mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

life.augmented

STW70N65M2

N-channel 650 V, 0.039 Ω typ., 63 A MDmesh[™] M2 Power MOSFET in a TO-247 package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ID
STW70N65M2	650 V	0.046 Ω	63 A

- Extremely low gate charge
- Excellent output capacitance (C_{OSS}) profile
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

This device is an N-channel Power MOSFET developed using MDmesh[™] M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

Table 1: Device summary

······,					
Order code	Marking	Package	Packaging		
STW70N65M2	70N65M2	TO-247	Tube		

DocID028962 Rev 1

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e mechanical data	9
	4.1	TO-247 package information	9
5	Revisio	n history	11

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	± 25	V
I _D	Drain current (continuous) at $T_c = 25 \text{ °C}$	63	А
ID	Drain current (continuous) at T _C = 100 °C	40	А
I _{DM} ⁽¹⁾	Drain current (pulsed)	252	А
Ρτοτ	Total dissipation at $T_C = 25 \text{ °C}$	446	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/ns
T _{stg}	Storage temperature range	55 to 150	÷C
Tj	Operating junction temperature range	- 55 10 150	0

Notes:

 $^{(1)}\mbox{Pulse}$ width limited by safe operating area.

 $^{(2)}$ I_{SD} ≤ 63 A, di/dt ≤ 400 A/µs; V_{DS peak} < V(BR)DSS, V_{DD} = 400 V

⁽³⁾ $V_{DS} \le 520 \text{ V}$

Table 3: Thermal data

Symbol	Parameter	Value	Unit
$R_{thj-case}$	Thermal resistance junction-case max	0.28	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	50	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetetive or not repetetive (pulse width limited by $T_{jmax})$	4	А
E _{AS}	Single pulse avalanche energy (starting T_j = 25 °C, I_D = $I_{AR},$ V_{DD} = 50 V)	3500	mJ

2 Electrical characteristics

(T_C= 25 °C unless otherwise specified)

Table 5: On/off states							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 V, I_D = 1 mA$	650			V	
	Zava sata valta na duain	$V_{GS} = 0 V, V_{DS} = 650 V$			1	μA	
I _{DSS}	current	$V_{GS} = 0 V, V_{DS} = 650 V,$ $T_{C} = 125 \circ C^{(1)}$			100	μA	
I _{GSS}	Gate-body leakage current	V_{DS} = 0 V, V_{GS} = ± 25 V			±5	μA	
$V_{GS(th)}$	Gate threshold voltage	V_{DS} = V_{GS} , I_D = 250 μ A	2	3	4	V	
$R_{\text{DS(on)}}$	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 31.5 \text{ A}$		0.039	0.046	Ω	

Notes:

⁽¹⁾Defined by design, not subject to production test.

Symbol	Paramotor		Min	Typ	Mox	Unit
Symbol	Falailletei	Test conditions		тур.	IVIAA.	Unit
Ciss	Input capacitance		-	5140	-	pF
Coss	Output capacitance	V_{DS} = 100 V, f = 1 MHz,	-	208	-	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0 V$	-	2.9	-	pF
Coss eq. ⁽¹⁾	Equivalent output capacitance	V_{DS} = 0 V to 520 V, V_{GS} = 0 V	-	520	-	pF
R _G	Intrinsic gate resistance	$f = 1 \text{ MHz}, I_D=0 \text{ A}$	-	3	-	Ω
Qg	Total gate charge	$V_{DD} = 520 \text{ V}, I_D = 63 \text{ A},$	-	117	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V (see Figure 15: "Test circuit for gate charge	-	21.5	-	nC
Q _{gd}	Gate-drain charge	behavior")	-	51	-	nC

Table 6: Dynamic

Notes:

 $^{(1)}C_{oss~eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
t _{d(on)}	Turn-on delay time	$V_{DD} = 325 \text{ V}, \text{ I}_{D} = 31.5 \text{ A}$	-	24	-	ns	
tr	Rise time	$R_G = 4.7 \Omega, V_{GS} = 10 V$ (see <i>Figure 14: "Test circuit for</i>		22	-	ns	
t _{d(off)}	Turn-off-delay time	resistive load switching times" and	-	134	-	ns	
t _f	Fall time	Figure 19: "Switching time waveform")		11	-	ns	

Table 1. Switching lines	Table	7: Sv	vitching	times
--------------------------	-------	-------	----------	-------

STW70N65M2

Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		63	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		252	A
V _{SD} ⁽²⁾	Forward on voltage	V_{GS} = 0 V, I_{SD} = 63 A	-		1.6	V
t _{rr}	Reverse recovery time	I_{SD} = 63 A, di/dt = 100 A/µs,	-	584		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V (see Figure 16: "Test circuit for	-	14.5		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	50.5		А
t _{rr}	Reverse recovery time	$I_{SD} = 63 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	725		ns
Q _{rr}	Reverse recovery charge	$V_{DD} = 60 \text{ V}, \text{ T}_{j} = 150 \text{ °C}$ (see <i>Figure 16: "Test circuit for</i>	-	20		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	55.5		A

Notes:

 ${}^{(1)}\mbox{Pulse}$ width is limited by safe operating area

 $^{(2)}\text{Pulse test: pulse duration}$ = 300 $\mu\text{s},$ duty cycle 1.5%

DocID028962 Rev 1

STW70N65M2

Electrical characteristics

DocID028962 Rev 1

3 Test circuits

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 TO-247 package information

Package mechanical data

STW70N65M2

Table 9: TO-247 package mechanical data						
Dim		mm.				
Dim.	Min.	Тур.	Max.			
А	4.85		5.15			
A1	2.20		2.60			
b	1.0		1.40			
b1	2.0		2.40			
b2	3.0		3.40			
С	0.40		0.80			
D	19.85		20.15			
E	15.45		15.75			
е	5.30	5.45	5.60			
L	14.20		14.80			
L1	3.70		4.30			
L2		18.50				
ØP	3.55		3.65			
ØR	4.50		5.50			
S	5.30	5.50	5.70			

DocID028962 Rev 1

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
04-Feb-2016	1	First release.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

