. Pin Out

| Pin Name        | Pin # | Sequence |
|-----------------|-------|----------|
| RX_LOS          | 1     | 2        |
| GND             | 2     | 2        |
| GND             | 3     | 2        |
| MOD_DEF(0)      | 4     | 2        |
| MOD_DEF(1)      | 5     | 2        |
| MOD_DEF(2)      | 6     | 2        |
| TX_DISABLE      | 7     | 2        |
| GND             | 8     | 2        |
| GND             | 9     | 2        |
| TX_FAULT        | 10    | 2        |
| GND             | 11    | 1        |
| -RX_DAT         | 12    | 1        |
| +RX_DAT         | 13    | 1        |
| GND             | 14    | 1        |
| V <sub>CC</sub> | 15    | 2        |
| V <sub>CC</sub> | 16    | 2        |
| GND             | 17    | 1        |
| +TX_DAT         | 18    | 1        |
| -TX_DAT         | 19    | 1        |
| GND             | 20    | 1        |

#### Table 1. GBIC to host connector pin assignment

"Sequence" indicates the order in which pins make contact when the device is hot plugged. See "Table 3: Signal Definitions" in the GBIC Specification Revision  $5.5^3$  for a description of the function of each pin listed above.

# **II. Electrical Power Interface**

The GBIC specification calls for a range of 4.75V to 5.25 volts as described in Table 2. The maximum voltage of 6V is not to be applied continuously.

| Parameter              | Symbol             | Min  | Тур  | Max  | Units | Notes/Conditions         |
|------------------------|--------------------|------|------|------|-------|--------------------------|
| Supply Current         | Is                 |      | 280  | 350  | mA    |                          |
| Maximum Voltage        | V <sub>max</sub>   |      |      | 6    | V     |                          |
| Surge Current          | I <sub>surge</sub> |      |      | 400  | mA    |                          |
| Input Voltage          | V <sub>cc</sub>    | 4.75 | 5.00 | 5.25 | V     | Referenced to GND        |
| Power Supply Rejection | PSR                | 100  |      |      | mV    | See Note 1. Peak to Peak |

#### Table 2. Electrical power interface

**Note 1:** Receiver sensitivity is compliant with power supply sinusoidal modulation of 20 Hz to 1.5 MHz up to specified value applied through the recommended power supply filtering network.

# **III.** Low Speed Signals

RX\_LOS, TX\_DISABLE, and TX\_FAULT are TTL signals as described in Table 3. MOD\_DEF(1) (SCL) and MOD\_DEF(2) (SDA) are open drain CMOS signals (see section VIII, "Serial Communication Protocol"). Both MOD\_DEF(1) and MOD\_DEF(2) must be pulled up to host Vcc. For more detailed information, see sections 5.3.1 - 5.3.8 in the GBIC Specification Revision  $5.5^3$ .

| Parameter        | Symbol          | Min               | Max            | Units | Notes/Conditions                                                     |
|------------------|-----------------|-------------------|----------------|-------|----------------------------------------------------------------------|
| GBIC Output LOW  | V <sub>OL</sub> | 0                 | 0.5            | V     | 4.7k to 10k pull-up to host_Vcc, measured at host side of connector  |
| GBIC Output HIGH | V <sub>OH</sub> | host_Vcc -<br>0.5 | host_Vcc + 0.3 | V     | 4.7k to 10k pull-up to host_Vcc, measured at host side of connector  |
| GBIC Input LOW   | V <sub>IL</sub> | 0                 | 0.8            | V     | 4.7k to 10k pull-up to Vcc,<br>measured at GBIC side of<br>connector |
| GBIC Input HIGH  | V <sub>IH</sub> | 2                 | Vcc + 0.3      | V     | 4.7k to 10k pull-up to Vcc,<br>measured at GBIC side of<br>connector |

| Table | 3. Low | speed | signals | <ul> <li>electronic</li> </ul> | characteristics |
|-------|--------|-------|---------|--------------------------------|-----------------|
|-------|--------|-------|---------|--------------------------------|-----------------|

| Parameter              | Symbol     | Min | Тур | Max  | Units | Notes/Conditions                                                               |
|------------------------|------------|-----|-----|------|-------|--------------------------------------------------------------------------------|
| RX_LOS Assert Level    |            | -42 | -39 |      | dBm   | Measured on Finisar Eval Card                                                  |
| RX_LOS Deassert Level  |            |     | -37 | -32  | dBm   | Measured on Finisar Eval Card                                                  |
| RX_LOS Hysteresis      |            |     | 1.0 |      | dB    | Measured on Finisar Eval Card                                                  |
| RX_LOS Assert Delay    | t_loss_on  |     |     | 100  | µsec  | From detection of loss of signal to assertion of RX_LOS                        |
| RX_LOS Negate Delay    | t_loss_off |     |     | 150  | µsec  | From detection of presence of signal to negation of RX_LOS                     |
| TX_DISABLE Assert Time | t_off      |     |     | 1000 | µsec  | Rising edge to TX_DISABLE to fall of output signal below 10% of nominal        |
| TX_DISABLE Negate Time | t_on       |     |     | 1000 | µsec  | Falling edge of TX_DISABLE<br>to rise of output signal above<br>90% of nominal |
| TX_DISABLE Reset Time  | t_reset    | 10  |     |      | µsec  | TX_DISABLE HIGH before<br>TX_DISABLE set LOW                                   |

# **IV.** High Speed Electrical Interface

All high-speed PECL signals are AC coupled internally.

| Parameter           | Symbol                         | Min | Тур | Max               | Units | Notes/Conditions                          |
|---------------------|--------------------------------|-----|-----|-------------------|-------|-------------------------------------------|
| Data Input Voltage  | V <sub>in</sub>                | 650 |     | 2000              | mV    | PECL differential peak - peak             |
| Data Output Voltage | V <sub>out</sub>               | 370 |     | 2000              | mV    | PECL differential peak - peak             |
| Duty Cycle          |                                |     | 50  |                   | %     |                                           |
| PECL rise/fall      | T <sub>r</sub> ,T <sub>f</sub> |     |     | 150               | psec  | 20%-80% Differential                      |
| Bit Error Rate      | BER                            |     |     | 10 <sup>-12</sup> |       | PRBS 2 <sup>7</sup> - 1 test data pattern |
| Tx Input Impedance  | Zin                            |     | 75  |                   | ohm   | Single ended impedance                    |
| Rx Output Impedance | Z <sub>out</sub>               |     | 75  |                   | ohm   | Single ended impedance                    |

 Table 5. High speed electrical interface

# V. Optical Parameters

| Parameter                                                                           | Symbol                         | Min     | Тур   | Max     | Units | Notes/Conditions                                                      |
|-------------------------------------------------------------------------------------|--------------------------------|---------|-------|---------|-------|-----------------------------------------------------------------------|
| Transmitter                                                                         |                                |         |       |         |       |                                                                       |
| Transmitter Center Wavelength                                                       | $\lambda_{ m c}$               | (x-6.5) | (x+1) | (x+6.5) | nm    | Over temperature 0 to<br>70 °C case temperature.<br>See Note 1 below. |
| Wavelength Temperature<br>Dependence                                                |                                |         | 0.09  |         | nm/°C |                                                                       |
| Spectral Width                                                                      |                                |         |       | 1       | nm    | Full Width, -20dB from peak                                           |
| Side Mode Suppression Ratio (SMSR)                                                  | SMSR                           | 30      |       |         | dB    |                                                                       |
| Optical Rise/Fall Time                                                              | t <sub>r</sub> /t <sub>f</sub> |         |       | 200     | ps    | Unfiltered, 80% -20%                                                  |
| Transmitter Optical Output Power                                                    | Pout                           | +1.0    | +3.0  | +5.0    | dBm   | Average power coupled into single mode fiber                          |
| Transmitter Extinction Ratio                                                        | ER                             | 9       |       |         | dB    |                                                                       |
| Transmitter Eye Opening                                                             |                                | 10      |       |         | %     | Gigabit Ethernet eye<br>mask margin                                   |
| Transmitter Jitter                                                                  |                                |         |       | 100     | ps    | Peak to peak, filtered                                                |
| Dispersion Penalty at 100km                                                         |                                |         |       | 3.0     | dB    | See Note 4                                                            |
| Receiver                                                                            |                                |         |       |         |       |                                                                       |
| Optical Return Loss                                                                 | ORL                            | 14      |       |         | dB    |                                                                       |
| Optical Input Wavelength                                                            | $\lambda_{in}$                 | 1450    |       | 1620    | nm    |                                                                       |
| Receiver Jitter Generation                                                          |                                |         |       | 100     | ps    | See Note 5.<br>Peak to peak                                           |
| Receiver Optical Input Power<br>(BER < 10 <sup>-12</sup> w/ PRBS 2 <sup>7</sup> -1) | P <sub>in</sub>                | -30     |       | -7      | dBm   | @ 1.25Gb/s,<br>PRBS 2 <sup>7</sup> -1 pattern                         |

**Table 6. Optical parameters** 

**Note 1:** The Transmitter Center Wavelength "x" is as specified by the customer. The current available wavelengths are: 1470, 1490, 1510, 1530, 1550, 1570, 1590, and 1610 nm. Please see the "Product Selection" section on page 1.

Note 2: Parameters are specified over temperature and at end of life unless otherwise noted.

**Note 3:** All parameters are measured on a Finisar GBIC Evaluation Card unless otherwise noted.

**Note 4:** SMF-28 fiber used. 100kms represents 2000ps/nm at 1610nm. Measured at 1.25Gb/s with a PRBS  $2^{7}$ -1 pattern at a BER<10<sup>-10</sup>.

Note 5: Jitter added by receiver.

# VI. General Specifications

| Parameter           | Symbol | Min    | Тур | Max  | Units | Notes/Conditions                                                                    |
|---------------------|--------|--------|-----|------|-------|-------------------------------------------------------------------------------------|
| Data Rate           | BR     | 0.125* |     | 1.25 |       | *Fast Ethernet compatible. Not<br>compliant w/ all FE<br>specifications             |
| Total System Budget |        | 31     |     |      |       | $@1.25 \text{ Gb/s}, \text{BER} < 10^{-9}$<br>w/ PRBS 2 <sup>7</sup> -1. See Note 1 |

Note 1: Total system budget is defined as  $P_{out} - P_{in} - typical connector losses$ **Table 7. General specifications** 

# **VII. Environmental Specifications**

| Parameter      | Symbol           | Min | Тур | Max | Units | Notes/Conditions                                      |
|----------------|------------------|-----|-----|-----|-------|-------------------------------------------------------|
| Operating Temp | T <sub>op</sub>  | 0   |     | 70  | °C    | Case temperature                                      |
| Storage Temp   | T <sub>sto</sub> | -10 |     | 85  | °C    |                                                       |
| Eye Safety     |                  |     |     |     |       | CDRH and IEC-825 Class 1 Laser<br>Product. See Note 1 |

Note 1: Complies with FDA performance standards for laser products except for deviations pursuant to Laser Notice No. 50, dated July 26, 2001.

#### **Table 8. Environmental specifications**

# **VIII. Serial Communication Protocol**

All Finisar optical GBICs implement serial identification features described for 'Module Definition "4" as outlined in Annex D of the GBIC Specification<sup>3</sup>. These GBICs use an Atmel AT24C01A 128 byte  $E^2$ PROM at address A0H. For details on interfacing with the  $E^2$ PROM, see the Atmel data sheet titled "AT24C01A/02/04/08/16 2-Wire Serial CMOS  $E^2$ PROM".

Finisar's CWDM GBICs also support extended diagnostic features as described in Finisar Applications Note AN-2030, "Digital Diagnostic Monitoring Interface for Optical Transceivers"<sup>6</sup>. A controller IC that monitors system parameters such as laser current, module temperature, transmitter power, and received power is accessible at address A2H.

| Parameter                                                            | Symbol             | Min | Тур | Max     | Units | Notes/Conditions         |
|----------------------------------------------------------------------|--------------------|-----|-----|---------|-------|--------------------------|
| I <sup>2</sup> C Clock for Atmel<br>(A0H) and Controller<br>IC (A2H) | C <sub>atmel</sub> | 0   |     | 100,000 | Hz    | Bus can be driven blind. |

 Table 9. I<sup>2</sup>C Timing Requirements

# IX. Mechanical Specifications

Finisar CWDM GBICs conform to the mechanical specifications outlined in the GBIC Specification Revision 5.5, Section  $6^3$ .

| Parameter       | Symbol         | Min | Тур | Max | Units   | Notes/Conditions       |
|-----------------|----------------|-----|-----|-----|---------|------------------------|
| GBIC insertion  | FI             | 0   |     | 20  | Newtons | ~4.5 lbs               |
| GBIC extraction | F <sub>E</sub> | 0   |     | 15  | Newtons | ~3.3 lbs               |
| GBIC retention  | F <sub>R</sub> | 130 |     | N/A | Newtons | straight out ~29.3 lbs |

Table 10. Insertion, extraction, and retention forces



Figure 1. FTL-1619-XX Outline Drawing

# X. References

- 1. IEEE Std 802.3, 2000 Edition, Clause 38. IEEE Standards Department, 2000.
- 2. "Fibre Channel Physical and Signaling Interface (FC-PH, FC-PH2, FC-PH3)". American National Standard for Information Systems.
- 3. "Gigabit Interface Converter (GBIC) Revision 5.5". (\*) Sun Microsystems Computer Company et. al., August 16, 1999.http://playground.sun.com/pub/OEmod/
- 4. Directive 2002/95/EC of the European Council Parliament and of the Council, "on the restriction of the use of certain hazardous substances in electrical and electronic equipment." January 27, 2003.
- 5. "Application Note AN-2038: Finisar Implementation Of RoHS Compliant Transceivers", Finisar Corporation, January 21, 2005.
- 6. "Application Note AN-2030: Digital Diagnostic Monitoring Interface for SFP Optical Transceivers", Finisar Corporation, April 2002.
- 7. "AT24C01A/02/04/08/16 2-Wire Serial CMOS E<sup>2</sup>PROM". Atmel Corporation. <u>www.Atmel.com</u>

(\*) Neither GBIC, FC-PH, nor IEEE802.3 specifies a 14xx/15xx/16xx nm single mode interface. The FTL-1619-XX complies with these specifications except for the following optical parameters: laser wavelength, receiver sensitivity, and transmit output power. See Table 6 for details.

# **XI.** For More Information

Finisar Corporation 1308 Moffett Park Drive Sunnyvale, CA 94089-1133 Tel. 1-408-548-1000 Fax 1-408-541-6138 sales@finisar.com www.finisar.com