imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CoolMOS^{™ 1)} Power MOSFET

Electrically isolated back surface 2500 V electrical isolation N-Channel Enhancement Mode Low R_{DSon} , high V_{DSS} MOSFET Ultra low gate charge

MOSFET				
Symbol	Conditions	Maximum Ratings		
V _{DSS}	$T_{VJ} = 25^{\circ}C$	600	V	
V _{GS}		± 20	V	
I _{D25} I _{D90}	$T_{c} = 25^{\circ}C$ $T_{c} = 90^{\circ}C$	19 15	A A	
E _{AS} E _{AR}	single pulse repetitive $I_D = 11 \text{ A}; T_C = 25^{\circ}\text{C}$	708 1.2	mJ mJ	
dV/dt	MOSFET dV/dt ruggedness $V_{DS} = 0480 V$	50	V/ns	

Symbol Conditions

Characteristic Values

 $(T_{VJ} = 25^{\circ}C)$, unless otherwise specified)

			min.	typ.	max.	
\mathbf{R}_{DSon}	$V_{GS} = 10 \text{ V}; \text{ I}_{D} = 16 \text{ A}$			110	125	mΩ
V _{GS(th)}	$V_{DS} = V_{GS}; I_{D} = 1.1 \text{ mA}$		2.5	3	3.5	V
I _{dss}	$V_{\text{DS}} = 600 \text{ V}; \ V_{\text{GS}} = 0 \text{ V}$	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 125^{\circ}C$		20	2	μΑ μΑ
I _{GSS}	$V_{GS} = \pm 20 \text{ V}; V_{DS} = 0 \text{ V}$				100	nA
C _{iss} C _{oss}	$\begin{cases} V_{GS} = 0 \text{ V}; V_{DS} = 100 \text{ V} \\ f = 1 \text{ MHz} \end{cases}$			2500 120		pF pF
$egin{array}{c} \mathbf{Q}_{g} \ \mathbf{Q}_{gs} \ \mathbf{Q}_{gd} \end{array}$	$\begin{cases} V_{GS} = 0 \text{ to } 10 \text{ V}; \text{ V}_{DS} = 400 \end{cases}$	0 V; I _D = 12 A		53 12 18	70	nC nC nC
$f{t}_{d(on)} \ f_r \ f_{d(off)} \ f_f$	$\left. \begin{array}{l} V_{GS} = 10 \text{ V}; V_{DS} = 400 \text{ V} \\ I_{D} = 16 \text{ A}; \text{ R}_{G} = 3.3 \Omega \end{array} \right. \right. \label{eq:VGS}$			15 5 50 5		ns ns ns ns
R _{thJC}					0.95	K/W

Features

- Silicon chip on Direct-Copper-Bond substrate
- high power dissipation
- isolated mounting surface
- 2500 V electrical isolation
- low drain to tab capacitance (< 30 pF)
- Fast CoolMOS^{™ 1)} power MOSFET 4th generation
 - high blocking capability
 - lowest resistance
 - avalanche rated for unclamped inductive switching (UIS)
 - low thermal resistance
 - due to reduced chip thickness
- Enhanced total power density

Applications

- Switched mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)
- Power factor correction (PFC)
- Welding
- Inductive heating
- PDP and LCD adapter

Advantages

- Easy assembly:
- no screws or isolation foils required • Space savings
- High power density
- High reliability
 - ¹⁾ CoolMOS[™] is a trademark of Infineon Technologies AG.

Weight

2.7

g

Source-Drain Diode						
Symbol	Conditions	Characteristic Values				
	(T _{vJ} = 25°C, u	, unless otherwise specified)				
		min.	typ.	max.		
ls	$V_{GS} = 0 V$			16	A	
V _{SD}	$I_{F} = 16 \text{ A}; V_{GS} = 0 \text{ V}$		0.9	1.2	V	
t _{rr} Q _{RM} I _{RM}	$I_F = 16 \text{ A}; -di_F/dt = 100 \text{ A}/\mu\text{s}; V_R = 400 \text{ V}$		430 9 42		ns µC A	
Component						
Symbol	Conditions	Maximum Ratings				
T _{vJ} T _{stg}	operating storage	-55+150 -55+150		°C ℃		
VISOL	RMS leads-to-tab, 50/60 Hz, f = 1 minute	2500			V~	
Fc	mounting force	11-65 / 2.4-11 N			N/lb	
Symbol	Conditions	Characteristic Values			alues	
		min.	typ.	max.		
R _{thCH}	with heatsink compound		0.3		K/W	

IXYS reserves the right to change limits, test conditions and dimensions.

ISOPLUS220[™] Outline

SYM	INCHES		MILLIMETERS		
51M	MIN	MAX	MIN	MAX	
A	.157	.197	4.00	5.00	
A2	.098	.118	2.50	3.00	
b	.035	.051	0.90	1.30	
b2	.049	.065	1.25	1.65	
b4	.093	.100	2.35	2.55	
С	.028	.039	0.70	1.00	
D	.591	.630	15.00	16.00	
D1	.472	.512	12.00	13.00	
E	.394	.433	10.00	11.00	
E1	.295	.335	7.50	8.50	
е	.100 BASIC		2.55 BASIC		
L	.512	.571	13.00	14.50	
L1	.118	.138	3.00	3.50	
T°			42.5°	47.5°	

NOTE:
1. Bottom heatsink is electrically isolated from Pin 1, 2, or 3.
2. This drawing will meet dimensional requirement of JEDEC SS Product Outline TO-273 except D and D1 dimension.

Fig. 1 Power dissipation

IXYS reserves the right to change limits, test conditions and dimensions.

0.4

Fig. 4 Typ. drain-source on-state resistance

Fig. 5 Drain-source on-state resistance

Fig. 6 Typ. transfer characteristics

IXYS reserves the right to change limits, test conditions and dimensions.

© 2009 IXYS All rights reserved