imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

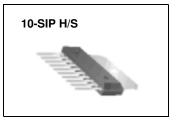
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

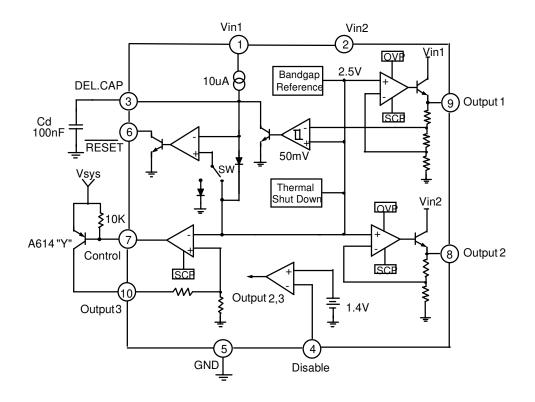
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

KA7630/KA7631 Fixed Multi-Output Regulator


Features

- Output Currents up to 0.5A (Output1 & 2)
- Output Current up to 1A with External Transistor (Output3)
- Fixed Precision Output 1 Voltage 5.1V ±2%
- Fixed Precision Output 2 Voltage 8V ±2% (KA7630)
- Fixed Precision Output 2 Voltage 9V ±2% (KA7631)
- Control Signal Generator for Output 3 Voltage (12V ±2%)
- Reset Facility for Output Voltage1
- Output 2,3 with Disable by TTL Input
- Current Limit Protection at Each Output
- Thermal Shut Down


Description

The KA7630/KA7631 is a multi-output positive voltage regulator designed to provide fixed precision output voltages of 5.1V, 8V (7630) / 9V(7631) at current up to 0.5Aand 12V at current up to 1A with external PNP transistor.

An internal reset circuit generates a reset pulse when the output 1 decreases below the regulated value. Output2 & 3 can be disabled by TTL input. Protection features include over voltage protection, short circuit protection and thermal shutdown.

Internal Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit	Remark
DC Input Voltage	Vin	20	V	-
Disable Input Voltage	Vc	20	V	-
Output Current	lo	0.5	A	-
Power Dissipation	Pd	1.5	W	No Heatsink
Junction Temperature	Tj	+150	°C	-
Operating Temperature	Topr	0 ~ +125	°C	-

Electrical Characteristics(KA7630)

(Refer to test circuit Vin1=7.5V, Vin2=10.5V, Tj = +25°C, unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Output Voltage 1	Vo1	lo1 = 10mA 7.5V <vin1<14v 5mA < lo1< 500mA</vin1<14v 	5 4.9	5.1 5.1	5.2 5.3	v
Output Voltage 2	Vo2	lo2 = 10mA 10.5V < Vin2< 18V 5mA < lo2 < 500mA	7.84 7.7	8 8	8.16 8.3	v
Dropout Output Voltage 1,2	Vd1,2	lo1,2 = 500mA	-	-	2.5	V
Line Regulation 1,2	ΔVo 1,2	7.5V < Vin1<14V 10.5V < Vin2 < 18V lo1,2 = 200mA	-	-	50 80	mV
Load Regulation 1,2	ΔVo 1,2	5mA < lo1< 500mA 5mA < lo2< 500mA	-	-	100 160	mV
Output Voltage 3	Vo3	Vsys=13V, lo3=100mA	11.7	12	12.3	V
Line Regulation 3	Δ Vo3	13V< Vin2 < 18V, Io3 =100mA	-	-	120	mV
Load Regulation 3	Δ Vo3	5mA < Io3 < 1A	-	-	250	mV
Reset Pulse Delay	Trd	Cd = 100nF, Note1	-	25	-	ms
Saturation Voltage in Reset Condition	VrL	l6 = 5mA	-	-	0.4	V
Leakage Current at Pin 6	IrH	V6 = 10V	-	-	10	μA
Output Voltage Thermal Drift	STt	0°C <tj +125°c="" ,="" <="" note2<="" td=""><td>-</td><td>100</td><td></td><td>ppm/°C</td></tj>	-	100		ppm/°C
Short Circuit Output Current	lsc1,2	Vin1 = 7.5V ,Vin2 = 10.5V	-	-	1.6	Α
Disable Voltage High	VdisH	Output 2 Active	0.8	-	2.0	V
Disable Voltage Low	VdisL	Output 2 Disabled	0.8	-	2.0	V
Disable Bias Current	ldis	0V < Vdis < 7V	-100	-	2	μA
Junction Temperature for TSD	Ttsd	Note 2	-	145	-	°C
Quiescent Current	lq	lo1 = 10mA, Output2 Disabled	-	-	2	mA
Reset Threshold Voltage	Vr	K = Vo1	K-0.4	K-0.25	K -0.1	V
Reset Threshold Hysteresis	Vrth	Note1	20	50	100	mA

Notes:

1. To check the reset circuit ,the reset output is low to discharge the delay capacitor(=Cd). it's less than Vo1-0.25V. And the reset output is high when the delay capacitor voltage linearly increased by the internal current source(10 μ A) if it's more than Vo1- 0.2V. The equation of delay time is same as below. Trd = (Cd \times 2.5) / 10 μ A

2. These parameters, although guaranteed, are not 100% tested in production.

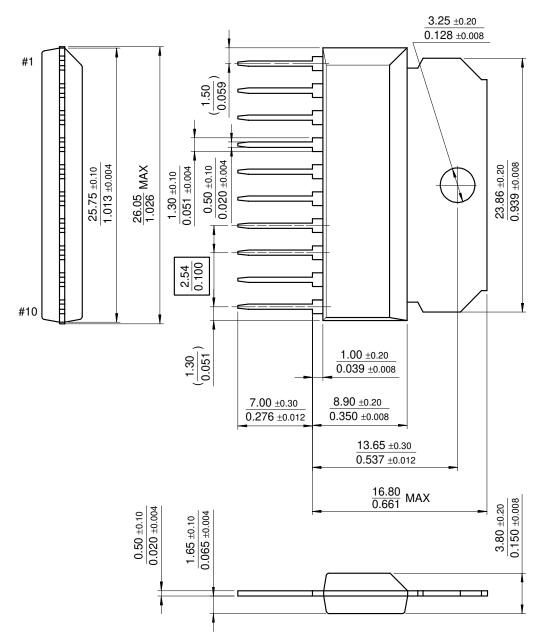
Electrical Characteristics(KA7631) (Continued)

(Refer to test circuit Vin1=7.5V, Vin2=11.5V, $T_j = +25^{\circ}C$, unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Output Voltage 1	Vo1	lo1 = 10mA 7.5V < Vin1 < 14V 5mA < lo1 < 500mA	5 4.9	5.1 5.1	5.2 5.3	V
Output Voltage 2	Vo2	lo2 = 10mA 11.5V < Vin2 < 18V 5mA < lo2< 500mA	8.82 8.65	9 9	9.18 9.35	V
Dropout Output Voltage 1,2	Vd1,2	lo1,2 = 500mA	-	-	2.5	V
Line Regulation 1,2	ΔVo 1,2	7.5V < Vin1< 14V 11.5V < Vin2< 18V Io1,2 = 200mA	-	-	50 80	mV
Load Regulation 1,2	∆Vo 1,2	5mA < lo1< 500mA 5mA < lo2 < 500mA	-	-	100 160	mV
Output Voltage 3	Vo3	Vsys =13V, Io3 = 100mA	11.7	12	12.3	V
Line Regulation 3	Δ Vo3	13V < Vin2 <18V, lo3 =100mA	-	-	120	mV
Load Regulation 3	Δ Vo3	5mA < Io3 < 1A	-	-	250	mV
Reset Pulse Delay	Trd	Cd = 100nF, Note1	-	25	-	ms
Saturation Voltage in Reset Condition	VrL	l6 = 5mA	-	-	0.4	V
Leakage Current at Pin 6	IrH	V6 = 10V	-	-	10	μA
Output Voltage Thermal Drift	STt	0°C < Tj < +125°C , Note2	-	100	-	ppm/°C
Short Circuit Output Current	lsc1,2	Vin1 = 7.5V ,Vin2 = 11.5V	-	-	1.6	А
Disable Voltage High	VdisH	Output 2 Active	0.8	-	2.0	V
Disable Voltage Low	VdisL	Output 2 Disabled	0.8	-	2.0	V
Disable Bias Current	ldis	0V < Vdis < 7V	-100	-	2	μA
Junction Temperature for TSD	Ttsd	Note2	-	145	-	°C
Quiescent Current	lq	lo1=10mA, Output2 Disabled	-	-	2	mA
Reset Threshold Voltage	Vr	K = Vo1	K-0.4	K-0.25	K -0.1	V
Reset Threshold Hysteresis	Vrth	Note1	20	50	100	mA

Notes:

1. To check the reset circuit ,the reset output is low to discharge the delay capacitor(=Cd). if it's less than Vo1-0.25V. And the reset output is high when the delay capacitor voltage linearly increased by the internal current source(10 μ A) if it's more than Vo1- 0.2V. The equation of delay time is same as below. Trd = (Cd \times 2.5) / 10 μ A


2. These parameters, although guaranteed, are not 100% tested in production.

Mechanical Dimensions

Package

Dimensions in millimeters

10-SIP-H/S

Ordering Information

Product Number	Package	Operating Temperature
KA7630	10-SIP-H/S	0°C to +125°C
KA7631	10-315-0/3	0 0 10 +125 0

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com