

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

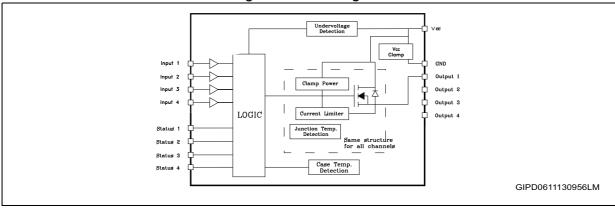
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Quad high-side smart power solid-state relay

Datasheet - production data

Features

Туре	V _{demag} ⁽¹⁾	R _{DS(on)} ⁽¹⁾	I _{out} ⁽¹⁾	V _{CC}
VNI4140K	V _{CC} -41 V	Ω 80.0	0.7 A	41 V


- 1. Per channel.
- Output current: 0.7 A per channel
- Shorted load protections
- Junction overtemperature protection
- Case overtemperature protection for thermal independence of the channels
- Thermal case shutdown restart not simultaneous for the various channels
- · Protection against loss of ground
- Current limitation
- Undervoltage shutdown

- · Open drain diagnostic outputs
- 3.3 V CMOS/TTL compatible inputs
- · Fast demagnetization of inductive loads
- Conforms to IEC 61131-2
- ESD according to IEC 61000-4-2 up to +/-25 kV

Description

The VNI4140K is a monolithic device made using STMicroelectronics VIPower technology, intended to drive four independent resistive or inductive loads with one side connected to ground. Active current limitation avoids dropping the system power supply in case of shorted load. Built-in thermal shutdown protects the chip from overtemperature and short-circuit. In overload conditions, channel turns OFF and back ON automatically so to maintain junction temperature between T_{TSD} and T_R. If this condition makes case temperature reach T_{CSD}, overloaded channel is turned OFF and restart only when case temperature has decreased down to T_{CR}. In case of more than one channel in overload, restart of the overloaded channels is not simultaneous, in order to avoid high peak current from the supply. Non-overloaded channels continue operating normally. The open drain diagnostics outputs indicate overtemperature conditions.

Figure 1. Block diagram

Contents VNI4140K

Contents

1	Pin connection	. 3
2	Maximum ratings	
3	Electrical characteristics	. 6
4	Truth table	. 9
5	Typical application circuit	. 9
6	Switching waveforms	11
7	Pin functions	12
8	Package and PC board thermal data	
9	Reverse polarity protection	16
10	Demagnetization energy	17
11	Package mechanical data	18
12	Ordering information	23
12	Pavisian history	2/

VNI4140K Pin connection

1 Pin connection

Figure 2. Pin connection (top view)

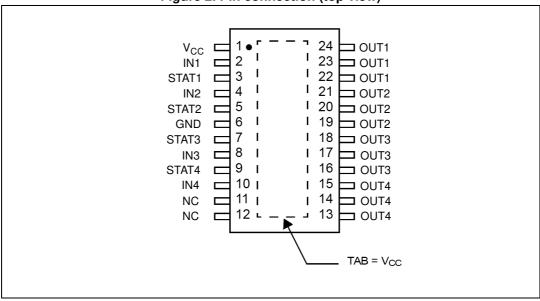


Table 1. Pin description

Pin	Name	Description
Tab	TAB	Exposed tab internally connected to V _{cc}
1	V _{CC}	Supply voltage
2	IN1	Channel 1 input 3.3 V CMOS/TTL compatible
3	STAT1	Channel 1 status in open drain configuration
4	IN2	Channel 2 input 3.3 V CMOS/TTL compatible
5	STA2	Channel 2 status in open drain configuration
6	GND	Device ground connection
7	STAT3	Channel 3 status in open drain configuration
8	IN3	Channel 3 input 3.3 V CMOS/TTL compatible
9	STAT4	Channel 4 status in open drain configuration
10	IN4	Channel 4 input 3.3 V CMOS/TTL compatible
11	NC	
12	NC	
13	OUT4	Channel 4 power stage output, internally protected
14	OUT4	Channel 4 power stage output, internally protected
15	OUT4	Channel 4 power stage output, internally protected
16	OUT3	Channel 3 power stage output, internally protected
17	OUT3	Channel 3 power stage output, internally protected

Pin connection VNI4140K

Table 1. Pin description (continued)

Pin	Name	Description
18	OUT3	Channel 3 power stage output, internally protected
19	OUT2	Channel 2 power stage output, internally protected
20	OUT2	Channel 2 power stage output, internally protected
21	OUT2	Channel 2 power stage output, internally protected
22	OUT1	Channel 1 power stage output, internally protected
23	OUT1	Channel 1 power stage output, internally protected
24	OUT1	Channel 1 power stage output, internally protected

VNI4140K Maximum ratings

2 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Power supply voltage	41	V
-V _{CC}	Reverse supply voltage	-0.3	V
I _{GND}	DC ground reverse current	-250	mA
I _{OUT}	Output current (continuous)	Internally limited	Α
I _R	Reverse output current (per channel)	-5	Α
I _{IN}	Input current (per channel)	± 10	mA
V _{IN}	Input voltage	+V _{CC}	V
V _{STAT}	Status pin voltage	+V _{CC}	٧
I _{STAT}	Status pin current	± 10	mA
V _{ESD}	Electrostatic discharge (R = 1.5 kΩ; C = 100 pF)	2000	V
E _{AS}	I _{OUT} = 500 mA T _{AMB} = 125 °C	5	J
P _{TOT}	Power dissipation at T _c = 25 °C	Internally limited	W
TJ	Junction operating temperature	Internally limited	°C
T _{STG}	Storage temperature	-55 to 150	°C

2.1 Thermal data

Table 3. Thermal data

Symbol	Symbol Parameter		Value	Unit
R _{th(JC)}	Thermal resistance junction-case (1)	Max.	2	°C/W
R _{th(JA)}	Thermal resistance junction-ambient	Max.	see Figure 11	°C/W

^{1.} Per channel.

Electrical characteristics VNI4140K

3 Electrical characteristics

10.5 V < V_{CC} < 36 V; -40 °C < T_{J} < 125 °C; unless otherwise specified

Table 4. Power section

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{cc}	Supply voltage		10.5		36	V
R _{DS(on)}	On-state resistance	I_{OUT} = 0.5 A at T_J = 25 °C I_{OUT} = 0.5 A			0.080 0.140	Ω
V _{clamp}		I _s = 20 mA	41	45	52	V
I _S	Supply current	All channels in OFF state ON state with $V_{IN} = 5 \text{ V}$ $(T_J = 125 \text{ °C})$		250 2.4	4	μA mA
I _{LGND}	Output current at turn- off	$V_{CC} = V_{STAT} = V_{IN} = V_{GND} = 24 \text{ V}, V_{OUT} = 0 \text{ V}$			1	mA
V _{OUT(OFF)}	Off state output voltage	V _{IN} = 0 V and I _{OUT} = 0 A			1	V
I _{OUT(OFF)}	Off state output current	V _{IN} = V _{OUT} = 0 V	0		5	μΑ
F _{CP}	Charge pump frequency	Channel in ON state (1)		1450		kHz

^{1.} To cover EN55022 class A and class B normative.

 V_{CC} = 24 V; -40 °C < T_{J} < 125 °C, R_{L} = 48 $\Omega,$ input rise time < 0.1 μs

Table 5. Switching

Symbol	Parameter	Min.	Тур.	Max.	Unit
t _{d(ON)}	Turn on delay	-	20	-	μs
t _r	Rise time	-	10	-	μs
t _d (OFF)	Turn off	-	30	-	μs
t _f	Fall time	-	8	-	μs
dV/dt _(ON)	Turn on voltage slope	-	3	-	V/µs
dV/dt _(OFF)	Turn off voltage slope	-	4	-	V/µs

Table 6. Logical input

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V_{IL}	Input low level voltage				0.8	V
V _{IH}	Input high level voltage		2.20			V
V _{I(HYST)}	Input hysteresis voltage			0.15		٧
	Input current	V _{IN} = 15 V			10	^
IN	Imput current	V _{IN} = 36 V			210	μΑ

Table 7. Protection and diagnostic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{STAT}	Status voltage output low	I _{STAT} = 1.6 mA			0.6	V
V _{USD}	Undervoltage protection		7		10.5	V
V _{USDHYS}	Undervoltage hysteresis		0.4	0.5		V
I _{LIM}	DC short-circuit current	$V_{CC} = 24 \text{ V}; R_{LOAD} < 10 \text{ m}\Omega$	0.7	1	1.7	Α
I _{PEAK}	Maximum DC output current	Dynamic load		1.3		Α
HYST	Tracking limits			0.2		Α
I _{LSTAT}	Status leakage current	V _{CC} = V _{STAT} = 36 V		30		μΑ
T _{TSD}	Junction shutdown temperature		150	170	190	°C
T _R	Junction reset temperature		135			°C
T _{HYST}	Junction thermal hysteresis		7	15		°C
T _{CSD}	Case shutdown temperature		125	130	135	°C
T _{CR}	Case reset temperature		110			°C
T _{CHYST}	Case thermal hysteresis		7	15		°C
V _{demag}	Output voltage at turn-off	I _{OUT} = 0.5 A; L _{LOAD} >= 1 mH	V _{CC} -41	V _{CC} -45	V _{CC} -52	V

Electrical characteristics VNI4140K

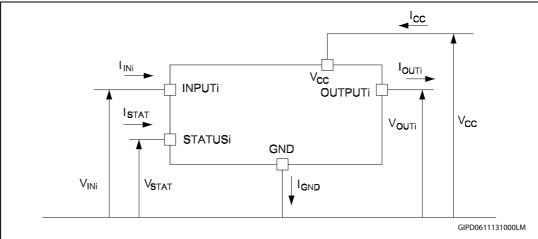


Figure 3. Current and voltage conventions

VNI4140K Truth table

Truth table 4

Table 8.Truth table

Condition	INPUTn	OUTPUTn	STATUSn
Normal operation	L	L	H
	H	H	H
Overtemperature	L	L	H
	H	L	L
Undervoltage	L	L	X
	H	L	X
Shorted load (current limitation)	L	L	H
	H	X	H

Typical application circuit 5

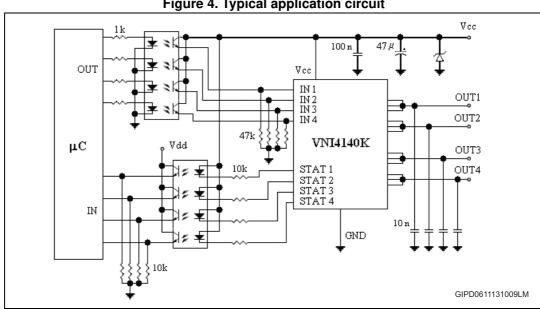


Figure 4. Typical application circuit

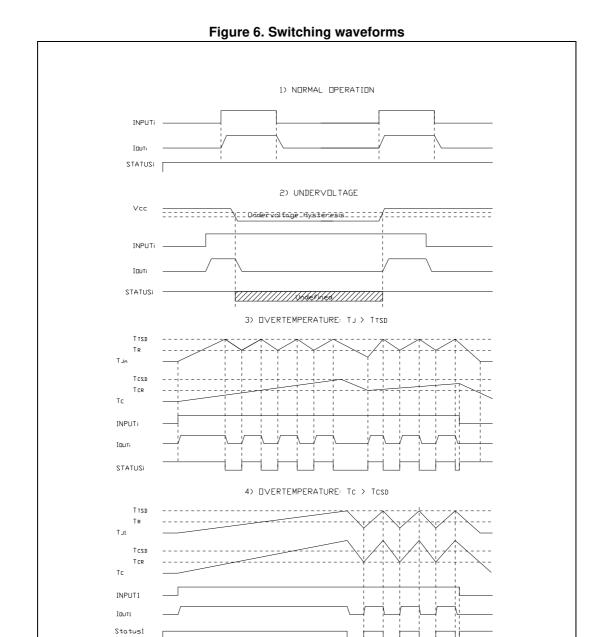

Vin(i) = HOUT(i) On STAT(i) Off (H) 1) NO YES Tj(i)>Ttsd OUT(i) Off STAT(i) On (L) YES NO Tc>Tcsd 4) YES NO Tc>Tcr 2) NO YES Tj(i) > Tjr3) GIPD0611131015LM

Figure 5. Thermal behavior

6 Switching waveforms

Tue
INPUT2
IDUTE
Status2

GIPD0611131025LM

Pin functions VNI4140K

7 Pin functions

Figure 7. Input circuit

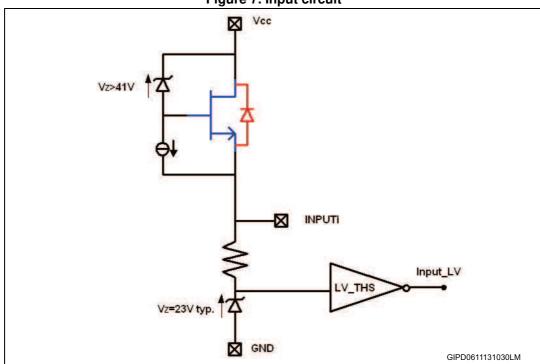
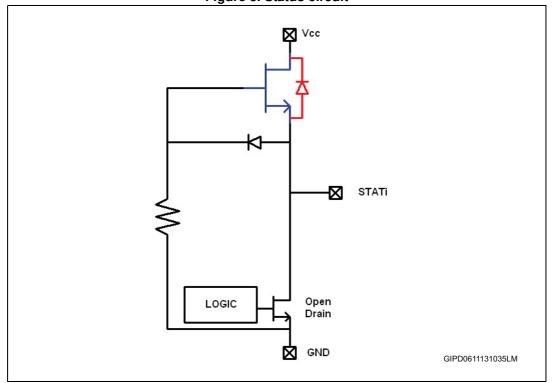
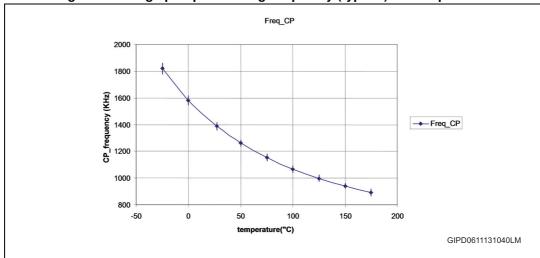
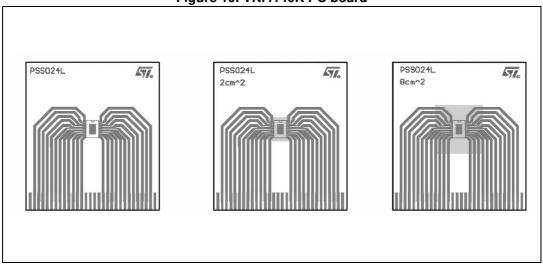



Figure 8. Status circuit

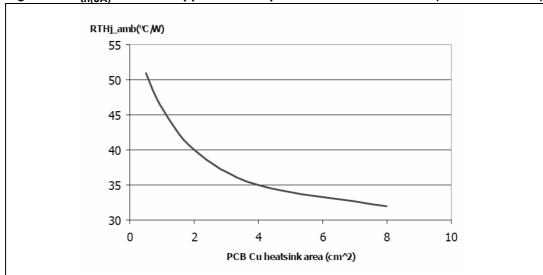
VNI4140K Pin functions




Figure 9. Charge pump switching frequency (typical) vs. temperature

8 Package and PC board thermal data

8.1 VNI4140K thermal data


Figure 10. VNI4140K PC board

Note:

Layout condition of R_{th} and Z_{th} measurements (PCB: double layer, thermal vias, FR4 area =77 mm x 86 mm, PCB thickness =1.6 mm, Cu thickness = 70 mm (front and back side), copper areas: from minimum pad layout to 8 cm²).

Figure 11. R_{th(JA)} vs. PCB copper area in open box free air condition (one channel ON)

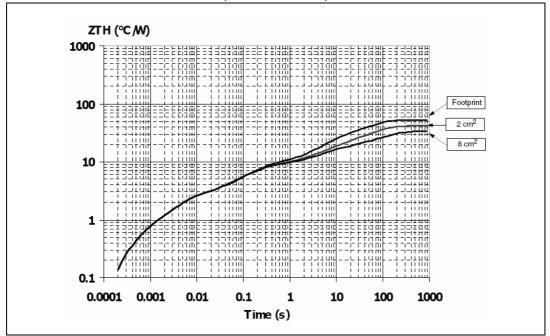


Figure 12. VNI4140K thermal impedance junction ambient single pulse (one channel on)

Reverse polarity protection 9

Reverse polarity protection can be implemented on board using two different solutions:

- Placing a resistor (R_{GND}) between IC GND pin and load GND
- Placing a diode between IC GND pin and load GND 2.

If option 1 is selected, the minimum resistance value has to be selected according to the following equation:

Equation 1

where I_{GND} is the DC reverse ground pin current and can be found in Section 2: Maximum ratings of this datasheet.

Power dissipated by R_{GND} (when $V_{CC} < 0$: during reverse polarity situations) is:

Equation 2

$$PD = (V_{CC})^2 / R_{GND}$$

If option 2 is selected, the diode has to be chosen by taking into account VRRM > $|V_{cc}|$ and its power dissipation capability:

Equation 3

$$P_D \ge I_S^* V_f$$

Note:

In normal conditions (no reverse polarity) due to the diode, there is a voltage drop between GND of the device and GND of the system.

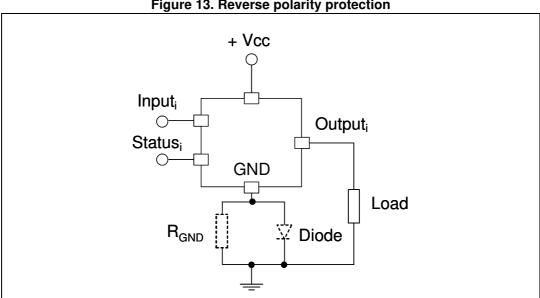


Figure 13. Reverse polarity protection

This schematic can be used with any type of load.

10 **Demagnetization energy**

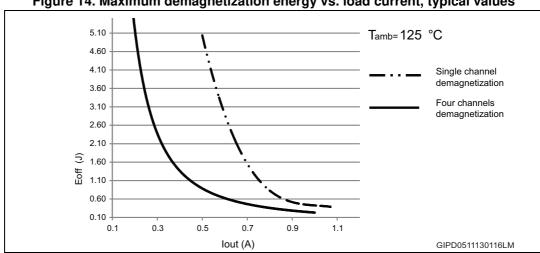


Figure 14. Maximum demagnetization energy vs. load current, typical values

11 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Table 9. PowerSSO-24 mechanical data

Comphal		mm	
Symbol	Min.	Тур.	Max.
Α	2.15		2.47
A2	2.15		2.40
a1	0		0.075
b	0.33		0.51
С	0.23		0.32
D	10.10		10.50
E	7.4		7.6
е		8.0	
e3		8.8	
G			0.1
G1			0.06
Н	10.1		10.5
h			0.4
L	0.55		0.85
N			10deg
X	4.1		4.7
Y	6.5		7.1

18/25 DocID14174 Rev 13

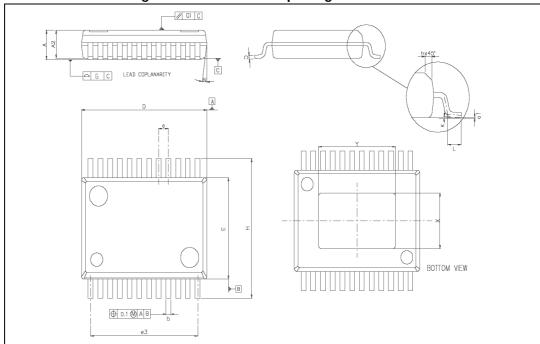
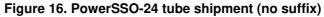



Figure 15. PowerSSO-24 package dimensions

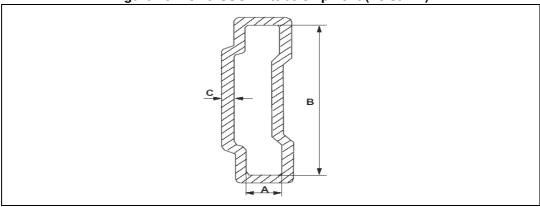


Table 10. PowerSSO-24 tube shipment

Base quantity	49	
Bulk quantity	1225	
Tube length (± 0.5)	532	
Α	3.5	
В	13.8	
C (± 0.1)	0.6	

Note: All dimensions are in mm.

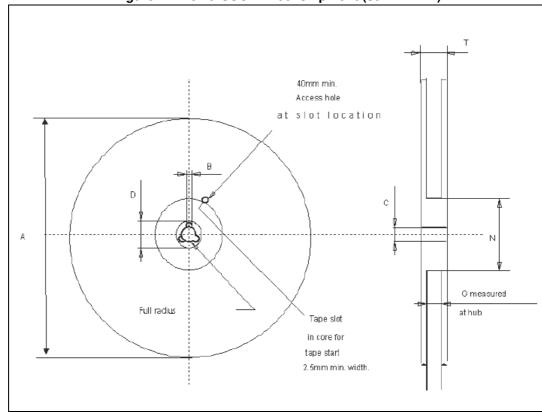


Figure 17. PowerSSO-24 reel shipment (suffix "TR")

Table 11. PowerSSO-24 reel dimensions

Base quantity	1000
Bulk quantity	1000
A (max.)	330
B (min.)	1.5
C (± 0.2)	13
F	20.2
G (2 ± 0)	24.4
N (min.)	100
T (max.)	30.4

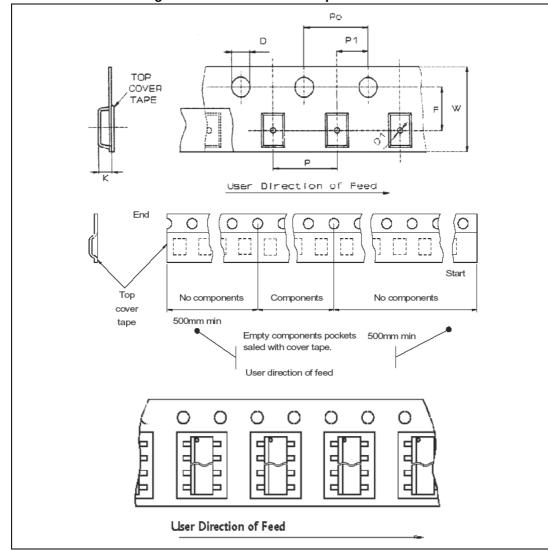


Figure 18. PowerSSO-24™ tape dimensions

Table 12. PowerSSO-24™ tape dimensions

Tape width	W	24
Tape hole spacing	P0 (± 0.1)	4
Component spacing	Р	12
Hole diameter	D (± 0.05)	1.55
Hole diameter	D1 (min.)	1.5
Hole position	F (± 0.1)	11.5
Compartment depth	K (max.)	2.85
Hole spacing	P1 (± 0.1)	2

Note: According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986

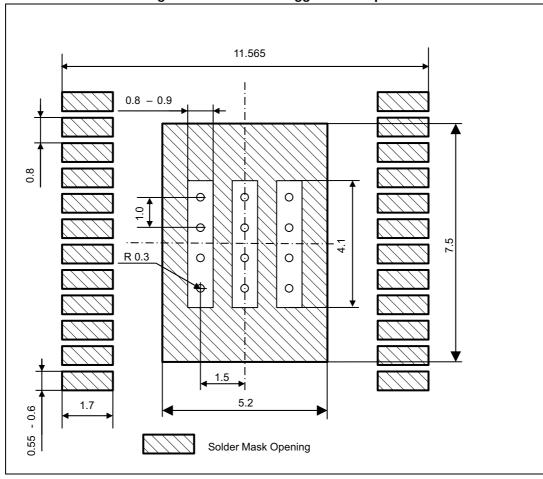


Figure 19. VN14140k suggested footprint

Note:

STMicroelectronics is not responsible for any PCB related issues. The footprint shown in the above figure is a suggestion which might not be in line to the customer PCB supplier design rules.

All dimensions are in mm.

12 Ordering information

Table 13. Order code

Order code	Package	Packaging
VNI4140K	PowerSSO-24	Tube
VNI4140KTR	PowerSSO-24	Tape and reel

Revision history VNI4140K

13 Revision history

Table 14. Document revision history

Date	Revision	Changes	
16-Nov-2007	1	Initial release.	
26-Nov-2007	2	Updated electrical parameters values.	
08-Jul-2008	3	Inserted: Figure 4 on page 9 and Section 9: Reverse polarity protection on page 16.	
08-Apr-2008	4	Added I _{LGND} parameter in <i>Table 4 on page 6</i> .	
27-Aug-2009	5	Updated Section 9: Reverse polarity protection.	
09-Dec-2009	6	Added Section 10: Conformity to IEC 61000-4-2 ESD immunity test.	
15-Apr-2010	7	Updated Table 5 on page 6.	
06-Feb-2012	8	Inserted feature: conformity to IEC 61000-4-2 ESD immunity test in cover page. Removed chapter: conformity to IEC 61000-4-2 ESD immunity test.	
05-Mar-2012	9	Suggested footprint inserted. In <i>Table 4</i> parameter I _{LGND} has been added.	
19-Mar-2012	10	Minor text changes.	
20-Dec-2012	11	Operating temperature range extended.	
06-Nov-2013	12	Updated E _{AS} value in <i>Table 2: Absolute maximum ratings</i> . Added <i>Figure 14</i> .	
11-Dec-2013	13	Updated Section 9.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

