

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STFU15NM65N

N-channel 650 V, 0.35 Ω typ., 12 A MDmesh™ II Power MOSFET in a TO-220FP ultra narrow leads package

Datasheet - production data

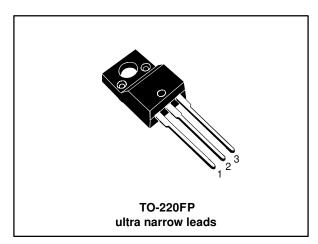
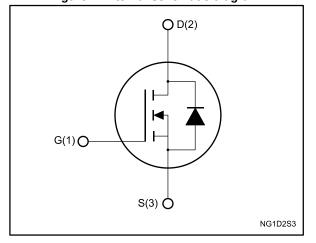



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max	ΙD
STFU15NM65N	650 V	0.38 Ω	12 A

- 100% avalanche tested
- · Low input capacitance and gate charge
- Low gate input resistance

Applications

Switching applications

Description

This device is an N-channel Power MOSFET developed using the second generation of MDmesh™ technology. This revolutionary Power MOSFET associates a vertical structure to the company's strip layout to yield one of the world's lowest on-resistance and gate charge. It is therefore suitable for the most demanding high efficiency converters.

Table 1: Device summary

Order code	Marking	Package	Packaging
STFU15NM65N	15NM65N	TO-220FP ultra narrow leads	Tube

Contents STFU15NM65N

Contents

1	Electric	eal ratings	3
2	Electric	eal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuit	8
4	Packag	e information	9
	4.1	TO-220FP ultra narrow leads package information	9
5	Revisio	n history	11

STFU15NM65N Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain source voltage	650	V
V_{GS}	Gate source voltage	± 25	V
	Drain current (continuous) at T _C = 25 °C	12 ⁽¹⁾	Δ.
l _D	Drain current (continuous) at T _C = 100 °C	7.56	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	48	Α
Ртот	Total dissipation at T _C = 25 °C	30	W
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; T_C = 25 °C)	2500	V
dv/dt (3)	Peak diode recovery voltage slope	15	V/ns
T _{stg}	Storage temperature	- 55 to 150	°C
Tj	Operating junction temperature	- 55 (0 150	J

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	4.17	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max		1 C/VV

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T _{jmax})	3	А
Eas	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$; $V_{DD} = 50$ V)	187	mJ

⁽¹⁾Limited by maximum junction temperature.

⁽²⁾Pulse width limited by safe operating area.

 $^{^{(3)}}I_{SD} \leq 12~A,~di/dt \leq 400~A/\mu s;~V_{DSpeak} \leq V_{(BR)DSS},~V_{DD} = 80\%~V_{(BR)DSS}.$

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 5: On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$I_D = 1 \text{ mA}, V_{GS} = 0 \text{ V}$	650			>
l	Zero gate voltage	V _{DS} = 650 V			1	μΑ
IDSS	drain current (V _{GS} = 0)	V _{DS} = 650 V, T _C = 125 °C			100	μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 25 V			±100	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 6 A		0.35	0.38	Ω

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	983	ı	
Coss	Output capacitance	$V_{DS} = 50 \text{ V}, f = 1 \text{ MHz},$	-	57	ı	pF
Crss	Reverse transfer capacitance V _{GS} = 0 V		-	4.5	ı	
Coss eq. (1)	Equivalent output capacitance $V_{DS} = 0$ to 520 V, $V_{GS} = 0$ V		-	146	1	рF
Rg	Intrinsic gate resistance f = 1 MHz open drain		-	4.9	ı	Ω
Q_g	Total gate charge		-	33.3	ı	0
Qgs	Gate-source charge $V_{DD} = 520 \text{ V}, I_D = 12 \text{ A}, V_{GS} = 10 \text{ V}$		-	5.7	1	nC
Q_{gd}	Gate-drain charge	VG5 = 10 V	-	17	ı	

Notes:

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		1	55.5	ı	
tr	Rise time	$V_{DD} = 325 \text{ V}, I_D = 6 \text{ A},$	-	8.5	-	ns
t _{d(off)}	Turn-off delay time	$R_G = 4.7 \Omega, V_{GS} = 10 V$	-	14	-	
tf	Fall time		1	11.4	1	

 $^{^{(1)}}C_{\text{oss eq.}}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Table 8: Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Isd	Source-drain current		-		12	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		1		48	Α
V _{SD} ⁽²⁾	Forward on voltage	e I _{SD} = 12 A, V _{GS} = 0 V			1.6	V
trr	Reverse recovery time		1	428		ns
Qrr	Reverse recovery charge $I_{SD} = 12 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}, V_{DD} = 60 \text{ V}$		-	4.7		μC
I _{RRM}	Reverse recovery current	V DD - 00 V	-	21.5		Α
t _{rr}	Reverse recovery time		-	570		ns
Qrr	Reverse recovery charge $I_{SD} = 12 \text{ A}$, $di/dt = 100 \text{ A}/\mu\text{s}$, $V_{DD} = 60 \text{ V}$, $T_i = 150 \text{ °C}$		-	6.2		μC
I _{RRM}	Reverse recovery current	_ 100 = 00 t, 1, = 100 O	-	22		Α

Notes:

 $[\]ensuremath{^{(1)}}\mbox{Pulse}$ width limited by safe operating area.

 $^{^{(2)}\}text{Pulsed:}$ pulse duration = 300 $\mu\text{s,}$ duty cycle 1.5%.

2.1 Electrical characteristics (curves)

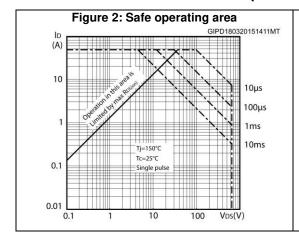


Figure 3: Thermal impedance occoss 1

0.2

0.2

0.0 0.05

Figure 4: Output characteristics

GIPD180320151405MT

(A)

VGS=10V

20

15

10

5V

5V

0

0

2

4

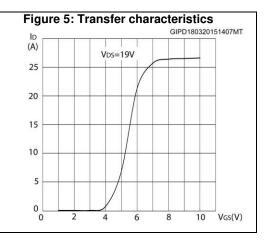
6

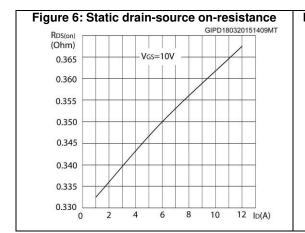
8

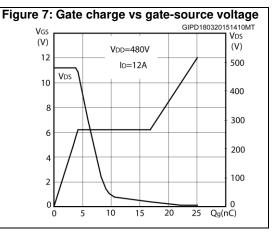
10

12

14


16


18


20

22

VDS(V)

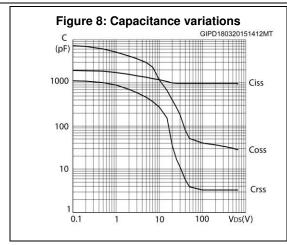
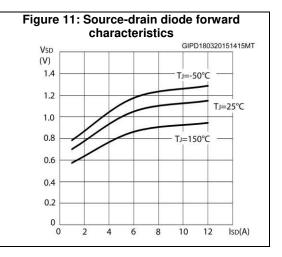
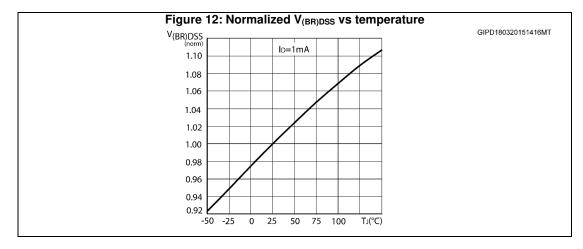


Figure 9: Normalized gate threshold voltage vs temperature

VGS(th)
(norm)
1.10

1.00


0.90


0.80

0.70

-50 -25 0 25 50 75 100 TJ(°C)

Figure 10: Normalized on-resistance vs temperature GIPD180320151414MT1 RDS(on) 2.1 ID=6A VGS=10V 1.9 1.7 1.5 1.3 1.1 0.9 0.7 0.5 -50 -25 25 50 75 100 TJ(°C) 0

Test circuit STFU15NM65N

3 Test circuit

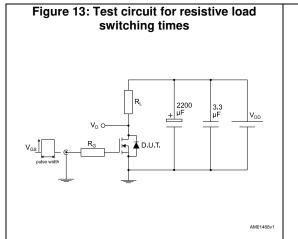
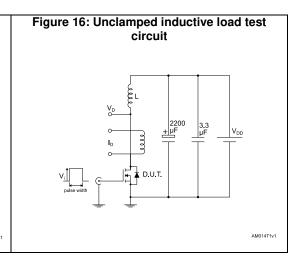
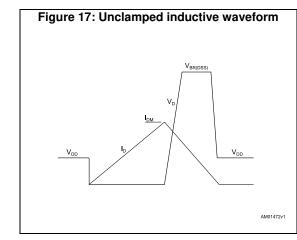
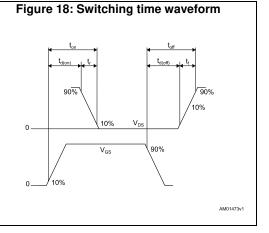


Figure 14: Test circuit for gate charge behavior


12 V 47 kΩ 100 nF 1 kΩ


Vos 1 kΩ 1 kΩ


Vos 1 kΩ 1 kΩ

AM01466y1

Figure 15: Test circuit for inductive load switching and diode recovery times

STFU15NM65N Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-220FP ultra narrow leads package information

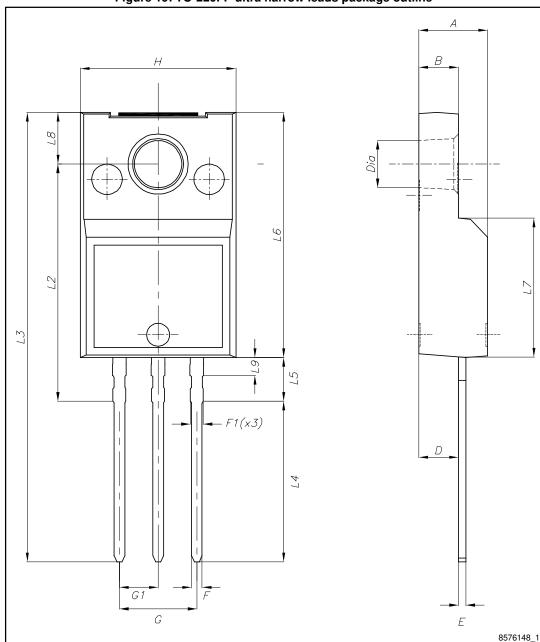


Figure 19: TO-220FP ultra narrow leads package outline

Table 9: TO-220FP ultra narrow leads mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
Α	4.40		4.60
В	2.50		2.70
D	2.50		2.75
Е	0.45		0.60
F	0.65		0.75
F1	-		0.90
G	4.95		5.20
G1	2.40	2.54	2.70
Н	10.00		10.40
L2	15.10		15.90
L3	28.50		30.50
L4	10.20		11.00
L5	2.50		3.10
L6	15.60		16.40
L7	9.00		9.30
L8	3.20		3.60
L9	-		1.30
Dia.	3.00		3.20

STFU15NM65N Revision history

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
16-Mar-2015	1	Initial release
09-Sep-2015	2	Datasheet status promoted from preliminary to production data.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

