350mA, Very Low Dropout **Bias Rail CMOS Voltage** Regulator

The NCP720 is a 350 mA VLDO equipped with NMOS pass transistor and a separate bias supply voltage (V_{BIAS}). The device provides very stable, accurate output voltage with low noise suitable for space constrained, noise sensitive applications. In order to optimize performance for battery operated portable applications, the NCP720 features low I_O consumption. The WDFN6 2 mm x 2 mm package is optimized for use in space constrained applications.

Features

• Input Voltage Range: 0.8 V to 5.5 V • Bias Voltage Range: 2.4 V to 5.5 V

• Fixed Output Voltage Device

• Output Voltage Range: 0.8 V to 2.1 V

• ±2% Accuracy over Temperature

• Ultra-Low Dropout: 110 mV typically at 350 mA

• Very Low Bias Input Current of Typ. 80 µA

• Very Low Bias Input Current in Disable Mode: Typ. 0.5 μA

• Low Noise, High PSRR

• Built-In Soft-Start with Monotonic V_{OUT} Rise

• Stable with a 2.2 μF Ceramic Capacitor

• Available in WDFN6 – 2 mm x 2 mm Package

• These are Pb-Free Devices

Typical Applications

• Battery-powered Equipment

• Smartphones, Tablets

• Cameras, DVRs, STB and Camcorders

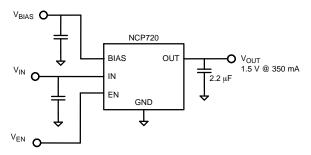
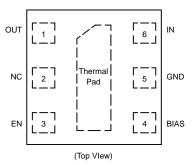


Figure 1. Typical Application Schematics

ON Semiconductor™

www.onsemi.com

MARKING DIAGRAM


WDFN6 CASE 511BR

XX = Specific Device Code

= Date Code

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 8 of this data sheet.

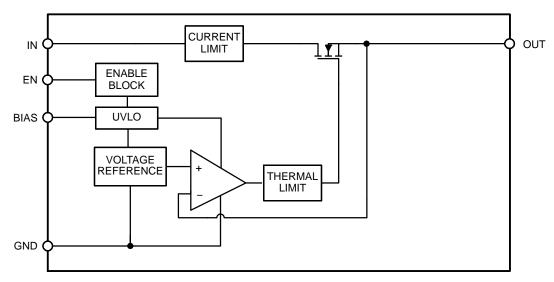


Figure 2. Simplified Schematic Block Diagram

PIN FUNCTION DESCRIPTION

Pin No.	Pin Name	Description					
1	OUT	Regulated Output Voltage pin					
2	N/C	Not internally connected					
3	EN	Enable pin. Driving this pin high enables the regulator. Driving this pin low puts the regulator into shutdown mode.					
4	BIAS	Bias voltage supply for internal control circuits. This pin is monitored by internal Under-Voltage Lockout Circuit.					
5	GND	Ground pin					
6	IN	Input Voltage Supply pin					
Pad		Should be soldered to the ground plane for increased thermal performance.					

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage (Note 1)	V _{IN}	-0.3 to 6	V
Output Voltage	V _{OUT}	-0.3 to $(V_{IN}+0.3) \le 6$	V
Chip Enable and Bias Input	V _{EN} , V _{BIAS}	-0.3 to 6	V
Output Short Circuit Duration	t _{SC}	unlimited	S
Maximum Junction Temperature	TJ	150	°C
Storage Temperature	T _{STG}	-55 to 150	°C
ESD Capability, Human Body Model (Note 2)	ESD _{HBM}	2000	V
ESD Capability, Machine Model (Note 2)	ESD _{MM}	200	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.
- 2. This device series incorporates ESD protection (except OUT pin) and is tested by the following methods:
 - ESD Human Body Model tested per EIA/JESD22-A114
 - ESD Machine Model tested per EIA/JESD22-A115
 - Latchup Current Maximum Rating tested per JEDEC standard: JESD78.

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Characteristics, WDFN6 2 mm x 2 mm Thermal Resistance, Junction–to–Air (Note 3)	$R_{\theta JA}$	65	°C/W

^{3.} This data was derived by thermal simulations based on the JEDEC JESD51 series standards methodology. Only a single device mounted at the center of a high – K (2s2p) 3in x 3in multilayer board with 1–ounce internal planes and 2–ounce copper on top and bottom. Top copper layer has a dedicated 125 sqmm copper area.

ELECTRICAL CHARACTERISTICS

Over Operating Temperature Range (T_J = -40° C to +125°C), V_{BIAS} = (V_{OUT} + 1.4 V) or 2.5 V, whichever is greater; V_{IN} \geq V_{OUT} + 0.5 V, I_{OUT} = 1 mA, V_{EN} = 1.1 V, C_{OUT} = 2.2 μ F, unless otherwise noted. Typical values are at T_J = +25°C.

Parameter		Test Conditions		Symbol	Min	Тур	Max	Unit
Operating Input Voltage Range				V _{IN}	V _{OUT} + V _{DO_IN}		5.5	٧
Operating Bias Voltage Range				V_{BIAS}	(V _{OUT} + 1.4) ≥ 2.4		5.5	٧
Output Voltage Range (Note 4)					0.8		2.1	V
Output	Nominal	T _J = +25°C		V _{OUT}		±0.5		%
Output Voltage Accuracy $T_J = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}$		$\begin{split} &V_{OUT} + 1.4 \ V \leq V_{BIAS} \leq 5.5 \ V, \\ &V_{OUT} + 0.5 \ V \leq V_{IN} \leq 4.5 \ V, \\ &0 \text{mA} \leq I_{OUT} \leq 350 \ \text{mA} \end{split}$		V _{OUT}	-2		+2	%
V _{IN} Line Re	gulation	$V_{IN} = (V_{OUT} + 0.5 \text{ V}) \text{ to } 4.5 \text{ V}, I_{OUT} = 1 \text{mA}$		$\Delta V_{OUT}/\Delta V_{IN}$		5.0		μV/V
V _{BIAS} Line	Regulation	V_{BIAS} = (V_{OUT} + 1.4 V) or 2.5 V (which- ever is greater) to 5.5 V, I_{OUT} = 1 mA		$\Delta V_{OUT}/\Delta V_{BIAS}$		16		μV/V
Load Regul	ation	$0 \text{ mA} \le I_{OUT} \le 350 \text{ mA}$ (no load to full load)		$\Delta V_{OUT}/\Delta I_{OUT}$		-1.0		μV/mA
V _{IN} Dropout Voltage (Note 5)		$\begin{aligned} &V_{IN} = V_{OUT(NOM)} - 0.1 \; V, \\ &(V_{BIAS} - V_{OUT(NOM)}) = 1.4 \; V, \\ &I_{OUT} = 350 \; mA \end{aligned}$		V_{DO-IN}		110	200	mV
V _{BIAS} Dropout Voltage (Note 6)		$V_{IN} = V_{OUT(NOM)} + 0.3 \text{ V}, I_{OUT} = 350 \text{ mA}$		V_{DO_BIAS}		1.15	1.4	V
Output Cur	rent Limit	Vout = 0.9 x Vout(nom)		I _{CL}	420	525	800	mA
Bias Pin Cu	ırrent	I _{OUT} = 0 mA to 350 mA		I _{BIAS}		80	110	μΑ
Shutdown (Current (I _{GND})	$V_{EN} \le 0.4 \text{ V}, T_J = -40^{\circ}\text{C to } +8$	5°C	Ishdn		0.5	2.0	μΑ
			f = 10 Hz			52		dB
		V _{IN} – V _{OUT} ≥ 0.5 V,	f = 100 Hz	PSRR (V _{IN})		56		
V Dower	Cupply Poinstian Patia		f = 1 kHz			65		
V _{IN} Power-Supply Rejection Ratio		$V_{BIAS} = V_{OUT} + 1.4 \text{ V},$ $I_{OUT} = 350 \text{ mA}$	f = 10 kHz	FORK (VIN)		46		- UB
			f = 100 kHz			37		
			f = 1 MHz			25		
		$V_{IN} - V_{OUT} \ge 0.5 \text{ V},$ $V_{BIAS} = V_{OUT} + 1.4 \text{ V},$ $I_{OUT} = 350 \text{ mA}$	f = 10 Hz	PSRR (V _{BIAS})		65		- dB
			f = 100 Hz			65		
V _{BIAS} Powe	er-Supply Rejection		f = 1 kHz			70		
Ratio			f = 10 kHz			50		
		001	f = 100 kHz	1		35]
			f = 1 MHz	1		24		1
Output Noise Voltage		BW = 10 Hz to 100 kHz		V _N		40		μVRMS
Inrush Current on V _{IN}				I _{VIN_INRUSH}		100 + I _{LOAD}		mA
Startup Tim	е	V_{OUT} = 95% $V_{OUT(NOM)}$, I_{OUT} = 350 mA, C_{OUT} = 2.2 μF		t _{STR}		140		μs
Enable Pin High (enabled)				V _{EN(HI)}	1.1			V
Enable Pin Low (disabled)				V _{EN(LO)}	0		0.4	V
Enable Pin Current		V _{EN} = 5.5 V		I _{EN}		0.3	1	μΑ
Undervoltage Lock-out		V _{BIAS} rising		UVLO		1.6		V
Hysteresis		V _{BIAS} falling				0.2		V
Thermal Shutdown Temperature		Shutdown, temperature increasing Reset, temperature decreasing		Tsp		+160		°C
						+140		°C
Operating Junction Temperature				T_J	-40		+125	°C

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. V_{OUT} nominal value is factory programmable.

5. Measured for devices with V_{OUT}(NOM) ≥ 1.2V.

6. V_{BIAS} − V_{OUT} with V_{OUT} = V_{OUT}(NOM) − 0.1V.

APPLICATIONS INFORMATION

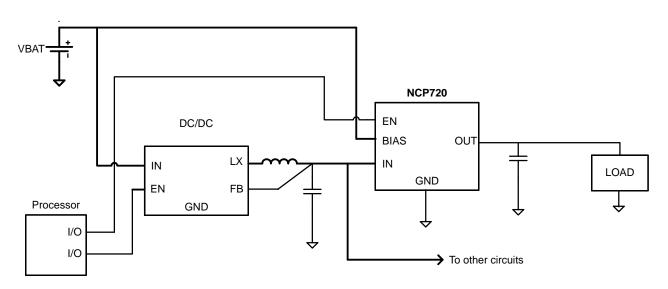


Figure 3. Typical Application: Low-Voltage Post-Regulator with ON/OFF functionality

TYPICAL CHARACTERISTICS

 $V_{OUT(NOMINAL)} = 1.5 \text{ V}, V_{BIAS} = (V_{OUT} + 1.4 \text{ V}) \text{ or } 2.5 \text{ V}, \text{ whichever is greater, } V_{IN} = V_{OUT} + 0.5 \text{ V}, I_{OUT} = 1 \text{ mA}, \\ V_{EN} = 1.1 \text{ V}, C_{OUT} = 2.2 \text{ } \mu\text{F}, T_{J} = 25^{\circ}\text{C} \text{ unless otherwise noted}.$

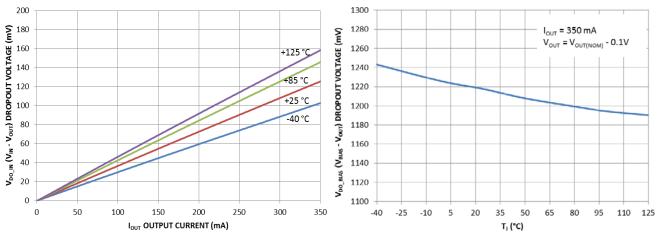


Figure 4. V_{IN} Dropout Voltage vs. Output Current

Figure 5. V_{BIAS} Dropout Voltage vs. Temperature

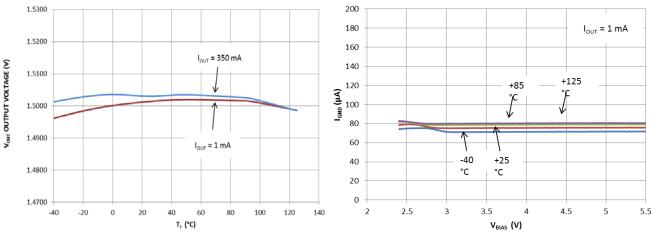


Figure 6. Output Voltage vs. Temperature

Figure 7. Bias Pin Current vs. V_{BIAS} Input Voltage

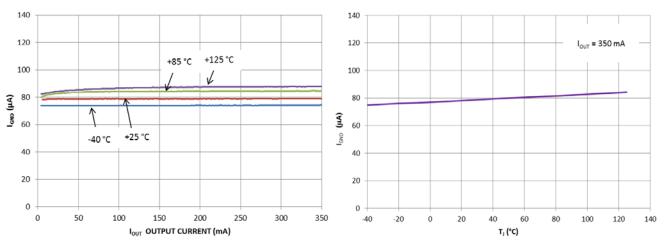


Figure 8. Bias Pin Current vs. Output Current

Figure 9. Bias Pin Current vs. Temperature

TYPICAL CHARACTERISTICS

 $V_{OUT(NOMINAL)} = 1.5 \text{ V}, V_{BIAS} = (V_{OUT} + 1.4 \text{ V}) \text{ or } 2.5 \text{ V}, \text{ whichever is greater, } V_{IN} = V_{OUT} + 0.5 \text{ V}, I_{OUT} = 1 \text{ mA}, \\ V_{EN} = 1.1 \text{ V}, C_{OUT} = 2.2 \text{ } \mu\text{F}, T_{J} = 25^{\circ}\text{C} \text{ unless otherwise noted}.$

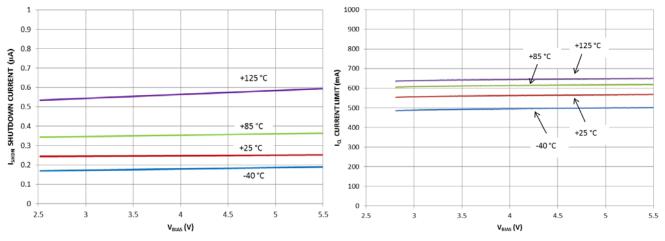


Figure 10. Shutdown Current vs. V_{BIAS} Input Voltage

Figure 11. Current Limit vs. V_{BIAS} Input Voltage

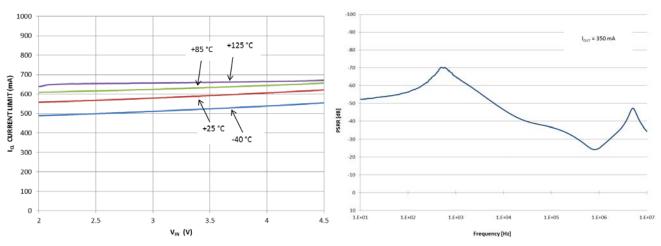


Figure 12. Current Limit vs. V_{IN} Input Voltage

Figure 13. V_{IN} Power Supply Ripple Rejection vs. Frequency

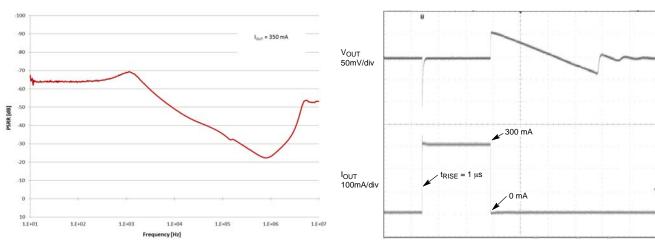


Figure 14. V_{BIAS} Power Supply Ripple Rejection vs. Frequency

Figure 15. Load Transient Response

APPLICATIONS INFORMATION

The NCP720 dual—rail very low dropout voltage regulator is using NMOS pass transistor for output voltage regulation from $V_{\rm IN}$ voltage. All the low current internal controll circuitry is powered from the $V_{\rm BIAS}$ voltage.

The use of an NMOS pass transistor offers several advantages in applications. Unlike a PMOS topology devices, the output capacitor has reduced impact on loop stability. $V_{\rm IN}$ to $V_{\rm OUT}$ operating voltage difference can be very low compared with standard PMOS regulators in very low $V_{\rm IN}$ applications.

The NCP720 offers built-in Soft-Start with monotonic V_{OUT} rise. The controlled voltage rising limits the inrush current.

The Enable (EN) input is equipped with internal hysteresis.

NCP720 is a Fixed Voltage linear regulator.

Dropout Voltage

Because of two power supply inputs V_{IN} and V_{BIAS} and one V_{OUT} regulator output, there are two Dropout voltages specified.

The first, the V_{IN} Dropout voltage is the voltage difference $(V_{IN}-V_{OUT})$ at which the regulator output no longer maintains regulation against further reductions in input voltage. V_{BIAS} is high enough, specific value is published in the Electrical Characteristics table.

The second, V_{BIAS} dropout voltage is the voltage difference ($V_{BIAS} - V_{OUT}$) at which the regulator output no longer maintains regulation against further reductions in V_{BIAS} voltage. V_{IN} is high enough.

Input and Output Capacitors

The device is designed to be stable for ceramic output capacitors with Effective capacitance in the range from 2.2 μF to 10 μF . The device is also stable with multiple capacitors in parallel, having the total effective capacitance in the specified range.

In applications where no low input supplies impedance available (PCB inductance in V_{IN} and/or V_{BIAS} inputs as

example), the recommended $C_{IN}=1~\mu F$ and $C_{BIAS}=0.1~\mu F$ or greater. Ceramic capacitors are recommended. For the best performance all the capacitors should be connected to the NCP720 respective pins directly in the device PCB copper layer, not through vias having not negligible impedance.

When using small ceramic capacitor, their capacitance is not constant but varies with applied DC biasing voltage, temperature and tolerance. The effective capacitance can be much lower than their nominal capacitance value, most importantly in negative temperatures and higher LDO output voltages. That is why the recommended Output capacitor capacitance value is specified as Effective value in the specific application conditions.

Enable Operation

The enable pin will turn the regulator on or off. The threshold limits are covered in the electrical characteristics table in this data sheet. If the enable function is not to be used then the pin should be connected to V_{IN} or $V_{BIAS}.$ When enabled, the device consumes roughly 20 μA from Vin supply per 1 V nominal output voltage. That is why using the enable / disable function in power saving applications is recommended.

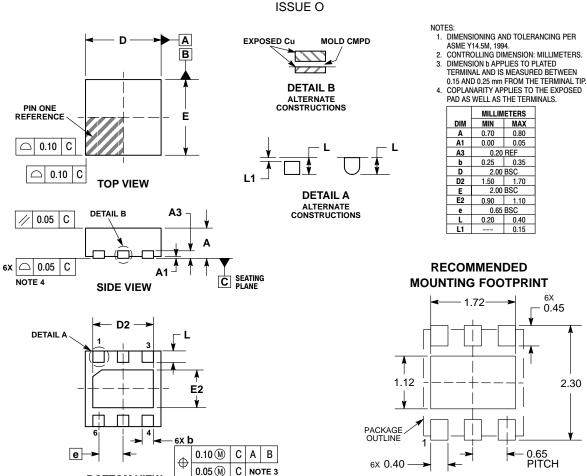
Current Limitation

The internal Current Limitation circuitry allows the device to supply the full nominal current and surges but protects the device against Current Overload or Short.

Thermal Protection

Internal thermal shutdown (TSD) circuitry is provided to protect the integrated circuit in the event that the maximum junction temperature is exceeded. When TSD activated, the regulator output turns off. When cooling down under the low temperature threshold, device output is activated again. This TSD feature is provided to prevent failures from accidental overheating.

ORDERING INFORMATION


Device	Nominal Output Voltage	Marking	Package	Shipping [†]		
NCP720BMT100TBG	1.00 V	JC				
NCP720BMT105TBG	1.05 V	JD	7			
NCP720BMT1110TBG	1.10 V	JE	1			
NCP720BMT115TBG	1.15 V	JF				
NCP720BMT120TBG	1.20 V	JG				
NCP720BMT125TBG	1.25 V	JH				
NCP720BMT130TBG	1.30 V	JJ	WDFN6			
NCP720BMT135TBG	1.35 V	JK	(Pb-Free)	3000 / Tape & Reel		
NCP720BMT140TBG	1.40 V	JL	1			
NCP720BMT145TBG	1.45 V	JM	1			
NCP720BMT150TBG	1.50 V	JA				
NCP720BMT160TBG	1.60 V	JP				
NCP720BMT170TBG	1.70 V	JQ	7			
NCP720BMT180TBG	1.80 V	JR	1			

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

To order other package and voltage variants, please contact your ON sales representative

PACKAGE DIMENSIONS

WDFN6 2x2, 0.65P CASE 511BR

ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

BOTTOM VIEW

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

DIMENSIONS: MILLIMETERS

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative