imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

International

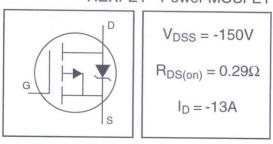
PD - 95132 IRF6215S/LPbF

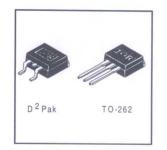
Lead-Free

- Advanced Process Technology
- Surface Mount (IRF6215S)
- Low-profile through-hole (IRF6215L)
- 175°C Operating Temperature
- Fast Switching
- P-Channel
- Fully Avalanche Rated

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.


The D²Pak is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible on-resistance in any existing surface mount package. The D²Pak is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0W in a typical surface mount application.


The through-hole version (IRF6215L) is available for low-profile applications.

	Parameter	Max.	Units	
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ -10VS	-13		
$I_{\rm D} @ T_{\rm C} = 100^{\circ}{\rm C}$	Continuous Drain Current, V _{GS} @ -10V(5)	-9.0	A	
IDM	Pulsed Drain Current ①⑤	-44		
$P_D @T_A = 25^{\circ}C$	Power Dissipation	3.8	W	
$P_D @T_C = 25^{\circ}C$	Power Dissipation	110	W	
	Linear Derating Factor	0.71	W/°C	
V _{GS}	Gate-to-Source Voltage	± 20	V	
E _{AS}	Single Pulse Avalanche Energy@S	310	mJ	
I _{AR}	Avalanche Current®	-6.6	A	
E _{AR}	Repetitive Avalanche Energy®	11	mJ	
dv/dt	Peak Diode Recovery dv/dt 35	-5.0	V/ns	
TJ	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		

Absolute Maximum Ratings

HEXFET[®] Power MOSFET

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{0JC}	Junction-to-Case		1.4	
R _{BJA}	Junction-to-Ambient (PCB Mounted, steady-state)**		40	- °C/W

	Parameter	Min.	Typ.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-150		-	V	$V_{GS} = 0V, I_D = -250 \mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		-0.20	-	V/°C	Reference to 25°C, I _D = -1mA [®]
R _{DS(on)}	Static Drain-to-Source On-Resistance		-	0.29		V _{GS} = -10V, I _D = -6.6A ④
		· · · · · · · · ·		0.58	Ω	V _{GS} = -10V, I _D = -6.6A ④ T _J = 150°C
V _{GS(th)}	Gate Threshold Voltage	-2.0		-4.0	V	$V_{DS} = V_{GS}, I_D = -250 \mu A$
9fs	Forward Transconductance	3.6			S	V _{DS} = -25V, I _D = -6.6A ⁽³⁾
DSS	Drain-to-Source Leakage Current		-	-25		$V_{DS} = 150V, V_{GS} = 0V$
055	Brainto-Source Leakage Guiterit			-250	μA	V _{DS} = 120V, V _{GS} = 0V, T _J = 150°C
lass .	Gate-to-Source Forward Leakage			100		V _{GS} = -20V
GSS	Gate-to-Source Reverse Leakage			-100	nA	$V_{GS} = 20V$
Qg	Total Gate Charge		_	66		I _D = -6.6A
Qgs	Gate-to-Source Charge			8.1	nC	$V_{DS} = -120V$
Qgd	Gate-to-Drain ("Miller") Charge		-	35		V _{GS} = -10V, See Fig. 6 and 13 @ 5
t _{d(on)}	Turn-On Delay Time		14			$V_{DD} = -75V$
tr	RiseTime		36	_		$I_{\rm D} = -6.6 {\rm A}$
t _{d(off)}	Turn-Off Delay Time		53			$R_G = 6.8\Omega$
t _f	FallTime		37			R _D = 12Ω, See Fig. 10 ④ ⑤
Ls	Internal Source Inductance		7.5		nH	Between lead,
						and center of die contact
Ciss	Input Capacitance		860			$V_{GS} = 0V$
Coss	Output Capacitance	-	220		pF	$V_{DS} = -25V$
Crss	Reverse Transfer Capacitance		130			f = 1.0MHz, See Fig. 5 ⁽⁵⁾

Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			-11		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①	_		-44	А	integral reverse p-n junction diode.
VSD	Diode Forward Voltage		_	-1.6	V	$T_J = 25^{\circ}C$, $I_S = -6.6A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		160	240	ns	$T_J = 25^{\circ}C, I_F = -6.6A$
Qrr	Reverse Recovery Charge		1.2	1.7	μC	di/dt = -100A/µs @⑤
ton	Forward Turn-On Time	Intrinsic tum-on time is negligible (tum-on is dominated by Ls+LD)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ④ Pulse width \leq 300µs; duty cycle \leq 2%.

⑤ Uses IRF6215 data and test conditions

3 I_{SD} \leq -6.6A, di/dt \leq -620A/µs, V_{DD} \leq V_{(BR)DSS}, T_{J} \leq 175°C

** When mounted on 1" square PCB (FR-4 or G-10 Material).

For recommended footprint and soldering techniques refer to application note #AN-994.

www.irf.com

2

100

International **ISR** Rectifier

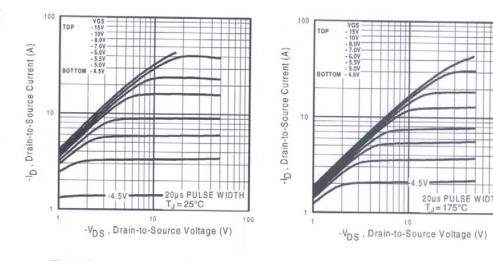


Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

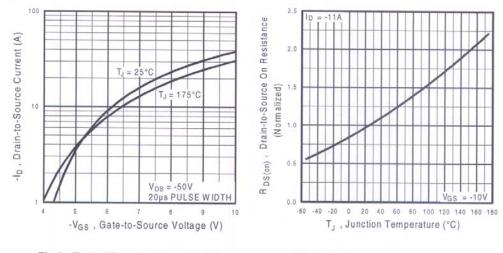
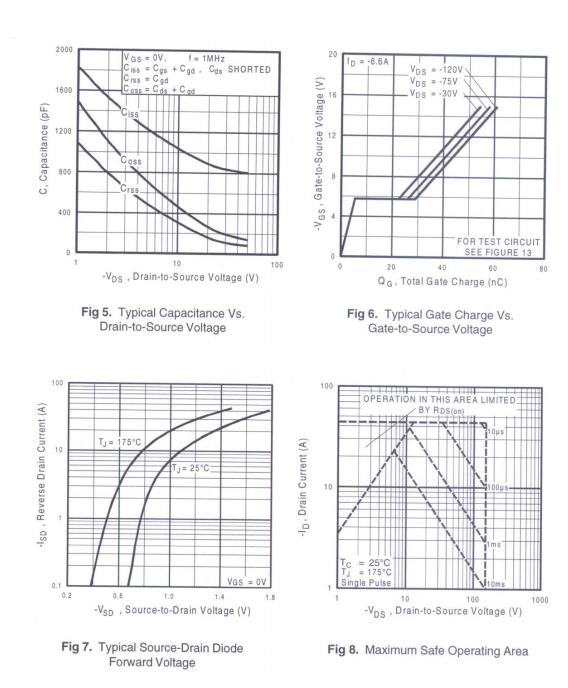



Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

International

International **IGR** Rectifier

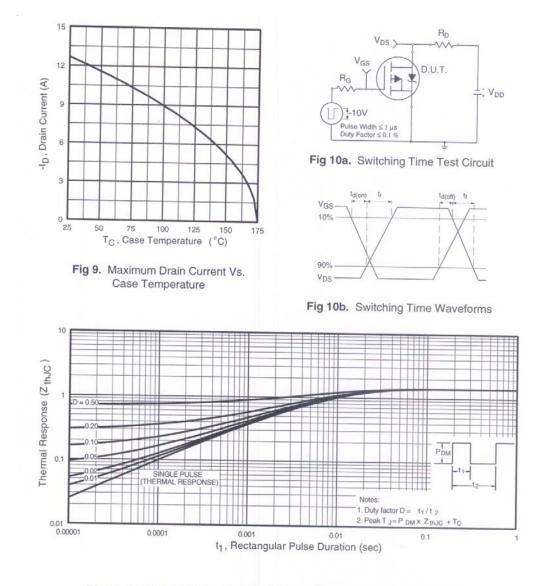


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International

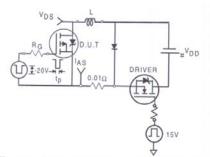


Fig 12a. Unclamped Inductive Test Circuit

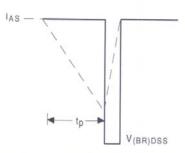


Fig 12b. Unclamped Inductive Waveforms

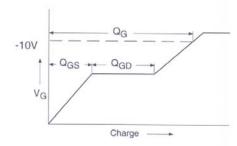


Fig 13a. Basic Gate Charge Waveform

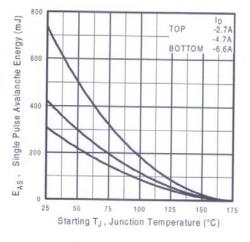
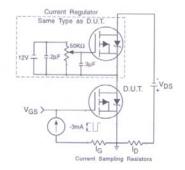
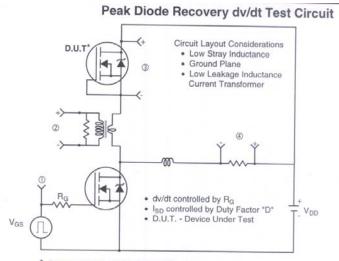
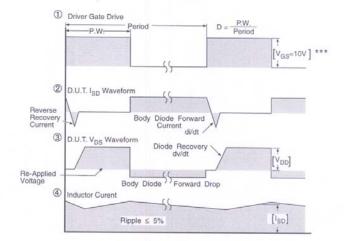


Fig 12c. Maximum Avalanche Energy Vs. Drain Current

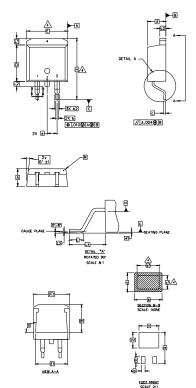




Fig 13b. Gate Charge Test Circuit

International **ICPR** Rectifier

IRF6215S/LPbF

* Reverse Polarity of D.U.T for P-Channel

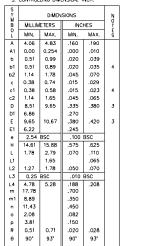


*** $V_{\rm GS}$ = 5.0V for Logic Level and 3V Drive Devices

Fig 14. For P-Channel HEXFETS

International

D²Pak Package Outline



NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994

2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

3. DURENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED 0.127 [L0057] PER SIDE. THESE DMENSIONS ARE WEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY. MURISION DI AND CT APPLY TO BASE WETAL ONLY.

24. DIMENSION 51 AND c1 APPLY TO BASE METAL C 5. CONTROLLING DIMENSION: INCH.

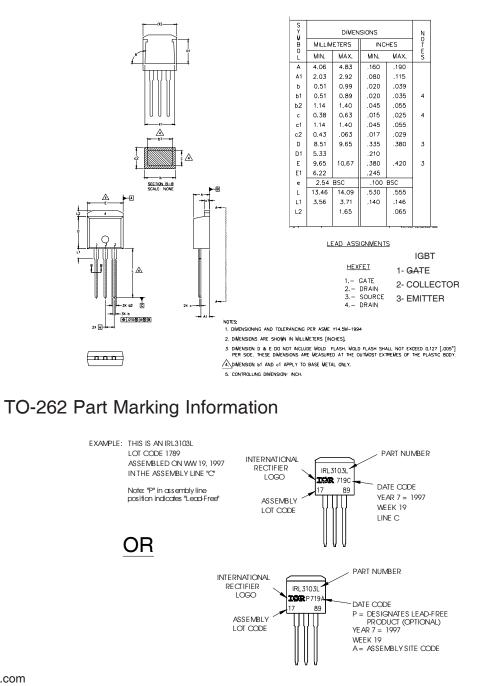
LEAD ASSIGNMENTS

1.- GATE 2, 4.- DRAIN 3.- SOURCE

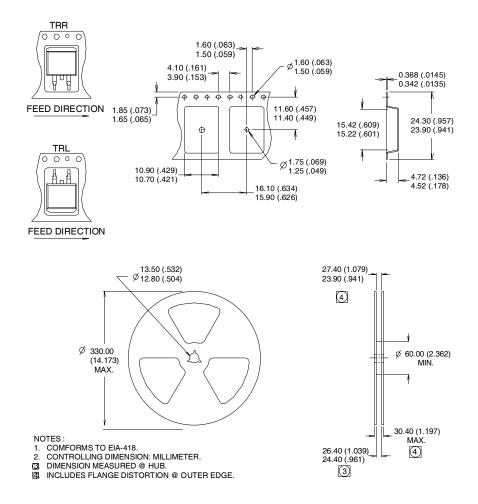
IGBTs. CoPACK 1.- GATE 2. 4.- COLLECTOR 3.- EMITTER

> DIODES 1.- ANODE * 2. 4.- CATHODE 3.- ANODE

* PART DEPENDENT.


D²Pak Part Marking Information

EXAMPLE: THIS IS AN IRF530S WITH LOT CODE 8024 PART NUMBER INTERNATIONAL RECTIFIER ASSEMBLED ON WW 02, 2000 F530S LOGO IN THE ASSEMBLY LINE "L" 107 002L DATE CODE 80 24 YEAR 0 = 2000 μuμ ASSEMBLY Note: "P" in assembly line position indicates "Lead - Free" WEEK 02 LOT CODE LINE L OR PART NUMBER INTERNATIONAL RECTIFIER F 530S LOGO DATE CODE **IGR** P002/ P = DESIGNATES LEAD - FREE PRODUCT (OPTIONAL) 80 24 ASSEMBLY Å ļ YEAR 0 = 2000 LOT CODE WEEK 02


www.irf.com

A = ASSEMBLY SITE CODE

TO-262 Package Outline

D²Pak Tape & Reel Information

Data and specifications subject to change without notice.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.04/05 10 www.irf.com Note: For the most current drawings please refer to the IR website at: <u>http://www.irf.com/package/</u>