Single 2-Input AND Gate The NL17SZ08 is a single 2-input AND Gate in three tiny footprint packages. The device performs much as LCX multi-gate products in speed and drive. They should be used wherever the need for higher speed and drive are needed. #### **Features** - Tiny SOT-353, SOT-553 and SOT-953 Packages - 2.7 ns T_{PD} at 5.0 V (typ) - Source/Sink 24 mA at 3.0 V - Overvoltage Tolerant Inputs - Pin For Pin with NC7SZ08P5X, TC7SZ08FU and TC7SZ08AFE - Chip Complexity: FETs = 20 - Designed for 1.65 V to 5.5 V V_{CC} Operation - NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant Figure 1. Pinout (Top View) Figure 2. Logic Symbol #### ON Semiconductor® #### www.onsemi.com L2 = Specific Device Marking M = Date Code* = Pb-Free Package (Note: Microdot may be in either location) *Date Code orientation and/or position may vary depending upon manufacturing location. SOT-953 CASE 527AE Y = Specific Device Code M = Month Code #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet. #### **PIN ASSIGNMENT** (SOT-353/SC70-5/SC-88A/SOT-553) | Pin | Function | | |-----|-----------------|--| | 1 | IN B | | | 2 | IN A | | | 3 | GND | | | 4 | OUT Y | | | 5 | V _{CC} | | #### **PIN ASSIGNMENT (SOT-953)** | Pin | Function | | |-----|-----------------|--| | 1 | IN A | | | 2 | GND | | | 3 | IN B | | | 4 | OUT Y | | | 5 | V _{CC} | | #### **FUNCTION TABLE** | Inp | Output
Y = AB | | |-----|------------------|---| | Α | В | Y | | L | L | L | | L | Н | L | | Н | L | L | | Н | Н | Н | #### **MAXIMUM RATINGS** | Symbol | Parameter | Value | Units | |----------------------|--|-------------------------------|-------| | V _{CC} | DC Supply Voltage | -0.5 to +7.0 | V | | V _{IN} | DC Input Voltage | -0.5 to +7.0 | V | | V _{OUT} | DC Output Voltage (SOT-353/SC70-5/SC-88A/SOT-553 Packages) | -0.5 to +7.0 | V | | V _{OUT} | DC Output Voltage (SOT-953 Package) | -0.5 to V _{CC} + 0.5 | V | | I _{IK} | DC Input Diode Current | -50 | mA | | lok | DC Output Diode Current $V_{OUT} < GND, V_{OUT} > V_{CC}$ (SOT–953 Package) | ±50 | mA | | I _{OK} | DC Output Diode Current (SOT-353/SC70-5/SC-88A/SOT-553 Packages) V _{OUT} < GND | -50 | mA | | I _{OUT} | DC Output Sink Current | ±50 | mA | | I _{CC} | DC Supply Current per Supply Pin | ±100 | mA | | T _{STG} | Storage Temperature Range | -65 to +150 | °C | | TL | Lead Temperature, 1 mm from Case for 10 Seconds | 260 | °C | | TJ | Junction Temperature Under Bias | +150 | °C | | $\theta_{\sf JA}$ | Thermal Resistance SOT-353 (Note 1) SOT-553 | 350
496 | °C/W | | P _D | Power Dissipation in Still Air at 85°C SOT–353
SOT–553 | 186
135 | mW | | MSL | Moisture Sensitivity | Level 1 | | | F _R | Flammability Rating Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in | | | ESD | ESD Classification Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4) | 2000
200
N/A | V | | I _{LATCHUP} | Latchup Performance Above V _{CC} and Below GND at 125°C (Note 5) | ±100 | mA | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2-ounce copper trace with no air flow. Tested to EIA/JESD22-A114-A, rated to EIA/JESD22-A114-B. - Tested to EIA/JESD22-A115-A, rated to EIA/JESD22-A115-A. Tested to JESD22-C101-A. Tested to EIA/JESD78. #### **RECOMMENDED OPERATING CONDITIONS** | Symbol | Parameter | Min | Max | Units | | |---------------------------------|--|--|-----------------|-----------|------| | V _{CC} | DC Supply Voltage | 1.65 | 5.5 | V | | | V _{IN} | DC Input Voltage | 0 | 5.5 | V | | | V _{OUT} | DC Output Voltage (SOT-353/SC70-5/SC-88A/SOT-553 Package | 0 | 5.5 | V | | | V _{OUT} | DC Output Voltage (SOT–953 Package) | 0 | V _{CC} | V | | | T _A | Operating Temperature Range | -55 | +125 | °C | | | t _r , t _f | Input Rise and Fall Time V | $_{CC} = 3.0 \text{ V} \pm 0.3 \text{ V}$
$_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$ | 0 | 100
20 | ns/V | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. ## DC ELECTRICAL CHARACTERISTICS | | | | V _{CC} | T, | T _A = 25°C | | -55°C ≤ T | A ≤ 125°C | | |------------------|---|---|--|--|--|---|--|---|-------| | Symbol | Parameter | Condition | (V) | Min | Тур | Max | Min | Max | Units | | V _{IH} | High-Level Input Voltage | | 1.65 to 1.95
2.3 to 5.5 | 0.75 V _{CC}
0.7 V _{CC} | | | 0.75 V _{CC}
0.7 V _{CC} | | V | | V _{IL} | Low-Level Input Voltage | | 1.65 to 1.95
2.3 to 5.5 | | | 0.25 V _{CC}
0.3 V _{CC} | | 0.25 V _{CC}
0.3 V _{CC} | V | | V _{ОН} | High-Level Output Voltage $V_{IN} = V_{IL}$ or V_{IH} | $I_{OH} = -100 \mu A$ $I_{OH} = -3 \text{ mA}$ $I_{OH} = -8 \text{ mA}$ $I_{OH} = -12 \text{ mA}$ $I_{OH} = -16 \text{ mA}$ $I_{OH} = -24 \text{ mA}$ $I_{OH} = -32 \text{ mA}$ | 1.65 to 5.5
1.65
2.3
2.7
3.0
3.0
4.5 | V _{CC} - 0.1
1.29
1.9
2.2
2.4
2.3
3.8 | V _{CC} 1.52 2.1 2.4 2.7 2.5 4.0 | | V _{CC} - 0.1
1.29
1.9
2.2
2.4
2.3
3.8 | | V | | V _{OL} | Low–Level Output Voltage V _{IN} = V _{IH} or V _{OH} | $I_{OL} = 100 \mu A$ $I_{OL} = 3 mA$ $I_{OL} = 8 mA$ $I_{OL} = 12 mA$ $I_{OL} = 16 mA$ $I_{OL} = 24 mA$ $I_{OL} = 32 mA$ | 1.65 to 5.5
1.65
2.3
2.7
3.0
3.0
4.5 | | 0.08
0.20
0.22
0.28
0.38
0.42 | 0.1
0.24
0.3
0.4
0.4
0.55 | | 0.1
0.24
0.3
0.4
0.4
0.55 | V | | I _{IN} | Input Leakage Current | V _{IN} = 5.5 V or
GND | 0 to 5.5 | | | ±0.1 | | ±1.0 | μΑ | | I _{CC} | Quiescent Supply Current | V _{IN} = 5.5 V or
GND | 5.5 | | | 1 | | 10 | μΑ | | l _{OFF} | Power Off Leakage Current
(SOT-353/SC70-5/
SC-88A/SOT-553
Packages) | V _{IN} = 5.5 V or
V _{OUT} = 5.5 V | 0 | | | 1 | | 10 | μΑ | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. #### AC ELECTRICAL CHARACTERISTICS $t_R = t_F = 3.0 \text{ ns}$ | | | | V _{CC} | 7 | Γ _A = 25°C | ; | -55°C ≤ T | ₄ ≤ 125°C | | |------------------------------------|------------------|---|-----------------|-----|-----------------------|-----|-----------|----------------------|-------| | Symbol | Parameter | Condition | (V) | Min | Тур | Max | Min | Max | Units | | t _{PLH} Propagation Delay | | $R_L = 1 M\Omega, C_L = 15 pF$ | 1.65 | 2.0 | 6.3 | 12 | 2.0 | 12.7 | ns | | t _{PHL} | (Figure 3 and 4) | $R_L = 1 \text{ M}\Omega, C_L = 15 \text{ pF}$ | 1.8 | 2.0 | 6.2 | 10 | 2.0 | 10.5 | | | | | $R_L = 1 \text{ M}\Omega$, $C_L = 15 \text{ pF}$ | 2.5 ± 0.2 | 0.8 | 3.4 | 7.0 | 0.8 | 7.5 | | | | | $R_L = 1 \text{ M}\Omega, C_L = 15 \text{ pF}$ | 3.3 ± 0.3 | 0.5 | 2.6 | 4.7 | 0.5 | 5.0 | | | | | $R_L = 500 \Omega, C_L = 50 pF$ | | 1.5 | 3.3 | 5.2 | 1.5 | 5.5 | | | | | $R_L = 1 \text{ M}\Omega, C_L = 15 \text{ pF}$ | 5.0 ± 0.5 | 0.5 | 2.2 | 4.1 | 0.5 | 4.4 | | | | | $R_L = 500 \Omega, C_L = 50 pF$ | | 0.8 | 2.7 | 4.5 | 0.8 | 4.8 | | #### **CAPACITIVE CHARACTERISTICS** | Symbol | Parameter | Condition | Typical | Units | |-----------------|-------------------------------|---|---------|-------| | C _{IN} | Input Capacitance | $V_{CC} = 5.5 \text{ V}, V_I = 0 \text{ V or } V_{CC}$ | >4.0 | pF | | C _{PD} | Power Dissipation Capacitance | 10 MHz, V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC} | 25 | pF | | | (Note 6) | 10 MHz, $V_{CC} = 5.5 \text{ V}$, $V_{I} = 0 \text{ V or } V_{CC}$ | 30 | | ^{6.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}. Figure 3. Switching Waveform A 1–MHz square input wave is recommended for propagation delay tests. Figure 4. Test Circuit #### **DEVICE ORDERING INFORMATION** | Device Order Number | Package Type | Tape and Reel Size [†] | |---------------------|-------------------------------------|---------------------------------| | NL17SZ08DFT2G | SC-88A/SC-70-5/SOT-353
(Pb-Free) | 3000 / Tape & Reel | | NLV17SZ08DFT2G* | SC-88A/SC-70-5/SOT-353
(Pb-Free) | 3000 / Tape & Reel | | NL17SZ08XV5T2G | SOT-553
(Pb-Free) | 4000 / Tape & Reel | | NL17SZ08P5T5G | SOT-953
(Pb-Free) | 8000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable. #### **PACKAGE DIMENSIONS** # SC-88A (SC-70-5/SOT-353) CASE 419A-02 ISSUE L - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419A-01 OBSOLETE. NEW STANDARD 419A-02. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. | | INCHES | | MILLIN | IETERS | |-----|-----------|-------|----------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.071 | 0.087 | 1.80 | 2.20 | | В | 0.045 | 0.053 | 1.15 | 1.35 | | С | 0.031 | 0.043 | 0.80 | 1.10 | | D | 0.004 | 0.012 | 0.10 | 0.30 | | G | 0.026 | BSC | 0.65 BSC | | | Н | | 0.004 | | 0.10 | | J | 0.004 | 0.010 | 0.10 | 0.25 | | K | 0.004 | 0.012 | 0.10 | 0.30 | | N | 0.008 REF | | 0.20 REF | | | S | 0.079 | 0.087 | 2.00 | 2.20 | ### **SOLDER FOOTPRINT*** *For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### **PACKAGE DIMENSIONS** #### **SOT-553, 5 LEAD XV5 SUFFIX** CASE 463B ISSUE C - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. | | MILLIMETERS | | | MILLIMETERS INCHES | | | | |-----|-------------|------|------|--------------------|-----------|-------|--| | DIM | MIN | NOM | MAX | MIN | NOM | MAX | | | Α | 0.50 | 0.55 | 0.60 | 0.020 | 0.022 | 0.024 | | | b | 0.17 | 0.22 | 0.27 | 0.007 | 0.009 | 0.011 | | | С | 0.08 | 0.13 | 0.18 | 0.003 | 0.005 | 0.007 | | | D | 1.55 | 1.60 | 1.65 | 0.061 | 0.063 | 0.065 | | | E | 1.15 | 1.20 | 1.25 | 0.045 | 0.047 | 0.049 | | | е | 0.50 BSC | | | | 0.020 BSC | | | | L | 0.10 | 0.20 | 0.30 | 0.004 | 0.008 | 0.012 | | | HE | 1.55 | 1.60 | 1.65 | 0.061 | 0.063 | 0.065 | | #### **RECOMMENDED SOLDERING FOOTPRINT*** ^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### PACKAGE DIMENSIONS #### SOT-953 CASE 527AE **ISSUE E** **TOP VIEW** #### NOTES - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994 - CONTROLLING DIMENSION: MILLIMETERS MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL DIMENSIONS D AND E DO NOT INCLUDE MOLD - FLASH, PROTRUSIONS, OR GATE BURRS. | | MILLIMETERS | | | | | |-----|-------------|---------|------|--|--| | DIM | MIN | NOM | MAX | | | | Α | 0.34 | 0.37 | 0.40 | | | | b | 0.10 | 0.15 | 0.20 | | | | С | 0.07 | 0.12 | 0.17 | | | | D | 0.95 | 1.00 | 1.05 | | | | Е | 0.75 0.80 | 0.80 | 0.85 | | | | е | | 0.35 BS | С | | | | HE | 0.95 | 1.00 | 1.05 | | | | L | 0.175 REF | | | | | | L2 | 0.05 | 0.10 | 0.15 | | | | L3 | | | 0.15 | | | #### **SOLDERING FOOTPRINT*** **DIMENSIONS: MILLIMETERS** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative