

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





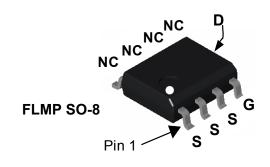


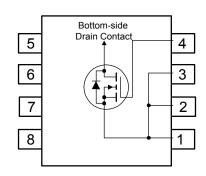


# FDS4080N3

# 40V N-Channel FLMP PowerTrench® MOSFET

## **General Description**


This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for "low side" synchronous rectifier operation, providing an extremely low  $R_{\text{DS(ON)}}$  in a small package.


## **Applications**

- · Synchronous rectifier
- DC/DC converter

### **Features**

- 13 A, 40 V  $R_{DS(ON)} = 10.5 \text{ m}\Omega$  @  $V_{GS} = 10 \text{ V}$
- High performance trench technology for extremely low R<sub>DS(ON)</sub>
- High power and current handling capability
- Fast switching (Qg = 30 nC)
- FLMP SO-8 package: Enhanced thermal performance in industry-standard package size





## Absolute Maximum Ratings TA=25°C unless otherwise noted

| Symbol                            | Parameter                                        |           | Ratings     | Units |
|-----------------------------------|--------------------------------------------------|-----------|-------------|-------|
| V <sub>DSS</sub>                  | Drain-Source Voltage                             |           | 40          | V     |
| V <sub>GSS</sub>                  | Gate-Source Voltage                              |           | ± 20        | V     |
| I <sub>D</sub>                    | Drain Current - Continuous                       | (Note 1a) | 13          | Α     |
|                                   | – Pulsed                                         |           | 60          |       |
| P <sub>D</sub>                    | Power Dissipation for Single Operation           | (Note 1a) | 3.0         | W     |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Junction Temperature Range |           | -55 to +150 | °C    |

## **Thermal Characteristics**

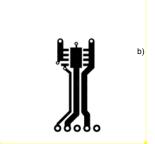
| $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient | (Note 1a) | 40  | °C/W |
|-----------------|-----------------------------------------|-----------|-----|------|
| $R_{\theta JC}$ | Thermal Resistance, Junction-to-Ambient |           | 0.5 | °C/W |

Package Marking and Ordering Information

| Device Marking | Device    | Reel Size | Tape width | Quantity   |
|----------------|-----------|-----------|------------|------------|
| FDS4080N3      | FDS4080N3 | 13"       | 12mm       | 2500 units |

| Symbol                                 | Parameter                                      | Test Conditions                                                                                                       | Min | Тур         | Max        | Units    |
|----------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----|-------------|------------|----------|
| Drain-So                               | ource Avalanche Ratings (Not                   | e 2)                                                                                                                  | 1   | l           | ı          | <u>I</u> |
| E <sub>AS</sub>                        | Drain-Source Avalanche Energy                  | Single Pulse, V <sub>DD</sub> = 10V, I <sub>D</sub> =13A                                                              |     |             | 200        | mJ       |
| I <sub>AS</sub>                        | Drain-Source Avalanche Current                 |                                                                                                                       |     |             | 13         | Α        |
| Off Char                               | acteristics                                    |                                                                                                                       |     |             |            |          |
| BV <sub>DSS</sub>                      | Drain–Source Breakdown Voltage                 | $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$                                                                         | 40  |             |            | V        |
| ΔBV <sub>DSS</sub><br>ΔT <sub>.1</sub> | Breakdown Voltage Temperature Coefficient      | $I_D$ = 250 $\mu$ A, Referenced to 25°C                                                                               |     | 44          |            | mV/°C    |
| I <sub>DSS</sub>                       | Zero Gate Voltage Drain Current                | V <sub>DS</sub> = 32 V, V <sub>GS</sub> = 0 V                                                                         |     |             | 1          | μΑ       |
| I <sub>GSSF</sub>                      | Gate-Body Leakage, Forward                     | V <sub>GS</sub> = 20 V, V <sub>DS</sub> = 0 V                                                                         |     |             | 100        | nA       |
| I <sub>GSSR</sub>                      | Gate–Body Leakage, Reverse                     | $V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$                                                                        |     |             | -100       | nA       |
| On Char                                | acteristics (Note 2)                           |                                                                                                                       | •   | •           | •          | •        |
| V <sub>GS(th)</sub>                    | Gate Threshold Voltage                         | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$                                                                                  | 2   | 3.9         | 5          | V        |
| $\frac{\Delta V_{GS(th)}}{\Delta T_J}$ | Gate Threshold Voltage Temperature Coefficient | $I_D$ = 250 μA, Referenced to 25°C                                                                                    |     | -8          |            | mV/°C    |
| R <sub>DS(on)</sub>                    | Static Drain–Source<br>On–Resistance           | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 13 A<br>V <sub>GS</sub> = 10 V, I <sub>D</sub> = 13 A, T <sub>J</sub> =125°C |     | 8.5<br>12.5 | 10.5<br>22 | mΩ       |
| <b>g</b> FS                            | Forward Transconductance                       | $V_{DS} = 5 \text{ V},  I_{D} = 13 \text{ A}$                                                                         |     | 41          |            | S        |
| Dynamic                                | Characteristics                                |                                                                                                                       |     |             |            |          |
| C <sub>iss</sub>                       | Input Capacitance                              | $V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V},$                                                                        |     | 1750        |            | pF       |
| Coss                                   | Output Capacitance                             | f = 1.0 MHz                                                                                                           |     | 357         |            | pF       |
| C <sub>rss</sub>                       | Reverse Transfer Capacitance                   |                                                                                                                       |     | 138         |            | pF       |
| Switchir                               | g Characteristics (Note 2)                     |                                                                                                                       |     |             |            |          |
| t <sub>d(on)</sub>                     | Turn-On Delay Time                             | $V_{DD} = 20 \text{ V},  I_D = 1 \text{ A},$                                                                          |     | 12          | 21         | ns       |
| t <sub>r</sub>                         | Turn-On Rise Time                              | $V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$                                                                           |     | 8           | 17         | ns       |
| t <sub>d(off)</sub>                    | Turn-Off Delay Time                            |                                                                                                                       |     | 29          | 46         | ns       |
| t <sub>f</sub>                         | Turn–Off Fall Time                             |                                                                                                                       |     | 14          | 25         | ns       |
| Q <sub>g</sub>                         | Total Gate Charge                              | $V_{DS} = 20 \text{ V}, I_{D} = 13 \text{ A},$                                                                        |     | 30          | 40         | nC       |
| Q <sub>gs</sub>                        | Gate-Source Charge                             | V <sub>GS</sub> = 10 V                                                                                                |     | 9           |            | nC       |
| $Q_{gd}$                               | Gate-Drain Charge                              | 7                                                                                                                     |     | 10          |            | nC       |
| Drain-S                                | ource Diode Characteristics                    | and Maximum Ratings                                                                                                   |     |             |            |          |
| Is                                     | Maximum Continuous Drain–Source                |                                                                                                                       |     |             | 3.2        | Α        |
| V <sub>SD</sub>                        | Drain-Source Diode Forward                     | $V_{GS} = 0 \text{ V},  I_S = 3.2 \text{ A}  \text{(Note 2)}$                                                         |     | 0.7         | 1.2        | V        |

## **Electrical Characteristics**


T<sub>A</sub> = 25°C unless otherwise noted

#### Notes:

1. R<sub>0JA</sub> is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R<sub>0JC</sub> is guaranteed by design while R<sub>0CA</sub> is determined by the user's board design.



a) 49°C/W when mounted on a 1in² pad of 2 oz copper



85°C/W when mounted on a minimum pad of 2 oz copper

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2.0%

# **Typical Characteristics**

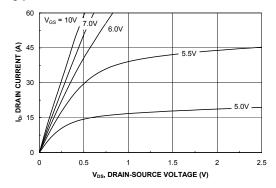
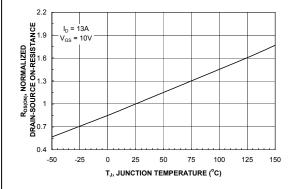




Figure 1. On-Region Characteristics.

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.



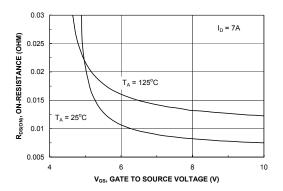
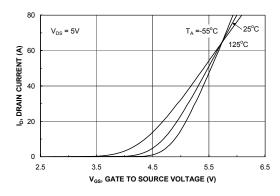




Figure 3. On-Resistance Variation withTemperature.

Figure 4. On-Resistance Variation with Gate-to-Source Voltage.



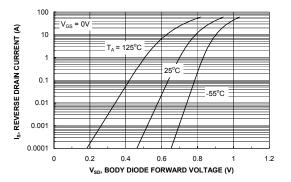
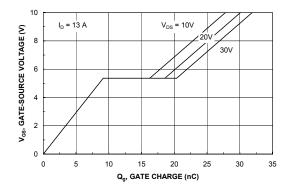




Figure 5. Transfer Characteristics.

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

# **Typical Characteristics**



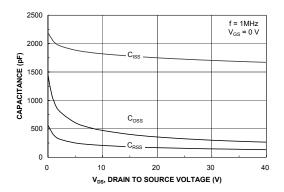
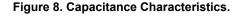
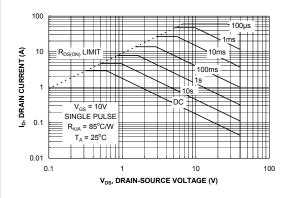





Figure 7. Gate Charge Characteristics.





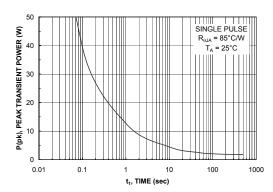



Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum Power Dissipation.

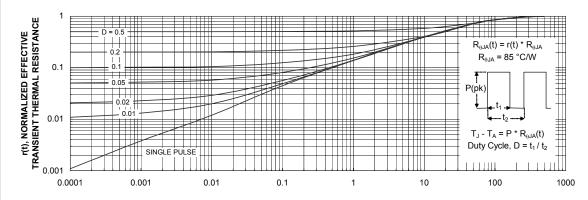
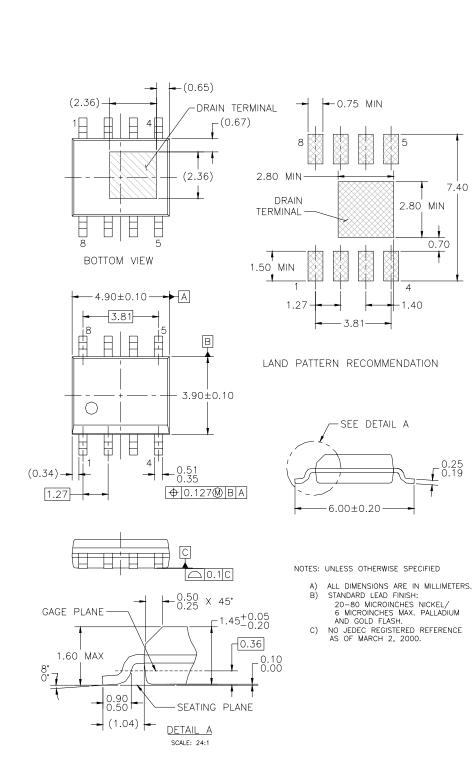




Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design.

# **Dimensional Outline and Pad Layout**



### **TRADEMARKS**

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

| $ACEx^{TM}$                       | FACT Quiet Series™             | ISOPLANAR™        | $POP^{TM}$          | Stealth™               |
|-----------------------------------|--------------------------------|-------------------|---------------------|------------------------|
| ActiveArray™                      | FAST®                          | LittleFET™        | Power247™           | SuperFET™              |
| Bottomless™                       | FASTr™                         | MICROCOUPLER™     | PowerSaver™         | SuperSOT™-3            |
| CoolFET™                          | FPS™                           | MicroFET™         | PowerTrench®        | SuperSOT™-6            |
| CROSSVOLT™                        | FRFET™                         | MicroPak™         | QFET®               | SuperSOT™-8            |
| DOME™                             | GlobalOptoisolator™            | MICROWIRE™        | QS™                 | SyncFET™               |
| EcoSPARK™                         | GTO™ .                         | MSX <sup>TM</sup> | QT Optoelectronics™ | TinyLogic <sup>®</sup> |
| E <sup>2</sup> CMOS <sup>TM</sup> | HiSeC™                         | MSXPro™           | Quiet Series™       | TINYOPTO™              |
| EnSigna™                          | I <sup>2</sup> C <sup>TM</sup> | OCX <sup>TM</sup> | RapidConfigure™     | TruTranslation™        |
| FACT™                             | ImpliedDisconnect™             | OCXPro™           | RapidConnect™       | UHC™                   |
| Across the board                  | d. Around the world.™          | OPTOLOGIC®        | SILENT SWITCHER®    | UltraFET®              |
| The Power Franchise™              |                                | OPTOPLANAR™       | SMART START™        | VCX™                   |
| Programmable Active Droop™        |                                | PACMAN™           | SPM™                |                        |

### **DISCLAIMER**

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

## PRODUCT STATUS DEFINITIONS

### **Definition of Terms**

| Datasheet Identification | Product Status            | Definition                                                                                                                                                                                                            |
|--------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative or<br>In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                                    |
| Preliminary              | First Production          | This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. |
| No Identification Needed | Full Production           | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.                                                       |
| Obsolete                 | Not In Production         | This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.                                                   |