imall

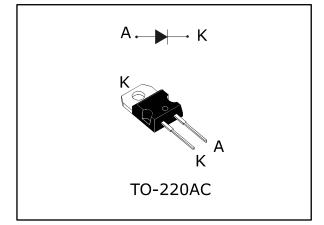
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



STPSC8065

650 V power Schottky silicon carbide diode

Datasheet - production data

Features

- No or negligible reverse recovery
- Switching behavior independent of temperature
- Dedicated to PFC applications
- High forward surge capability
- Operating T_j from -40 °C to 175 °C
- ECOPACK®2 compliant component

Description

The SiC diode is an ultra high performance power Schottky diode. It is manufactured using a silicon carbide substrate. The wide band gap material allows the design of a Schottky diode structure with a 650 V rating. Due to the Schottky construction, no recovery is shown at turn-off and ringing patterns are negligible. The minimal capacitive turn-off behavior is independent of temperature.

Especially suited for use in PFC applications, this ST SiC diode will boost performance in hard switching conditions. Its high forward surge capability ensures good robustness during transient phases.

Symbol	Value				
IF(AV)	8 A				
V _{RRM}	650 V				
T _j (max.)	175 °C				
V _F (typ.)	1.30 V				

Table 1: Device summary

DocID030730 Rev 2

This is information on a product in full production.

1/9

1 Characteristics

Table 2: Absolute ratings (limiting values at 25 °C, unless otherwise specified)

Symbol	Pa	Value	Unit		
VRRM	Repetitive peak reverse voltage)	650	V	
I _{F(RMS)}	Forward rms current		22	Α	
I _{F(AV)}	Average forward current $T_{\rm C} = 150 \ {}^{\circ}{\rm C}^{(1)}$, DC current		8	А	
IFRM	Repetitive peak forward current $T_c = 150 \ ^{\circ}C, \ T_j = 175 \ ^{\circ}C, \ \delta = 0.1$		36	А	
		t_p = 10 ms sinusoidal, T_c = 25 $^{\circ}\text{C}$	46		
IFSM	IFSM Surge non repetitive forward current	t_p = 10 ms sinusoidal, T_c = 125 °C	38	А	
	ourion	$t_p = 10 \ \mu s \ square, \ T_c = 25 \ ^\circ C$	200		
T _{stg}	Storage temperature range		-65 to +175	°C	
Tj	Operating junction temperature ⁽²⁾		-40 to +175	°C	

Notes:

 $^{(1)}\mbox{Value}$ based on $R_{th(j\text{-}c)}$ max.

 $^{(2)}(dP_{tot}/dT_j) < (1/R_{th(j-a)})$ condition to avoid thermal runaway for a diode on its own heatsink.

Table 3: Thermal parameters

Symbol	Parameter	Va	Value	
Symbol	Falameter	Тур.	Max.	Unit
Rth(j-c)	Junction to case	1.1	1.65	°C/W

Table 4: Static electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
lr ⁽¹⁾	Reverse leakage current	T _j = 25 °C	$V_{\text{R}} = V_{\text{RRM}}$	-	2	105	μΑ
		T _j = 150 °C		-	20	750	
		Tj = 25 °C		-	1.30	1.45	
VF ⁽²⁾	Forward voltage drop	T _j = 150 °C	$I_F = 8 A$	-	1.45	1.65	V
		Tj = 175 °C		-	1.50		

Notes:

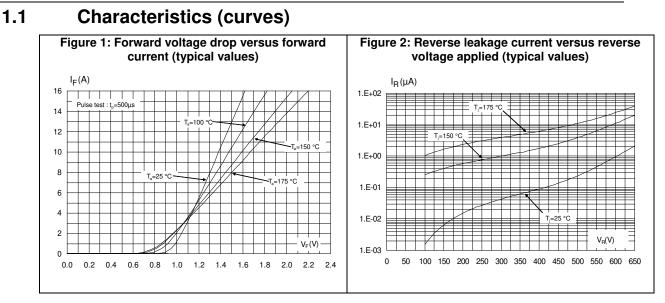
$$\label{eq:powerserv} \begin{split} \begin{tabular}{l} $^{(1)}$ Pulse test: t_p = 5 ms, δ < 2\%$ \\ \end{tabular} \end{tabu$$

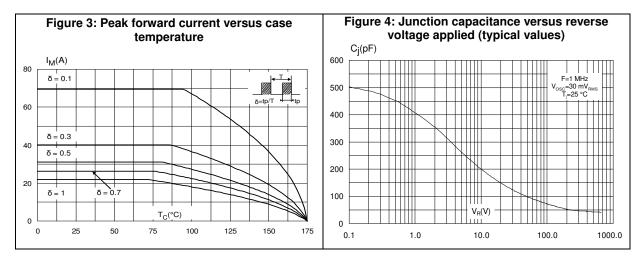
To evaluate the conduction losses, use the following equation:

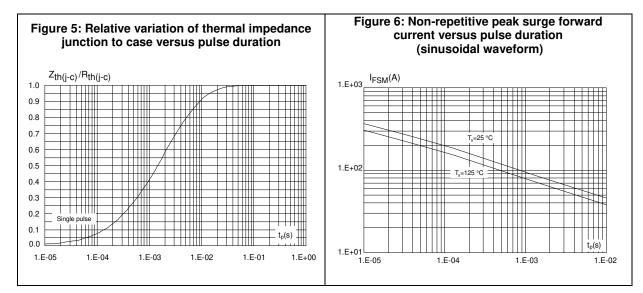
 $P = 0.95 \ x \ I_{F(AV)} + 0.087 \ x \ I_{F^2(RMS)}$

DocID030730 Rev 2

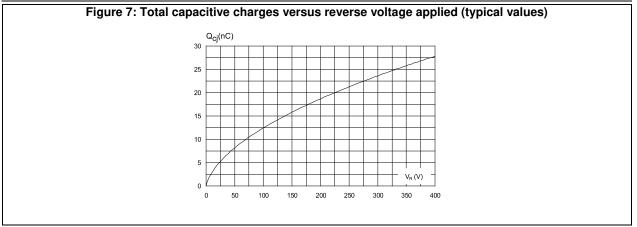
Characteristics


	Characteristics						
	Table 5: Dynamic electrical characteristics						
Sym	bol	Parameter	Test conditions	Тур.	Unit		
Qcj	(1)	Total capacitive charge	V _R = 400 V	28	nC		
Cj	Total consoltance	$V_{\text{R}}=0 \text{ V}, \text{T}_{\text{c}}=25 ^{\circ}\text{C}, \text{F}=1 \text{MHz}$	540	~F			
	Total capacitance	$V_{R} = 400 V, T_{c} = 25 \text{ °C}, F = 1 \text{ MHz}$	45	pF			

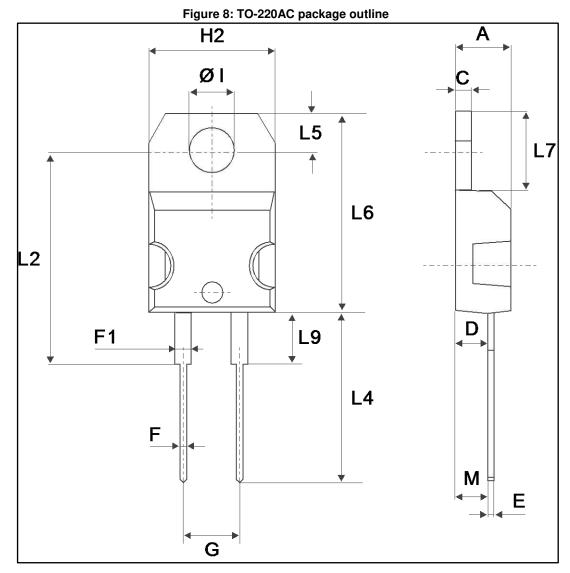

Notes:


⁽¹⁾Most accurate value for the capacitive charge: $Q_{cj} = \int_0^{V_{OUT}} C_j(V_R) \bullet dV_R$

Characteristics



DocID030730 Rev 2



2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

- Epoxy meets UL94, V0
- Cooling method: by conduction (C)
- Recommended torque value: 0.55 N⋅m
- Maximum torque value: 0.7 N·m

2.1 TO-220AC package information

STPSC8065

Package information

Package information				
Table 6: TO	D-220AC package m	echanical data		
Dimensions				
Millim	Millimeters		ies	
Min.	Max.	Min.	Max.	
4.40	4.60	0.173	0.181	
1.23	1.32	0.048	0.051	
2.40	2.72	0.094	0.107	
0.49	0.70	0.019	0.027	
0.61	0.88	0.024	0.034	
1.14	1.70	0.044	0.066	
4.95	5.15	0.194	0.202	
10.00	10.40	0.393	0.409	
16.40) typ.	0.645	typ.	
13.00	14.00	0.511	0.551	
2.65	2.95	0.104	0.116	
15.25	15.75	0.600	0.620	
6.20	6.60	0.244	0.259	
3.50	3.93	0.137	0.154	
2.6	typ.	0.102	typ.	
3.75	3.85	0.147	0.151	
	Millin Min. 4.40 1.23 2.40 0.49 0.61 1.14 4.95 10.00 16.40 13.00 2.65 15.25 6.20 3.50 2.6	Min. Max. 4.40 4.60 1.23 1.32 2.40 2.72 0.49 0.70 0.61 0.88 1.14 1.70 4.95 5.15 10.00 10.40 16.4∪ typ. 13.00 15.25 15.75 6.20 6.60 3.50 3.93 2.6 typ. 2.6 typ.	Table 6: TO-220AC package mechanical data Dimensions Incl Millimeters Incl Min. Max. Min. 4.40 4.60 0.173 1.23 1.32 0.048 2.40 2.72 0.094 0.49 0.70 0.019 0.61 0.88 0.024 1.14 1.70 0.044 4.95 5.15 0.194 10.00 10.40 0.393 16.40 typ. 0.645 0.511 2.65 2.95 0.104 15.25 15.75 0.600 6.20 6.60 0.244 3.50 3.93 0.137	

3 Ordering information

Table 7: Ordering information					
Order code Marking Package Weight Base qty. Delivery mode					
STPSC8065D	PSC8065D	TO-220AC	1.86 g	50	Tube

4 Revision history

Table 8: Do	ocument re	vision l	history
	Journer ne re	1310111	instory

Date	Revision	Changes	
13-Jun-2017	1	First issue.	
18-Jul-2017	2	Updated Table 4: "Static electrical characteristics"	

STPSC8065

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

