imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

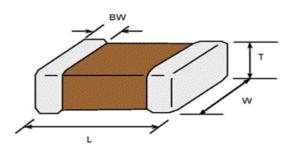
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SPECIFICATION

- · Supplier : Samsung electro-mechanics
- Product : Multi-layer Ceramic Capacitor
- · Samsung P/N:
- CL05A225KP5NNNC


(Reference sheet)

- · Description :
- CAP, 2.2uF, 10V, ±10%, X5R, 0402

A. Samsung Part Number

		<u>CL</u> ①	<u>05</u> ②	<mark>4</mark> 3	<u>225</u> ④	<u>K</u> 5	<u>P</u> 6	<u>5</u> 7	<u>N</u> 8	<u>N</u> 9	<u>N</u> 10	<mark>C</mark> 11
1	Series	Samsung Multi-layer Ceramic Capacitor										
2	Size	0402 (inch c	ode)		L: '	1.00	± 0.05	mm			W:	0.50 ± 0.05 mm
3	Dielectric	X5R				8	Inner	elect	rode			Ni
4	Capacitance	2.2 uF					Term	inatio	n			Cu
5	Capacitance	±10 %					Platir	ıg				Sn 100% (Pb Free)
	tolerance					9	Prod	uct				Normal
6	Rated Voltage	10 V				10	Spec	ial				Reserved for future use
1	Thickness	0.50 ± 0.05 mm				1	Packa	aging				Cardboard Type, 7" reel

B. Structure & Dimension

Samsung P/N	Dimension(mm)								
Samsung F/N	L	W	Т	BW					
CL05A225KP5NNNC	1.00 ± 0.05	0.50 ± 0.05	0.50 ± 0.05	0.25 ± 0.10					

C. Samsung Reliablility Test and Judgement Condition

Capacitance Within specified tolerance 1 ^{Mt/2} ±10% / 0.5±0.1Vrms Tan δ (DF) 0.1 max. *A capacitor prior to measuring the cc treated at 150°C+0/-10°C for 1 hour a ambient air for 24±2 hours. Insulation 10,000Mohm or 100Mohm×//F Rated Voltage 60~120 sec. Resistance Whichever is smaller Appearance No abnormal exterior appearance Microscope (×10) Withstanding No dielectric breakdown or mechanical breakdown 250% of the rated voltage 250% Yoltage mechanical breakdown 500g·f, for 10±1 sec. 60~120 sec. Adhesive Strength No peeling shall be occur on the of Termination 500g·f, for 10±1 sec. 500g·f, for 10±1 sec. Solderability More than 75% of terminal surface is to be soldered newly SnAg3.0Cu0.5 solder 245±5°C, 3±0.3sec. Solder pot : 270±5°C, 10±1sec. Vibration Test Capacitance change : within ±7.5% Solder pot : 270±5°C, 10±1sec. From 10Hz to 55Hz (return : 1min.) Vibration Test Capacitance change : within ±5% Tan δ, IR : initial spec. Amplitude : 1.5mm From 10Hz to 55Hz (return : 1min.) Woisture Resistance Capacitance change : within ±12.5% With rated voltage Moisture Resistance Capacitance change : within ±12.5% With rated voltage					
Tan δ (DF)0.1 max.treated at 150°C +0/-10°C for 1 hour a ambient air for 24±2 hours.Insulation10,000Mohm or 100Mohm×/ μ FRated Voltage60~120 sec.ResistanceWhichever is smallerMicroscope (×10)Microscope (×10)WithstandingNo dielectric breakdown or mechanical breakdown250% of the rated voltageVoltagemechanical breakdown250% of the rated voltageVoltagemechanical breakdown500g-f, for 10±1 sec.Characteristics(From-55°C to 85°C, Capacitance change should be within ±15%)Adhesive Strength of TerminationNo peeling shall be occur on the terminal electrode500g-f, for 10±1 sec.Bending Strength of TerminationCapacitance change : within ±12.5%Bending to the limit (1mm) with 1.0mm/sec.SolderabilityMore than 75% of terminal surface is to be soldered newlySolder pot : 270±5°C, 10±1sec.Soldering Heat Vibration TestCapacitance change : within ±7.5% Capacitance change : within ±5% Tan δ , IR : initial spec.Amplitude : 1.5mm From 10Hz to 55Hz (return : 1min.) 2hours × 3 direction (x, y, z)MoistureCapacitance change : within ±12.5% With rated voltageAmplitude : 1.5mm From 10Hz to 55Hz (return : 1min.) 2hours × 3 direction (x, y, z)					
ResistanceWhichever is smallerAppearanceNo abnormal exterior appearanceMicroscope (×10)WithstandingNo dielectric breakdown or mechanical breakdown 250% of the rated voltageVoltagemechanical breakdown 250% of the rated voltageTemperatureX5R 25% (From-55°C to 85°C, Capacitance change should be within ±15%)Adhesive Strength of TerminationNo peeling shall be occur on the terminal electrode $500g \cdot f, \text{ for } 10\pm 1 \text{ sec.}$ Bending StrengthCapacitance change : within ±12.5%within ±12.5%Bending to the limit (1mm) with 1.0mm/sec.SolderabilityMore than 75% of terminal surface is to be soldered newlySnAg3.0Cu0.5 solder $245\pm5°C, 3\pm 0.3sec.$ (preheating : $80\sim120°C$ for $10\sim30sec$ Resistance to Soldering HeatCapacitance change : Tan δ , IR : initial spec.within $\pm 7.5\%$ Solder pot : $270\pm5°C, 10\pm1sec.$ Vibration TestCapacitance change : mar δ , IR : initial spec.within $\pm 5\%$ Tan δ , IR : initial spec.Amplitude : $1.5mm$ From $10Hz$ to $55Hz$ (return : 1min.) $2hours \times 3$ direction (x, y, z)MoistureCapacitance change : within $\pm 12.5\%$ With rated voltage					
AppearanceNo abnormal exterior appearanceMicroscope (×10)WithstandingNo dielectric breakdown or mechanical breakdown 250% of the rated voltageVoltagemechanical breakdown 250% of the rated voltageTemperatureX5R 250% of the rated voltageCharacteristics(From-55 °C to 85 °C, Capacitance change should be within ±15%)Adhesive Strength of TerminationNo peeling shall be occur on the terminal electrode $500g \cdot f_i$ for 10 ± 1 sec.Bending StrengthCapacitance change : is to be soldered newlywith $\pm12.5\%$ Bending to the limit (1mm) with 1.0mm/sec.SolderabilityMore than 75% of terminal surface is to be soldered newlySolder pot : $270\pm5^\circ$ C, 10 ± 3 sec. (preheating : $80\sim120^\circ$ C for $10\sim30$ secResistance to Soldering HeatCapacitance change : Tan δ , IR : initial spec.within $\pm7.5\%$ Amplitude : $1.5mm$ From $10Hz$ to $55Hz$ (return : $1min.$) $2hours × 3$ direction (x, y, z)MoistureCapacitance change : Capacitance change : within $\pm12.5\%$ With rated voltage					
Withstanding No dielectric breakdown or mechanical breakdown 250% of the rated voltage Temperature X5R Characteristics (From-55 °C to 85 °C, Capacitance change should be within ±15%) Adhesive Strength No peeling shall be occur on the terminal electrode Bending Strength Capacitance change : within ±12.5% Bending to the limit (1mm) with 1.0mm/sec. Solderability More than 75% of terminal surface is to be soldered newly SnAg3.0Cu0.5 solder 245±5°C, 3±0.3sec. (preheating : 80~120°C for 10~30sec Resistance to Capacitance change : within ±7.5% Solder pot : 270±5°C, 10±1sec. Soldering Heat Tan δ, IR : initial spec. Amplitude : 1.5mm Vibration Test Capacitance change : within ± 5% Amplitude : 1.5mm With rated voltage Gapacitance change : within ± 12.5% With rated voltage					
Voltage mechanical breakdown Temperature X5R Characteristics (From-55 °C to 85 °C, Capacitance change should be within ±15%) Adhesive Strength No peeling shall be occur on the terminal electrode 500g·f, for 10±1 sec. Bending Strength Capacitance change : within ±12.5% Bending to the limit (1mm) with 1.0mm/sec. Solderability More than 75% of terminal surface is to be soldered newly SnAg3.0Cu0.5 solder Resistance to Capacitance change : within ±7.5% Solder pot : 270±5°C, 10±1sec. Soldering Heat Tan δ, IR : initial spec. Amplitude : 1.5mm Yibration Test Capacitance change : within ±5% Amplitude : 1.5mm Tan δ, IR : initial spec. From 10Hz to 55Hz (return : 1min.) 2hours × 3 direction (x, y, z) Moisture Capacitance change : within ±12.5% With rated voltage					
Temperature CharacteristicsX5R (From-55 °C to 85 °C, Capacitance change should be within ±15%)Adhesive Strength of TerminationNo peeling shall be occur on the terminal electrode500g·f, for 10±1 sec.Bending StrengthCapacitance change : within ±12.5%Bending to the limit (1mm) with 1.0mm/sec.SolderabilityMore than 75% of terminal surface is to be soldered newlySnAg3.0Cu0.5 solder 245±5°C, 3±0.3sec. (preheating : 80~120°C for 10~30secResistance to Soldering HeatCapacitance change : Tan δ, IR : initial spec.within ±7.5% Within ±5% 					
Characteristics(From-55 \degree to 85 \degree , Capacitance change should be within ±15%)Adhesive StrengthNo peeling shall be occur on the terminal electrode500g f, for 10±1 sec.Bending StrengthCapacitance change : apacitance change : is to be soldered newlywithin ±12.5%Bending to the limit (1mm) with 1.0mm/sec.SolderabilityMore than 75% of terminal surface is to be soldered newlySnAg3.0Cu0.5 solder 245±5°C, 3±0.3sec. (preheating : 80~120°C for 10~30secResistance to Soldering HeatCapacitance change : Tan δ , IR : initial spec.within ±7.5% Within ± 5% Tan δ , IR : initial spec.Solder pot : 270±5°C, 10±1sec.Wibration TestCapacitance change : Tan δ , IR : initial spec.within ± 12.5%Amplitude : 1.5mm From 10Hz to 55Hz (return : 1min.) 2hours × 3 direction (x, y, z)MoistureCapacitance change : Capacitance change : within ±12.5%With rated voltage					
Adhesive Strength of Termination No peeling shall be occur on the terminal electrode 500g·f, for 10±1 sec. Bending Strength Capacitance change : within ±12.5% Bending to the limit (1mm) with 1.0mm/sec. Solderability More than 75% of terminal surface is to be soldered newly SnAg3.0Cu0.5 solder 245±5°C, 3±0.3sec. (preheating : 80~120°C for 10~30sec Resistance to Capacitance change : within ±7.5% Solder pot : 270±5°C, 10±1sec. Soldering Heat Tan δ, IR : initial spec. Amplitude : 1.5mm From 10Hz to 55Hz (return : 1min.) 2hours × 3 direction (x, y, z) Moisture Capacitance change : within ±12.5% With rated voltage					
of Terminationterminal electrodeBending StrengthCapacitance change :within $\pm 12.5\%$ Bending to the limit (1mm) with 1.0mm/sec.SolderabilityMore than 75% of terminal surface is to be soldered newlySnAg3.0Cu0.5 solder 245 \pm 5°C, 3 \pm 0.3sec. (preheating : 80~120°C for 10~30secResistance to Soldering HeatCapacitance change :within \pm 7.5%Solder pot : 270 \pm 5°C, 10 \pm 1sec.Vibration TestCapacitance change :within \pm 5% Tan δ , IR : initial spec.Amplitude : 1.5mm From 10Hz to 55Hz (return : 1min.) 2hours × 3 direction (x, y, z)MoistureCapacitance change :within \pm 12.5%With rated voltage					
Bending StrengthCapacitance change :within $\pm 12.5\%$ Bending to the limit (1mm) with 1.0mm/sec.SolderabilityMore than 75% of terminal surface is to be soldered newlySnAg3.0Cu0.5 solder 245 \pm 5°C, 3 \pm 0.3sec. (preheating : 80~120°C for 10~30secResistance to Soldering HeatCapacitance change :within \pm 7.5%Solder pot : 270 \pm 5°C, 10 \pm 1sec.Vibration TestCapacitance change :within \pm 5% Tan δ , IR : initial spec.Amplitude : 1.5mm From 10Hz to 55Hz (return : 1min.) 2hours × 3 direction (x, y, z)MoistureCapacitance change :within \pm 12.5%With rated voltage					
with 1.0mm/sec.SolderabilityMore than 75% of terminal surface is to be soldered newlySnAg3.0Cu0.5 solder $245\pm5^{\circ}$ C, 3 ± 0.3 sec. (preheating : $80\sim120^{\circ}$ C for $10\sim30$ secResistance to Soldering HeatCapacitance change : Tan δ , IR : initial spec.within $\pm7.5\%$ Solder pot : $270\pm5^{\circ}$ C, 10 ± 1 sec.Vibration TestCapacitance change : Tan δ , IR : initial spec.within $\pm5\%$ From 10Hz to 55Hz (return : 1min.) 2hours × 3 direction (x, y, z)MoistureCapacitance change : Vibration Testwithin $\pm12.5\%$ With rated voltage					
SolderabilityMore than 75% of terminal surface is to be soldered newlySnAg3.0Cu0.5 solder $245\pm5^{\circ}$ C, 3 ± 0.3 sec. (preheating : $80\sim120^{\circ}$ C for $10\sim30$ secResistance to Soldering HeatCapacitance change : Tan δ , IR : initial spec.within $\pm7.5\%$ Solder pot : $270\pm5^{\circ}$ C, 10 ± 1 sec.Vibration TestCapacitance change : Capacitance change : Tan δ , IR : initial spec.Within $\pm 5\%$ From 10Hz to 55Hz (return : 1min.) 2hours × 3 direction (x, y, z)MoistureCapacitance change : Capacitance change : Within $\pm12.5\%$ With rated voltage					
is to be soldered newly $245\pm5^{\circ}$ C, 3 ± 0.3 sec. (preheating : $80\sim120^{\circ}$ C for $10\sim30$ secResistance to Soldering HeatCapacitance change : Tan δ , IR : initial spec.within $\pm7.5\%$ Solder pot : $270\pm5^{\circ}$ C, 10 ± 1 sec.Vibration TestCapacitance change : Tan δ , IR : initial spec.within $\pm5\%$ From 10 Hz to 55 Hz (return : 1 min.) 2hours × 3 direction (x, y, z)MoistureCapacitance change : within $\pm12.5\%$ With rated voltage					
Resistance to Soldering HeatCapacitance change : Tan δ , IR : initial spec.within $\pm 7.5\%$ Wibration TestSolder pot : $270\pm5^{\circ}$ C, 10 ± 1 sec.Vibration TestCapacitance change : Tan δ , IR : initial spec.within $\pm 5\%$ From 10Hz to $55Hz$ (return : 1min.) 2hours × 3 direction (x, y, z)MoistureCapacitance change : Within $\pm 12.5\%$ With rated voltage	-				
Resistance to Capacitance change : within ±7.5% Solder pot : 270±5°C, 10±1sec. Soldering Heat Tan δ, IR : initial spec. Solder pot : 270±5°C, 10±1sec. Vibration Test Capacitance change : Tan δ, IR : initial spec. within ±5% Tan δ, IR : initial spec. Amplitude : 1.5mm From 10Hz to 55Hz (return : 1min.) 2hours × 3 direction (x, y, z) Moisture Capacitance change : within ±12.5% With rated voltage					
Soldering Heat Tan δ, IR : initial spec. Vibration Test Capacitance change : Tan δ, IR : initial spec. within ± 5% Amplitude : 1.5mm Moisture Capacitance change : within ± 12.5% With rated voltage	.)				
Vibration Test Capacitance change : Tan δ, IR : initial spec. within ± 5% Amplitude : 1.5mm Moisture Capacitance change : within ± 12.5% Amplitude : 1.5mm Moisture Capacitance change : within ± 12.5% With rated voltage					
Tan δ, IR : initial spec. From 10Hz to 55Hz (return : 1min.) 2hours × 3 direction (x, y, z) Moisture Capacitance change : within ±12.5% With rated voltage					
IR : 500Mohm or 12.5Mohm × μ F					
Whichever is smaller					
High Temperature Capacitance change : within ±12.5% With ^{100%} of the rated voltage					
Resistance Tan δ : 0.2 max Max. operating temperature					
IR : 1,000Mohm or 25Mohm × <i>μ</i> F 1000+48/-0hrs					
Whichever is smaller					
Temperature Capacitance change : within ±7.5% 1 cycle condition					
CyclingTan δ, IR : initial spec.Min. operating temperature	→ 25° C				
→ Max. operating temperature					
	→ 25 °C				
5 cycle test	→ 25°C				

X The reliability test condition can be replaced by the corresponding accelerated test condition.

D. Recommended Soldering method :

Reflow (Reflow Peak Temperature : 260+0/-5°C, 10sec. Max)

Product specifications included in the specifications are effective as of March 1, 2013. Please be advised that they are standard product specifications for reference only. We may change, modify or discontinue the product specifications without notice at any time.

So, you need to approve the product specifications before placing an order.

Should you have any question regarding the product specifications,

please contact our sales personnel or application engineers.

- Disclaimer & Limitation of Use and Application -

The products listed in this Specification sheet are **NOT** designed and manufactured for any use and applications set forth below.

Please note that any misuse of the products deviating from products specifications or information provided in this Spec sheet may cause serious property damages or personal injury. We will **NOT** be liable for any damages resulting from any misuse of the products, specifically including using the products for high reliability applications as listed below.

If you have any questions regarding this 'Limitation of Use and Application', you should first contact our sales personnel or application engineers.

- Aerospace/Aviation equipment
- 2 Automotive or Transportation equipment (vehicles, trains, ships, etc)
- 3 Medical equipment
- ④ Military equipment
- *⑤* Disaster prevention/crime prevention equipment
- *ⓐ* Any other applications with the same as or similar complexity or reliability to the applications set forth above.