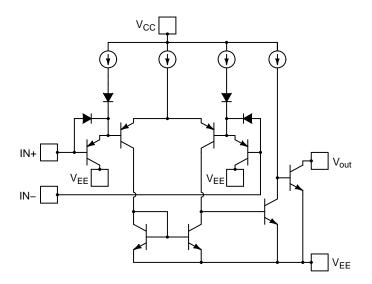
Low Power Single Voltage Comparator


Description

The TS391 is an open collector, low–power voltage comparator designed specifically to operate from a single supply over a wide range of voltages. Operation from split power supplies is also possible.

This comparator also has a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage.

Features

- Wide Single Supply Voltage Range or Dual Supplies
- Low Supply Current (0.5 mA) Independent of Supply Voltage (1 mW/Comparator at +5 V)
- Low Input Bias Current: 25 nA TYP
- Low Input Offset Current: ±5 nA TYP
- Low Input Offset Voltage: ±1 mV TYP
- Input Common Mode Voltage Range includes Ground
- Low Output Saturation Voltage: 250 mV TYP at I_O = 4 mA
- Differential Input Voltage Range Equal to the Supply Voltage
- TTL, DTL, ECL, CMOS Compatible Devices
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

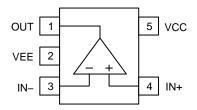
ON Semiconductor®

www.onsemi.com

MARKING DIAGRAM

Analog

391 = Specific Device Code A = Assembly Location


Y = Year

W = Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping [†]
TS391SN2T1G	TSOP-5 (Pb-Free)	3000 / Tape & Reel
NCV391SN2T1G*	TSOP-5 (Pb-Free)	3000 / Tape & Reel

- †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.
- * NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

Table 1. ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature, unless otherwise stated)

Parameter	Symbol	Limit	Unit		
Supply Voltage (V _{CC} – V _{EE})	V _S	36	V		
INPUT AND OUTPUT PINS					
Input Voltage	V _{IN}	-0.3 to 36	V		
Differential Input Voltage	V _{ID}	±36	V		
Output Short Circuit Current (Note 1)	I _{SC}	20	mA		
TEMPERATURE					
Storage Temperature	T _{STG}	-65 to +150	°C		
Junction Temperature	TJ	+150	°C		
ESD RATINGS					
Human Body Model	НВМ	1500	V		
Charged Device Model	CDM	2000	V		
Machine Model	MM	200	V		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Short circuits from the output to V_{CC} can cause excessive heating and potential destruction. The maximum short circuit current is independent

Table 2. THERMAL INFORMATION (Note 2)

Thermal Metric	Symbol	Limit	Unit
Junction to Ambient – SOIC8	θ_{JA}	238	°C/W

^{2.} Short-circuits can cause excessive heating and destructive dissipation. These values are typical.

Table 3. OPERATING CONDITIONS

Parameter	Symbol	Limit	Unit
Operating Supply Voltage	V _S	2 to 36	V
Specified Operating Range	T _A	-40 to +125	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

of the magnitude of V_{CC} .

Table 4. ELECTRICAL CHARACTERISTICS (Vs=+5.0 V, At T_A = +25°C) Boldface limits apply over the specified temperature range, T_A = -40°C to +125°C.

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
INPUT CHARACTERISTIC	s						
Offset Voltage	Vos	Vo = 1.4 V, R _S =	$V_{CM} = 0 \text{ to } V_{CC} - 1.5 \text{ V}$		1	5	mV
		$0 \Omega, V_S = 5 V \text{ to}$ 30 V	$V_{CM} = 0$ to $V_{CC} - 2$ V			9	mV
Input Bias Current	I _{IB}				25	250	nA
						400	nA
Input Offset Current	I _{OS}				5	50	nA
						150	nA
Input Common Mode	V _{ICR}			0		V _{CC} – 1.5	V
Range (Note 3)				0		V _{CC} – 2	٧
Differential Input Voltage (Note 4)	V _{ID}					V _{CC}	V
OUTPUT CHARACTERIST	TICS						
Output Voltage Low	Voltage Low V_{OL} $V_{ID} = 1 \text{ V}, I_{O} = 4 \text{ mA}$		I V, I _O = 4 mA		250	400	mV
						700	mV
Output Sink Current	I _O	$V_{ID} = -1, V_{O} = 1.5 V$		6	16		mA
Output Leakage Current	I _{OH}	V _{ID} = 1 V,	$V_{CC} = V_O = 5 V$		0.1		nA
		$V_{ID} = 1 V$,	$V_{CC} = V_O = 30 \text{ V}$			1	μΑ
DYNAMIC PERFORMANC	E						
Open Loop Voltage Gain	A _{VOL}	V _{CC} = 15	V , R_{PU} = 15 $kΩ$	94	106		dB
Propagation Delay L-H	t _{PLH}	5 mV overd	rive, $R_{PU} = 5.1 \text{ k}\Omega$		850		ns
		20 mV over	drive, $R_{PU} = 5.1 \text{ k}\Omega$		490		ns
		100 mV over	drive, $R_{PU} = 5.1 \text{ k}\Omega$		300		ns
		TTL Inpu R _{PI}	it, Vref = +1.4 V, $_{\rm J}$ = 5.1 k Ω		220		ns
Propagation Delay H-L	ppagation Delay H-L t _{PHL}		drive, $R_{PU} = 5.1 \text{ k}\Omega$		620		ns
		20 mV over	drive, R _{PU} = 5.1 kΩ		400		ns
		100 mV over	drive, $R_{PU} = 5.1 \text{ k}\Omega$		250		ns
			t, Vref = +1.4 V, $_{\rm U}$ = 5.1 kΩ		350		ns
POWER SUPPLY							
Quiescent Current	I _{CC}	V	_{CC} = 5 V		0.5	-	mA
		Vo	_{CC} = 30 V		0.5	1.25	mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{3.} The input common mode voltage of either input signal should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is VCC – 1.5 V, but either or both inputs can go to +30 V without damage.

^{4.} Positive excursions of the input voltage may exceed the power supply level. As long as the other voltage remains within the common mode range, the comparator will provide a proper output stage. The low input voltage state must not be less than 0.3 V below the negative supply rail.

TYPICAL CHARACTERISTICS

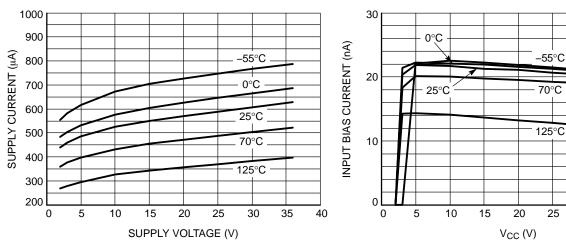


Figure 1. Supply Current vs. Supply Voltage

 $V_{IN} = 0 V$

35

40

30

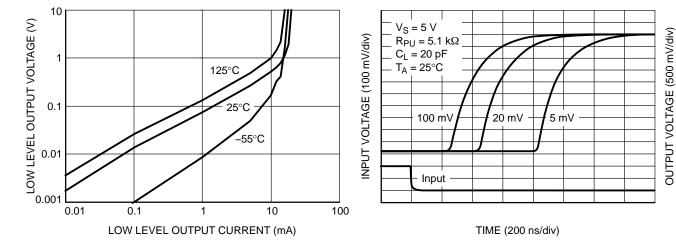
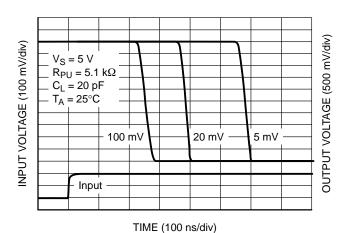
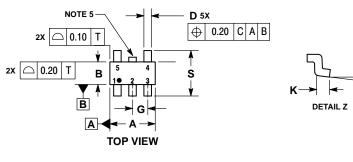
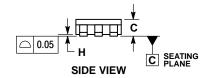
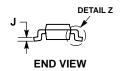


Figure 3. Low Level Output Voltage vs. Output Current

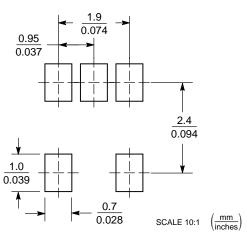
Figure 4. Propagation Delay L-H vs. Overdrive


Figure 5. Propagation Delay H-L vs. Overdrive

PACKAGE DIMENSIONS

TSOP-5 **CASE 483** ISSUE M


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

- Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
 THICKNESS. MINIMUM LEAD THICKNESS IS THE
 MINIMUM THICKNESS OF BASE MATERIAL.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD
 FLASH, PROTRUSIONS, OR GATE BURRS. MOLD
 FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT
 EXCEED 0.15 PER SIDE. DIMENSION A.
- OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

	MILLIMETERS			
DIM	MIN	MAX		
Α	2.85	3.15		
В	1.35	1.65		
С	0.90	1.10		
D	0.25	0.50		
G	0.95 BSC			
Н	0.01	0.10		
J	0.10	0.26		
K	0.20	0.60		
М	0 °	10°		
s	2.50	3.00		

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative