imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet

FEATURES

Low RDS_{ON} of 12 m Ω Low input voltage range: 1.8 V to 5.5 V Quick output discharge (QOD) circuit (ADP197-02) 3 A continuous operating current at 70°C 1.2 V logic-compatible enable input Low 18 μ A quiescent current, V_{IN} < 3 V Low 31 μ A quiescent current, V_{IN} = 4.2 V Overtemperature protection Ultralow shutdown current: <1 μ A Ultrasmall 1.0 mm × 1.5 mm, 0.5 mm pitch, 6-ball WLCSP Tiny 2.0 mm × 2.0 mm × 0.55 mm, 0.65 mm pitch, 6-lead LFCSP

5 V, 3 A Logic Controlled High-Side Power Switch

ADP197

TYPICAL APPLICATIONS CIRCUIT

APPLICATIONS

Mobile phones Digital cameras and audio devices Portable and battery-powered equipment

GENERAL DESCRIPTION

The ADP197 is a high-side load switch designed for operation between 1.8 V and 5.5 V. This load switch provides power domain isolation, which helps extend battery operation. The device contains a low on-resistance, N-channel MOSFET that supports more than 3 A of continuous current and minimizes power loss. The low 18 μ A quiescent current and ultralow shutdown current make the ADP197 ideal for battery-operated portable equipment. The built-in level shifter for enable logic makes the ADP197 compatible with many processors and GPIO controllers.

Overtemperature protection circuitry activates if the junction temperature exceeds 125°C, thereby protecting itself and downstream circuits from potential damage.

The ADP197-02 incorporates an internal quick output discharge (QOD) circuit to discharge the output capacitance when the ADP197-02 output is disabled

In addition to operating performance, the ADP197 WLCSP package occupies minimal printed circuit board (PCB) space with an area of less than 1.5 mm² and a height of 0.60 mm.

The ADP197 is available in an ultrasmall 1.0 mm \times 1.5 mm, 0.5 mm pitch, 6-ball WLCSP and a 2.0 mm \times 2.0 mm \times 0.55 mm, 0.65 mm pitch, 6-lead LFCSP.

Rev. C

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADP197* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

• ADP197 Evaluation Board

DOCUMENTATION

Data Sheet

 ADP197: 5 V, 3 A Logic Controlled High-Side Power Switch Datasheet

User Guides

• UG-228: Evaluating the ADP197 Amber High-Side Power Switch

DESIGN RESOURCES

- ADP197 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ADP197 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

TABLE OF CONTENTS

Features	1
Applications	1
Typical Applications Circuit	1
General Description	1
Revision History	2
Specifications	3
Timing Diagram	3
Absolute Maximum Ratings	4
ESD Caution	4
Pin Configurations and Function Descriptions	5

REVISION HISTORY

10/14—Rev. B to Rev. C	
Added 6-lead LFCSP	Universal
Changes to Features Section, General Description Section	ion,
and Figure 1	
Changes to Table 1	3
Changes to Table 3	
Added Figure 4 and Table 5; Renumbered Sequentially	5
Added Figure 7	6
Changes to Figure 9	6
Changes to Figure 13	7
Changes to Theory of Operation Section	
Changes to Figure 26 Caption	
Changes to Figure 29 to Figure 33 and Timing Section.	
Added Figure 35, Outline Dimensions	
Updated Outline Dimensions	
Changes to Ordering Guide	
5/12—Rev. A to Rev. B	
Changes to Ordering Guide	
11/11 Day O to Day A	

11/11		
Change	ed EN to GND Rating, Table 2	4

4/11—Revision 0: Initial Version

Typical Performance Characteristics6
Theory of Operation
Applications Information11
Capacitor Selection11
Ground Current11
Enable Feature
Timing 12
Dutline Dimensions
Ordering Guide 12

SPECIFICATIONS

 $V_{\rm IN}$ = 1.8 V, $V_{\rm EN}$ = $V_{\rm IN},$ $I_{\rm OUT}$ = 1 A, $T_{\rm A}$ = 25°C, unless otherwise noted.

Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT VOLTAGE RANGE	V _{IN}	$T_{J} = -40^{\circ}C \text{ to } +85^{\circ}C$	1.8		5.5	V
EN INPUT						
EN Input	VIH	$V_{IN} = 1.8 V \text{ to } 5.5 V$	1.2			V
	VIL	$V_{IN} = 1.8 \text{ V to } 5.5 \text{ V}, T_J = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			0.4	V
		$V_{IN} = 1.8 \text{ V to } 5.5 \text{ V}, T_J = -40^{\circ}\text{C to } +110^{\circ}\text{C}$			0.35	V
EN Input Pull-Down Current	I _{EN}	$V_{IN} = 1.8 V$		500		nA
CURRENT						
Ground Current		$V_{IN} = 1.8 V$		18		μA
		$V_{IN} = 3.4 V$		14		μΑ
		$V_{IN} = 4.2 \text{ V}, T_J = -40^{\circ}\text{C} \text{ to } +110^{\circ}\text{C}$		18	31	μA
		$V_{IN} = 5.5 V$		28		μA
Off State Current	OFF	$V_{EN} = GND, V_{OUT} = 0 V, V_{IN} = 4.2 V$		0.1		μA
		$V_{EN} = GND, T_J = -40^{\circ}C \text{ to } +85^{\circ}C, V_{OUT} = 0 \text{ V}, V_{IN} = 1.8 \text{ V to } 5.5 \text{ V}$			20	μA
		$V_{EN} = GND, T_J = -40^{\circ}C \text{ to } +110^{\circ}C, V_{OUT} = 0 \text{ V}, V_{IN} = 1.8 \text{ V to } 5.5 \text{ V}$			75	μA
Continuous Operating Current ¹	I _{OUT}	$V_{IN} = 1.8 \text{ V to } 5.5 \text{ V}$		3		A
VIN TO VOUT RESISTANCE	RDSon					
WLCSP		$V_{IN} = 5.5 V$		0.012		Ω
		$V_{IN} = 4.2 V$		0.012		Ω
		$V_{IN} = 1.8 V$		0.012		Ω
		$V_{IN} = 1.8 \text{ V}, T_J = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}$		0.012	0.017	Ω
LFCSP		$V_{IN} = 5.5 V$		0.027		Ω
		$V_{IN} = 4.2 V$		0.027		Ω
		$V_{IN} = 1.8 V$		0.027		Ω
		$V_{IN} = 1.8 \text{ V}, T_J = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}$		0.027	0.036	Ω
VOUT TURN-ON DELAY TIME		See Figure 2				
Turn-On Delay Time	ton_dly	$V_{IN} = 1.8 \text{ V to } 5.5 \text{ V}, C_{LOAD} = 1 \mu\text{F}$		1		ms
-						
ACTIVE PULL-DOWN RESISTANCE (ADP197-02 OPTION ONLY)	Rpulldown	$V_{IN} = 3.2 V$		380		Ω
THERMAL SHUTDOWN						
Thermal Shutdown Threshold	TS _{SD}	T ₂ rising		125		°C
Thermal Shutdown Hysteresis	TS _{SD-HYS}			15		°C

¹ At an ambient temperature of 85°C, the device can withstand a continuous current of 2.22 A. At a load current of 3 A, the operational lifetime derates to 2190 hours.

TIMING DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Table 2.

1 4010 21	
Parameter	Rating
VIN to GND	–0.3 V to +6.5 V
VOUT to GND	-0.3 V to V _{IN}
EN to GND	–0.3 V to +6.5 V
Continuous Drain Current	
$T_A = 25^{\circ}C$	±4 A
$T_A = 85^{\circ}C$	±2.22 A
Continuous Diode Current	–50 mA
Storage Temperature Range	–65°C to +150°C
Operating Junction Temperature Range	-40°C to +105°C
Soldering Conditions	JEDEC J-STD-020

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 3. Typical θ_{JA} and Ψ_{JB} Values

Package Type	θ _{JA}	Ψ _{JB}	Unit
6-Ball, 0.5 mm Pitch WLCSP	260	58	°C/W
6-Lead, 0.65 mm Pitch LFCSP	68.9	44.1	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Table 4. 6-Ball WLCSP Pin Function Descriptions

Pin No.	Mnemonic	Description
A1, B1	VIN	Input Voltage.
A2, B2	VOUT	Output Voltage.
C1	EN	Enable Input. Drive EN high to turn on the switch and drive EN low to turn off the switch.
C2	GND	Ground.

Table 5. 6-Lead LFCSP Pin Function Descriptions

Pin No.	Mnemonic	Description
1	VOUT1	Output Voltage. Connect VOUT1 and VOUT2 together.
2	VOUT2	Output Voltage. Connect VOUT1 and VOUT2 together.
3	GND	Ground.
4	EN	Enable Input. Drive EN high to turn on the switch and drive EN low to turn off the switch.
5	VIN2	Input Voltage. Connect VIN1 and VIN2 together.
6	VIN1	Input Voltage. Connect VIN1 and VIN2 together.
	EP	Exposed Pad. The exposed pad must be connected to ground.

ADP197

TYPICAL PERFORMANCE CHARACTERISTICS

 $V_{\rm IN}$ = 1.8 V, $V_{\rm EN}$ = $V_{\rm IN},\,C_{\rm IN}$ = $C_{\rm OUT}$ = 1 $\mu F,\,T_{\rm A}$ = 25°C, unless otherwise noted.

Figure 6. RDS_{ON} vs. Temperature, 3 A, Different Input Voltages (V_{IN})

Figure 7. RDS_{ON} (LFCSP) vs. Temperature, 500 mA, Different Input Voltages (V_{IN})

Figure 8. RDSon vs. Input Voltage (VIN), Different Load Currents

Figure 9. Voltage Drop vs. Temperature, Different Load Currents

Figure 11. Ground Current vs. Temperature, Different Load Currents, $V_{\rm IN} = 4.2 V$

Figure 12. Ground Current vs. Temperature, Different Load Currents, $V_{IN} = 5.5 V$

Figure 13. Ground Current vs. Load Current, Different Input Voltages (V_{IN})

Figure 14. I_{GND} Shutdown Current vs. Temperature, Output Open, Different Input Voltages (V_{IN})

 $v_{\rm e}$ ro. rypical rum-on time and infusion current, $v_{\rm IN} = 1.9 v_{\rm I}$ 200 mA Load

09298-008

ADP197

Data Sheet

Figure 23. Typical Turn-On Time and Inrush Current, $V_{IN} = 5.5 V$, 2 A Load, $C_{OUT} = 100 \, \mu F$

Figure 24. I_{OUT} Shutdown Current vs. Temperature, $V_{OUT} = 0$ V, Different Input Voltages (V_{IN})

ADP197

THEORY OF OPERATION

The ADP197 is a high-side NMOS load switch, controlled by an internal charge pump. The ADP197 is designed to operate with power supply voltages between 1.8 V and 5.5 V.

An internal charge pump biases the NMOS switch to achieve a relatively constant, ultralow on resistance of 12 m Ω across the entire input voltage range. The use of the internal charge pump also allows for controlled turn-on times. Turning the NMOS switch on and off is controlled by the enable input pin (EN), which is capable of interfacing directly with 1.8 V logic signals.

The ADP197 is capable of 3 A of continuous operating current as long as T_1 is less than 70°C. At 85°C, the rated current drops to 2.22 A.

The overtemperature protection circuit activates if the load current causes the junction temperature to exceed 125°C. When this occurs, the overtemperature protection circuitry disables the output until the junction temperature falls below approximately 110°C, at which point the output is reenabled. If the fault condition persists, the output cycles off and on until the fault is removed.

The ADP197-02 incorporates a QOD circuit to discharge the output capacitance when the ADP197-02 output is disabled.

ESD protection structures are shown in the block diagram as Zener diodes.

The ADP197 is a low quiescent current device with a nominal 4 M Ω pull-down resistor on its EN pin. The package is a spacesaving 1.0 mm × 1.5 mm, 0.5 mm pitch, 6-ball WLCSP and a tiny 2.0 mm × 2.0 mm × 0.55 mm, 0.65 mm pitch, 6-lead LFCSP.

APPLICATIONS INFORMATION **CAPACITOR SELECTION**

Output Capacitor

The ADP197 is designed for operation with small, space-saving ceramic capacitors but functions with most commonly used capacitors when the effective series resistance (ESR) value is carefully considered. The ESR of the output capacitor affects the response to load transients. A typical 1 μ F capacitor with an ESR of 0.1 Ω or less is recommended for good transient response. Using a larger value of output capacitance improves the transient response to large changes in load current.

Input Bypass Capacitor

Connecting at least 1 µF of capacitance from VIN to GND reduces the circuit sensitivity to the printed circuit board (PCB) layout, especially when high source impedance or long input traces are encountered. When greater than 1 µF of output capacitance is required, increase the input capacitor to match it.

GROUND CURRENT

The major source for ground current in the ADP197 is the internal charge pump for the FET drive circuitry. Figure 26 shows the typical ground current when $V_{EN} = V_{IN}$, and varies from 1.8 V to 5.5 V.

Figure 26. Ground Current vs. Input Voltage (VIN), Different Load Currents

ENABLE FEATURE

The ADP197 uses the EN pin to enable and disable the VOUT pin under normal operating conditions. As shown in Figure 27, when a rising voltage (VEN) on the EN pin crosses the active threshold, VOUT turns on. When a falling voltage (V_{EN}) on the EN pin crosses the inactive threshold, VOUT turns off.

As shown in Figure 27, the EN pin has hysteresis built into it. This built-in hysteresis prevents on/off oscillations that can occur due to noise on the EN pin as it passes through the threshold points.

The EN pin active and inactive thresholds derive from the $V_{\rm I\!N}$ voltage; therefore, these thresholds vary with the changing input voltage. Figure 28 shows the typical EN active and inactive thresholds when the input voltage varies from 1.8 V to 5.5 V.

Figure 28. Typical EN Threshold vs. Input Voltage (VIN)

ADP197

TIMING

Turn-on delay is defined as the interval between the time that $V_{\rm EN}$ exceeds the rising threshold voltage and when $V_{\rm OUT}$ rises to ~10% of its final value. The ADP197 includes circuitry that has a typical 1 ms turn-on delay and a controlled rise time to limit the $V_{\rm IN}$ inrush current. As shown in Figure 29 and Figure 30, the turn-on delay is nearly independent of the input voltage.

The rise time is defined as the time it takes the output voltage to rise from 10% to 90% of V_{OUT} reaching its final value. It is dependent on the rise time of the internal charge pump.

For very large values of output capacitance, the RC time constant (where C is the load capacitance (C_{LOAD}) and R is the RDS_{ON}|| R_{LOAD}) can become a factor in the rise time of the output voltage. Because RDS_{ON} is much smaller than R_{LOAD} , an adequate approximation for RC is RDS_{ON} × C_{LOAD} . An input or load capacitor is not required for the ADP197 although capacitors can be used to suppress noise on the board. Figure 31 and Figure 32 show the inrush current when C_{LOAD} is 100 µF.

The turn-off time is defined as the time it takes for the output voltage to fall from 90% to 10% of $V_{\rm OUT}$ reaching its final value. It is also dependent on the RC time constant of the output capacitance and load resistance. Figure 33 shows the typical turn-off time with $V_{\rm IN}$ = 3.6 V, $C_{\rm OUT}$ = 1 μF , and $R_{\rm LOAD}$ = 18 Ω .

OUTLINE DIMENSIONS

Figure 35. 6-Lead Lead Frame Chip Scale Package [LFCSP_UD] 2.00 mm × 2.00 mm Body, Ultra Thin, Dual Lead (CP-6-3) Dimensions shown in millimeters

ORDERING GUIDE

	Temperature		Package		On/Off
Model ¹	Range	Package Description	Option	Branding	Time (µs)
ADP197ACBZ-R7	-40°C to +85°C	6-Ball Wafer Level Chip Scale Package [WLCSP]	CB-6-2	87	300
ADP197ACBZ-01-R7	-40°C to +85°C	6-Ball Wafer Level Chip Scale Package [WLCSP]	CB-6-2	AP	20
ADP197ACPZN-01-R7	-40°C to +85°C	6-Lead Lead Frame Chip Scale Package [LFCSP_UD]	CP-6-3	AP	20
ADP197ACPZN-02-R7	-40°C to +85°C	6-Lead Lead Frame Chip Scale Package [LFCSP_UD]	CP-6-3	D8	20
ADP197CB-EVALZ		Evaluation Board			
ADP197CP-EVALZ		Evaluation Board			

¹ Z = RoHS Compliant Part.

©2011–2014 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D09298-0-10/14(C)

www.analog.com

Rev. C | Page 13 of 13