

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

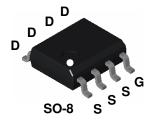
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

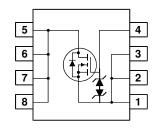
FDS5692Z

N-Channel UltraFET Trench® MOSFET 50V, 5.8A, $24m\Omega$

General Description

This N-Channel UltraFET device has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{DS(on)}$ and fast switching speed.


Applications


■ DC/DC converter

Features

- Max $r_{DS(on)} = 24m\Omega$ at $V_{GS} = 10V$, $I_D = 5.8A$
- Max $r_{DS(on)} = 33m\Omega$ at $V_{GS} = 4.5V$, $I_D = 5.6A$
- ESD protection diode (note 3)
- Low Qgd
- Fast switching speed

MOSFET Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V _{DS}	Drain-Source Voltage		50	V	
V _{GS}	Gate-Source Voltage		± 20	V	
I _D	Drain Current – Continuous	(Note 1a)	5.8	Α	
	- Pulsed		40		
E _{AS}	Single Pulse Avalanche Energy		72	mJ	
P_D	UltraFET Dissipation for Single Operation	(Note 1a)	2.5	W	
		(Note 1b)	1.2		
		(Note 1c)	1.1		
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to 150	°C	

Thermal Characteristics

R _{0JA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	50	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1c)	125	
R _{θJC}	Thermal Resistance, Junction-to-Case	(Note 1)	25	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape width	Quantity
FDS5692Z	FDS5692Z	FDS5692Z SO-8		12mm	2500units

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-Sc	ource Avalanche Ratings			ı		1
E _{AS}	Drain-Source Avalanche Energy (Single Pulse)	V _{DD} = 50 V, I _D = 12 A, L=1mH			72	mJ
I _{AS}	Drain-Source Avalanche Current			12		Α
Off Char	acteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \qquad I_{D} = 250 \mu\text{A}$	50			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C		48		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 40 \text{ V}$ $V_{GS} = 0 \text{ V}$			1	μА
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 20V$, $V_{DS} = 0 V$			± 10	μΑ
On Char	acteristics (Note 4)			•		
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$	1	1.6	3	V
$\Delta V_{GS(th)} \over \Delta T_J$	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \mu A$, Referenced to 25°C		-6		mV/°C
r _{DS(on)}	Static Drain–Source On–Resistance	$\begin{aligned} &V_{GS} = 10 \text{ V}, &I_{D} = 5.8 \text{ A} \\ &V_{GS} = 4.5 \text{ V}, &I_{D} = 5.6 \text{ A} \\ &V_{GS} = 10 \text{ V}, &I_{D} = 5.8 \text{A}, T_{J} = 125 ^{\circ}\text{C} \end{aligned}$		20 26 32	24 33 41	mΩ
Dvnamio	Characteristics		•	•		,
C _{iss}	Input Capacitance	$V_{DS} = 25 \text{ V}.$ $V_{GS} = 0 \text{ V}.$		1025		pF
C _{oss}	Output Capacitance	f = 1.0 MHz		150		pF
C _{rss}	Reverse Transfer Capacitance			50		pF
R _G	Gate Resistance	f = 1.0 MHz		0.79		Ω
$Q_{g(TOT)}$	Total Gate Charge, V _{GS} = 10V			18	25	nC
$Q_{g(TOT)}$	Total Gate Charge, V _{GS} = 5V	$V_{DS} = 25V$, $I_{D} = 5.8A$		10	14	nC
Q _{gs}	Gate-Source Gate Charge			2.8		nC
Q_{gd}	Gate-Drain Gate Charge			3.0		nC
Switchin	ng Characteristics (Note 4)		•	•		,
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 25 \text{ V}, \qquad I_{D} = 5.8 \text{A},$		9	18	ns
t _r	Rise Time	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		5	10	ns
t _{d(off)}	Turn-Off Delay Time	1		27	43	ns
t _f	Fall Time	7		6	12	ns

FDS5692Z Rev C(W) www.fairchildsemi.com

Electrical Characteristics $T_A = 25$ °C unless otherwise noted **Symbol** Min **Parameter** Max Units **Test Conditions** Typ **Drain-Source Diode Characteristics** Drain-Source Diode Forward $I_S = 5.8 A$ 0.79 1.25 ٧ $V_{GS} = 0 V$, Voltage ٧ $I_{S} = 2.9 A$ 0.75 1.0 Reverse Recovery Time 24 t_{rr} ns $I_F = 6A$, $dI_F/dt = 100A/\mu s$ Q_{rr} Reverse Recovery Charge 16 nC

Notes:

1. R 0.14 is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a) 50°C/W when mounted on a 1in² pad of 2 oz copper

b) 105°C/W when mounted on a .04 in² pad of 2 oz copper

c) 125°C/W when mounted on a minimum pad.

- Scale 1:1 on letter size paper
- 2. Pulse Test: Pulse Width < $300\mu s,$ Duty Cycle < 2.0%
- 3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

FDS5692Z Rev C(W) www.fairchildsemi.com

Typical Characteristics

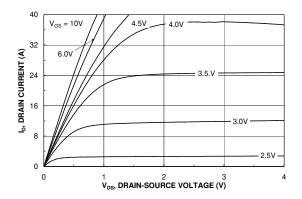


Figure 1. On-Region Characteristics.

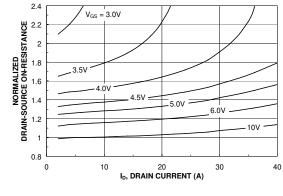


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

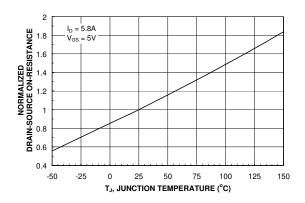


Figure 3. On-Resistance Variation with Temperature.

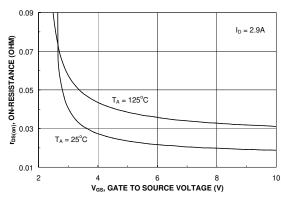


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

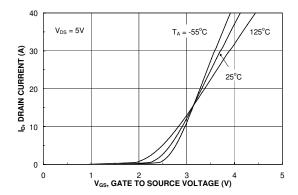


Figure 5. Transfer Characteristics.

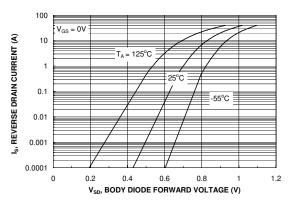
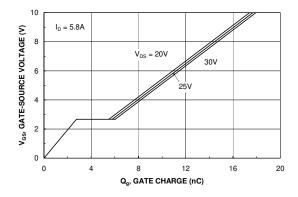



Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

FDS5692Z Rev C(W) www.fairchildsemi.com

Typical Characteristics

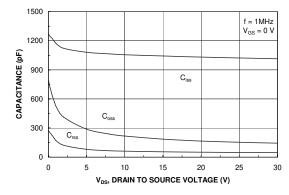
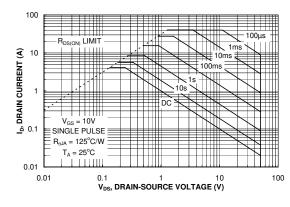



Figure 7. Gate Charge Characteristics.

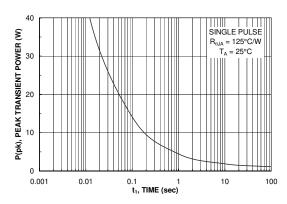


Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum UltraFET Dissipation.

Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.

FDS5692Z Rev C(W) www.fairchildsemi.com

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ PowerSaver™ **FAST®** ISOPLANAR™ SuperSOT™-6 ActiveArray™ $\mathsf{PowerTrench}^{\circledR}$ SuperSOT™-8 FASTr™ LittleFET™ Bottomless™ $\mathsf{FPS^{\mathsf{TM}}}$ MICROCOUPLER™ QFET[®] SvncFET™ Build it Now™ MicroFET™ QSTM ТСМ™ FRFET™ $\mathsf{TinyLogic}^{\mathbb{B}}$ CoolFET™ MicroPak™ QT Optoelectronics™ GlobalOptoisolator™ TINYOPTO™ $CROSSVOLT^{TM}$ MICROWIRE™ Quiet Series™ GTO™ $\mathsf{DOME}^{\mathsf{TM}}$ RapidConfigure™ TruTranslation™ MSX^{TM} HiSeC™ $\mathsf{UHC^{\mathsf{TM}}}$ $\mathsf{EcoSPARK^{TM}}$ RapidConnect™ $MSXPro^{TM}$ I²CTM $\mathsf{UltraFET}^{\circledR}$ E²CMOSTM OCX^{TM} uSerDes™ i-LoTM ScalarPump™ UniFET™ EnSigna™ OCXPro™ ImpliedDisconnect™ $\mathsf{OPTOLOGIC}^{\circledR}$ SILENT SWITCHER® VCX^{TM} FACT™ IntelliMAXTM OPTOPLANAR™ SMART START™ Wire™ FACT Quiet Series™ PACMANTM SPMTM Across the board. Around the world.™ РОРТМ Stealth™ The Power Franchise® Power247™ SuperFET™ Programmable Active Droop™ SuperSOT™-3 PowerEdge™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I18