

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

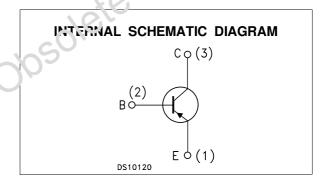
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SMALL SIGNAL PNP TRANSISTOR

PRELIMINARY DATA


Туре	Marking	
SO692	P39	

- SILICON EPITAXIAL PLANAR PNP HIGH VOLTAGE TRANSISTOR
- MINIATURE SOT-23 PLASTIC PACKAGE FOR SURFACE MOUNTING CIRCUITS
- TAPE AND REEL PACKING
- THE NPN COMPLEMENTARY TYPE IS SO642

APPLICATIONS

- VIDEO AMPLIFIER CIRCUITS (RGB CATHODE CURRENT CONTROL)
- TELEPHONE WIRELINE INTERFACE (HOOK SWITCHES, DIALER CIRCUITS)

ABSOLUTE MAXIMUM RATINGS

symbol	Parameter	Parameter Value	
V _{CBO}	Collector-Base Voltage (I _E = 0)	-300	V
V _{CEO}	Collector-Emitter Voltage (I _B = 0) -300		V
V_{EBO}	Emitter-Base Voltage (I _C = 0)	-5	V
Ic	Collector Current	-0.1	А
I _{CM}	Collector Peak Current	-0.3	Α
P _{tot}	Total Dissipation at T _C = 25 °C	310	mW
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

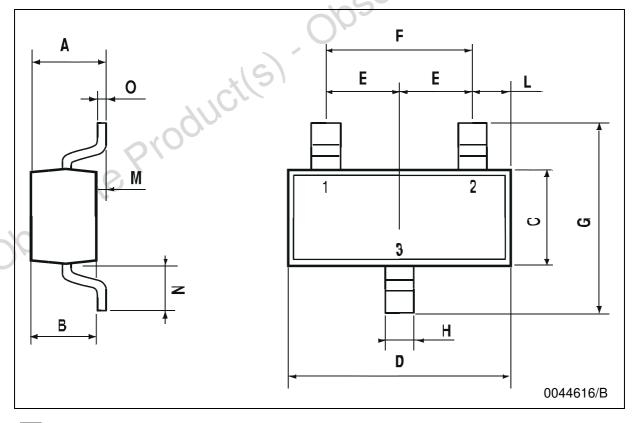
June 2002 1/4

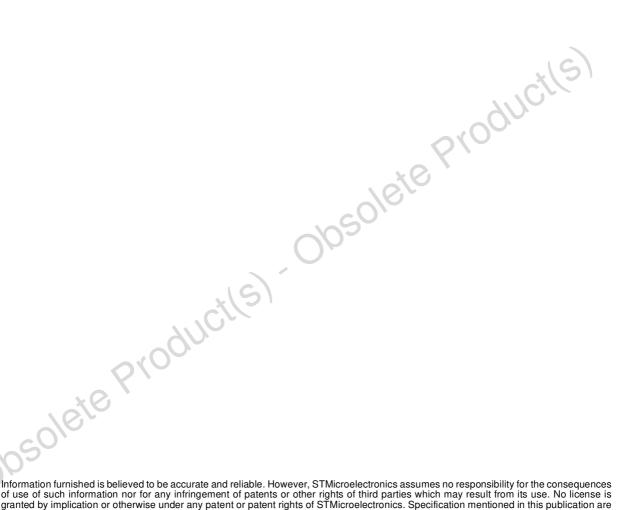
THERMAL DATA

R _{thj-amb} •	Thermal Resistance Junction-Ambient	Max	403.2	°C/W	
------------------------	-------------------------------------	-----	-------	------	--

Device mounted on a PCB area of 1 cm²

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)


$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	nA
Breakdown Voltage (I _E = 0) $V_{(BR)CEO^*} Collector-Emitter Breakdown Voltage (IB = 0)$ $I_{C} = -1 \text{ mA}$ $V_{(BR)EBO} Emitter-Base Breakdown Voltage (IC = 0) V_{CE(sat)^*} Collector-Emitter Saturation Voltage V_{BE(sat)^*} Base-Emitter Saturation Voltage V_{BE(sat)^*} DC Current Gain I_{C} = -20 \text{ mA} I_{B} = -2 \text{ mA} I_{C} = -20 \text{ mA} I_{B} = -2 \text{ mA} I_{C} = -20 \text{ mA} I_{B} = -2 \text{ mA} I_{C} = -10 \text{ mA} V_{CE} = -10 \text{ V} I_{C} = -10 \text{ mA} V_{CE} = -10 \text{ V} I_{C} = -10 \text{ mA} V_{CE} = -10 \text{ V} I_{C} = -30 \text{ mA} V_{CE} = -10 \text{ V} I_{C} = -30 \text{ mA} V_{CE} = -10 \text{ V} I_{C} = -30 \text{ mA} V_{CE} = -20 \text{ V} f = 50 \text{ MHz} I_{C} = -10 \text{ mA} V_{CE} = -20 \text{ V} f = 1 \text{ MHz} I_{C} = -20 \text{ V} f = 1 \text{ MHz}$	
Breakdown Voltage (I _B = 0) $V_{(BR)EBO} = \begin{bmatrix} Emitter-Base \\ Breakdown Voltage \\ (I_{C} = 0) \end{bmatrix} I_{E} = -100 \ \mu A $ $V_{CE(sat)}* Collector-Emitter \\ Saturation Voltage \end{bmatrix} I_{C} = -20 \ mA I_{B} = -2 \ mA $ $V_{BE(sat)}* Base-Emitter \\ Saturation Voltage \end{bmatrix} I_{C} = -20 \ mA I_{B} = -2 \ mA $ $V_{E}(sat)* DC Current Gain I_{C} = -10 \ mA V_{CE} = -10 \ V 40 I_{C} = -30 \ mA V_{CE} = -10 \ V 25 V_{CE} = -20 \ V F = 50 \ MHz $ $C_{CBO} Collector-Base I_{C} = 0 V_{CB} = -20 \ V f = 1 \ MHz 6 V_{CE} = -20 \ V f = 1 \ MHz 6 V_{CE} = -20 \ V f = 1 \ MHz 6 V_{CE} = -20 \ V_{CE} = -20 \ V f = 1 \ MHz 6 V_{CE} = -20 \ $	V
Breakdown Voltage $(I_C=0)$ $I_C=-20 \text{ mA}$ $I_B=-2 \text{ mA}$ $I_C=-20 \text{ mA}$ $I_B=-2 \text{ mA}$ $I_C=-20 m$	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V
Saturation Voltage $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	٧
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V
C_{CBO} Collector-Base Capacitance $I_{C} = 0$ $V_{CB} = -20 \text{ V}$ $f = 1 \text{MHz}$ 6Pulsed: Pulse duration = 300 us , duty cycle $\leq 2 \text{ %}$	
Capacitance Pulsed: Pulse duration = 300 us, duty cycle ≤ 2 %	MHz
Pulsed: Pulse duration = 300 μs, duty cycle ≤ 2 %	pF
ie Pros	


^{*} Pulsed: Pulse duration = 300 μs, duty cycle ≤ 2 %

47/ 2/4

SOT-23 MECHANICAL DATA

DIM.	mm		mils			
D.IWI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	0.85		1.1	33.4		43.3
В	0.65		0.95	25.6		37.4
С	1.20		1.4	47.2		55.1
D	2.80		3	110.2		118
Е	0.95		1.05	37.4		41.3
F	1.9		2.05	74.8		80.7
G	2.1		2.5	82.6		98.4
Н	0.38		0.48	14.9		18.8
L	0.3		0.6	11.8	000	23.6
М	0		0.1	0	510	3.9
N	0.3		0.65	11.8		25.6
0	0.09		0.17	3.5		6.7

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

4