
MC68030UM/AD 
REV 2 

, 

i 

ENHANCED 32-BIT 
MICROPROCESSOR 
USER'S MANUAL 
THIRD EDITION 

M O T O R O L A  



Introduction 

Data Organization and Addressing Capabilities 

Instruction Set Summary 

Processing States 

Signal Description 

On-Chip Cache Memories 

Bus Operation 

Exception Processing 

Memory Management Unit 

Coprocessor Interface Description 

Instruction Execution Timing 

Applications Information 

Electrical Characteristics 

Ordering Information and Mechanical Data 

M68000 Family Summary 

Index 

1 

3 

7 

8 
i 

9 

1¢ 

11 

1 4  

A 

I ! !  



~ MOTOROLA 

MC68030 
ENHANCED 32-BIT 

MICROPROCESSOR USER'S MANUAL 

Third Edition 

Motoro la  reserves the right to make changes wi thout  further notice to any products herein 
to improve reliabil i ty, function or design. Motoro la does not assume any l iabi l i ty arising out 
of the appl icat ion or use of any product or circuit described herein; neither does it convey 
any license under its patent rights nor the rights of others. Motoro la products are not author- 
ized for use as components  in life support  devices or systems intended for surgical implant  
into the body or intended to support  or sustain life. Buyer agrees to not i fy Motoro la  of any 
such intended end use whereupon Motoro la  shall determine avai labi l i ty and suitabi l i ty of its 
product or products for the use intended. Motoro la and ~ are registered trademarks of 
Mo to ro l a ,  Inc. Mo to ro l a ,  Inc. is an Equal E m p l o y m e n t  Oppo r tun i t y /A f f i rma t i ve  Act ion  
Employer. 

PRENTICE HALL, Englewood Cliffs, N.J. 07632 



© 1990 MOTOROLA, INC. 

Published by Prentice-Hall, Inc. 
A Division of Simon & Schuster 
Englewood Cliffs, New Jersey 07632 

The publisher offers discounts on this book when ordered 
in bulk quantities. For more information, write: 

Special Sales/College Marketing 
Prentice-Hall, Inc. 
College Technical and Reference Division 
Englewood Cliffs, New Jersey 07632 

All rights reserved. No part of this book may be 
reproduced, in any form or by any means, 
without permission in writing from the publisher. 

Pr in~d in theUn i~dSt~es~Amer ica  

1 0 9 8 7 6 5 4 3 2 1  

ISBN 0-13-566423-3 

Prentice-Hall International (UK) Limited, London 
Prentice-Hall of Australia Pry. Limited, Sydney 
Prentice-Hall Canada Inc., Toronto 
Prentice-Hall Hispanoamericana, S.A., Mexico 
Prentice-Hall of India Private Limited, New Delhi 
Prentice-Hall of Japan, Inc., Tokyo 
Simon & Schuster Asia Pte. Ltd., Singapore 
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro 



Paragraph 
Number 

1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.6.1 
1.6.2 
1.7 
1.8 
1.9 

2.1 
2.2 
2.2.1 
2.2,2 
2.2.3 
2.3 
2.4 
2.4.1 
2.4.2 
2.4.3 
2.4.4 
2.4.5 
2.4.6 
2.4.7 

2.4.8 

2.4.9 

TABLE OF CONTENTS 

Page 
Title Number 

Section 1 
Introduction 

Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-3 
MC68030 Extensions to the M68000 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-4 
Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-4 
Data Types and Addressing Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-10 
Instruction Set Overv iew .... . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . .  ........... 1-10 
Virtual Memory  and Virtual Machine Concepts . . . . . . . . . . . . . . . . . . . . . . . . . .  1-12 

Virtual Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-12 
Virtual Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-14 

The Memory  Management Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-15 
Pipelined Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-16 
The Cache Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .............. 1-16 

Section 2 
Data Organization and Addressing Capabilities 

Instruction Operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-1 
Organization of Data in Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-2 

Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-2 
Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-4 
Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-4 

Organization of Data in Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-5 
Addressing Modes ..... . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-8 

Data Register Direct Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-9 
Address Register Direct Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-10 
Address Register Indirect Mode.: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-10 
Address Register Indirect with Postincrement Mode ............. 2-10 
Address Register Indirect with Predecrement Mode .............. 2-11 
Address Register Indirect with Displacement Mode .............. 2-12 
Address Register Indirect with Index (8-Bit Displacement) 

Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-12 
Address Register Indirect with Index (Base Displacement) 

Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-13 
Memory  Indirect Postindexed Mode .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-14 

MOTOROLA MC68030 USER'S MANUAL iii 



TABLE OF CONTENTS (Continued) 

Paragraph Page 
Number Title Number 

2,4.10 
2,4,11 
2,4.12 

2.4.13 

2.4.14 
2,4.15 
2,4.16 
2,4.17 
2.4.18 
2.5 
2,6 
2.6.1 
2,6.2 
2,7 
2,8 
2.8.1 
2,8.2 
2,8.3 

3 , 1  • 

3.2 
3,2.1 
3,2.2 
3,2.3 
3,2.4 
3.2.5 
3,2.6 
3,2.7 
3,2.8 
3.2.9 
3,2.10 
3,2.11 
3.3 
3.3.1 

Memory  Indirect Preindexed Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-15 
Program Counter Indirect with Displacement Mode ... . . . . . . . . . . .  2-16 
Program Counter Indirect with Index (8-Bit Displacement) 

Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-16 
Program Counter Indirect with Index (Base Displacement) 

Mode .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-17 
Program Counter Memory  Indirect Postindexed Mode .......... 2-18 
Program Counter Memory  Indirect Preindexed Mode ........... 2-19 
Absolute Short Addressing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-20 
Absolute Long Addressing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-20 
Immediate Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-21 

Effective Address Encoding Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-22 
Programmer 's View of Addressing Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-24 

Addressing Capabil i t ies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-25 
General Addressing Mode Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-31 

M68000 Family Addressing Compat ib i l i ty  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-36 
Other Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-36 

System Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-36 
User Program Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-38 
Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-39 

Section 3 
Instruction Set Summary 

Instruction Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-1 
Instruction Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-2 

Data Movement  Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-4 
Integer Ar i thmet ic  Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-5 
Logical Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-6 
Shift and Rotate Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-7 
Bit Manipulat ion Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-8 
Bit Field Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-9 
Binary-Coded Decimal Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-10 
Program Control Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-11 
System Control Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-12 
Memory  Management Unit Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-13 
Mult iprocessor Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-13 

Integer Condit ion Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-14 
Condit ion Code Computat ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-15 

iv MC68030 USER'S MANUAL MOTOROLA 



TABLE OF CONTENTS (Continued) 

Paragraph Page 
Number Title Number 

3.3.2 
3.4 
3.5 
3.5.1 
3.5.2 
3.5,3 
3.5.4 

4.1 
4.1.1 
4.1.2 
4.1,3 
4.2 

4 . 3  
4:3,1 
4.3,2 

5,1 
5.2 
5.3 
5.4 
5.5 
5.6 
5,6.1 
5.6.2 
5.6.3 
5.6.4 
5.6.5 
5.6.6 
5.62 
5.6,8 
5.6.9 
5.7 
5.7,1 

Condit ional Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-17 
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-18 
Instruction Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-25 
Using the CAS and CAS2 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-25 
Nested Subroutine Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-30 
Bit Field Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-31 
Pipeline Synchronization wi th the NOP Instruction .. . . . . . . . . . . . . . . . . . . .  3-32 

Section 4 
Processing States 

Privi lege Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-2 
Supervisor Privi lege Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-2 
User Privi lege Leve l .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-3 
Changing Privi lege Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-4 

Address Space Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-5 
Exception Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-6 

Exception Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-6 
Exception Stack Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-7 

Section 5 
Signal Description 

Signal Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-2 
Function Code Signals (FC0-FC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-4 
Address Bus (A0-A31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-4 
Data Bus (D0-D31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-4 
Transfer Size Signals (SIZ0, SIZ1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-4 
Bus Control Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-5 

Operand Cycle Start (OCS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-5 
External Cycle Start (ECS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-5 
Read/Write (R/W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-5 
Read-Modify-Write Cycle (RMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-5 
Address Strobe (AS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-5 
Data Strobe (DS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-6 
Data Buffer Enable (DBEN) .. . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . .  5-6 
Data Transfer and Size Acknowledge (DSACK0, DSACK1) ..... 5-6 
Synchronous Terminat ion (STERM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-6 

Cache Control Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-7 
Cache Inhibit Input (CIIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-7 

MOTOROLA MC68030 USER'S MANUAL v 



Paragraph 
Number 

5.7.2 
5.7.3 
5.7.4 
5.8 
5.8.1 
5.8.2 
5.8.3 
5.9 
5.9.1 
5.9.2 
5.9.3 
5.10 
5.10.1 
5.10.2 
5.10.3 
5.11 
5.11.1 
5.11.2 
5.11.3 
5.11.4 
5.12 
5.13 
5.14 

6.1 
6.1.1 
6.1.2 
6.1.2.1 
6.1.2.2 
6.1.3 
6.1.3.1 
6.1.3.2 
6.2 
6.3 
6.3.1 
6.3.1.1 

TABLE OF CONTENTS (Continued) 

Page 
Title Number 

Cache Inhibi t  Output (CLOUT) ............................................. 5-7 
Cache Burst Request (CBREQ) ............................................. 5-7 
Cache Burst Acknowledge (CBACK). ..... .............................. 5-7 

Interrupt Control Signals ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-8 
Interrupt Priori ty Level Signals ........................................... 5-8 
Interrupt Pending (IPEND) ................................................... 5-8 
Autovector  (AVEC) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-8 

Bus Arbi t rat ion Control Signals .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-8 
Bus Request (BR) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-8 
Bus Grant (BG) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-9 
Bus Grant Acknowledge (BGACK) ....................................... 5-9 

Bus Exception Control Signals ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-9 
Reset (RESET) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-9 
Halt (HALT) ................................................ ....................... 5-9 
Bus Error (BERR) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-9 

Emulator  Support  Signals ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-10 
Cache Disable (CDIS) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-10 
MMU Disable (MMUDIS) ........ :. ............... .......................... 5.10 
Pipel ine Refill (REFILL) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-10 
Internal Microsequencer Status (STATUS) ........................... 5-10 

Clock (CLK) ...................... .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-11 
Power Supply Connect ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-11 
Signal Summary  ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-11 

Section 6 
On-Chip Cache Memories 

On-Chip Cache O r g a n i z a t i o n  and Operat ion ............................... 6-3 
Instruction Cache .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-4 
Data  Cache ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-6 

Write Al locat ion ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-8 
Read-Modify-Wri te Accesses ......................... ~.. :i ............. 6-10 

Cache Fill ing ........................................ ............................ 6-10 
Single Entry Mode ..................... : ................................ 6-10 
Burst Mode Fil l ing ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-15 

Cache Reset ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-20 
Cache Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-20 

Cache Control Register .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-20 
Write Al locate ............... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-21 

Vi MC68030 USER'S MANUAL MOTOROLA 



TABLE OF CONTENTS (Continued) 

Paragraph Page 
Number Title Number 

6.3.1.2 
6.3.1.3 
6.3.1.4 
6.3.1.5 
6.3.1.6 
6.3.1.7 
6.3.1.8 
6.3.1.9 
6.3.1.10 
6.3.1.11 
6.3.2 

7.1 Bus 
7.1.1 
7.1.2 
7.1.3 
7.1.4 
7.1.5 
7.1.6 
7.1.7 
7.2 
7.2.1 
7.2.2 
7.2.3 
7.2.4 
7.2.5 
7.2.6 
7.2.7 
7.2.8 
7.2.9 
7.2.10 
7.3 
7.3.1 
7.3.2 
7.3.3 
7.3.4 

Data Burst Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-21 
Clear Data Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-21 
Clear Entry in Data Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-21 
Freeze Data Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-22 
Enable Data Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-22 
Instruct ion Burst Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-22 
Clear Instruct ion Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-22 
Clear Entry in Instruct ion Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-22 
Freeze Instruct ion Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-23 
Enable Instruct ion Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-23 

Cache Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-23 

Section 7 
Bus Operation 

Transfer Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-1 
Bus Control  Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-3 
Address Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-4 
Address Strobe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-4 
Data Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-5 
Data Strobe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-5 
Data Buffer Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-5 
Bus Cycle Terminat ion  Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-5 

Data Transfer Mechan ism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-6 
Dynamic  Bus Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-6 
Misa l igned Operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-13 
Effects of Dynamic  Bus Sizing and Operand Misa l ignment  .... 7-19 
Address, Size, and Data Bus Relat ionships . . . . . . . . . . . . . . . . . . . . . . . . . .  7-22 
MC68030 versus MC68020 Dynamic Bus Sizing .. . . . . . . . . . . . . . . . . . .  7-24 
Cache Fi l l ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-24 
Cache Interact ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-26 
Asynchronous  Operat ion .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-27 
Synchronous  Operat ion w i th  DSACKx .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-28 
Synchronous  Operat ion w i th  STERM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-29 

Data Transfer Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-30 
Asynchronous  Read Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-31 
Asynch ronous  Wri te Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-37 
Asynchronous  Read-Modi fy-Wri te  Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-43 
Synchronous  Read Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-48 

MOTOROLA MC68030 USER'S MANUAL vii 



TABLE OF CONTENTS (Continued) 

Paragraph Page 
Number Title Number 

7.3.5 
7.3.6 
7.3.7 
7.4 
7.4.1 
7.4.1.1 
714.1.2 
7.4.1.3 
7.4.2 
7.4.3 
7.5 
7.5.1 
7.5.2 
7.5.3 
7.5.4 
7.6 
7.7 
7.7.1 
7.7.2 
7.7.3 
7.7.4 
7.8 

8.1 
8.1.1 
8.1.2 
8.1.3 
8.1.4 
8.1.5 

8.1.6 
8.1.7 
8.1.8 
8.1.9 
8.1.10 
8.1.11 

Synchronous Write C y c l e  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-51 
Synchronous Read-Modify-Write Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-54 
Burst Operation Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-59 

CPU Space Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-68 
Interrupt Acknowledge Bus Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-69 

Interrupt Acknowledge Cycle Terminated Normal ly  .... 7-70 
Autovector Interrupt Acknowledge Cycle . . . . . . . . . . . . . . . . . . . . . . .  7-71 
Spurious Interrupt Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-74 

Breakpoint Acknowledge Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-74 
Coprocessor Communicat ion Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-74 

Bus Exception Control Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-75 
Bus Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-82 
Retry Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-89 
Halt Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-91 
Double Bus Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-94 

Bus Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-95 
Bus Arbi t rat ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-96 

Bus Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-98 
Bus Grant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-99 
Bus Grant Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-100 
Bus Arbi t rat ion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-100 

Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-103 

Section 8 
Exception Processing 

Exception Processing Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-1 
Reset Exception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-5 
Bus Error Exception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-7 
Address Error Exception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-8 
Instruction Trap Exception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-9 
Illegal Instruction and Unimplemented Instruction 

Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-9 
Privi lege Violat ion Exception. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-11 
T r a c e  E x c e p t i o n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-12 
Format Error Exception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-14 
Interrupt Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-14 
MMU Configurat ion Exception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-21 
Breakpoint Instruction Exception 8-22 

Viii MC68030 USER'S MANUAL MOTOROLA 



TABLE OF CONTENTS (Continued) 

Paragraph Page 
Number Title Number 

8.1.12 
8.1.13 
8.2 
8.2.1 
8.2.2 
8.2.3 
8.3 
8.4 

9.1 
9.1.1 
9.1.2 
9:2 
9.2.1 
9.2.2 
9.2.3 
9.3 
9.4 
9.5 
9.5.1 
9.5.1.1 
9.5,1.2 
9.5.1.3 
9.5.1.4 
9.5.1.5 
9.5.1.6 
9.5.1.7 
9.5.1.8 
9.5.1.9 
&5.1.10 
9.5,1,11 
9.5.1.12 
9.5.2 
9.5.3 
9.5.3.1 
9:5.3.2 

Mu l t ip le  Except ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-23 
Return f rom Except ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-24 

Bus Fault Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-27 
Special  Status Word (SSW) ... . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-28 
Using Sof tware To Complete the Bus Cycles . . . . . . . . . . . . . . . . . . . . . . .  8-29 
Complet ing the Bus Cycles w i th  RTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-31 

Coprocessor Considerat ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-32 
Except ion Stack Frame Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-32 

Section 9 
Memory Management Unit 

Translat ion Table Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-6 
Translat ion Control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-8 
Translat ion Table Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-10 

Address Translat ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-13 
General F low for Address Translat ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-13 
Effect of RESET on M M U  .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-15 
Effect of MMUDIS  on Address Trans la t ion . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-15 

Transparent  Translat ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-16 
Address Translat ion Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-17 
Translat ion Table Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-20 

Descriptor Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-20 
Descriptor Field Def in i t ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-20 
Root Pointer Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-23 
Short -Format Table Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-24 
Long-Format Table Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-24 
Short -Format Early Terminat ion  Page Descr iptor .. . . . . . . . . . .  9-25 
Long-Format Early Terminat ion  Page Descriptor ............ 9-25 
Short -Format Page Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-26 
Long-Format Page Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-26 
Short -Format Inval id Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Long-Format Inval id Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Short -Format Indirect Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Long-Format Indirect Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
General Table Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Var iat ions in Translat ion Table Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Early Termina t ion  and Cont iguous Memory  .. . . . . . . . . . . . . . . . .  
Indi rect ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

9-26 
9-27 
9-27 
9-28 
9-28 
9-33 
9-33 
9-34 

MOTOROLA MC68030 USER'S MANUAL ix 



Paragraph 
Number 

9.5.3.3 
9.&3.4 
9,&3.5 
9.&4 
9,5.5 
9.5.5.1 
9.5.5.2 
9.5.5.3 
9.5.5.4 
9.6 
9.7 
9.7.1 
9.7.2 
9.7.3 
9.7.4 
9.7.5 
9.7.5.1 
9.7.5.2 
9.7.5.3 
9.8 
9.9 
9.9,1 
9.9.2 
9.9.3 
9.9.3.1 
9.9.3.2 
9;9.3.3 
9.9.3.4 
9.9.3.5 
9,9.3.6 
9.10 
9.10.1 
9.10.2 
9.10.3 

TABLE OF CONTENTS (Continued) 

Title 
Page 

Number 

Table Shar ing between Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Paging of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Dynamic  A l locat ion of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Detail of Table Search Operat ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Protect ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Funct ion Code LoOkuD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Superv isor  T rans la t ion  Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Superv isor  Only  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Wri te Protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

MC68030 and MC68851 M M U  Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Root Pointer Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Translat ion Control  Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Transparent  Translat ion Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
M M U  Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Register Programming Considerat ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Register Side Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
M M U  Status Register Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
M M U  Conf igurat ion Except ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

9-37 
9-37 
9 -40 
9-40 
9-43 
9-45 
9-48 
9-48 
9-48 
9-51 
9-52 
9-52 
9-54 
9-57 
9-59 
9-61 
9-61 
9-61 
9-62 

M M U  Instruct ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-63 
Def in ing and Using Page Tables in an Operat ing System .... . . . . . . . .  9-65 

Root Pointer Registers...:  ....... ; . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . .  9-65 
Task Memory  Map Def in i t ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-66 
Impact of M M U  Features on Table Def in i t ion . . . . . . . . . . . . . . . . . . . . . . .  9-68 

Number  of Table Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-68 
Init ial Shif t  Count . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-69 
Limit  Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-70 
Early Terminat ion  Page Descr iptors.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-70 
Indirect Descriptors 9-71 
Using Unused Descriptor Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-71 

An Example of Paging Implementa t ion  in an Operat ing Sys tem. .  9-72 
System Descript ion .. . . . . . . . . . . . . . . . . . .  : ......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-72 
A l locat ion Rout ines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-78 
Bus Error Handler Rout ine. . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-82 

X MC68030 USER'S MANUAL MOTOROLA 



TABLE OF CONTENTS (Continued) 

Paragraph Page 
Number Title Number 

10.1 
10.1.1 
10.1.2 
10.1.3 
10.1.4 
10.1.4.1 
10.1.4.2 
10.1.4.3 
10.2 
10.2.1 
10.2.1.1 
10.2.1.2 
10.2.2 
10.2.2.1 
10.2.2.1.1 
10.2.2.1.2 
10.2.2.2 
10,2.2.2.1 
10.2.2.2.2 
10.2.2.3 

10.2.2.3.1 
10.2.2.3.2 
10.2.2.4 
10.2.2.4.1 
10.2.2.4.2 
10.2.3 
10.2.3.1 
10.2.3.2 
10.2.3.2.1 
10.2.3.2.2 
10.2.3.2.3 
10.2.3.2.4 
10.2.3.3 
10.2.3.3.1 
10.2.3.3.2 

Section 10 
Coprocessor Interface Description 

Introduct ion ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-1 
Interface Features .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .......... 10-2 
Concurrent Operat ion Support  ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-3 
Coprocessor Instruction Format ......................................... 10-4 
Coprocessor System Interface ........................................... 10-5 

Coprocessor Classif ication .......................................... 10-5 
Processor-Coprocessor Interface ................................... 10-6 
Coprocessor Interface Register Selection ...................... 10-8 

Coprocessor Instruction Types ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-9 
Coprocessor General Instructions ...................................... 10-9 

Format .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-10 
Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-11 

Coprocessor Condi t ional  Instructions .................................. 10-12 
Branch On Coprocessor Condi t ion Instruction ................ 10-13 

Format ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-14 
Protocol .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-15 

Set On Coprocessor Condi t ion Instruction ..................... 10-15 
Format ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-15 
Protocol .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-16 

Test Coprocessor Condit ion, Decrement and 
Branch Instruction ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-17 

Format ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-17 
Protocol .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-18 

Trap On Coprocessor Condi t ion .................................. 10-18 
Format ...................................... .......................... 10-18 
Protocol .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-19 

Coprocessor Save and Restore Instructions ........................ 10-20 
Coprocessor Internal State Frames .............................. 10-20 
Coprocessor Format Words .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-22 

Empty/Reset Format Word .................................... 10-22 
Not Ready Format Word ........................................ 10-23 
Inval id Format Word ..................... ........................ 10-23 
Valid Format Word .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-24 

Coprocessor Context  Save Instruction ........................... 10-24 
Format ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-24 
Protocol .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-25 

MOTOROLA MC68030 USER'S MANUAL xi 



TABLE OF CONTENTS (Continued) 

Paragraph Page 
Number  Title Number 

10.2.3.4 
10.2.3.4.1 
10.2.3.4.2 
10.3 
10.3.1 
10.3.2 
10.3.3 
10.3.4 
10.3.5 
10.3.6 
10.3.7 
10.3.8 
10.3.9 
10.3.t0 
10.3.11 
10.4 
10.4.1 
10.4.2 
10.4.3 
10.4.4 
10.4.5 
10.4.6 
10.4.7 
10.4.8 
10.4.9 
10.4.10 
10.4.11 
10.4.12 
10.4.13 
10.4.14 
10.4.15 
10.4.16 
10.4.17 
10.4.18 
10.4.19 
10.4.20 
10.5 
10.5.1 

Coprocessor Context  Restore Instruct ion . . . . . . . . . . . . . . . . . . . . . . .  10-27 
Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-27 
Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-28 

Coprocessor Interface Register Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-29 
Response CIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-29 
Control  CIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-30 
Save CIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-30 
Restore CIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-31 
Operat ion Word CIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-31 
Command  CIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-31 
Condi t ion CIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-31 
Operand CIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-32 
Register Select CIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-32 
Instruct ion Address CIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-33 
Operand Address CIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-33 

Coprocessor Response Pr imit ives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-33 
ScanPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-34 
Coprocessor Response Pr imi t ive General Format .. . . . . . . . . . . . . . . .  10-35 
Busy Pr imi t ive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-36 
Nul l  Pr imi t ive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-37 
Superv isor  Check Pr imi t ive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-40 
Transfer Operat ion Word Pr imi t ive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-40 
Transfer f rom Instruct ion Stream Pr imi t ive . . . . . . . . . . . . . . . . . . . . . . . . . .  10-41 
Evaluate and Transfer  Effective Address Pr imi t ive .. . . . . . . . . . . . . . .  10-42 
Evaluate Effective Address and Transfer Data Pr imi t ive ........ 10-43 
Wri te to Previously  Evaluated Effective Address Pr imi t ive ..... 10-46 
Take Address and Transfer Data Pr imi t ive . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-48 
Transfer to/ f rom Top of Stack Pr imi t ive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-49 
Transfer Single Main Processor Register Pr imi t ive ... . . . . . . . . . . . .  10-50 
Transfer Main Processor Control  Register Pr imi t ive .. . . . . . . . . . . . .  10-50 
Transfer  Mu l t ip le  Main Processor Registers Pr imi t ive ........... 10-52 
Transfer Mu l t ip le  Coprocessor Registers Pr imi t ive .. . . . . . . . . . . . . . .  10-52 
Transfer Status Register and ScanPC Pr imi t ive .. . . . . . . . . . . . . . . . . . .  10-55 
Take Pre- lnstruct ion Except ion Pr imi t ive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-56 
Take Mid- Ins t ruc t ion Except ion Pr imi t ive . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-58 
Take Post- Instruct ion Except ion Pr imi t ive . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-60 

Except ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-61 
Coprocessor-Detected Except ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-61 

Xii MC68030 USER'S MANUAL MOTOROLA 



Paragraph 
N u m b e r  

10.5,1.1 
10~5.1.2 

10.5.1.3 
10.5.1.4 
10.5.1.5 
10.5;2 
10;5.2.1 
10.5.2.2 
10.5.2.3 
10.5.2.4 
10.5.2.5 
10;5.2.6 
10.5.2.7 
10.5!2.8 
10.5.3 
10.6 

11.1 
1112 
11.2.1 
11.2.2 
11.2.3 
11.214 
11.2:5 
11.2.5.1 
11.2.5.2 
11.2.5.3 
11.2~6 
11.3 
11.3.1 
11 .&2 
11.3.3 
11.3.4 
11:4 
11.5 

TABLE OF CONTENTS (Continued) 

Page 
Title N u m b e r  

Coprocessor-Detected Protocol Vio lat ions .. . . . . . . . . . . . . . . . . . . .  10-62 
Coprocessor-Detected Il legal Command or Condi t ion 

Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-63 
Coprocessor Data-Processing Except ions . . . . . . . . . . . . . . . . . . . . . .  10-63 
Coprocessor System-Related Except ions . . . . . . . . . . . . . . . . . . . . . . .  10-64 
Format Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-64 

Main-Processor-Detected Except ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-65 
Protocol Vio lat ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-65 
F-Line Emulator  Except ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-68 
Privi lege Vio lat ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-69 
cpTRAPcc Instruct ion Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Trace Except ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Format Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Address and Bus Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Coprocessor Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Coprocessor Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

10-69 
10-70 
10-71 
10-71 
10-72 
10-72 
10-72 

Section 11 
Instruction Execution Timing 

Performance Tradeoffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-1 
R e s o u r c e  Schedul ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-2 

Microsequencer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-2 
Instruct ion Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 1 - 2  

Instruct ion Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-4 
Data Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 1 - 4  

Bus Contro l ler  R e s o u r c e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-4 
Instruct ion Fetch Pending Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-5 
Wri te Pending Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-5 
Micro Bus Contro l ler  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-5 

Memory  Management  Uni t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-6 
Instruct ion Execut ion T im ing  Calculat ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-6 

Instruct ion-Cache Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-6 
Over lap and Best Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-7 
Average No-Cache Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-8 
Actual Instruct ion-Cache-Case Execut ion T ime Calculat ions.. .  11-11 

Effect of Data Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-16 
Effect of Wait  States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-18 

MOTOROLA MC68030 USER'S MANUAL xiii 



TABLE OF CONTENTS (Continued) 

Paragraph 
Number Title 

Page 
Number 

11.6 
11.6.1 
11.6.2 
11.6.3 
11.6.4 
11.6.5 
11.6.6 
11.6.7 
11.6.8 
11.6.9 
11.6.10 
11.6.11 
11.6.12 
11.6.13 
11.6.14 
11.6.15 
11.6.16 
11.6.17 
11.6.18 
11.7 
11.7.1 
11.7.2 
11.8 
11.9 

12.1 
12.1.1 
12.1.2 
12.1.3 
12.2 
12.3 
12.4 
12.4.1 
12.4.2 
12.5 
12.5.1 

Instruct ion T iming  Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Fetch Effective Address (fea) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Fetch Immediate Effective Address (flea) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Calculate Effective Address (cea) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Calculate Immediate Effective Address Mode (cieal .. . . . . . . . . . . .  
Jump  Effective Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

11-24 
11-26 
11-28 
11-30 
11-32 
11-35 

MOVE 
Special-Purpose MOVE Instruct ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Ar i thmet ica l /Logica l  Instruct ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Immediate Ar i thmet ica l /Logica l  Instruct ions . . . . . . . . . . . . . . . . . . . . . . . .  
Binary-Coded Decimal and Extended Instruct ions .. . . . . . . . . . . . . . .  
Single Operand Instruct ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Shif t /Rotate Instruct ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Bit Man ipu la t ion  nstruct ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

n struct io n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-37 
11-39 
11-40 
11-42 
11-43 
11-44 
11-45 
11-46 

Bit Field Man ipu la t ion  Instruct ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-47 
Condi t ional  Branch Instruct ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-48 
Control  Instruct ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-49 
Except ion-Related Instruct ions and Operat ions .. . . . . . . . . . . . . . . . . . .  11-50 
Save and Restore Operat ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-51 

Address Translat ion Tree Search T im ing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-51 
M M U  Effective Address Calculat ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-58 
M M U  Instruct ion T im ing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-60 

In terrupt  Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11~61 
Bus Arb i t ra t ion  Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-62 

Section 12 
Applications Information 

Adapt ing  the MC68030 to MC68020 Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-1 
Signal  Rout ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-2 
Hardware Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-3 
Sof tware Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-4 

Float ing-Point  Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-5 
Byte Select Logic for  the MC68030 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-9 
Memory  Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-11 

Access Time Calculat ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-14 
Burst Mode Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-17 

Static RAM Memory  Banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  12-18 
A Two Clock Synchronous  Memory  Bank Using SRAMs ....... 12-18 

xiv MC68030 USER'S MANUAL MOTOROLA 



TABLE OF CONTENTS (Concluded) 

Paragraph Page 
Number Title Number 

12.5.2 
12.5.3 
12.6 
12.6.1 
12.6.2 
12.7 
12.7.1 
12.7.2 
12.8 

13.1 
13.2 

14.1 
14.2 
14.3 
14.4 

A 2-1-1-1 Burst Mode Memory  Bank Using SRAMs .... . . . . . . . . . .  12-24 
A 3-1-1-1 Burst Mode Memory  Bank Using SRAMs ............... 12-27 

External Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-30 
Cache Implementa t ion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-32 
Inst ruct ion-Only  External Cache Implementa t ions  .. . . . . . . . . . . . . . . .  12-35 

Debugging Aids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-35 
STATUS and REFILL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-36 
Real-Time Instruct ion Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-39 

Power and Ground Considerat ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-43 

Section 13 
Electrical Characteristics 

M a x i m u m  Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-1 
Thermal  Characterist ics - -  PGA Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-1 

Section 14 
Ordering Information and Mechanical Data 

Standard MC68030 Order ing In format ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-1 
Pin Ass ignments  - -  Pin Grid Array (RC Suff ix) . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-2 
Pin Ass ignments  - -  Ceramic Surface Moun t  (FE Suff ix)  .. . . . . . . . . . . . .  14-3 
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-4 

Appendix A 
M68000 Family Summary 

Index 

MOTOROLA MC68030 USER'S MANUAL xv 



LIST OF ILLUSTRATIONS 

Figure Page 
Number Title Number 

1-1 
1-2 
1-3 
1-4 

2-1 
2-2 
2-3 
2-4 
2-5 
2-6 
2-7 
2-8 
2-9 
2-10 
2-11 
2-12 
2-13 
2-14 
2-15 

3-1 
3-2 
3-3 
3-4 
3-5 

4-1 

5-1 

6-1 
6-2 
6-3 

Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-2 
User Programming Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-6 
Superv isor  Programming Model  Supp lement  . . . . . . . . . . . . . . . . . . . . . . . . .  1-7 
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-8 

Memory  Operand Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-6 
Memory  Data Organizat ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-7 
Single Effective Address Instruct ion Operat ion Word ... . . . . . . . . . . . .  2-8 
Effective Address Specif icat ion Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-23 
Using SIZE in the Index Select ion .... : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-25 
Using Abso lu te  Address w i th  Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-26 
Address ing Ar ray  Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-27 
Using Indirect Abso lu te  Memory  Address ing . . . . . . . . . . . . . . . . . . . . . . . . . .  2-28 
Accessing an Item in a Structure Using Pointer . . . . . . . . . . . . . . . . . . . . . . .  2-28 
Indirect Address ing,  Suppressed Index Register . . . . . . . . . . . . . . . . . . . . . .  2-29 
Preindexed Indirect Address ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-29 
Post indexed Indirect Address ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-30 
Preindexed Indirect Address ing w i th  Outer Displacement ........ 2-30 
Post indexed Indirect Address ing w i th  Outer Displacement ....... 2-31 
M68000 Family Address Extension Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-37 

Instruct ion Word General Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-1 
Linked List Insert ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-26 
Linked List Delet ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-27 
Doubly  Linked List Insert ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-29 
Doubly  Linked List Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-30 

General Except ion Stack Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-7 

Funct ional Signal Groups .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-1 

Internal Caches and the MC68030 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-2 
On-Chip Instruct ion Cache Organizat ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-5 
On-Chip Data Cache Organizat ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-7 

MOTOROLA MC68030 USER'S MANUAL xvii 



LIST OF ILLUSTRATIONS (Continued) 

Figure Page 
Number Title Number 

6-4 
6-5 
6-6 
6-7 
6-8 

6-9 

6-10 

6-11 
6-12 
6-13 
6-14 
6-15 

7-1 
7-2 
7-3 
7-4 
7-5 
7-6 
7-7 
7-8 
7-9 
7-10 
7-11 

7-12 
7-13 
7-14 

7-15 
7-16 
7-17 

7-18 
7-19 

No-Write-Allocation and Write-Allocation Mode Examples ....... 6-9 
Single Entry Mode Operation - -  8-Bit Port .............................. 6-11 
Single Entry Mode Operation - -  16-Bit Port ............................. 6-12 
Single Entry Mode Operation - -32 -B i t  Port ............................ 6-12 
Single Entry Mode Operation - -M isa l igned  Long Word and 

8-Bit Port ......................................................................... 6-13 
Single Entry Mode Operation - -  Misaligned Long Word and 

16-Bit Port ........................................................................ 6-14 
Single Entry Mode Operation - -  Misaligned Long Word and 

32-Bit DSACKx Port ........................................................... 6-15 
Burst Operation Cycles and Burst Mode ................................. 6-17 
Burst Filling Wraparound Example ........................................ 6-t7 
Deferred Burst Filling Example .............................................. 6-18 
Cache Control Register ......................................................... 6-21 
Cache Address Register ........................................................ 6-23 

Relationship Between External and Internal Signals ................ 7-2 
Asynchronous Input Sample Window .................................... 7-3 
Internal Operand Representation ........................................... 7-8 
MC68030 Interface to Various Port Sizes ................................ 7-9 
Example of Long-Word Transfer to Word Port ........................ 7-11 
Long-Word Operand Write Timing (16-Bit Data Port) ............... 7-12 
Example of Word Transfer to Byte Port .................................. 7-13 
Word Operand Write Timing (8-Bit Data Port) ......................... 7-14 
Misaligned Long-Word Transfer to Word Port Example ........... 7-15 
Misaligned Long-Word Transfer to Word Port ......................... 7-16 
Misaligned Cachable Long-Word Transfer from Word Port 

Example ....................... ................................................... 7-17 
Misaligned Word Transfer to Word Port Example .................... 7-17 
Misaligned Word Transfer to Word Port ................................. 7-18 
Example of Misaligned Cachable Word Transfer from Word 

Bus ................................................................................. 7-20 
Misaligned Long-Word Transfer to Long-Word Port ................. 7-20 

Misal igned Write Cycles to Long-Word Port ............................ 7-21 
Misaligned Cachable Long-Word Transfer from Long-Word 

Bus ................................................................................. 7-22 
Byte Data Select Generation for 16- and 32-Bit Ports ............... 7-25 
Asynchronous Long-Word Read Cycle Flowchart .................... 7-32 

xviii MC68030 USER'S MANUAL MOTOROLA 



,LIST OF ILLUSTRATIONS (Continued) 

Figure Page 
Number Title Number 

7-20 
7-21 
7-22 
7 - 2 3  
7-24 
7-25 
7-26 
7:27 
7-28 
7-29 
7-30 

7-31 

7-:32 
7-33 
7-34 
7-35 
7-36 

7-37 
7-38 

7-39 

7-40 
7-41 

7-42 
7 -43 
7-44 
7-45 
7-46 
7-47 
7-48 
7 -49 
7-50 
7-51 

Asynchronous Byte Read Cycle Flowchart .............................. 7-32 
Asynchronous Byte and Word Read Cycles - -  32-Bit Port ........ 7-33 
Long-Word Read - -  8-Bit Port with CLOUT Asserted ................ 7-34 
Long-Word Read - -  16-Bit and 32-Bit Port .............................. 7-35 
Asynchronous Write Cycle Flowchart ..................................... 7-37 
Asynchronous Read-Write-Read Cycles - -  32-Bit Port .............. 7-38 
Asynchronous Byte and Word Write Cycles - -  32-Bit Port ........ 7-39 
Long-Word Operand Write - -  8-Bit Port ................................. 7-40 
Long-Word Operand Write - -  16-Bit Port ................................ 7-41 
Asynchronous Read-Modify-Write Cycle Flowchart ....... i .......... 7-44 
Asynchronous Byte Read-Modify-Write Cycle - -  32-Bit Port 

(TAS Instruction with CLOUT or CIIN Asserted) ..................... 7-45 
Synchronous Long-Word Read Cycle F l o w c h a r t -  No Burst 

Al lowed .......................................... ................................. 7-49 
Synchronous Read with CIIN Asserted and CBACK Negated ..... 7-50 
Synchronous Write Cycle Flowchart ....................................... 7-52 
Synchronous Write Cycle with Wait States - -  CLOUT Asserted 7-53 
Synchronous Read-Modify-Write Cycle Flowchart ................... 7-55 
Synchronous Read-Modify-Write Cycle Timing - -  CIIN 

Asserted .......................................................................... 7-56 
Burst Operation Flowchart - -  Four Long Words Transferred ..... 7-62 
Long-Word Operand Request from $07 with Burst Request 

and Wait Cycles ................................................................ 7-63 
Long-Word Operand Request from $07 with Burst 

Request - -  CBACK Negated Early . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-64 
Long-Word Operand Request from $0E - -  Burst Fill Deferred... 7-65 
Long-Word Operand Request from $07 with Burst 

Request - -  CBACK and ClIN Asserted ................................. 7-66 
MC68030 CPU Space Address Encoding ................................. 7-69 
Interrupt Acknowledge Cycle Flowchart .................................. 7-71 
Interrupt Acknowledge Cycle Timing ...................................... 7-72 
Autovector Operation Timing ................................................ 7-73 
Breakpoint Operation Flow ................................................... 7-75 
Breakpoint Acknowledge Cycle Timing ......................... :. ........ 7-76 
Breakpoint Acknowledge Cycle Timing (Exception Signaled) .... 7-77 
Bus Error wi thout DSACKx ................................................... 7-84 
Late Bus Error with DSACKx ................................................. 7-85 
Late Bus Error with STERM - -  Exception Taken ...................... 7-86 

MOTOROLA MC68030 USER'S MANUAL xix 



LIST OF ILLUSTRATIONS (Continued) 

Figure Page 
Number Title Number 

7-52 
7-53 
7-54 
7-55 
7-56 
7-57 
7-58 
7-59 
7-60 
7-61 
7-62 
7-63 
7-64 
7-65 

8-1 
8-2 
8-3 
8-4 
8-5 
8-6 
8-7 
8-8 
8-9 

9-1 
9-2 
9-3 
9-4 
9-5 
9-6 
9-7 
9-8 
9-9 
9-10 
9-11 
9-12 

Long-Word Operand R e q u e s t -  Late BERR on Third Access .... 7-87 
Long-Word Operand R e q u e s t -  BERR on Second Access ........ 7-88 
Asynchronous Late Retry.: .................................................... 7-90 
Synchronous Late Retry ....................................................... 7-91 
Late Retry Operation for a Burst ............................................ 7-92 
Halt Operation Timing .......................................................... 7-93 
Bus Synchronization Example.; ............................................. 7-96 
Bus Arbitration Flowchart for Single Request .......................... 7-98 
Bus Arbitration Operation Timing .......................................... 7-99 
Bus Arbitration State Diagram ............................................... 7-101 
Single-Wire Bus Arbitration Timing Diagram .......................... 7-103 
Bus Arbitration Operation (Bus Inactive) ................................. 7-104 
Initial Reset Operation Timing ............................................... 7-105 
Processor-Generated Reset Operation .................................... 7-106 

Reset Operation Flowchart .................................................... 8-6 
Interrupt Pending Procedure ................................................. 8-15 
Interrupt Recognition Examples..i .......................................... 8-17 
Assertion of IPEND .............................................................. 8-18 
Interrupt Exception Processing Flowchart ............................... 8-19 
Examples of Interrupt Recognition and Instruction Boundaries.. 8-20 
Breakpoint Instruction Flowchart ......................................... :. 8-23 
RTE Instruction for Throwaway Four-Word Frames ................. 8-26 
Special Status Word (SSW) ................................................... 9-28 

MMU Block Diagram ............................................................ 9-3 
MMU Programming Model ................................................... 9-4 
Translation Table Tree .......................................................... 9-5 
Example Translation Table Tree ............................................ 9-7 
Example Translation Table Tree Layout in Memory .............. ... 9-8 
Derivation of Table Index Fields ............................................ 9-9 
Example Translation Tree Using Different Format Descriptors.. 9-12 
Address Translation General Flowchart .................................. 9-14 
Root Pointer Descriptor Format ............................................. 9-23 
Short-Format Table Descriptor .............................................. 9-24 
Long-Format Table Descriptor ............................................... 9-24 
Short-Format Page Descriptor and Short-Format Early 

Termination Page Descriptor .............................................. 9-25 

xx MC68030 USER'S MANUAL MOTOROLA 



Figure 
Number 

9-13 
9-14 
9-15 
9-16 
9-17 
9-18 
9-19 
9-20 
9-21 
9-22 
9-23 
9-24 
9-25 
9-26 
9-27 
9-28 
9-29 
9-30 
9-31 
9-32 
9-33 

9-34 

9-35 
9-36 
9-37 
9-38 
9-39 
9-40 

10-1 
10-2 

10-3 
10-4 
10-5 
10-6 

LIST OF ILLUSTRATIONS (Continued) 

Page 
Title Number. 

Long-Format Early Termination Page Descriptor ..................... 9-25 
Long-Format Page Descriptor ................................................ 9-26 
Short-Format Invalid Descriptor ............................................. 9-26 
Long-Format Invalid Descriptor ............... .............................. 9-27 
Short-Format Indirect Descriptor ........................................... 9-27 
Long-Format Indirect Descriptor ............................. ....... ........ 9-28 
Simplified Table Search Flowchart .......................................... 9-29 
Five-Level Table Search ........................................................ 9-31 
Example Translation Tree Using Contiguous Memory ............. 9-35 
Example Translation Tree Using Indirect Descriptors ............... 9-36 
Example Translation Tree Using Shared Tables ...................... 9-38 
Example Translation Tree with Nonresident Tables.. ............... 9-39 
Detailed Flowchart of MMU Table Search Operation ............... 9-41 
Table Search Initialization Flowchart ........................ .............. 9-42 
ATC Entry Creation Flowchart ............................................... 9-42 
Limit Check Procedure Flowchart ........................................... 9-43 
Detailed Flowchart of Descriptor Fetch Operation .................... 9-44 
Logical Address Map Using Function Code Lookup . . . . . . . . . . . . . . . . .  9-45 
Example Translation Tree Using Function Code Lookup .......... 9-46 
Example Translation Tree Structure for Two Tasks .................. 9-47 
Example Logical Address Map with Shared Supervisor and 

User Address Spaces ........................................................ 9-49 
Example Translation Tree Using S and WP Bits to Set 

Protection ........................................................................ 9-50 
Root Pointer Register (CRP, SRP) Format ................................ 9-54 
Translation Control Register (TC) Format ................................ 9-54 
Transparent Translation Register (TT0 and TT1) Format ........... 9-57 
MMU Status Register (MMUSR) Format ................................. 9-59 
MMU Status Interpretation - -  PTEST Level 0 .......................... 9-62 
MMU Status Interpretation - -  PTEST Level 7 ........................ 9-63 

F-Line Coprocessor Instruction Operation Word ..................... 10-4 
Asynchronous Non-DMA M68000 Coprocessor Interface 

Signal Usage ................................................................... 10-6 
MC68030 CPU Space Address Encodings ............................... 10-7 
Coprocessor Address Map in MC68030 CPU Space ................ 10-8 
Coprocessor Interface Register Set Map ................................. 10-9 
Coprocessor General Instruction Format (cpGEN) ................... 10-10 

MOTOROLA MC68030 USER'S MANUAL xxi 



LIST OF ILLUSTRATIONS (Continued) 

Figure Page 
Number Title Number 

10-7 

10-8 

10-9 
10-10 
10-11 
10-12 

10-13 
10-14 
10-15 
10-16 
10-17 
10-18 
10-19 
10-20 
10-21 
10-22 
10-23 
10-24 
10-25 
10-26 
10-27 
10-28 
10-29 
10-30 

10-31 
10-32 
10-33 
10-34 
10-35 
10-36 
10-37 
10-38 
10-39 
10-40 

Coprocessor Interface Protocol for General Category 
Instructions ...................................................................... 10-11 

Coprocessor nterface Protocol for Conditional Category 
Instructions ...................................................................... 10-13 

Branch on Coprocessor Condition I n s t r u c t i o n  (cpBcc.W) .......... 10-14 
Branch on Coprocessor Condition Instruction (cpBcc.L) ........... 10-14 
Set on Coprocessor Condition (cpScc) ................................... 10-t5 
Test Coprocessor Condition, Decrementand-Branch instruction 

Format (cpDBcc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-17 
Trap on Coprocessor Condition (cpTRAPcc) ............................ 10-18 
Coprocessor State Frame Format in Memory .......................... 10-21 
Coprocessor Context Save Instruction Format (cpSAVE) .......... 10-25 
Coprocessor Context Save Instruction Protocol ....................... 10-26 
Coprocesor Context Restore Instruction Format (cpRESTORE).. 10-27 
Coprocessor Context Restore Instruction Protocol ................... 10-28 
Control CIR Format .............................................................. 10-30 
Condition CIR Format ............................................................ 10-31 
Operand Al ignment for Operand CIR Accesses ....................... 10-32 
Coprocessor Response Primitive Format ................................ 10-35 
Busy Primitive Format .......................................................... 10-36 
Null Primitive Format ........................................................... 10-37 
Supervisor Check Primitive Format ........................................ 10-40 
Transfer Operation Word Primitive Format ............................. 10-41 
Transfer from Instruction Stream Primitive Format .................. 10-41 
Evaluate and Transfer Effective Address Primitive Format ........ 10-42 
Evaluate Effective Address and Transfer Data Primitive Format 10-43 
Write to Previously Evaluated Effective Address Primitive 

Format ............................................................................. 10-46 
Take Address and Transfer Data Primitive Format . . . . . . . . . . . . . . . . . . .  10-48 
Transfer To/From Top of Stack Primitive Format ..................... 10-49 
Transfer Single Main Processor Register Primitive Format ....... 10-50 
Transfer Main Processor Control Register Primitive Format ...... 10-51 
Transfer Multiple Main Processor Registers Primitive Format... 10-52 
Register Select Mask Format .................................................. 10-52 
Transfer Multiple Coprocessor Registers Primitive Format ....... 10-53 
Operand Format in Memory for Transfer to - (An )  .................. 10-54 
Transfer Status Register and ScanPC Primitive Format ............. 10-55 
Take Pre-lnstruction Exception Primitive Format ..................... 10-56 

xxii MC68030 USER'S MANUAL MOTOROLA 



LIST OF ILLUSTRATIONS (Continued) 

Figure Page 
Number Title Number 

10-41 
10-42 
10-43 
10-44 
10-45 

11-1 
11-2 
11-3 
11-4 
11-5 

12-1 

12-2 
12-3 
12-4 
12-5 
12-6 
12-7 
12-8 
12-9 
12-10 
12-11 
12-12 
12-13 

12-14 

i2-15 

12-16 
12-17 

12-18 
12-19 
12-20 
12-21 

MC68030 Pre-lnstruction Stack Frame .................................... 10-57 
Take Mid-Instruction Exception Primitive Format ..................... 10-58 
MC68030 Mid-Instruction Stack Frame .............. . ............. :. ..... 10-59 
Take Post-Instruction Exception Primitive Format . . . . . . . . . . . . . . . . . . . .  10-60 
MC68030 Post-Instruction Stack Frame ................................... 10-60 

Block Diagram - -  Eight Independent Resources ...................... 11-3 
Simultaneous Instruction Execution ....................................... 11-7 
Derivation of Instruction Overlap Time ................................... 11-8 
Processor Activity - -  Even Alignment .................................... 11-9 
Processor Activity - -  Odd Alignment ..................................... 11-10 

Signal Routing for Adapting the MC68030 to MC68020 
Designs ........................................................................... 12-2 

32-Bit Data Bus Coprocessor Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-6 
Chip-Select Generation PAL .................................................. 12-8 
PAL Equations ..................................................................... 12-8 
Bus Cycle Timing Diagram .................................................... 12-9 
Example MC68030 Byte Select PAL System Configuration ....... 12-12 
MC68030 Byte Select PAL Equations ........ i ............................. 12-13 
Access Time Computation Diagram ....................................... 12-15 
Example Two-Clock Read, Three-Clock Write Memory Bank ..... 12-19 
Example PAL Equations for Two-Clock Memory Bank .............. 12-20 
Additional Memory Enable Circuits ........................................ 12-21 
Example Two-Clock Read and Write Memory Bank ................. 12-22 
Example PAL Equation for Two-Clock Read and Write Memory 

Bank ................................................................................ 12-23 
Example 2-1-1-1 Burst Mode Memory Bank at 20 MHz, 256K 

Bytes ............................................................................... 12-25 
Example 3-1-1-1 Pipelined Burst Mode Memory Bank at 20 MHz, 

256K Bytes ....................................................................... 12-28 
Additional Memory Enable Circuit ......................................... 12-29 
Example MC68030 Hardware Configuration with External 

Physical Cache ................................................................. 12-33 
Example Early Termination Control Circuit ............................. 12-34 
Normal Instruction Boundaries .............................................. 12-37 
Trace or Interrupt Exception .................................................. 12-38 
Other Exceptions ................................................................. 12-38 

MOTOROLA MC68030 USER'S MANUAL xxiii 



Figure 
Number 

12-22 

12-23 

12-24 

12-25 

LIST OF ILLUSTRATIONS (Concluded) 

Page 
Title Number 

Processo r  Ha l ted  . . . . . . . .  ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-39 

Trace In ter face C i rcu i t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-41 

PAL Pin De f in i t i ons  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-44 

Log ic  Equa t i ons  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-45 

xxiv MC68030 USER'S MANUAL MOTOROLA 



LIST OF TABLES 

Table Page 
Number Title Number 

1-1 
i -2 

2-1 
2-2 

3-1 
3-2 
3-3 
3-4 
3-5 
3-6 
3-7 
3-8 
3-9 
3-10 
3-11 
3-12 
3-13 
3-14 

4-1 

5-1 
5-2 

7-1 
7-2 
7-3 
7-4 
7-5 

7-6 

Addressing Modes .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-11 
Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-13 

IS-I/IS Memory  Indirection Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .... 2-22 
Effective Addressing Mode Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-24 

Data Movement  Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-5 
Integer Ar i thmet ic  Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-6 
Logical Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-7 
sh i f t  and Rotate Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-8 
Bit Manipulat ion Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-9 
Bit Field Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-9 
BCD Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-10 
Program Control Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-11 
System Control Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-12 
MMU Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-13 
Mult iprocessor Operations (Read-Modify-Write) . . . . . . . . . . . . . . . . . . . . . . . . .  3-13 
Condit ion Code Computat ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-15 
Condit ional Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-17 
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-20 

Address Space Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-5 

Signal Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-2 
Signal Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-12 

DSACK Codes and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-7 
Size Signal Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-9 
Address Offset Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-9 
Data Bus Requirements for Read Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-10 
MC68030 Internal to External Data Bus Mul t ip lexer  - -  Write 

Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-11 
Memory  A l ignment  and Port Size Influence on Write Bus Cycles.. 7-19 

MOTOROLA MC68030 USER'S MANUAL xxv 



Table 
Number  

7-7 

7-8 
7-9 

8-1 
8-2 
8-3 
8-4 
8-5 
8-6 

9-1 
9-2 
9-3 

10-1 
10-2 
10-3 
10-4 
10-5 
10-6 

12-1 
12-2 
12-3 

12-4 
12-5 
12-6 
12-7 

LIST OF TABLES (Continued) 

Page 
Title Number  

Data Bus Wri te Enable Signals for Byte, Word, and Long-Word 
Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-23 

DSACK, BERR, and HALT Assert ion Results . . . . . . . . . . . . . . . . . . . . . .  . ........ 7-79 
STERM, BERR, and HALT Assert ion Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-81 

Except ion Vector Ass ignments  ............. ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 8-2 
Microsequencer  STATUS Indicat ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-4 
Trac ing Control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-13 
Interrupt  Levels and Mask Values .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-16 
Except ion Prior i ty Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-24 
Except ion Stack Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-33 

Size Restr ict ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-10 
Translat ion Tree Select ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-30 
MMUSR Bit Def in i t ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-60 

cpTRAPcc Opmode Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : . . . . . . . . . . . . . . .  10-19 
Coprocessor Format Word Encodings .. . . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . .  10-22 
Nul l  Coprocessor Response Pr imi t ive Encodings . . . . . . . . . . . . . . . . . . . . . . . .  10-39 
Valid Effective Address Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .; ............ . ..... . .  10-43 
Main Processor Control  Register Selector Codes . . . . . . . . . . . . . . . . . . . . . . . .  10-51 
Except ions Related to Pr imi t ive Processing .......... . . . . . . . . . . . . . . . . . . . . . .  10-66 

Data Bus Ac t iv i t y  for  Byte, Word, and Long-Word Ports .. . . . . . . . . . . . .  12-11 
Memory  Access T ime Equat ions at 20 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-16 
Calculated tAVDV Values for Operat ion at Frequencies 

Less Than or Equal to the CPU M a x i m u m  Frequency Rating .... 12-17 
Microsequencer  STATUS Indicat ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-36 
List of Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . .  12-42 
AS and ECSC Indicat ions ... . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . .  12-43 
VCC and GND Pin Ass ignments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-46 

xxvi MC68030 USER'S MANUAL MOTOROLA 



PREFACE 

The MC68030 User's Manual describes the capabilities, operation, and pro- 
gramming of the MC68030 32-bit second-generation enhanced microproces- 
sor. The manual consists of the following sections and appendix, For detailed 
information on the MC68030 instruction set refer to M68000PM/AD, M68000 
Family Programmer's Reference Manual. 

Section 
Section 
Section 
Section 
Section 
Section 
Section 
Section 
Section 
Section 
Section 
Section 
Section 

1. Introduction 
2. Data Organization and Addressing Capabilities 
3. Instruction Set Summary 
4. Processing States 
5. Signal Description 
6. On-Chip Cache Memories 
7. Bus Operation 
8. Exception Processing 
9. Memory Management Unit 
10. Coprocessor Interface Description 
11. Instruction Execution Timing 
12. Applications Information 
13. Electrical Characteristics 

Section 14. Ordering Information and Mechanical Data 
Appendix A. M68000 Family Summary 
Index 

NOTE 

In this manual, assertion and negation are used to specify forcing a 
signal to a particular state. In particular, assertion and assert refer 
to a signal that is active or true; negation and negate indicate a 
signal that is inactive or false. These terms are used independently 
of the voltage level (high or low) that they represent. 

The audience of this manual includes systems designers, systems program- 
mers, and applications programmers. Systems designers need some knowl- 
edge of all sections, with particular emphasis on Sections 1, 5, 6, 7, 13, 14, 
and Appendix A. Designers who implement a coprocessor for their system 
also need a thorough knowledge of Section 10. Systems programmers should 

MOTOROLA MC68030 USER'S MANUAL xxvii 



become familiar with Sections 1, 2, 3, 4, 6, 8, 9, 11, and Appendix A. Appli- 
cations programmers can find most of the information they need in Sections 
1, 2, 3, 4, 9, 11, 12, and Appendix A. 

From a different viewpoint, the audience for this book consists of users of 
other M68000 Family members and those who are not familiar with these 
microprocessors. Users of the other family members can find references to 
similarities to and differences from the other Motorola microprocessors 
throughout the manual. However, Section 1 and Appendix A specifically 
identify the MC68030 within the rest of the family and contrast its differences. 

xxviii MC68030 USER'S MANUAL MOTOROLA 



SECTION 1 

INTRODUCTION 

The MC68030 is a second-generation full 32-bit enhanced microprocessor 
from Motorola. The MC68030 is a member of the M68000 Family of devices 
that combines a central processing unit (CPU) core, a data cache, an instruc- 
tion cache, an enhanced bus controller, and a memory management unit 
(MMU) in a single VLSl device. The processor is designed to operate at clock 
speeds beyond 20 MHz. The MC68030 is implemented with 32-bit registers 
and data paths, 32-bit addresses, a rich instruction set, and versatile ad- 
dressing modes. 

The MC68030 is upward object code compatible with the earlier members 
of the M68000 Family and has the added features of an on-chip MMU, a data 
cache, and an improved bus interface. It retains the flexible coprocessor 
interface pioneered in the MC68020 and provides full IEEE floating-point 
support through this interface with the MC68881 or MC68882 floating-point 
coprocessor. Also, the internal functional blocks of this microprocessor are 
designed to operate in parallel, allowing instruction execution to be over- 
lapped. In addition to instruction execution, the internal caches, the on-chip 
MMU, and the external bus controller all operate in parallel. 

The MC68030 fully supports the nonmultiplexed bus structure of the MC68020, 
with 32 bits of address and 32 bits of data. The MC68030 bus has an enhanced 
controller that supports both asynchronous and synchronous bus cycles and 
burst data transfers, It also supports the MC68020 dynamic bus sizing mech- 
anism that automatically determines device port sizes on a cycle-by-cycle 
basis as the processor transfers operands to or from external devices. 

A block diagram of the MC68030 is shown in Figure 1-1. The instructions and 
data required by the processor are supplied from the internal caches when- 
ever possible. The MMU translates the logical address generated by the 
processor into a physical address utilizing its address translation cache (ATC). 
The bus controller manages the transfer of data between the CPU and mem- 
ory or devices at the physical address. 

MOTOROLA MC68030 USER'S MANUAL 1-1 

I i i  



~0 MIDBOSEQUENCER AND CONTBOt 

I CONTROL 
STORE 

CONTROL 
LOGIC 

INSTRUCTION PIPE 
,r i / ~  

NG |~I'I 

FEB I A [  

INTERNAL 
DATA 
BUS 

c) 
O~ 
O0 

0,  

c 
or) 
m 
:xl 

Z 
c 

r -  

ADDRESS 
BUS 

PHYSICAL 

INSTRUCTION 
ADDRESS 

BUS 

EXECUTION UNIT 

DATA 
BUS 

0 

0 
3O 
0 
r'- 

BUS CONTROLLER 

vvRITE PENDING PREFETCH PENDING 

BUS CONTROL 
SIGNALS 

DATA 
ADORESS 

BUS 

Figure 1-1. Block Diagram 



1.1 FEATURES 

The features of the MC68030 microprocessor are: 

• Object Code Compatible with the MC68020 and Earlier M68000 Micro- 
processors 

• Complete 32-Bit Nonmultiplexed Address and Data Buses 

• 16 32-Bit General-Purpose Data and Address Registers 

• Two 32-Bit Supervisor Stack Pointers and 10 Special-Purpose Control 
Registers 

• 256-Byte Instruction Cache and 256-Byte Data Cache Can Be Accessed 
Simultaneously 

• Paged MMU that Translates Addresses in Parallel with Instruction Exe- 
cution and Internal Cache Accesses 

• Two Transparent Segments Allow Untranslated Access to Physical Mem- 
ory To Be Defined for Systems That Transfer Large Blocks of Data be- 
tween Predefined Physical Addresses - -  e.g., Graphics Applications 

• Pipelined Architecture with Increased Parallelism Allows Accesses to 
Internal Caches To Occur in Parallel with Bus Transfers and Instruction 
Execution To Be Overlapped 

• Enhanced Bus Controller Supports Asynchronous Bus Cycles (three clocks 
minimum), Synchronous Bus Cycles (two clocks minimum), and Burst 
Data Transfers (one clock minimum) all to the Physical Address Space 

• Dynamic Bus Sizing Supports 8-, 16-, 32-Bit Memories and Peripherals 

• Support for Coprocessors with the M68000 Coprocessor Interface-- e.g., 
Full IEEE Floating-Point Support Provided by the MC68881/MC68882 
Floating-Point Coprocessors 

• 4-Gbyte Logical and Physical Addressing Range 

• Implemented in Motorola's HCMQS Technology That Allows CMQS and 
HMOS (High-Density NMOS) Gates to be Combined for Maximum Speed, 
Low Power, and Optimum Die Size 

• Processor Speeds Beyond 20 MHz 

Both improved performance and increased functionality result from the on- 
chip implementation of the MMU and the data and instruction caches. The 
enhanced bus controller and the internal parallelism also provide increased 
system performance. Finally, the improved bus interface, the reduction in 
physical size, and the lower power consumption combine to reduce system 
costs and satisfy cost/performance goals of the system designer. 

MOTOROLA MC68030 USER'S MANUAL 1-3 



1.2 MC68030 EXTENSIONS TO THE M68000 FAMILY 

In addition to the on-chip instruction cache present in the MC68020, the 
MC68030 has an internal data cache. Data that is accessed during read cycles 
may be stored in the on-chip cache, where it is available for subsequent 
accesses. The data cache reduces the number of external bus cycles when 
the data operand required by an instruction is already in the data cache. 

Performance is enhanced further because the on-chip caches can be internally 
accessed in a single clock cycle. In addition, the bus controller provides a 
two-clock cycle synchronous mode and burst mode accesses that can transfer 
data in as little as one clock per long word. 

The MC68030 enhanced microprocessor contains an on-chip MMU that al- 
lows address translation to operate in parallel with the CPU core, the internal 
caches, and the bus controller. 

Additional signals support emulation and system analysis. External debug 
equipment can disable the on-chip caches and the MMU to freeze the MC68030 
internal state during breakpoint processing. In addition, the MC68030 indi- 
cates: 

1. The start of a refill of the instruction pipe 
2. Instruction boundaries 
3. Pending trace or interrupt processing 
4. Exception processing 
5. Halt conditions 

This status and control information allows external debugging equipment to 
trace the MC68030 activity and interact nonintrusively with the MC68030 to 
effectively reduce system debug effort. 

1.3 PROGRAMMING MODEL 

The programming model of the MC68030 consists of two groups of registers: 
the user model and the supervisor model. This corresponds to the user and 
supervisor privilege levels. User programs executing at the user privilege 
level use the registers of the user model. System software executing at the 
supervisor level uses the control registers of the supervisor level to perform 
supervisor functions. 

1-4 MC68030 USER'S MANUAL MOTOROLA 



Figure 1-2 shows the user programming model, consisting of 16 32-bit 
general-purpose registers and two control registers: 

• General-Purpose 32-Bit Registers (D0-D7, A0-A7) 

• 32-Bit Program Counter (PC) 

• 8-Bit Condition Code Register (CCR) 

The supervisor programming model consists of the registers available to the 
user plus 14 control registers: 

• Two 32-Bit Supervisor Stack Pointers (ISP and MSP) 

• 16-Bit 

• 32-Bit 

• 32-Bit 

• 32-Bit 

• 32-Bit 

• 64-Bit 

• 64-Bit 

• 32-Bit 

• 32-Bit 

• 16-Bit 

Status Register (SR) 

Vector Base Register (VBR) 

Alternate Function Code Registers (SFC and DFC) 

Cache Control Register (CACR) 

Cache Address Register (CAAR) 

CPU Root Pointer (CRP) 

Supervisor Root Pointer (SRP) 

Translation Control Register (TC) 

Transparent Translation Registers (TT0 and TT1) 

MMU Status Register (MMUSR) 

The user programming model remains unchanged from previous M68000 
Family microprocessors. The supervisor programming model supplements 
the user programming model and is used exclusively bythe MC68030 system 
programmers who utilize the supervisor privilege level to implement sen- 
sitive operating system functions, I/O control, and memory management 
subsystems. The supervisor programming model contains all the controls to 
access and enable the special features of the MC68030. This segregation was 
carefully planned so that all application software is written to run at the 
nonprivileged user level and migrates to the MC68030 from any M68000 
platform without modification. Since system software is usually modified by 
system programmers when ported to a new design, the control features are 
properly placed in the supervisor programming model. For example, the 
transparent translation feature of the MC68030 is newto the family supervisor 
programming model for the MC68030 and the two translation registers are 

M O T O R O L A  M C 6 8 0 3 0  USER'S  M A N U A L  1-5 

1 



1 

new additions to the family supervisor programming model for the MC68030. 
Only supervisor code uses this feature, and user application programs remain 
u n affected. 

Registers D0-D7 are used as data registers for bit and bit field (1 to 32 bits), 
byte (8 bit), word (16 bit), long-word (32 bit), and quad-word (64 bit) oper- 
ations. Registers A0 -A6  and the user, interrupt, and master stack pointers 
are address registers that may be used as software stack pointers or base 
address registers. Register A7 (shown as A7' and A7" in Figure 1-3) is a 
register designation that applies to the user stack pointer in the user privilege 
level and to either the interrupt or master stack pointer in the supervisor 
privilege level. In the supervisor privilege level, the active stack pointer (in- 
terrupt or master) is called the supervisor stack pointer (SSP). In addition, 

31 16 15 8 7 

31 I6 15 O 

31 16 15 0 

I I 
31 0 

I 
15 7 0 

L F o [ 

Figure 1-2. User Programming Model 

DATA 
REGISTERS 

AO 

A7 

A2 
ADDRESS 

A3 - -  REGISTERS 
A4 

A5 

A6 

I ~ _ ~  USER STACK 
A7 (USP) POINTER 

"-~PROGRAM 
] PC .__J'COUNTER 

_ _ J  REDIGTER 

1-6 MC68030 USER'S MANUAL MOTOROLA 



the address registers may be used for word and long-word operations. All 
of the 16 general-purpose registers (DO-D7, AO-A7) may be used as index 
registers. 

The program counter (PC) contains the address of the next instruction to be 
executed by the MC68030. During instruction execution and exception pro- 
cessing, the processor automatically increments the contents of the PC or 
places a new value in the PC, as appropriate. 

31 16 15 

I I 
0 __  

31 16 15 O 

I 1 
15 S 7 0 

I I ,CCR, 
31 0 

[ 
31 2 0 

IF ~ SFC 
I DEC 
L . . . . . . . . . . . .  
31 

[ 
31 0 

[ I cAAR 

I AT' (ISP) --  

I AT' (MSP) --  

ISR --~-- 

]V0R -I- 
-L_ l 

]CAOR L_ 

63 32 

SRP 

31 0 

[ I 'C 
31 0 _ 

31 0 _ 

I I TM 
15 0 _ 

I I M~USR 

32 

Figure 1-3. Supervisor Programming Model Supplement 

INTERRUPT 
STACK 
POINTER 

MASTER STACK 
POINTER 

STATUS 
REGISTER 

VEGTOR RASE 
REGISTER 

ALTERNATE 
FUNCTION 

CODE REGISTERS 

CACHE CONTROL 
REGISTER 

CACHE 
ADDRESS 
REGISTER 

CPU ROOT 
POINTER 
REGISTER 

SUPERVISOR 
ROOT POINTER 
REGISTER 

TRANSLATION 
CONTROL 
REGISTER 

TRANSPARENT 
TRANSLATION 
REGISTER 0 

TRANSPARENT 
TRANSLATION 
REGISTER 1 

M~U STATUS 
REGISTER 

MOTOROLA MC68030 USER'S MANUAL 1-7 

1 



The status register, SR, (see Figure 1-4) stores the processor status. It contains 
the condit ion codes that reflect the results of a previous operation and can 
be used for condit ional instruction execution in a program. The condit ion 
codes are extend (X), negative (N), zero (Z), overf low (V), and carry (C). The 
user byte containing the condit ion codes is the  only portion of the status 
register information available in the user privilege level, and it is referenced 
as the CCR in user programs. In the supervisor privilege level, software can 
access the full status register, including the interrupt priority mask (three 
bits) as well as additional control bits. These bits indicate whether the pro- 
cessor is in: 

1. One of two trace modes (T1, TO) 
2. Supervisor or user privilege level (S) 
3. Master or interrupt mode (M) 

The vector base register (VBR) contains the base address of the exception 
vector table in memory. The displacement of an exception vector is added 
to the value in this register to access the vector table. 

Alternate function code registers, SFC and DFC, contain 3-bit function codes. 
Function codes can be considered extensions of the 32-bit linear address that 
optional ly provide as many as eight 4-Gbyte address spaces. Function codes 
are automatical ly generated by the processor to select address spaces for 
data and program at the user and supervisor privi lege levels and a CPU 
address space for processor functions (e.g., coprocessor communications). 
Registers SFC and DFC are used by certain instructions to explicit ly specify 
the function codes for operations. 

I TI TO : F 

TRACE 

ENABLE 

SUPERVISOR/USER 

STATE " - -  

MASTER/INTERRUPT 
STATE 

SYSTEM BYTE 
I 

15 14 13 12 11 ]0 9 8 7 6 5 

I 0 12 I1 I0 0 0 0 ) 

( I I 
INTERRUPT 

PRIORITY MASK 

USER BYTE 
(CONDITION CODE REGISTER) 

I 
t 

3 1 0 

[l_ 

Figure 1-4. S ta tus  Register  

CARRY 

- -  OVERFLOW 

ZERO 

NEGATIVE 

EXTEND 

1-8 MC68030 USER'S MANUAL MOTOROLA 



The cache control register (CACR) controls the on-chip instruction and data 
caches of the MC68030. The cache address register (CAAR) stores an address 
for cache control functions. 

The CPU root pointer (CRP) contains a pointer to the root of the translation 
tree for the currently executing task of the MC68030. This tree contains the 
mapping information for the task's address space. When the MC68030 is 
configured to provide a separate address space for supervisor routines, the 
supervisor root pointer (SRP) contains a pointer to the root of the translation 
tree describing the supervisor's address space. 

The translation control register (TC) consists of several fields that control 
address translation. These fields enable and disable address translation, en- 
able and disable the use of SRP for the supervisor address space, and select 
or ignore the function codes in translating addresses. Other fields define the 
size of memory pages, the number of address bits used in translation, and 
the translation table structure. 

The transparent translation registers, TT0 and TT1, can each specify separate 
blocks of memory as directly accessible without address translation. Logical 
addresses in these areas become the physical addresses for memory access. 
Function codes and the eight most significant bits of the address can be used 
to define the area of memory and type of access; either read, write, or both 
types of memory access can be directly mapped. The transparent translation 
feature allows rapid movement of large blocks of data in memory or I/O 
space without disturbing the context of the on-chip address translation cache 
or incurring delays associated with translation table Iookups. This feature is 
useful to graphics, controller, and real-time applications. 

The MMU status register (MMUSR) contains memory management status 
information resulting from a search of the address translation cache or the 
translation tree for a particular logical address. 

MOTOROLA MC68030 USER'S MANUAL 1-9 



1.4 DATA TYPES AND ADDRESSING MODES 

Seven basic data types are supported: 
1. Bits 
2. Bit Fields (Fields of consecutive bits, 1-32 bits long) 
3. BCD Digits (Packed: 2 digits byte, Unpacked: 1 digit/byte) 
4. Byte Integers (8 bits) 
5. Word Integers (16 bits) 
6. Long-Word Integers (32 bits) 
7. Quad-Word Integers (64 bits) 

In addition, the instruction set supports operations on other data types such 
as memory addresses. The coprocessor mechanism allows direct support of 
floating-point operations with the MC68881 and MC68882 floating-point co- 
processors as well as specialized user-defined data types and functions. 

The 18 addressing modes, shown in Table 1-1, include nine basic types: 
1. Register Direct 
2. Register Indirect 
3. Register Indirect with Index 
4. Memory Indirect 
5. Program Counter Indirect with Displacement 
6. Program Counter Indirect with Index 
7. Program Counter Memory Indirect 
8. Absolute 
9. Immediate 

The register indirect addressing modes can also postincrement, predecre- 
ment, offset, and index addresses. The program counter relative mode also 
has index and offset capabilities. As in the MC68020, both modes are ex- 
tended to provide indirect reference through memory. In addition to these 
addressing modes, many instructions implicitly specify the use of the con- 
dition code register, stack pointer, and/or program counter. 

1.5 INSTRUCTION SET OVERVIEW 

The instructions in the MC68030 instruction set are listed in Table 1-2. The 
instruction set has been tailored to support structured high-level languages 
and sophisticated operating systems. Many instructions operate on bytes, 
words, or long words, and most instructions can use any of the 18 addressing 
modes. 

1-10 MC68030 USER'S MANUAL MOTOROLA 



Table 1-1. Addressing Modes 

Addressing Modes Syntax 

Register Direct 
Data Register Direct Dn 
Address Register Direct An 

Register Indirect 
Address Register Indirect (An) 
Address Register Indirect with Pes';r~crement (An) + 
Address Register Indirect with P~ececrement - (An) 
Address Register Indirect with D:splacement (dl 6,An) 

Register Indirect with Index 
Address Register Indirect with Incex tS-Bit Displacement) (d8,An,Xn) 
Address Register Indirect with Index (Base Displacement) (bd,An,Xn) 

Memory Indirect 
Memory Indirect Postindexed ([bd,An],Xn,od) 
Memory Indirect Preindexed ([bd,An,Xn],od) 

Program Counter Indirect with Displacement (d16,PC) 

Program Counter Indirect with Index 
PC Indirect with Index (8-Bit Displacement) (d8,PC,Xn) 
PC Indirect with Index (Base Displacement) (bd,PC,Xn) 

Program Counter Memory Indirect 
PC Memory Indirect Postindexed ([bd,PC],Xn,od) 
PC Memory Indirect Preindexed ([bd,PC,Xn],od) 

Absolute 
Absolute Short (xxx).W 
Absolute Long (xxx)./ 

Immediate #(data) 

NOTES: 
Dn = 
An = 

8, d16 - 

Xn = 

b d =  

o d =  

PC - 
(data) - 

() = 
[ ]  = 

Data Register, D0-D7 
Address Register, A0-A7 
A twos-complement or sign-extended displacement; added as part of the 
effective address calculation; size is 8 (d 8) or 16 (d16) bits; when omitted, 
assemblers use a value of zero. 
Address or data register used as an index register; form is Xn.SIZE*SCALE, 
where SIZE is .W or .L (indicates index register size) and SCALE is 1, 2, 4, 
or 8 (index register is multiplied by SCALE); use of SIZE and/or SCALE is 
optional. 
A twos-complement base displacement; when present, size can be 16 or 
32 bits. 
Outer displacement, added as part of effective address calculation after 
any memory indirection; use is opt;ona[ with a size of 16 or 32 bits. 
Program Counter 
Immediate value of 8, 16, or 32 bi's 
Effective Address 
Use as indirect access to long-word address. 

MOTOROLA MC68030 USER'S MANUAL 1-11 



! 

1.6 VIRTUAL M E M O R Y  AND VIRTUAL MACHINE CONCEPTS 

The full addressing range of the MC68030 is 4 Gbytes (4,294,967,296 bytes) 
in each of eight address spaces. Even though most systems implement a 
smaller physical memory, the system can be made to appear to have a full 
4 Gbytes of memory available to each user program by using virtual memory 
techniques. 

In a virtual memory system, a user program can be written as if it has a large 
amount of memory available, when the physical memory actually present is 
much smaller. Similarly, a system can be designed to allow user programs 
to access devices that are not physically present in the system, such as tape 
drives, disk drives, printers, terminals, and so forth. With proper software 
emulation, a physical system can appear to be any other M68000 computer 
system to a user program, and the program can be given full access to all 
of the resources of that emulated system. Such an emulated system is called 
a virtual machine. 

1.6.1 Virtual M e m o r y  

A system that supports virtual memory has a limited amount of high-speed 
physical memory that can be accessed directly by the processor and main- 
tains an image of a much larger virtual memory on a secondary storage 
device such as a large-capacity disk drive. When the processor attempts to 
access a location in the virtual memory map that is not resident in physical 
memory, a page fault occurs. The access to that location is temporarily sus- 
pended while the necessary data is fetched from secondary storage and 
placed in physical memory. The suspended access is then either restarted 
or continued. 

The MC68030 uses instruction continuation to support virtual memory. When 
a bus cycle is terminated with a bus error, the microprocessor suspends the 
current instruction and executes the virtual memory bus error handler. When 
the bus error handler has completed execution, it returns control to the 
program that was executing when the error was detected, reruns the faulted 
bus cycle (when required), and continues the suspended instruction. 

1-12 MC68030 USER'S MANUAL MOTOROLA 



Table 1-2. Instruction Set 

Mnemonic Description 

ABCD. 
ADD 
ADDA 
ADDI 
ADDQ 
ADDX 
AND 
ANDI 
ASL, ASR 

Bcc 
BCHG 
BCLR 
BFCHG 
BFCLR 
BFEXTS 
BFEXTU 
BFFFO 
BFINS 
BFSET 
BFTST 
BKPT 
BRA 
BSET 
BSR 
BTST 

CAS 
CAS2 
CHK 
CHK2 

CLR 
CMP 
CMPA 
CMPI 
CMPM 
CMP2 

DBcc 
DIVS, DIVSL 
DIVU, DIVUL 

EOR 
EORI 
EXG 
EXT, EXTB 

Add Decimal with Extend 
Add 
Add Address 
Add Immediate 
Add Quick 
Add with Extend 
Logical AND 
Logical AND Immediate 
Arithmetic Shift Left and Right 

Branch Conditionally 
Test Bit and Change 
Test Bit and Clear 
Test Bit Field and Change 
Test Bit Field and Clear 
Signed Bit Field Extract 
Unsigned Bit Field Extract 
Bit Field Find First One 
Bit Field Insert 
Test Bit Field and Set 
Test Bit Field 
Breakpoint 
Branch 
Test Bit and Set 
Branch to Subroutine 
Test Bit 

Compare and Swap Operands 
Compare and Swap Dual Operands 
Check Register Against Bound 
Check Register Against Upper and 

Lower Bounds 
Clear 
Compare 
Compare Address 
Compare Immediate 
Compare Memory to Memory 
Compare Register Against Upper and 

Lower Bounds 

Test Condition, Decrement and Branch 
Signed Divide 
Unsigned Divide 

Logical Exclusive OR 
Logical Exclusive OR Immediate 
Exchange Registers 
Sign Extend 

ILLEGAL Take Illegal Instruction Trap 

JMP Jump 
JSR Jump to Subroutine 

LEA 
LINK 
LSL, LSR 

MOVE 
MOVEA 
MOVE CCR 
MOVE SR 

Load Effective Address 
Link and Allocate 
Logical Shift Left and Right 

Move 
Move Address 
Move Condition Code Register 
Move Status Register 

Mnemonic 
MOVE USP 
MOVEC 
MOVEM 
MOVEP 
MOVEQ 
MOVES 

Description 

Move User Stack Pointer 
Move Control Register 
Move Multiple Registers 
Move Peripheral 
Move Quick 
Move Alternate Address Space 

MULS Signed Multiply 
M U L U  Unsigned Multiply 

NBCD Negate Decimal with Extend 
NEG Negate 
NEGX Negate with Extend 
NOP No Operation 
NOT Logical Complement 

OR Logical Inclusive OR 
ORI Logical inclusive OR Immediate 
ORI CCR Logical Inclusive OR Immediate to 

Condition Codes 
ORI SR Logical Inclusive OR Immediate to Status 

Register 

PACK Pack BCD 
PEA Push Effective Address 

PFLUSH 
PFLUSHA 
PLOADR, 

PLOADW 
PMOVE 
PMOVEFD 

PTESTR, 
PTESTW 

RESET 
ROL, ROR 
ROXL, ROXR 
RTD 
RTE 
RTR 
RTS 

SBCD 
Scc 
STOP 
SUB 
SUBA 
SUBI 
SUBQ 
SUBX 
SWAP 

Flush Entry(ies) in the ATC 
Flush All Entries in the ATC 
Load Entry into the ATC 

Move to/from MMU Registers 
Move to/from MMU Registers with Flush 

Disable 
Test a Logical Address 

Reset External Devices 
Rotate Left and Right 
Rotate with Extend Left and Right 
Return and Deallocate 
Return from Exception 
Return and Restore Codes 
Return from Subroutine 

Subtract Decimal with Extend 
Set Conditionally 
Stop 
Subtract 
Subtract Address 
Subtract Immediate 
Subtract Quick 
Subtract with Extend 
Swap Register Words 

TAS Test Operand and Set 
TRAP Trap 
TRAPcc Trap Conditionally 
TRAPV Trap on Overflow 
TST Test Operand 

UNLK Unlink 
UNPK Unpack BCD 

MOTOROLA MC68030 USER'S M A N U A L  1-13 

1 



Mnemonic 

cpBcc 
cpDBcc 

cpGEN 

Coprocessor Instructions 

Description Mnemonic Description 

Branch Conditionally cpRESTORE Restore Internal State of Coprocessor 
Test Coprocessor Condition, cpSAVE Save Internal State of Coprocessor 

Decrement and Branch cpScc Set Conditionally 
Coprocessor General Instruction cpTRAPcc Trap Conditionally 

1.6.2 Virtual Machine 

A typical use for a virtual machine system is the development of software, 
such as an operating system, for a new machine also under development 
and not yet available for programming use. In a virtual machine system, a 
governing operating system emulates the hardware of the new machine and 
allows the new software to be executed and debugged as though it were 
running on the new hardware. Since the new software is controlled by the 
governing operating system, it is executed at a lower privilege level than the 
governing operating system. Thus, any attempts by the new software to use 
virtual resources that are not physically present (and should be emulated) 
are trapped to the governing operating system and performed by its software. 

In the MC68030 implementat ion of a virtual machine, the virtual application 
runs at the user privilege level. The governing operating system executes at 
the supervisor privilege level and any attempt by the new operating system 
to access supervisor resources or execute privileged instructions causes a 
trap to the governing operating system. 

Instruction continuation is used to support virtual I/0 devices in memory- 
mapped input/output systems. Control and data registers for the virtual de- 
vice are simulated in the memory map. An access to a virtual register causes 
a fault and the function of the register is emulated by software. 

1-14 MC68030 USER'S MANUAL MOTOROLA 



1.7 T H E  M E M O R Y  M A N A G E M E N T  U N I T  

The MMU supports virtual memory systems by translating logical addresses 
to physical addresses using translation tables stored in memory. The MMU 
stores address mappings in an address translation cache (ATC) that contains 
the most recently used translations. When the ATC contains the address for 
a bus cycle requested bythe CPU, a translation table search is not performed. 
Features of the MMU include: 

• Multiple Level Translation Tables with Short- and Long-Format Descrip- 
tors for Efficient Table Space Usage 

• Table Searches Automatically Performed in Microcode 

• 22-Entry Fully Associative ATC 

• Address Translations and Internal Instruction and Data Cache Accesses 
Performed in Parallel 

• Eight Page Sizes Available Ranging from 256 to 32K Bytes 

• Two Optional Transparent Blocks 

• User and Supervisor Root Pointer Registers 

• Write Protection and Supervisor Protection Attributes 

• Translations Enabled/Disabled by Software 

• Translations Can Be Disabled with External MMUDIS Signal 

• Used and Modified Bits Automatically Maintained in Tables and ATC 

• Cache Inhibit Output (CLOUT) Signal Can Be Asserted on a Page-by-Page 
Basis 

• 32-Bit Internal Logical Address with Capability To Ignore as many as 15 
Upper Address Bits 

• 3-Bit Function Code Supports Separate Address Spaces 

• 32-Bit Physical Address 

The memory management function performed by the MMU is called demand 
paged memory management. Since a task specifies the areas of memory it 
requires as it executes, memory allocation is supported on a demand basis. 
If a requested access to memory is not currently mapped by the system, then 
the access causes a demand for the operating system to load or allocate the 
required memory image. The technique used by the MC68030 is paged mem- 
ory management because physical memory is managed in blocks of a spec- 
ified number of bytes, called page frames. The logical address space is divided 

MOTOROLA MC68030 USER'S MANUAL 1-15 

i l  



into fixed-size pages that contain the same number of bytes as the page 
frames. Memory management assigns a physical base address to a logical 
page. The system software then transfers data between secondary storage 
and memory one or more pages at a time. 

1.8 PIPELINED ARCHITECTURE 

The MC68030 uses a three-stage pipelined internal architecture to provide 
for optimum instruction throughput. The pipeline allows as many as three 
words of a single instruction or three consecutive instructions to be decoded 
concurrently. 

1.9 THE CACHE MEMORIES 

Due to locality of reference, instructions and data that are used in a program 
have a high probability of being reused within a short time. Additionally, 
instructions and data operands that reside in proximity to the instructions 
and data currently in use also have a high probability of being utilized within 
a short period. To exploit these locality characteristics, the MC68030 contains 
two on-chip logical caches, a data cache, and an instruction cache. 

Each of the caches stores 256 bytes of information, organized as 16 entries, 
each containing a block of four long words (16 bytes). The processor fills the 
cache entries either one long word at a time or, during burst mode accesses, 
four long words consecutively. The burst mode of operation not only fills 
the cache efficiently but also captures adjacent instruction or data items that 
are likely to be required in the near future due to locality characteristics of 
the executing task. 

The caches improve the overall performance of the system by reducing the 
number of bus cycles required by the processor to fetch information from 
memory and by increasing the bus bandwidth available for other bus masters 
in the system. Addition of the data cache in the MC68030 extends the benefits 
of cache techniques to all memory accesses. During a write cycle, the data 
cache circuitry writes data to a cached data item as well as to the item in 
memory, maintaining consistency between data in the cache and that in 
memory. However, writing data that is not in the cache may or may not cause 
the data item to be stored in the cache, depending on the write allocation 
policy selected in the cache control register (CACR). 

1-16 MC68030 USER'S MANUAL MOTOROLA 



SECTION 2 
DATA ORGANIZATION AND ADDRESSING 
CAPABILITIES 

Most external references to memory by a microprocessor are either program 
references or data references; they either access instruction words or op- 
erands (data items) for an instruction. Program references are references to 
the program space, the section of memory that contains the program in- 
structions and any immediate data operands that reside in the instruction 
stream. Refer to M680O0PM/AD, M68000 Programmer's Reference Manual, 
for descriptions of the instructions in the program space. Data references 
refer to the data space, the section of memory that contains the program 
data. Data items in the instruction stream can be accessed with the program 
counter relative addressing modes, and these accesses are classified as pro- 
gram references. A third type of external reference used for coprocessor 
communications, interrupt acknowledge cycles, and breakpoint acknowledge 
cycles is classified as a CPU space reference. The MC68030 automatically 
sets the function codes to access the program space, the data space, or the 
CPU space for special functions as required. The function codes can be used 
by the memory management unit to organize separate program (read only) 
and data (read-write) memory areas. 

This section describes the data organization and addressing capabilities of 
the MC68030. It lists the types of operands used by instructions and describes 
the registers and their use as operands. Next, the section describes the or- 
ganization of data in memory and the addressing modes available to access 
data in memory. Last, the section describes the system stack and user pro- 
gram stacks and queues. 

2.1 I N S T R U C T I O N  O P E R A N D S  

The MC68030 supports a general-purpose set of operands to serve the re- 
quirements of a large range of applications. Operands of MC68030 instruc- 
tions may reside in registers, in memory, or within the instructions themselves. 
An instruction operand might also reside in a coprocessor. An operand may 
be a single bit, a bit field of from 1 to 32 bits in length, a byte (8 bits), a word 
(16 bits), a long word (32 bits), or a quad word (64 bits). The operand size 
for each instruction is either explicitly encoded in the instruction or implicitly 

MOTOROLA MC68030 USER'S MANUAL 2-1 

2 



2 

defined by the instruction operation. Coprocessors are designed to support 
special computation models that require very specific but widely varying 
data operand types and sizes. Hence, coprocessor instructions can specify 
operands of any size. 

2.2 ORGANIZATION OF DATA IN REGISTERS 

The eight data registers can store data operands of 1, 8, 16, 32, and 64 bits, 
addresses of 16 or 32 bits, or bit fields of 1 to 32 bits. The seven address 
registers and the three stack pointers are used for address operands of 16 
or 32 bits. The control registers (SR, VBR, SFC, DFC, CACR, CAAR, CRP, SRP, 
TC, TT0, TT1, and MMUSR) vary in size according to function. Coprocessors 
may define unique operand sizes and support them with on-chip registers 
accordingly. 

2.2.1 Data Registers 

Each data register is 32 bits wide. Byte operands occupy the low-order 8 bits, 
word operands the low-order 16 bits, and long-word operands the entire 32 
bits. When a data register is used as either a source or destination operand, 
only the appropriate low-order byte or word (in byte or word operations, 
respectively) is used or changed; the remaining high-order portion is neither 
used nor changed. The least significant bit of a long-word integer is addressed 
as bit zero, and the most significant bit is addressed as bit 31. For bit fields, 
the most significant bit is addressed as bit zero, and the least significant bit 
is addressed as the width of the field minus one. If the width of the field plus 
the offset is greater than 32, the bit field wraps around within the register. 
The following illustration shows the organization of various types of data in 
the data registers. 

Quad-word data consists of two long words: for example, the product of 32- 
bit multiply or the quotient of 32-bit divide operations (signed and unsigned). 
Quad words may be organized in any two data registers without restrictions 
on order or pairing. There are no explicit instructions for the management 
of this data type, although the MOVEM instruction can be used to move a 
quad word into or out of the registers. 

Binary-coded decimal (BCD) data represents decimal numbers in binary form. 
Although many BCD codes have been devised, the BCD instructions of the 
M68000 Family support formats in which the four least significant bits consist 
of a binary number having the numeric value of the corresponding decimal 
number. Two BCD formats are used. In the unpacked BCD format, a byte 

2-2 MC68030 USER'S MANUAL MOTOROLA 



Bit (O~<Modulo (O f f se t )<31 ,  Of fse t  of  0 = MSB)  
31 30 29 I 0 

Byte  
31 

l High-Order Byte 
24 23 16 15 8 7 g 

I M~dd'e-H~gh Byte t Middle-Low Byte I Low-Order Byte I 

16 15 O 
High-0rder Word L Low-0rder Word I 

16-Bi t  W o r d  
31 

1 

Long W o r d  
31 0 

[ L0ng W0rd I 

Quad  W o r d  
63 62 32 

AnyDx I 
31 1 O 

[ AnyDy 

Bit Field (O~<Offset<32, O<Width~<32) 
31 I Width 0 

i 

[ Offset JMSB . . .  LSB J 

Note: If width+offset<32, bit field wraps around within the register. 

U n p a c k e d  BCD ( a = M S B )  
31 8 7 6 5 4 3 2 1 o 

x x x x a c b d 

Packed BCD ( a = M S B  First  Dig i t ,  e = M S B  Second  Dig i t )  
31 8 7 6 5 4 3 2 1 0 

I a b c d e f g t- 
1 

D a t a  O r g a n i z a t i o n  in  D a t a  R e g i s t e r s  

MOTOROLA MC68030 USER'S MANUAL 2-3 

2 



2 

contains one digit; the four least signif icant bits contain the binary value and 
the four most signif icant bits are undefined. Each byte of the packed BCD 
format contains two digits; the least signif icant four bits contain the least 
signif icant digit. 

2.2.2 Address Registers 
Each address register and stack pointer is 32 bits wide and holds a 32-bit 
address. Address registers cannot be used for byte-sized operands. There- 
fore, when an address register is used as a source operand, either the low- 
order word or the entire long-word operand is used, depending upon the 
operation size. When an address register is used as the destination operand, 
the entire register is affected, regardless of the operation size. If the source 
operand is a word size, it is first sign-extended to 32 bits and then used in 
the operation to an address register destination. Address registers are used 
primari ly for addresses and to support address computation. The instruction 
set includes instructions that add to, subtract from, compare, and move the 
contents of address registers. The fol lowing example shows the organization 
of addresses in address registers. 

31 16 15 0 

Sign-Extended I 16-Bit Address 0perand I 

31 0 
Fulr 32-Bit Address 0perand I 

Address Organization in Address Registers 

2.2.3 Control Registers 
The control registers described in this section contain control information 
for supervisor functions and vary in size. With the exception o f  the user 
port ion of the status register (CCR), they are accessed only by instructions 
at the supervisor privilege level. 

The status register (SR), shown in Figure 1-4, is 16 bits wide. Only 12 bits of 
the status register are defined; all undefined values are reserved by Motorola 
for future definit ion. The undefined bits are read as zeros and should be 
written as zeros for future compatibi l i ty. The lower byte of the status register 
is the CCR. Operations to the CCR can be performed at the supervisor or user 

2-4 MC68030 USER'S MANUAL MOTOROLA 



privilege level. All operations to the status register and CCR are word-sized 
operations, but for all CCR operations, the upper byte is read as all zeros and 
is ignored when written, regardless of privilege level. 

The supervisor programming model (see Figure 1-3) shows the control reg- 
isters. The cache control register (CACR) provides control and status infor- 
mation for the on-chip instruction and data caches. The cache address register 
(CAAR) contains the address for cache control functions. The vector base 
register (VBR) provides the base address of the exception vector table. All 
operations involving the CACR, CAAR, and VBR are long-word operations, 
whether these registers are used as the source or the destination operand. 

The alternate function code registers (SFC and DFC) are 32-bit registers with 
only bits 2:0 implemented that contain the address space values (FC0-FC2) 
for the read or write operands of MOVES, PLOAD, PFLUSH, and PTEST in- 
structions. The MOVEC instruction is used to transfer values to and from the 
alternate function code registers. These are long,word transfers; the upper 
29 bits are read as zeros and are ignored when written. 

The remaining control registers in the supervisor programming model are 
used by the memory management unit (MMU). The CPU root pointer (CRP) 
and supervisor root pointer (SRP) contain pointers to the user and supervisor 
address translation trees. Transfers of data to and from these 64-bit registers 
are quad-word transfers. The translation control register (TC) contains control 
information for the MMU. The MC68030 always uses long-word transfers to 
access this 32-bit register. The transparent translation registers (TT0 and TT1 ) 
also contain 32 bits each; they identify memory areas for direct addressing 
without address translation. Data transfers to and from these registers are 
long-word transfers. The MMU status register (MMUSR) stores the status of 
the MMU after execution of a PTEST instruction. It is a 16-bit register, and 
transfers to and from the MMUSR are word transfers. Refer to SECTION 9 
MEMORY MANAGEMENT UNIT for more detail. 

2,3 O R G A N I Z A T I O N  OF D A T A  IN M E M O R Y  

Memory is organized on a byte-addressable basis where lower addresses 
correspond to higher order bytes. The address, N, of a long-word data item 
corresponds to the address of the most significant byte of the highest order 
word. The lower order word is located at address N + 2, leaving the least 
significant byte at address N ÷ 3 (refer to Figure 2-1 ). Notice that the MC68030 

MOTOROLA MC68030 USER'S MANUAL 2-5 

2 



2 

does not require data to be aligned on word boundaries (refer to Figure 
2-2), but the most efficient data transfers occur when data is aligned on the 
same byte boundary as its operand size. However, instruction words must 
be aligned on word boundaries. 

The data types supported in memory by the MC68030 are bit and bit field 
data; integer data of 8, 16, or 32 bits; 32-bit addresses; and BCD data (packed 
and unpacked). These data types are organized in memory as shown in Figure 
2-2. Note that all of these data types can be accessed at any byte address. 

Coprocessors can implement any data types and lengths up to 255 bytes. 
For example, the MC68881/MC68882 floating-point coprocessors support 
memory accesses for quad-word-sized items (double-precision floating-point 
values). 

A bit operand is specified by a base address that selects one byte in memory 
(the base byte) and a bit number that selects the one bit in this byte. The 
m o s t  significant bit of the byte is bit 7. 

31 23 15 7 

LONG WORD $OOOO00OO 
WORD $OOOOOOOO 

BYTE $OOOOOOO0 I BYTE $00000001 f 

LONG WORD 
WORD $00000004 

BYTE $00000004 I BYTE $00000005 ] 

• I 
WORD $FFFFFFFC 

BYTE $FFFFFFFC I 

LONG WORD $FFFFFFFC 

WORD $00000002 

BYTE $00000002 I BYTE $00000003 

00000004 
WORD $00000006 

BYTE $00000006 I BYTE $O00OOOO7 
I 

BYTE $FFFFFFFO 

I WORD $FFFFFFFE 

BYTE $FFFFFFFE 1 BYTE $FFFFFFFF 

Figure 2-1. Memory Operand Address 

2-6 MC68030 USER'S MANUAL MOTOROLA 



BYTE n- 1 

BYTE n- I 

BYTE n- 1 

° i, 
ADDRESS 

ADDRESS 

BIT DATA 

7 0 /7  0 7 
I 

I BYTEo-, 7B ~ 4 1 7 2 ,  0 BYTE.+, 
I 

BASE ADDRESS BIT NUMBER 

BIT FIELD DATA BASE BIT 
7 O 7 0 7 

! 

I BYTE n-1 BYTEn Io  1 

OFFSET . . . . .  , L . . . . . . .  OFFSET ~ I ~  

. . . -3-2- I  0 1 2 . . .  

BASE ADDRESS 

BYTE INTEGER DATA 

7 017 n 017 
I BYTE n-1 MSB BYTE LSB BYTE +I n 

°17 
ADDRESS 

o17 

ADDRESS 

WORD INTEGER DATA 

BIT °17 
WORD INTEGER 

O 7 O 

BYTE n+2 I 

LONG WORD INTEGER DATA BiT BIT 
LONG WORD INTEGER 

oAT 
OUAD WORD DATA 

017 BIT 
QUAD WORD 

BIT 
1 2 3  . . . .  w-11 

WIDTH 

°I' o1 BYTE n + 2 

O 7 O 

BYTE n+2 BYTE n+3 I 

° I ' ° I BYTE n+4 

o j7 o 
BYTE n+8 I 

7 

[ 

XX = USER-DEFINED VALUE 

7 

I 

BYTE n- I 

BYTEn-I 

PACKED BINARY-CODED DATA 

o L, ,13 oj, 
I MSD i ESD I BYTE n+I 

ADDRESS 

UNPACKED BINARY-CODED DATA 
017 413 OI7 41.'] 

0 7 0 

BYTE n+2 I 

7 0 

BYTE n+2 I 

AOORESS 

Figure 2-2. Memory Data Organization 

MOTOROLA MC68030 USER'S MANUAL 2-7 

2 



2 

A bit field operand is specified by: 

1. A base address that selects one byte in memory, 

2. A bit field offset that indicates the leftmost (base) bit of the bit field in 
relation to the most signif icant bit of the base byte, and 

3. A bit field width that determines how many bits to the r ight of the base 
bit are in the bit field. 

The most signif icant bit of the base byte is bit field offset 0, the least signif icant 
bit of the base byte is bit field offset 7, and the least signif icant bit of the 
previous byte in memory is bit offset - 1 .  Bit field offsets may have values 
in the range of -231 to 231 - 1 ,  and bit field widths may range between 1 
and 32 bits. 

2.4 ADDRESSING MODES 

The addressing mode of an instruction can specify the value of an operand 
(with an immediate operand), a register that contains the operand (with the 
register direct addressing mode), or how the effective address of an operand 
in memory is derived. An assembler syntax has been defined for each ad- 
dressing mode. 

Figure 2-3 shows the general format of the single effective address instruction 
operation word. The effective address field specifies the addressing mode 
for an operand that can use one of the numerous defined modes. The (ea) 
designation is composed of two 3-bit fields: the mode field and the register 
field. The value in the mode field selects one or a set of addressing modes. 
The register field specifies a register for the mode or a submode for modes 
that do not use registers. 

15 14 13 12 11 10 9 8 7 6 5 0 

I I I I I I I I I I I EFFECTIVE ADDRESS I 
X X X X X X X X X X MODE REGISTER 

Figure 2-3. Single Effective Address Instruction Operation Word 

Many instructions imply the addressing mode for one of the operands. The 
formats of these instructions include appropriate fields for operands that use 
only one addressing mode. 

2-8 MC68030 USER'S MANUAL MOTOROLA 



The effective address field may require additional information to fully specify 
the operand address. This additional information, called the effective address 
extension, is contained in an additional word or words and is considered part 
of the instruction. Refer to 2.5 EFFECTIVE ADDRESS ENCODING SUMMARY 
for a description of the extension word formats. 

The notational conventions used in the addressing mode descriptions in this 
section are: 

EA--Effective address 
An--Address register n 

Example: A3 is address register 3 
Dn--Data register n 

Example: D5 is data register 5 
Xn.SIZE*SCALE--Denotes index register n (data or address), the index size 

(W for word, L for long word), and a scale factor (1, 2, 4, 
or 8, for no, word, long-word or 8 for quad-word scaling, 
respectively). 

PC--The program counter 
dn--Displacement value, n bits wide 
bd--Base displacement 
od--Outer displacement 

L--Long-word size 
W--Word size 
( )--Identify an indirect address in a register 
[ ]--Identify an indirect address in memory 

When the addressing mode uses a register, the register field of the operation 
word specifies the register to be used. Other fields within the instruction 
specify whether the register selected is an address or data register and how 
the register is to be used. 

¸ ¸ ¸ ¸ ¸2 

2.4.1 Data  Register  Direct  M o d e  

In the data register direct mode, the operand is in the data register specified 
by the effective address register field. 

GENERATION: EA = On 
ASSEMBLER SYNTAX: On 
MODE: 000 

31 0 REGISTER: n 
DATA REGISTER: Dn ~1 OPERANO 1 
NUMBER OF EXTENSION WORDS: 0 

MOTOROLA MC68030 USER'S MANUAL 2-9 



2 

2.4.2 Address Register Direct Mode 

In the address register direct mode, the operand is in the address register 
specified by the effective address register field. 

GENERATION: EA = An 
ASSEMBLER SYNTAX: An 
MODE: 001 31 0 
REGISTER: n 
AOORESS REGISTER: An ~-I OPERANO J 
NUMBER OF EXTENSION WORDS: 0 

2.4.3 Address Register Indirect Mode 

In the address register indirect mode, the operand is in memory, and the 
address of the operand is in the address register specified by the register 
field. 

GENERATION: EA = (An) 
ASSEMBLER SYNTAX: (An) 
MODE: 010 31 0 
REGISTER: n 
AOORESS REGISTE~ A,, = "I MEMORY AOORESS I 

I I 

31 ,~ 0 

MEMORY ADDRESS: I OPERAND I 
NUMBER OF EXTENSION WORDS: 0 

2.4.4 Address Register Indirect with Postincrement Mode 

In the address register indirect with postincrement mode, the operand is in 
memory, and the address of the operand is in the address register specified 
by the register field. After the operand address is used,lit is incremented by 
one, two, or four depending on the size of the operand: byte, word, or long 
word. Coprocessors may support incrementing for any size of operand up 
to 255 bytes. If the address register is the stack pointer and the operand size 
is byte, the address is incremented by two rather than one to keep the stack 
pointer a l i g n e d  to a word boundary. 

2-10 MC68030 USER'S MANUAL MOTOROLA 



GENERATION: EA = (An) 
An = An + SIZE 

ASSEMBLER SYNTAX: (An) + 
MODE: 911 31 0 
REGISTER: n 
ADDRESS REGISTER: An ~I, MEMORY ADDRESS I 

OPERAND LENGTH (1, 2, OR 4): 

3" 0 

MEMORY ADDRESS: l OPERAND J 
NUMBER OF EXTENSION WORDS: 0 

2.4.5 Address Register Indirect with Predecrement Mode 

In the address register indirect with predecrement mode, the operand is in 
memory, and the address of the operand is in the address register specified 
by the register field. Before the operand address is used, it is decremented 
by one, two, or four depending on the operand size: byte, word, or long 
word. Coprocessors may support decrementing for any operand size up to 
255 bytes. If the address register is the stack pointer and the operand size is 
byte, the address is decremented by two rather than one to keep the stack 
pointer aligned to a word boundary. 

GENERATION: An = An - SIZE 
EA = (An} 

ASSEMBLER SYNTAX: - (An) 
MODE: 100 31 O 
REGISTER: n 
ADDRESS REGISTER: An •1 MEMORY ADDRESS I 

& 

GPERAND LENGTH (l, 2, OR 4~: = ' ~  / 
/ 

3] O 

I OPE.AND t MEMORY ADORESS: 
NUMBER OF EXTENSION WORDS: 0 

MOTOROLA MC68030 USER'S MANUAL 2-11 

2 



2 

2.4.6 Address Register Indirect wi th  Displacement  M o d e  

In the address register indirect with displacement mode, the operand is in 
memory. The address of the operand isthe sum of the address in the address 
register plus the sign-extended 16-bit displacement integer in the extension 
word. Displacements are always sign-extended to 32 bits prior to being used 
in effective address calculations. 

GENERATION: EA = (An) + d16 
ASSEMBLER SYNTAX: (d16,An) 
MODE: 101 
REGISTER: n 31 0 
ADDRESS REGISTER: An ~ I MEMORY ADDRESS ] 

--1 ! 
31 15 0 ~  

DISPLACEMENT: [ [ SIGN EXTENDED ----I INTEGER 

31 0 

MEt~ORY ADDRESS: I OPERANO J 
NUMBER OF EXTENSION WORDS: 1 

2.4.7 Address Register Indirect wi th  Index (8-Bit Displacement)  M o d e  

This addressing mode requires one extension word that contains the index 
register indicator and an 8-bit displacement. The index register indicator 
includes size and scale information. In this mode, the operand is in memory. 
The address of the operand is the sum of the contents of the address register, 
the sign-extended displacement value in the low-order eight bits of the ex- 
tension word, and the sign-extended contents of the index register (possibly 
scaled). The user must specify the displacement, the address register, and 
the index register in this mode. 

GENERATfGN: EA = (An} + (Xn} + d 8 
ASSEMBLER SYNTAX: (d8.An,Xn.SlZE * SCALE) 
MODE: ~lO 31 0 
REGISTER: n 
AOORESS REGISTER: An ~ MEMORY AOOBESS ] 

31 7 

DISPLACEMENT: I "l I . . . . .  s,oN EXTENDED 

31 

INDEX REGISTER: I SIGN EXTENDED VALUE 

0 

INTEGER J ~--( 

SCALE: I SCALE VALUE 

0 

r 

r 31 O 

MEMORY ADDRESS: I OPERAND [ 
NUMBER OF EXTENSION WORDS: 1 

2-12 MC68030 USER'S MANUAL MOTOROLA 



2.4.8 Address  Register  Indirect  w i t h  Index (Base Disp lacement )  M o d e  

This addressing mode requires an index register indicator and an optional 
16- or 32-bit sign-extended base displacement. The index register indicator 
includes size and scaling information. The operand is in memory. The address 
of the operand is the sum of the contents of the address register, the scaled 
contents of the sign-extended index register, and the base displacement. 

In this mode, the address register, the index register, and the displacement 
are all optional. If none is specified, the effective address is zero. This mode 
provides a data register indirect address when no address register is specified 
and the index register is a data register (Dn). 

GENERATION: 
ASSEMBLER SYNTAX: 
MODE: 
REGISTER: 
ADDRESS REGISTER: 

31 

BASE DISPLACEMENT: 1 

31 

INDEX REGISTER: [ 

SCALE: 

MEMORY ADDRESS: 
NUMBER OF EXTENSION WORDS: 

EA = (An), + (Xn) + bd 
/bd,An,Xn ,S(ZE * SCALE) 
110 31 O 
n 
An ~ I  MEMORY ADDRESS ] 

SIGN EXTENOEDVALUE 

SIGN EXTENDED VALUE 

1, 2, OR 3 

I SCALE VALUE 

o 

I 
0 

3, o 
[ 0PERAND I 

MOTOROLA MC68030 USER'S MANUAL 2-13 

2 



2 

2.4.9 Memory Indirect Postindexed Mode 

In this mode, the operand and its address are in memory. The processor 
calculates an intermediate indirect memory address using the base register 
(An) and base displacement (bd). The processor accesses a long word at this 
address and adds the index operand (Xn.SIZE*SCALE) and the outer dis- 
placement to yield the effective address. Both displacements and the index 
register contents are sign-extended to 32 bits. 

In the syntax for this mode, brackets enclose the values used to calculate the 
intermediate memory address. All four user-specified values are optional. 
Both the base and outer displacements may be null, word, or long word. 
When a displacement is omitted or an element is suppressed, its value is 
taken as zero in the effective address calculation. 

GENERATION: EA = (bd + An) + Xn.SIZE*SCALE + 0d 
ASSEMBLER SYNTAX: ([bd,An],Xn.SIZE *SCALE.od) 31 0 
MODE: 110 
ADDRESS REGISTER: An " I  MEMORY ADDRESS [ 

31 O. 

BASE DISPLACEMENT: I SIGN EXTENDED VALUE I 
i 

31 0 

I INDIRECT MEMORY ADDRESS J 

POINTS TO 
31 ~ 0 

I VALUE AT INDIRECT MEMORY ADDRESS I 

31 

INDEX REGISTER: I SIGN EXTENDED VALUE 
I 

SCALE: 

31 

OUTER DISPLACEMEN~ I 

EFFECTIVE ADDRESS: 
NUMBER OF EXTENSION WORDS: 

i SCALE VALUE 

SIGN EXTENDED VALUE 

1.2, 3, 4, 0R 5 

31 

I 

0 

° 

I , < 

OPERAND 

O 

I 

MC68030 USER'S MANUAL 2-14 MOTOROLA 



2.4.10 Memory Indirect Preindexed Mode 

In this mode, the operand and its address are in memory. The processor 
calculates an intermediate indirect memory address using the base register 
(An), a base displacement (bd), and the index operand (Xn.SIZE * SCALE). 
The processor accesses a long word at this address and adds the outer 
displacement to yield the effective address. Both displacements and the index 
register contents are sign-extended to 32 bits. 

In the syntax for this mode, brackets enclose the values used to calculate the 
intermediate memory address. All four user-specified values are optional. 
Both the base and outer displacements may be null, word, or long word. 
When a displacement is omitted or an element is suppressed, its value is 
taken as zero in the effective address calculation. 

GENERATION: EA = (bd + An + Xn.SIZE*SCALE) + od 
ASSEMBLER SYNTAX: ([bd,An.Xn.SIZE*SCALE],od) 3~ 
MODE: 110 
ADDRESS REGISTER: An ~ I 

m 

q 

31 

BASE DISPLACEMENT: I SIGN EXTENDED VALUE 

31 

INDEX REGISTER: ] SIGN EXTENDED VALUE 
I 

SCALE: [ SCALE VALUE 

31 

OUTER DISPLACEMENT: [ 

EFFECThfE ADDRESS: 
NUMBER OF EXTENSION WORDS: 

31 

1 
31 

I 
SFGN EXTENDED VALUE 

1,2,3,4,0R5 

31 

I 

MEMORY ADDRESS 

0 

I < 
0 

INDIRECT MEMORY ADDRESS 

POINTSTO 

VALUE AT INDIRECT MEMORY ADDRESS 

o 

OPERAND 

D 

I 

MOTOROLA MC68030 USER'S MANUAL 2-15 

2 



2 

2.4.11 Program Counter  Indirect  w i th  D isp lacement  M o d e  

In this mode, the operand is in memory. The address of the operand is the 
sum of the address in the PC and the sign-extended 16-bit displacement 
integer in the extension word. The value in the PC is the address of the 
extension word. The reference is a program space reference and is only 
allowed for reads (refer to 4.2 ADDRESS SPACE TYPES). 

GENERATION: EA = (PC) + d16 
ASSEMBLER SYNTAX: (dlG,PC) 
MODE: 111 31 O REGISTER: 010 

I m 

P,DGRAM COUNTE,: ~i AODBESS o~ EXTENSION WORD I 
| ! 

31 15 O ~  

DISPLACEMENT: [ [ SIGN EXTENDED J INTEGER 

31 0 

MEMORY ADDRESS: ! OPERAND I 
NUMBER OF EXTENSION WORDS: 1 

2.4.12 Program Counter  Indirect  w i th  Index (8-Bit D isp lacement )  M o d e  

This mode is similar to the address register indirect with index (8-bit dis- 
placement) mode described in 2.4.7 Address Register Indirect with Index 
(8-Bit Displacement) Mode, but the PC is used as the base register. The 
operand is in memory. The address of the operand is the sum of the address 
in the PC, the sign-extended displacement integer in the lower eight bits of 
the extension word, and the sized, scaled, and sign-extended index operand. 
The value in the PC is the address of the extension word. This reference is 
a program space reference and is only allowed for reads. The user must 
include the displacement, the PC, and the index register when specifying this 
addressing mode. 

GENERATION: EA = (PC) + (Xn) + d 8 
ASSEMBLER SYNTAX: (do,PC, Xn.SEE *SCALEI 
MODE: 111 31 O REGISTER: 011 

f 

PROGBAM COUNTER~ =' AODRESS OE EXTENSION WO,O | / I 
31 

DISPLACEMENT: J SIGN EXTENDED 
1 
31 

INDEX REGISTER: J SiGN EXTENDED VALUE 

SCALE: J SCA/E VALUE 
I 

MEMORY ADDRESS: 
NUMBER OF EXTENSION WORDS: 1 

7 0 

~ I  ,NTEGER I ~C 
0 

31 , O 

l OPERAND l 

2-16 MC68030 USER'S MANUAL MOTOROLA 



2.4.13 Program Counter Indirect with Index (Base Displacement) Mode 
This mode is similar to the address register indirect with index (base dis- 
placement) mode described in 2.4.8 Address Register Indirect with Index 
(Base Displacement) Mode, but the PC is used as the base register. It requires 
an index register indicator and an optional 16- or 32-bit sign-extended base 
displacement. The operand is in memory, The address of the operand is the 
sum of the contents of the PC, the scaled contents of the sign-extended index 
register, and the base displacement. The value of the PC is the address of 
the first extension word. The reference is a program space reference and is 
only allowed for reads (refer to 4.2 ADDRESS SPACE TYPES). 

In this mode, the PC, the index register, and the displacement are all optional. 
However, the user must supply the assembler notation "ZPC" (zero value is 
taken for the PC) to indicate that the PC is not used. This allows the user to 
access the program space without using the PC in calculating the effective 
address. The user can access the program space with a data register indirect 
access by placing ZPC in the instruction and specifying a data register (Dn) 
as the index register. 

GENERATION: 
ASSEMBLER SYNTAX: 
MODE: 
REGISTER: 
PROGRAM COUNTER: 

31 

BASE DISPLACEMENT: 1 

31 

INDEX REGISTER: L, 

SCALE: 

MEMORY ADDRESS: 
NUMBER OF EXTENSION WORDS: 

EA = (PC) + (Xn) + bd 
(bd, PC, Xn,SIZE *SCALE) 
111 
011 

31 O 

.~  ADD RE SS OF EXTENSION WORD 'J',| 

SIGN EXTENDED VALUE 

SIGN EXTENDED VALUE 

.1.2, 0B 3 

I SCALE VALUE 

31 

I 

D 

OPERAND 

MOTOROLA MC68030 USER'S MANUAL 2-17 



2 

2.4.14 Program Counter Memory  Indirect Postindexed Mode 

This mode is similar to the memory indirect postindexed mode described in 
2.4.9 Memory Indirect Postindexed Mode, but the PC is used as the base 
register. Both the operand and operand address are in memory. The pro- 
cessor calculates an intermediate indirect memory address by adding a base 
displacement (bd) to the PC contents. The processor accesses a long word 
at that address and adds the scaled contents of the index register and the 
optional outer displacement (od) to yield the effective address. The value of 
the PC used in the calculation is the address of the first extension word. The 
reference is a program space reference and is only allowed for reads (refer 
to 4.2 ADDRESS SPACE TYPES). 

In the syntax for this mode, brackets enclose the values used to calculate the 
intermediate memory address. All four user-specified values are optional. 
However, the user must supply the assembler notation ZPC (zero value is 
taken for the PC) to indicate that the PC is not used. This allows the user to 
access the program space without using the PC in calculating the effective 
address. Both the base and outer displacements may be null, word, or long 
word. When a displacement is omitted or an element is suppressed, its value 
is taken as zero in the effective address calculation. 

GENERATION: 
ASSEMBLER SYNTAX: 
MODE: 
REGISTER FIELD: 
PROGRAM COUNTER: 

31 

BASE O(SPLACEMENT: I 

31 

INDEX REGISTER: I 

31 

OUTER DISPLACEMENT: I 

EFFECTIVE ADDRESS: 
NUMBER DE EXTENSIDN WOBDS: 

EA = (bd + PC} + Xn.S~ZE*SCAIE + o~ 
([bd,PC],Xn.SIZE*SDALE,od) 
Il l  
011 

37 0 

~ |  ADDRESS OF EXTENSION WORD r I I 
o 

SiGN EXTENDED VALUE I 

31 0 

I INDIRECT MEMORY ADDRESS I 

PO(NTS TO 
31 ~ O 

I VALUE AT INDIRECT MEMORY ADDRESS IN PROGRAM SPACE I 
] 

I 

SIGN EXTENDED VALUE 

I SCALE VALUE 

S(GN EXTENDEO VAEUE 

1, 2, 3, 4, OR 5 

31 

I 

0 

O 

I <) 
OPERANO 

2-18 MC68030 USER'S MANUAL MOTOROLA 



2.4.15 Program Counter Memory Indirect Preindexed Mode 

This mode is similar to the memory indirect preindexed mode described in 
2.4.10 Memory Indirect Preindexed Mode, but the PC is used as the base 
register. Both the operand and operand address are in memory. The pro- 
cessor calculates an intermediate indirect memory address by adding the PC 
contents, a base displacement (bd), and the scaled contents of an index 
register. The processor accesses a long word at that address and adds the 
optional outer displacement (od) to yield the effective address. The value of 
the PC is the address of the first extension word. The reference is a program 
space reference and is only al lowed for reads (refer to 4.2 ADDRESS SPACE 
TYPES). 

In the syntax for this mode, brackets enclose the values used to calculate the 
intermediate memory address. All four user-specified vaiues are optional. 
However, the user must supply the assembler notation ZPC (zero value is 
taken for the PC) to indicate that the PC is not used. This allows the user to 
access the program space wi thout  using the PC in calculating the effective 
address. Both the base and outer displacements may be null, word, or long 
word. When a displacement is omitted or an element is suppressed, its value 
is taken as zero in the effective address calculation. 

GENERATION: EA = (lad + PC + XnlSIZE*SCALE) + od 

ASSEMBLER SYNTAX: ([bd, PC.Xn.SIZE *SCALE],ocl) 
MODE: 111 
REGISTER FIELD: 011 
PROGRAM COUNTER: 

31 

BASE DISPLACEMENT: J SIGN EXTENDED VALUE 
m 

31 

INDEX REGISTER: J SIGN EXTENDED VALUE 
| 

31 

OUTER DISPLACEMENT: J 

EFFECTIVE ADDRESS: 
NUMBER OF EXTENSION WORDS: 

31 0 

J,,J ADDRESS OF EXTENSION WORD ,J 

SCALE VALUE 

o 

I " 
0 

31 ~ O 

I INDIRECT MEMORY ADDRESS I 
i 

POINTS TO 

SIGN EXTENDED VALUE 

1, 2, 3, 4, 0R 5 

31 ~, o 
J VALUE AT INDIRECT MEMORY ADDRESS IN PROGRAM SPACE I 

31 0 

1 0PERAND 1 

MOTOROLA MC68030 USER'S MANUAL 2-19 

m 



7 ¸ 

2 ¸ 

2.4.16 Absolute Short Addressing Mode 

In this addressing mode, the operand is in memory, and the address of the 
operand is in the extension word. The 16-bit address is sign-extended to 32 
bits before it is used. 

GENERATION: EA GIVEN 
ASS~M~LE~ SYNTAX: (X~IW 
MODE: 111 
REGISTER: 000 
EXTENSION WORD: 

MEMORY ADDRESS: 
NUMBER OF EXTENSION WORDS: ] 

31 15 0 

"I'L3I SIGN EXTENDED 1 MEMORY ADDRESS 0 I 

I, OPERAND I 

2.4.17 Absolute Long Addressing Mode 

In this mode, the operand is in memory, and the address of the operand 
occupies the two extension words following the instruction word in memory. 
The first extension word contains the high-order part of the address; the low- 
order part of the address is the second extension word. 

GENERATION: EA GIVEN 
ASSEMBLER SYNTAX: (xxx).L 
MODE: 111 15 
BEG}STER: 001 | 

FIRST EXTENSION WORD: ~--! 
I 

SECOND EXTENSION WORD: 

31 

I 

ADDRESS HIGH 

0 

1 
15 

-I 

CONCATENATION 

0 

ADDRESS LOW I 

0 

I 
31 { 0 

MEMORYAOORESS: [ ORERANO J 
NUMBER OF EXTENSION WORDS: 2 

2-20 MC68030 USER'S M A N U A L  MOTOROLA 



2.4.18 Immediate Data 

In this addressing mode, the operand is in one or two extension words'  

Byte Operation 
Operand is in the low-order byte of the extension word 

Word Operation 
Operand is in the extension word 

Long-Word Operation 
The high-order 16 bits of the operand are in the first extension word; 
the low-order 16 bits are in the second extension word. 

Coprocessor instructions can support immediate data of any size. The in- 
struction word is fol lowed by as many extension words as are required. 

Generation: 0perand given 
Assembler Syntax: #xxx 
Mode Field: 111 
Register Field: 100 
Number of Extension Words: 1 or 2, except for coprocessor instructions 

MOTOROLA MC68030 USER'S MANUAL 2-21 

2 



2 

2.5 EFFECTIVE ADDRESS ENCODING SUMMARY 

Most of the addressing modes use one of the three formats shown in Figure 
2-4. The single effective address instruction is in the format of the instruction 
word. The encoding of the mode field of this word selects the addressing 
mode. The register field contains the general register number or a value that 
selects the addressing mode when the mode field contains "111" .  Table 
2-2 shows the encoding of these fields. Some indexed or indirect modes use 
the instruction word followed by the brief format extension word. Other 
indexed or indirect modes consist of the instruction word and the full format 
of extension words. The longest instruction for the MC68030 contains 10 
extension words. It is a MOVE instruction with full format extension words 
for both the source and destination effective addresses and with 32-bit base 
displacements and 32-bit outer displacements for both addresses. However, 
coprocessor instructions can have any number of extension words. Refer to 
the coprocessor instruction formats in SECTION 10 COPROCESSOR INTER- 
FACE DESCRIPTION. 

For effective addresses that use the full format, the index suppress (IS) bit 
and the index/indirect selection (I/IS) field determine the type of indexing and 
indirection. Table 2-1 lists the indexing and indirection operations corre- 
sponding to all combinations of IS and I/IS values. 

IS 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

Table 2-1. IS-I/ IS M e m o r y  Indirection Encodings 

Index/Indirect Operation 

000 No Memory Indirection 

001 Indirect Preindexed with Null Outer Displacement 

010 Indirect Preindexed with Word Outer Displacement 

011 indirect Preindexed with Long Outer Displacement 

100 Reserved 

101 Indirect Postindexed with Null Outer Displacement 

110 Indirect Postindexed with Word Outer Displacement 

111 Indirect Postindexed with Long Outer Displacement 

000 No Memory Indirection 

001 Memory Indirect with Null Outer Displacement 

010 Memory Indirect with Word Outer Displacement 

011 Memory Indirect with Long Outer Displacement 

100-111 Reserved 

2-22 MC68030 USER'S MANUAL MOTOROLA 



Single Effective Address instruction Format 

15 14 13 12 11 10 9 8 7 6 5 

I I I I EFFECTIVi ADDRESS 
X X X X X X X X X X MODE REOISTER 

15 

D/A 

15 

D/A 

la 12 

REGISTER W/L 

REGISTER W/L 

Brief Format Extension Word 

fo 9 8 7 

SCALE I 0 I DISPLACEMENT 

Full Format Extension Word(s} 
]0 9 8 7 6 5 4 3 2 

SCALE I BS } 1s } BDSIZE } O } I/}S 

BASE D SPLACEMENT (0. I OR 2 WORDS) 

OUTER DISPLACEMENT (0, ] OR 2 WORDS) 

Field 

Instruction: 
Register 

Extensions: 
Register 
D/A 

W/L 

Scale 

Definition Field Definition 
BS Base Register Suppress: 

Genera Register Number O=Base Register Added 
1 = Base Register Suppressed 

IS Index Suppress: Index Regfster Number 0 = Evaluate and Add Index 
Index Register Type Operand 

O=Dn 
1 =An 1 =Suppress Index Operand 

BD SIZE Base Displacement Size: Word/Long-Word Index Size go = Reserved 
0 = Sign-Extended Word 01 = Null Displacement 
1 = Long Word 10 -Word  Displacement 

Scale Factor 11 = Long Displacement 
00 = 1 I/IS Index/Indirect Selection: 
01 =2  Indirect and Indexing Operand 
10=4 Determined in Conjunction with 
11 =8 Bit 6, index Suppress 

Figure 2-4. Effective Address Specification Formats 

Effective address modes are grouped according to the use of the mode. They 
can be classified as follows: 

Data A data addressing effective address mode is one that refers to 
data operands. 

Memory A memory addressing effective address mode is one that refers 
to memory operands. 

Alterable An alterable addressing effective address mode is one that refers 
to alterable (writable) operands. 

Control A control addressing effective address mode is one that refers 
to memory operands without an associated size. 

MOTOROLA MC68030 USER'S M A N U A L  2-23 



2 

Table 2-2 shows the categories to which each of the effective addressing 
modes belong. 

Table 2-2. Effective Addressing Mode Categories 

Address Modes Mode Register Data Memory Control Alterable Assembler Syntax 

Data Register Direct 000 reg. no. X - -  - -  X Dn 

Address Register Direct 001 reg. no. - -  - -  - -  X An 

Address Register Indirect 010 reg. no. X X X X (An) 
Address Register Indirect 

with Postincrement 011 reg. no. X X - -  X (An)+ 
Address Register Indirect 

with Predecrement 100 reg. no. X X - -  X --(An) 
Address Register Indirect 

with Displacement 101 reg. no. X X X X (d16,An) 

Address Register Indirect with 
Index {8-Bit Disptacement) 110 reg. no. X X X X (d8,An,Xn) 

Address Register Indirect with 
Index (Base Displacement) 110 reg. no. X X X X (bd,An,Xn) 

Memory Indirect Postindexed 110 reg. no. X X X X ([bd,An],Xn,od) 
Memory Indirect Preindexed 110 reg. no. X X X X ([bd,An,Xn],od) 

Absolute Short 111 0O0 X X X X (xxx).W 
Absolute Long 111 001 X X X X (xxx).L 

Program Counter Indirect 
with Displacement 111 010 X X X - -  (d16,PC) 

Program Counter Indirect with 
Index (8-Bit) Displacement 111 011 X X X - -  (d8,PC,Xn) 

, Program Counter Indirect with 
J Index (Base Displacement) 111 011 X X X - -  (bd,PC,Xn) 
PC Memory Indirect 

Postindexed 111 011 X X X - -  ([bd,PC],Xn,od 
J PC Memory Indirect 

Preinde×ed 111 011 X X X - -  ([bd,PC,Xn],od) 

I Immediate 111 100 X X - -  - -  #(data) 

These categories are sometimes combined, forming new categories that are 
more restrictive. Two combined classifications are alterable memory or data 
alterable. The former refers to those addressing modes that are both alterable 
and memory addresses, and the Latter refers to addressing modes that are 
both data and alterable. 

2.6 P R O G R A M M E R ' S  V I E W  OF A D D R E S S I N G  M O D E S  

Extensions to the indexed addressing modes, indirection, and full 32-bit dis- 
placements provide additional programming capabilities for both the MC68020 
and the MC68030. This section describes addressing techniques that exploit 
these capabilities and summarizes the addressing modes from a program- 
ming point of view. 

2-24 MC68030 USER'S M A N U A L  M O T O R O L A  



Several of the addressing techniques described in this section use data reg- 
isters and address registers interchangeably. While the MC68030 provides 
this capability, its performance has been optimized for addressing with ad- 
dress registers. The performance of a program that uses address registers 
in address calculations is superior to that of a program that similarly uses 
data registers. The specification of addresses with data registers should be 
used sparingly (if at all), particularly in programs that require maximum 
performance. 

2.6.1 Addressing Capabilities 

In both the MC68020 and the MC68030, setting the base register suppress 
(BS) bit in the full format extension word (see Figure 2-4) suppresses use of 
the base address register in calculating the effective address. This allows any 
index register to be used in place of the base register. Since any of the data 
registers can be index registers, this provides a data register indirect form 
(Dn). The mode could be called register indirect (Rn) since either a data 
register or an address register can be used. This addressing mode is an 
extension to the M68000 Family because the MC68030 and MC68020 can use 
both the data registers and the address registers to address memory. The 
capability of specifying the size and scale of an index register (Xn.SIZE*SCALE) 
in these modes provides additional addressing flexibility. Using the SIZE 
parameter, either the entire contents of the index register can be used, or 
the least significant word can be sign-extended to provide a 32-bit index 
value (refer to Figure 2-5). 

31 0 

° ' . '  V / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / I  °, 

31 16 ~5 0 

o,.w 1 o' 

: USED IN AOORESS CALCULATION 

Figure 2-5. Using SIZE in the Index Selection 

MOTOROLA MC68030 USER'S MANUAL 2-25 

2 



2 

For both the MC68020 and the MC68030, the register indirect modes can be 
extended further. Since displacements can be 32 bits wide, they c a n  represent 
absolute addresses or the results of expressions that contain absolute ad- 
dresses. This allows the general register indirect form to be (bd,Rn) or 
(bd,An,Rn) when the base register is not suppressed. Thus, an absolute ad- 
dress can be directly indexed by one or two registers (refer to Figure 2-6). 

SYNTAX: (bd,An.Rn) 

bd 

An 

I 
Rn 

Figure 2-6. Using Absolute Address with Indexes 

Scaling provides an optional shifting of the value in an index register to the 
left by zero, one, two, or three bits before using it in the effective address 
calculation (the actual value in the index register remains unchanged). This 
is equivalent to multiplying the register by one, two, four, or eight for direct 
subscripting into an array of elements of corresponding size using an arith- 
metic value residing in any of the 16 general registers. Scaling does not add 
to the effective address calculation time. However, when combined with the 
appropriate derived modes, it produces additional capabilities. Arrayed struc- 
tures can be addressed absolutely and then subscripted, (bd,Rn*scale), for 
example. Optionally, an address register that contains a dynamic displace- 
ment can be included in the address calculation (bd,An,Rn*scale). Another 
variation that can be derived is (An,Rn*scale). In the first case, the array 
address is the sum of the contents of a register and a displacement, as shown 
in Figure 2-7. In the second example, An contains the address of an array 
and Rn contains a subscript. 

2,26 MC68030 USER'S MANUAL MOTOROLA 



15 

A 6 = 1 ~  

2 ---------]~ 

3 ~  

4 - ~ 1 ~  

2 m - ~  

SYNTAX: MOVE.W (A5,AB.L*SCALE).(A7) 
WHERE: 

A5 = ADDRESS OF ARRAY STRUCTURE 
A6 = ]NOEX NUMBER OF ARRAY ITEM 
A7 = STACK POINTER 

SIMPLE ARRAY 
(SCALE = I) 

A 6 =  1 - -  

2 - -  

RECORD OF 4 WORDS 
(SCALE = 4) 

15 

A6 = 1 - - - - - - - ~  

NOTE: Regardless of array structure, software increments index by the 
appropriate amount to point to next record. 

RECORD OF 2 WORDS 
(SCALE = 2) 

15 O 

"y///////////A 
"u\\\\\\\\\\q, 

, l 
RECORD OF 8 WORDS 

(SCALE = 8) 

15 

Figure 2-7. Addressing Array Items 

The memory indirect addressing modes use a long-word pointer in memory 
to access an operand. Any of the modes previously described can be used 
to address the memory pointer. Because the base and index registers can 
both be suppressed, the displacement acts as an absolute address, providing 
indirect absolute memory addressing (refer to Figure 2-8). 

MOTOROLA MC68030 USER'S MANUAL 2-27 

2 



2 

The outer displacement (od) available in the memory indirect modes is added 
to the pointer in memory. The syntax for these modes is ([bd,An],Xn,od) and 
([bd,An,Xn],od). When the pointer is the address of a structure in memory 
and the outer displacement is the offset of an item in the structure, the 
memory indirect modes can access the item efficiently (refer to Figure 2-9). 

Memory indirect addressing modes are used with a base displacement in 
five basic forms: 

1. [bd,An] - - Ind i rec t ,  suppressed index register 
2. ([bd,An,Xn]) - -  Preindexed indirect 
3. ([bd,An],Xn) - -  Postindexed indirect 
4. ([bd,An,Xn],od) - -  Preindexed indirect with outer displacement 
5. ([bd,An],Xn,od) - -  Postindexed indirect with outer displacement 

SYNTAX: ([bd]) 

Figure 2-8. Using Indirect Absolute Memory Addressing 

SYNTAX: ([An],od) 

MEMORY 

An ~ POINTER 

z. ~ L 

STRUCTURE 

od 

DATA ITEM 

Figure 2-9, Accessing an Item in a Structure Using Pointer 

2-28 MC68030 USER'S MANUAL MOTOROLA 



The indirect, suppressed index register mode (see Figure 2-10) uses the con- 
tents of register An as an index to the pointer located at the address specified 
by the displacement. The actual data item is at the address in the selected 
pointer. 

bd 

SYNTAX: ([bd,Ar,]) 

POINTER LIST 

An 

POINTER ~--- DATA ITEM 

L L L / 

Figure 2-10. Indirect Addressing, Suppressed Index Register 

The preindexed indirect mode (see Figure 2-11) uses the contents of An as 
an index to the pointer Fist structure at the displacement. Register Xn is the 
index to the pointer, which contains the address of the data item. 

SYNTAX: ([bd,An,Xn]) 

bd 

POINTER LIST 

I 
An 

t 
Xn 

POINTER 

DATA ITEM 

Figure 2-11. Preindexed Indirect Addressing 

MOTOROLA MC68030 USER'S MANUAL 2-29 

2 



2 

The postindexed indirect mode (see Figure 2-12) uses the contents of An as 
an index to the pointer list at the displacement. Register Xn is used as an 
index to the structure of data items located at the address specified by the 
pointer. Figure 2-13 shows the preindexed indirect addressing with outer 
displacement mode. 

SYNTAX: ([bd.An],Xn) 

POINTER LIST POST-INDEXED STRUCTURE 

bd 

An 

POINTER 

L z,.... 

Y Xn 

DATA ITEM 

Figure 2-12. Postindexed Indirect Addressing 

SYNTAX: ([bd,An,Xn].od) 

POINTER UST 

I 
An 

Xn 

POINTER 

STRUCTURE 

od 

L 
OATA ITEM 

Figure 2-13. Preindexed Indirect Addressing with Outer Displacement 

2-30 MC68030 USER'S MANUAL MOTOROLA 



The postindexed indirect mode with outer displacement (see Figure 2-14) 
uses the contents of An as an index to the pointer list at the displacement. 
Register Xn is used as an index to the structure of data structures at the 
address in the pointer. The outer displacement (od) is the displacement of 
the data item within the selected data structure. 

bd 

SYNTAX: ([bd, An],Xn,od) 

POST-INDEXED STRUCTURE 
POINTER LIST WITH OUTER DISPLACEMENT 

An 

POINTER 

/ 
I 

I 
od 

Xn 

DATA ITEM 

L L L 

Figure 2-14. Postindexed Indirect Addressing with Outer Displacement 

2.6.2 General  Addressing M o d e  S u m m a r y  

The addressing modes described in the previous section are derived from 
specific combinat ions of options in the indexing mode or a selection of two 
alternate addressing modes. For example, the addressing mode called reg- 
ister indirect (Rn) assembles as the address register indirect if the register is 
an address register. If Rn is a data register, the assembler uses the address 
register indirect with index mode using the data register as the indirect reg- 
ister and suppresses the address register by setting the base suppress bit in 
the effective address specification. Assigning an address register as Rn pro- 
vides higher performance than using a data register as Rn. Another case is 
(bd,An), which selects an addressing mode depending on the size of the 
displacement. If the displacement is 16 bits or less, the address register 
indirect with displacement mode (d16,An) is used. When a 32-bit displace- 
ment is required, the address register indirect with index (bd,An,Xn) is used 
with the index register suppressed. 

MOTOROLA MC68030 USER'S MANUAL 2-31 



2 

It is useful to examine the derived addressing modes available to a pro- 
grammer (without regard to the MC68030 effective addressing mode actually 
encoded) because the programmer need not be concerned about these de- 
cisions. The assembler can choose the more efficient addressing mode to 
encode. 

In the list of derived addressing modes that follows, common programming 
terms are used. The following definitions apply: 

pointer - -  Long-word value in a register or in memory which rep- 
resents an address. 

base - -  A pointer combined with a displacement to represent 
an address. 

index A constant or variable value added into an effective 
address calculation. A constant index is a displacement. 
A variable index is always represented by a register 
containing the value. 

disp - -  Displacement, a constant index. 

subscript The use of any of the data or address registers as a 
variable index subscript into arrays of items 1, 2, 4, or 
8 bytes in size. 

relative An address calculated from the program counter con- 
tents. The address is position independent and is in 
program space. All other addresses but psaddr are in 
data space. 

addr - -  An absolute address. 

psaddr - -  An absolute address in program space. All other ad- 
dresses but PC relative are in data space. 

preindexed - - A l l  modes from absolute address through program 
counter relative. 

2-32 M C 6 8 0 3 0  USER'S  M A N U A L  M O T O R O L A  



postindexed - -  Any of the fol lowing modes: 
addr 
psaddr,ZPC 
An 
disp,An 

addr,An 

disp,PC 

- -  Absolute address in data space 
- -  Absolute address in program space 
- -  Register pointer 
- -  Register po in ter  w i th  constant  dis- 

placement 
- -  Absolute address with single variable 

name 
- -  Simple PC relative 

The addressing modes defined in programming terms, which are derivations 
of the addressing modes provided by the MC68030 architecture, are as fol- 
lows: 

Immediate Data - -  #data: 
The data is a constant located in the instruction stream. 

Register Direct - -  Rn: 
The contents of a register contain the operand. 

Scanning Modes: 
(An) + 

Address register pointer automatically incremented after use. 

- (An )  
Address register pointer automatically decremented before use. 

Absolute Address: 
(addr) 

Absolute address in data space. 

(psaddr,ZPC) 
Absolute address in program space. Symbol ZPC suppresses the PC, 
but retains PC relative mode to directly access the program space. 

Register Pointer: 
(Rn) 

Register as a pointer. 

(disp,Rn) 
Register as a pointer with constant index (or base address). 

M O T O R O L A  M C 6 8 0 3 0  U S E R ' S  M A N U A L  2 - 3 3  



2 

Indexing: 
(An,Rn) 

Register pointer An with variable index Rn. 

(disp,An,Rn) 
Register pointer with constant and variable index (or a base address 
with a variable index). 

(addr,Rn) 
Absolute address with variable index. 

(addr,An,Rn) 
Absolute address with two variable indexes. 

Subscripting: 
(An,Rn*scale) 

Address register pointer subscript. 

(disp,An,Rn*scale) 
Address register pointer subscript with constant displacement (or base 
address with subscript). 

(addr, Rn*scale) 
Absolute address with subscript. 

(addr,An,Rn*scale) 
Absolute address subscript with variable index. 

Program Relative: 
(disp, PC) 

Simple PC relative. 

(disp,PC, Rn) 
PC relative with variable index. 

(disp, PC, Rn*scale) 
PC relative with subscript. 

2-34 MC68030 USER'S MANUAL MOTOROLA 



Memory Pointer: 
{[preindexed]) 

Memory pointer directly to data operand. 

([preindexed],disp) 
Memory pointer as base with displacement to data operand. 

([postindexed],Rn) 
Memory pointer with variable index. 

([postindexed],disp,Rn) 
Memory pointer with constant and variable index. 

([postindexed],Rn*scale) 
Memory pointer subscripted. 

([postindexed], disp, Rn*scale) 
Memory pointer subscripted with constant index. 

MOTOROLA MC68030 USER'S MANUAL 2-35 

2 



2 

2.7 M68000  FAMILY ADDRESSING COMPATIBIL ITY 

Programs can be easily transported from one member of the M68000 Family 
to another in an upward compatible fashion. The user object code of each 
early member of the family is upward compatible with newer members and 
can be executed on the newer microprocessor without change. The address 
extension word(s) are encoded with the information that allows the MC68020/ 
MC68030 to distinguish the new address extensions to the basic M68000 
Family architecture. The address extension words for the early MC68000/ 
MC68008/MC68010 microprocessors and for the newer 32-bit MC68020/ 
MC68030 microprocessors are shown in Figure 2-15. Notice the encoding for 
SCALE used by the MC68020/MC68030 is a compatible extension of the 
M68000 architecture. A value of zero for SCALE is the same encoding for 
both extension words; hence, software that uses this encoding is both up- 
ward and downward compatible across all processors in the product line. 
However, the other values of SCALE are not found in both extension formats; 
thus, while software can be easily migrated in an upward compatible direc- 
tion, only nonscaled addressing is supported in a downward fashion. If the 
MC68000 were to execute an instruction that encoded a scaling factor, the 
scaling factor would be ignored and not access the desired memory address. 
The earlier microprocessors have no knowledge of the extension word for- 
mats implemented by newer processors; while they do detect illegal instruc- 
tions, they do not decode invalid encodings of the extension words as 
exceptions. 

2.8 OTHER DATA STRUCTURES 

Stacks and queues are widely used data structures. The MC68030 implements 
a system stack and also provides instructions that support the use of user 
stacks and queues. 

2.8.1 S y s t e m  Stack  

Address register seven (A7) is used as the system stack pointer (SP). Any of 
the three system stack registers is active at any one time. The M and S bits 
of the status register determine which stack pointer is used. When S=0 
indicating user mode (user privilege level), the user stack pointer (USP) is 
the active system stack pointer, and the master and interrupt stack pointers 
cannot be referenced. When S = 1 indicating supervisor mode (at supervisor 
privilege level) and M = 1, the master stack pointer (MSP) is the active system 
stack pointer. When S=1 and M=0,  the interrupt stack pointer (ISP) is the 
active system stack pointer. This mode is the MC68030 default mode after 
reset and corresponds to the MC68000, MC68008, and MC68010 supervisor 

2-36 MC68030 USER'S MANUAL MOTOROLA 



MC68000/IVIC68008/IVIC68010 Address 
Extension Word 

15 14 12 11 1(} 9 8 

I 0jA I ~EG,STER I W~L I 0 I 0 I 0 I 

D/A: 0 = Data  R e g i s t e r  S e l e c t  
] - A d d r e s s  R e g i s t e r  S e l e c t  

W/L: 0 - W o r d - S i z e d  O p e r a t i o n  
] = L o n g - W o r d - S i z e d  O p e r a t i o n  

7 
DISPLACEMENT INTEGER I 

NIC68020/MC68030 Address 
Extension Word 

15 14 12 11 10 9 8 

I0jA I REG,STER I W~' I SOA'E I 0 I 

D/A: 0 = 
1 -  

W/L: 0 - 
1 - 

SCALE: O0 - 
01 - 
10= 
11 = 

Data Register Select 
Address Register Select 
Word-Sized Operation 
Long-Word-Sized Operation 
Scale Factor 1 (Compatible with MC68000) 
Scale Factor 2 (Extension to MC68000) 
Scale Factor 4 (Extension to MC68000) 
Scale Factor 8 (Extension to MC68000) 

7 0 
DISPLACEMENT INTEGER I 

Figure 2-15. M 6 8 0 0 0  Family  Address  Extension Words  

mode. The term supervisor stack pointer (SSP) refers to the master or inter- 
rupt stack pointers, depending on the state of the M bit. When M =  1, the 
term SSP (or A7) refers to the MSP address register. When M = 0 ,  the term 
SSP (or A7) refers to the ISP address register. The active system stack pointer 
is impl ic i t ly  referenced by all instructions that use the system stack. Each 
system stack f i l ls f rom high to low memory.  

A subrout ine call saves the program counter on the active system stack, and 
the return restores it f rom the active system stack. During the processing of 
traps and interrupts, both the program counter and the status register are 
saved on the supervisor stack (either master or interrupt). Thus, the execution 
of supervisor code is independent of user code and the condit ion of the user 
stack; conversely, user programs use the user stack pointer independent ly 
of supervisor stack requirements. 

To keep data on the system stack aligned for max imum efficiency, the active 
stack pointer is automat ical ly  decremented or incremented by two for all 
byte-sized operands moved to or f rom the stack. In long-word-organized 

MOTOROLA MC68030 USER'S MANUAL 2-37 



memory, aligning the stack pointer on a long-word address significantly 
increases the efficiency of stacking exception frames, subroutine calls and 
returns, and other stacking operations. 

2.8.2 User Program Stacks 

The user can implement stacks with the address register indirect with post- 
increment and predecrement addressing modes. With address register An 
(n =0-6), the user can implement a stack that is filled either from high to low 
memory or from low to high memory. Important considerations are: 

• Use the predecrement mode to decrement the register before its contents 
are used as the pointer to the stack. 

• Use the postincrement mode to increment the register after its contents 
are used as the pointer to the stack. 

• Maintain the stack pointer correctly when byte, word, and long-word 
items are mixed in these stacks. 

To implement stack growth from high to low memory, use: 

- (An)  to push data on the stack, 

(An)+ to pull data from the stack. 

For this type of stack, after either a push or a pull operation, register An 
points to the top item on the stack. This is illustrated as: 

An 

LOW MEMORY 

(FREE) 

TOP OF STACK 

BOSOM OF STACK 

HIGH MEMORY 

To implement stack growth from low to high memory, use: 

(An)+ to push data on the stack, 

- (An)  to pull data from the stack. 

2-38 MC68030 USER'S MANUAL MOTOROLA 



In this case, after either a push or pull operation, register An points to the 
next available space on the stack. This is illustrated as: 

An - -  

LS','/MEMORY 

50"~0M 0F STACK 

"~0P OE STACK 

,FREE) 

~:GH MEMORY 

2.8.3 Queues 

The user can implement queues with the address register indirect with post- 
increment or predecrement addressing modes. Using a pair of address reg- 
isters (two of A0-A6), the user can implement a queue which is filled either 
from high to low memory or from low to high memory. Two registers are 
used because queues are pushed from one end and pulled from the other. 
One register, An, contains the "put" pointer; the other, Am, the "get" pointer. 

To implement growth of the queue from low to high memory, use: 

(An)+ to put data into the queue, 

(Am)+ to get data from the queue. 

After a "put"  operation, the "put"  address register points to the next available 
space in the queue, and the unchanged "get" address register points to the 
next item to be removed from the queue. After a "get" operation, the "get" 
address register points to the next item to be removed from the queue, and 
the unchanged "put" address register points to the next available space in 
the queue. This is illustrated as: 

LOW MEMORY 

LAST GET (FREE) 

GET (Am)+ ~ NEXT GET 

LAST PUT 

PUT (An)+ ~ (FREE) 

HIGH MEMORY 

M O T O R O L A  M C 6 8 0 3 0  U S E R ' S  M A N U A L  2-39 



2 

To implement the queue as a circular buffer, the relevant address register 
should be checked and adjusted, if necessary, before performing the "put" 
or "get" operation. The address register is adjusted by subtracting the buffer 
length (in bytes) from the register. 

To implement growth of the queue from high to low memory, use: 

-(An) to put data into the queue, 

- (Am) to get data from the queue. 

After a "put" operation, the "put" address register points to the last item 
placed in the queue, and the unchanged "get" address register points to the 
last item removed from the queue. After a "get" operation, the "get" address 
register points to the last item removed from the queue, and the unchanged 
"put" address register points to the last item placed in the queue. This is 
illustrated as: 

PUT -(An) 

GET -(Am) 

LOW MEMORY 

(FREE) 

LAST PUT 

NEXT GET 

LAST GET (FREE) 

HIGH MEMORY 

To implement the queue as a circular buffer, the "get" or "put" operation 
should be performed first, and then the relevant address register should be 
checked and adjusted, if necessary. The address register is adjusted by adding 
the buffer length (in bytes) to the register contents. 

2-40 MC68030 USER'S MANUAL MOTOROLA 



SECTION 3 
INSTRUCTION SET SUMMARY 

This section briefly describes the MC68030 instruction set. Refer to the 
MC68000PM/AD, MC68000 Programmer's Reference Manual, for complete 
details on the MC68030 instruction set. 

The following paragraphs include descriptions of the instruction format and 
the operands used by instructions, followed by a summary of the instruction 
set. The integer condition codes and floating-point details are discussed. 
Programming examples for selected instructions are also presented: 

m 

3,1 INSTRUCTION FORMAT 

All MC68030 instructions consist of at least one word; some have as many 
as 11 words (see Figure 3-1). The first word of the instruction, called the 
operation word, specifies the length of the instruction and the operation to 
be performed. The remaining words, called extension words, further specify 
the instruction and operands. These words may be floating-point command 
words, conditional predicates, immediate operands, extensions to the effec- 
tive address mode specified in the operation word, branch displacements, 
bit number or bit field specifications, special register specifications, trap op- 
erands, pack/unpack constants, or argument counts. 

15 0 

OPERATION WORD 
(ONE WORD, SPECIFIES OPERATION AND MODES) 

SPECIAL OPERAND SPECIFIERS 
(IF ANY, ONE OR TWO WORDS) 

IMMEDIATE OPERAND OR SOURCE EFFECTIVE ADDRESS EXTENSION 
{IF ANY, ONE TO SIX WORDS) 

DESTINATION EFFECTIVE ADDRESS EXTENSION 
(IF ANY, ONE TO SIX WOROSi 

Figure 3-1. Instruction Word General Format 

MOTOROLA M068030 USER'S MANUAL 3-1 



3 

Besides the operation code, which specifies the function to be performed, 
an instruction defines the location of every operand for the function. Instruc- 
tions specify an operand location in one of three ways: 

1. Register Specification - -  A register field of the instruction contains the 
number of the register. 

2. Effective Address-- An effective address field of the instruction contains 
address mode information. 

3. Implicit Reference - -  The definition of an instruction implies the use of 
specific registers. 

The register field within an instruction specifies the register to be used. Other 
fields within the instruction specify whether the register selected is an address 
or data register and how the register is to be used. SECTION 1 INTRODUC- 
TION contains register information. 

Effective address information includes the registers, displacements, and ab- 
solute addresses for the effective address mode. SECTION 2 DATA ORGANI- 
ZATION AND ADDRESSING CAPABILITIES describes the effective address 
modes in detail. 

Certain instructions operate on specific registers. These instructions imply 
the required registers. 

3.2  INSTRUCTION S U M M A R Y  

The instructions form a set of tools to perform the following operations: 

Data Movement 
Integer Arithmetic 
Logical 
Shift and Rotate 
Bit Manipulation 

Bit Field Manipulation 
Binary-Coded Decimal Arithmetic 
Program Control 
System Control 
Multiprocessor Communications 

Each instruction type is described in detail in the following paragraphs. 

3-2 MC68030 USER'S MANUAL MOTOROLA 



The following notations are used in this section. In the operand syntax state- 
ments of the instruction definitions, the operand on the right is the destination 
operand. 

An--any address register, A7-A0 
Dn = any data register, D7-D0 
Rn=any address or data register 

CCR-condition code register (lower byte of status register) 
cc = condition codes from CCR 

SR -- status register 
SP = active stack pointer 

USP= user stack pointer 
ISP= supervisor/interrupt stack pointer 

MSP = supervisor/master stack pointer 
SSP = supervisor (master or interrupt) stack pointer 
DFC= destination function code register 
SFC=source function code register 

Rc = control register (VBR, SFC, DFC, CACR) 
MRc= MMU control register (SRP, URP, TC, DTT0, DTT1, ITT0, 

ITT1, MMUSR) 
MMUSR = MMU status register 

B, W, L--specifies a signed integer data type (twos complement) 
of byte, word, or long word 

S = single-precision real data format (32 bits) 
D=double-precision real data format (64 bits) 
X=extended-precision real data format (96 bits, 16 bits 

unused) 
P=packed BCD real data format (96 bits, 12 bytes) 

FPm, FPn=any floating-point data register, FP7-FP0 
PFcr--floating-point system control register (FPCR, FPSR, or 

FPIAR) 
k=a twos-complement signed integer ( -64  to +17) that 

specifies the format of a number to be stored in the packed 
BCD format 

d--displacement; d16 is a 16-bit displacement 
<ea> = effective address 

list= list of registers, for example D3-D0 
#<data> = immediate data; a literal integer 

{offset:width} = bit field selection 
label=assemble program label 

[m]=bi t  m of an operand 
[m:n]--bits m through n of operand 

MOTOROLA MC68030 USER'S MANUAL 3-3 

3 



3 

X = extend (X) bit in CCR 
N =negat ive {N) bit in CCR 
Z=Zero  (Z) bit in CCR 
V=over f low (V) bit in CCR 
C=carry  (C) bit in CCR 
+ = arithmetic addition or postincrement indicator 
-=ar i thmet ic  subtraction or predecrement indicator 
x = arithmetic mult ipl ication 
+ = arithmetic division or conjunction symbol 

= invert; operand is logically complemented 
A = logical AND 
V = logical OR 
0 =  logical exclusive OR 

Dc=data register, D7-D0 used during compare 
Du = data register, D7-D0 used during update 

Dr, Dq=data registers, remainder or quot ient of divide 
Dh, DI =data registers, high- or low-order 32 bits of product 
MSW= most significant word 
LSW = least significant word 
MSB = most signif icant bit 

FC = function code 
{R/W} = read or write indicator 

[An] = address extensions 

3.2.1 Data  M o v e m e n t  Instruct ions 

The MOVE instructions with their associated addressing modes are the basic 
means of transferring and storing addresses and data. MOVE instructions 
transfer byte, word, and long-word operands from memory to memory, mem- 
ory to register, register to memory, and register to register. Address move- 
ment instructions (MOVE or MOVEA) transfer word and long-word operands 
and ensure that only valid address manipulat ions are executed. In addition 
to the general MOVE instructions, there are several special data movement 
ins t ruc t ions:  move mul t ip le  registers (MOVEM), move per iphera l  data 
(MOVEP), move quick (MOVEQ), exchange registers (EXG), load effective 
address (LEA), push effective address (PEA), link stack (LINK), and unlink 
stack (UNLK). 

3-4 MC68030 USER'S MANUAL MOTOROLA 



Table 3-1 is a summary of the integer and floating-point data movement 
operations. 

Table 3-1. Data Movement Operations 

Instruction Operand Syntax Operand Size Operation 

EXG Rn, Rn 32 Rn el) Rn 

LEA : <ea>,An 32 <ea> l) An 

LINK An ,#<d>  16,32 Sp 4 0 S P ; A n  J(SP); SPI) An, SP+DOSP 

MOVE <ea>,<ea> 8,16,32 source 0 destination 
MOVEA <ea>,An 16,32 I~ 32 

MOVEM 'l ist,<ea> 16,32 listed registers J destination 
<ea>,iist 16,32 I~ ,32 source l) listed registers 

MOVEP Dn, (d16,An) 16,32 Dn[31:24] 0 (An+d); Dn[23:16] 0 An +d+2) ;  
Dn115:8I l) (An+d +4); Dn[7:0} l) (An+d+  6) 

(d16,An),Dn (An-d)  I Dn[31:24]; (An+d+2)  0 Dn[23:16]; 
( A n ÷ d - 4 )  IF Dn[16:8]; (An+d+6)  l) Dn[7:0] 

MOVEQ #<data>,Dn 8 I) 32 immediate data ~ destination 

PEA <ea> 32 SP 4 l) SP; <ea> I~ (SP) 

UNLK An 32 An l) SP; (SP) l) An; SP+4 J SP 

3.2.2 Integer Arithmetic Instructions 

The integer arithmetic operations include the four basic operations of add 
(ADD), subtract (SUB), multiply (MUL), and divide (DIV) as well as arithmetic 
compare (CMP, CMPM, CMP2), clear (CLR), and negate (NEG). The instruction 
set includes ADD, CMP, and SUB instructions for both address and data 
operations with all operand sizes valid for data operations. Address operands 
consist of 16 or 32 bits. The clear and negate instructions apply to all sizes 
of data operands. 

Signed and unsigned MUL and DIV instructions include: 
• Word multiply to produce a long-word product 
• Long-word multiply to produce and long-word or quad-word product 
• Division of a long word divided by a word divisor (word quotient and 

word remainder) 
• Division of a long word or quad word dividend by a long-word divisor 

(long-word quotient and long-word remainder) 

A set of extended instructions provides multiprecision and mixed-size arith- 
metic. These instructions are add extended (ADDX), subtract extended (SUBX), 
sign extended (EXT), and negate binary with extend (NEGX). Refer to Table 
3-2 for a summary of the integer arithmetic operations. 

M O T O R O L A  M C 6 8 0 3 0  U S E R ' S  M A N U A L  3-5 

3 



3 

Table 3-2. Integer Arithmetic Operations 

Instruction Operand Syntax Operand Size Operation 
ADD Dn,(ea) 8, 16, 32 source+destination I) destination 

(,ea),Dn 8, 16, 32 
ADDA (ea),An 16, 32 

ADDI #(data),(ea) 8, 16, 32 immediate data +destination i destination 
ADDQ #(data),(ea} 8, 16, 32 

ADDX Dn,Dn 8, 16, 32 source+destination+X 0 destination 
- (An),- (An) 8, 16, 32 

CLR (ea} 8, 16, 32 0 ~ destination 

CMP {ea),Dn 8, 16, 32 destination - source 
CMPA (ea),An 16, 32 

CMPI #(data),{ea) 8, 16, 32 destination - immediate data 

CMPM (An)+,(An)+ 8, 16, 32 destination - source 

CMP2 (ea),Rn 8, 16, 32 lower bound ( - Rn ( - upper bound 

DlVS/DIVU (ea),Dn 32/16 I) 16:16 destination/source i destination (signed or unsigned) 
(ea),Dr:Dq 64/32 J 32:32 

(ea),Dq 32/32 i 32 
DlVSL/DIVUL (ea),Dr:Dq 32/32 ~ 32:32 

EXT Dn 8 e, 16 sign extended destination IF destination 
Dn 16 J 32 

EXTB Dn 8 i' 32 

MULS/MULU (ea),Dn 16 x 16 J 32 source x destination ~ destination (signed or unsigned) 
(ea),DI 32 x 32 t 32 

(ea),Dh:DI 32 x 32 I) 64 

NEG (ea) 8, 16, 32 0 - destination J destination 

NEGX (ea} 8, 16, 32 0 - destination - X i destination 

SUB {ea},Dn 8, 16, 32 destination = source I) destination 
Dn,(ea) 8, 16, 32 

SUBA (ea),An 16, 32 

SUBI #(data),(ea) 8, 16, 32 destination - immediate data ~ destination 
SUBQ #(data),(ea) 8, 16, 32 

SUBX Dn,Dn 8, 16, 32 'destination - source - X 0 destination 
- (An) , - (An )  8, 16, 32 

3:2.3 Logical Instructions 

The logical operation instructions (AND, OR, EOR, and NOT) perform logical 
operations with all sizes of integer data operands. A similar set of immediate 
instructions (ANDI, ORI, and EORI) provide these logical operations with all 
sizes of immediate data. The TST instruction compares the operand with zero 
arithmetically, placing the result in the condition code register. Table 3-3 
summarizes the logical operations. 

3-6 MC68030 USER'S MANUAL MOTOROLA 



Table 3-3. Loqical Operations 

Instruction Operand Syntax Operand Size 

AND (ea),Dn 8. I~, 32 
Dn,(ea) 8, 15.32 

ANDI #<data>,<ea> 8, 16.32 

EOR Dn,<data>,<ea> 8, 16, 32 

EORI #(data),(ea) 8, 16.32 

NOT (ea) 8, 16, 32 

OR (ea),Dn 8, 16. 32 
Dn,(ea) 8, 16, 32 

ORI #(data),(ea) 8, 16. 32 

TST (ea) 8, 16, 32 

Operation 

source ,*, destination I destination 

immediate data .& destination I destination 

source ~) destination I) destination 

immediate data 0 destination I destination 

destination i destination 

source V destination I destination 

immediate data V destination I destination 

source - -  0 to set condition codes 

3.2.4 Shif t  and Rotate  Instruct ions 

The arithmetic shift instructions (ASR and ASL) and logical shift instructions 
(LSR and LSL) provide shift operations in both directions. The ROR, ROL, 
ROXR, and ROXL instructions perform rotate (circular shift) operations, with 
and without the extend bit. All shift and rotate operations can be performed 
on either registers or memory. 

Register shift and rotate operations shift all operand sizes. The shift count 
may be specified in the instruction operation word (to shift from 1-8 places) 
or in a register (modulo 64 shift count). 

Memory shift and rotate operations shift word-length operands one bit po- 
sition only. The SWAP instruction exchanges the 16-bit halves of a register. 
Performance of shift/rotate instructions is enhanced so that use of the ROR 
and ROL instructions with a shift count of eight allows fast byte swapping. 
Table 3-4 is a summary of the shift and rotate operations, 

M O T O R O L A  MC68030  USER'S M A N U A L  3-7 

3 



3 

Table 3-4. Shift and Rotate Operations 

Instruction Operand Syntax Operand Size Operation 

ASL 

ASR 

LSL 

LSR 

RQL 

ROR 

ROXL 

ROXR 

Dn,Dn 
#(data),Dn 

{ea) 

Dn,Dn 
#<data),Dn 

<ea> 

Dn,Dn 
#(data),Dn 

<ea> 

Dn,Dn 
#<data>,Dn 

<ea> 

Dn,Dn 
#<data),Dn 

<ea} 

Dn,Dn 
#(data),Dn 

<ea> 

Dn,Dn 
#(data),Dn 

<ea) 

Dn,Dn 
#<data),Dn 

<ea> 

8,18,32 
8,16, 32 

16 

8,16, 32 
8, 16, 32 

16 

8, 16, 32 
8,16, 32 

16 

8,16, 32 
8,16,32 

16 

8, 16,32 
8,16, 32 

16 

8,16, 32 
8, 16,32 

16 

8, 16,32 
8, 16,32 

16 

8, 16,32 
8, 16,32 

16 

. 

ED-h- 

SWAP Dn 32 I - - - 3  
I.sw I Lsw I 

*___J 

3.2.5 Bit M a n i p u l a t i o n  Instruct ions 

Bit manipulation operations are accomplished using the following instruc- 
tions: bit test (BTST), bit test and set (BSET), bit test and clear (BCLR), and 
bit test and change (BCHG). All bit manipulation operations can be performed 
on either registers or memory. The bit number is specified as immediate 
data or in a data register. Register operands are 32 bits long, and memory 
operands are 8 bits long. In Table 3-5, the summary of the bit manipulation 
operations, Z refers to bit 2, the zero bit of the status register. 

3-8 MC68030 USER'S M A N U A L  M O T O R O L A  



Table 3-5. Bit Mani 3 u l a t i o n  O p e r a t i o n s  

Instruction Operand Syntax Operand Size Operation 

BCHG Dn,<ea) 8, 32 - ({bit number) of destination) ~ Z i bit of destination 
#(data),(ea) 8, 32 

BCLR Dn,{ea) 8, 32 ~ ((bit number> of destination) i Z; 
#(data),{ea) 8, 32 0 ~ bit of destination 

BSET Dn,(ea~ 8, 32 : -  ((bit number) of destination) t Z; 
#(data),(ea) 8, 32 1 i bit of destination 

BTST Dn,(ea) 8, 32 ~ ((bit number) of destination) I Z 
#(data),(ea) 8, 32 

3.2 .6  Bit  Field I n s t r u c t i o n s  

The MC68030 supports variable-length bit field operations on fields of up to 
32 bits. The bit field insert (BFINS) instruction inserts a value into a bit field. 
Bit field extract unsigned (BFEXTU) and bit field extract signed (BFEXTS) 
extract a value from the field. Bit field find first one (BFFFO) finds the first 
bit that is set in a bit field. Also included are instructions that are analogous 
to the bit manipulation operations; bit field test (BFTST), bit field test and 
set (BFSET), bit field test and clear (BFCLR), and bit field test and change 
(BFCHG). Table 3-6 is a summary of the bit field operations. 

Table 3-6. Bit Field Operations 

Instruction Operand Syntax Operand Size Operation 

BFCHG (ea~ {offset:width} 1-32 i -  Field 0 Field 

BFCLR (ea) {offset:width} 1-32 !0's i Field 

BFEX-I'S {ea), toffset:width},Dn 1-32 F;eid ~ Dn; Sign Extended 

BFEXTU {ea} {offset:width/,Dn 1-32 Field t Dn; Zero Extended 

BFFFO (ea) {offset:width},Dn 1-32 Scan for first bit set in field; offset 0 Dn 

BFINS Dn,(ea) {offset:width} 1-32 Dn J) Field 

BFSET {ea) {offset:width} 1-32 I I 's ~ Field 

BFTST (ea) {offset:width} 1-32 ! Field MSB J) N; - (OR of all bits in field) J) Z 

NOTE: All bit field instructions set the N and Z bits as shown for BFTST before performing the specified operation. 

M O T O R O L A  M C 6 8 0 3 0  U S E R ' S  M A N U A L  3-9 



3 

3.2.7 Binary-Coded Decimal Instructions 

Five instructions support operations on binary-coded decimal (BCD) num- 
bers. T h e  a r i t h m e t i c  operations on  p a c k e d  BCD n u m b e r s  a re  a d d  d e c i m a l  

w i t h  e x t e n d  (ABCD) ,  s u b t r a c t  d e c i m a l  w i t h  e x t e n d  (SBCD) ,  a n d  n e g a t e  dec -  

i m a l  w i t h  e x t e n d  (NBCD) .  P A C K  a n d  U N P A C K  i n s t r u c t i o n s  a id  in t h e  c o n -  

v e r s i o n  o f  b y t e  e n c o d e d  n u m e r i c  da ta ,  s u c h  as ASCI I  o r  EBCDIC  s t r i n g s ,  t o  

BCD d a t a  a n d  v i c e  ve r sa .  T a b l e  3-7 is a s u m m a r y  o f  t h e  BCD o p e r a t i o n s .  

Table 3-7. BCD Operations 

Instruction Opera,hal S y n t a x  Operand Size O p e r a t i o n  

ABCD Dn,Dn 8 source10 + destination 10 + X I) destination 
- (An) ,  - (An)  8 

NBCD (ea) 8 0 - destination10 - X 0 destination 

PACK -(An),-(An) 16 i 8 unpackaged source+immediate data 0 packed 
I #(data) destination 

Dn,Dn,#{data) 16 i 8 

SBCD Dn,Dn 8 destination10 - source10 - X i destination 
- (An), - (An) 8 

UNPK -(An),-(An) 8 j 16 packed source J unpacked source 
#{data) unpacked source + immediate data 0 

Dn,Dn,#(data) 8 J 16 unpacked destination 

3-10 MC68030 USER'S MANUAL MOTOROLA 



3.2.8 Program Control  Instruct ions 

A set of subroutine call and return instructions and conditiona and uncon- 
ditional branch instructions perform program control operations. The no 
operation instruction (NOP) may be used to force synchronization of the 
internal pipelines. Table 3-8 summarizes these instructions. 

Instruction 

Bcc 

DBcc 

Table 3-8. Program Control Operations 

I Operand Syntax I Operand Size I Operation 
Integer and Floating-Point Conditional 

<label> 

Dn,<label> 16 

Scc <ea> 

BRA <label> 

BSR <label> 

JMP <ea> 

JSR <ea> 

NOP none 

RTD 

RTR 

RTS 

" Letters 

/ 
8,16,32 .L f condition true, then PC+d D PC 

I, f condition false, then Dn - 1 • Dn 
if Dn~ -1 ,  then PC+d i PC 

8 I i f  condition true, then l 's J destination: 
| else O's 0 destination 

Unconditional 
8,16,32 PC+d 0 PC 

8,16,32 SP-4  $ SP; PC B (SP); PC+d i) PC 

none destination 0 PC 

none SP-4  i SP: PC J ~SP); destination D PC 

none PC+2 * PC 

Returns 
# < d >  I 16 (SP) 0 PC; SP+4+d ~, SP 

none I none (SP) ~ CCR; SP+2 $SP; (SP) $ PC; SP-~4 I) SP 

none none SP $PC; SP+41SP 

cc in the integer instruction mnemonics Bcc, DBcc, and Scc specify testing one of the following conditions: 
CC Carry clear GE Greater or equal 
LS - -  Lower or same PL Plus 
CS - -Carry  set G T - -  Greater than 
LT Less than T - -A lways true ~+ 
EQ--Equal HI --Higher 
MI Minus VC - -  Overflow clear 
F - -  Never true "x" LE Less or equal 
NE Not equal VS - -Over f low set 

~Not applicable to the Bcc or cpBcc instructions. 

M O T O R O L A  MC68030  USER'S M A N U A L  3-11 

3 



3 

3.2.9 S y s t e m  Control  Instruct ions 

Privileged instructions, trapping instructions, and instructions that use or 
modify the condition code register (CCR) provide system control operations. 
Table 3-9 summarizes these instructions. The TRAPcc instruction uses the 
same conditional tests as the corresponding program control instructions. 
All of these instructions cause the processor to flush the instruction pipe. 

Table 3-9. System Control Operations 

Instruction I Operand Syntax Operand Size I Operation 
Privileged 

ANDI #<data>,SR 16 immediate data A SR j SR 

EORI #<data>,SR 16 immediate data ® SR 0 SR 

MOVE <ea>,SR 16 source $ SR 
SR,<ea> 16 SR $ destination 

MOVE USP,An 32 USP $ An 
An,USP 32 An i USP 

MOVEC Rc,Rn 32 Rc $ Rn 
Rn,Rc 32 Rn $ Rc 

MOVES Rn,<ea> 8,16,32 Rn 0 destination using DFC 
<ea>,Rn source using SFC $ Rn 

ORI #<data>,SR 16 immediate data V SR $ SR 

RESET none none assert RESET line 

RTE none none (SP) i SR; SP+2 i SP; (SP) 0 PC; SP+4 J SP; 
Restore stack according to format 

STOP #<data> 16 immediate data I) SR; STOP 

Trap Generating 
BKPT #<data> none run breakpoint cycle, then trap as illegal instruction 

CHK 

CHK2 

<ea>,Dn 

<ea>,Rn 

16,32 

8,16,32 

if Dn<0 or Dn>(ea), then CHK excep,tion 

if Rn<lower bound or Rn>upper bound, the CHK 
exception 

SSP - 2  I) SSP; Vector Offset i) (SSP); ILLEGAL none none 
SSP - 4  ~ SSP; PC J (SSP); 
SSP - 2  I) SSP; SR I) (SSP); 
Illegal Instruction Vector Address t PC 

TRAP #<data> none SSP - 2  I) SSP; Format and Vector Offset 0 (SSP) 
SSP - 4  J SSP; PC ~ (SSP); SSP - 2  i SSP; 
SR t (SSP); Vector Address I) PC 

TRAPcc none none if cc true, then TRAP exception 
#<data> 16,32 

TRAPV none none if V then take overflow TRAP exception 

Condition Code Register 
ANDI #<data>,CCR 8 immediate data A CCR 0 CCR 

EORI #<data>,CCR 8 immediate data (~ CCR t CCR 

MOVE <ea>,CCR 16 source $ CCR 
CCR,<ea> 16 CCR J destination 

ORI #<data>,CCR 8 immediate data V CCR ~ CCR 

3-12 MC68030 USER'S M A N U A L  M O T O R O L A  



3.2.10 M e m o r y  M a n a g e m e n t  Unit  Instructions 

The PFLUSH instructions flush the address translation caches (ATCs) and 
can optionally select only nonglobal entries for flushing. PTEST performs a 
search of the address translation tables, storing results in the MMU status 
register and loading the entry into the ATC. Table 3-10 summarizes these 
instructions. 

Table 3-10. MMU Instructions 

Instruction Operand Syntax Operand Size Operation 

PFLUSHA none none Invalidate all ATC entries 

PFLUSHA.N none none Invalidate all nonglobal ATC entries 

PFLUSH {An) none Invalidate ATC entries at effective address 

PFLUSH.N (An) none Invalidate nonglobal ATC entries at effective address 

PTEST (An) none Information about logical address I MMU status register 

3.2.11 Mul t iprocessor  Instructions 

The TAS, CAS, and CAS2 instructions coordinate the operations of processors 
in multiprocessing systems. These instructions use read-modify-write bus 
cycles to ensure uninterrupted updating of memory. Coprocessor instructions 
control the coprocessor operations. Table 3-11 lists these instructions. 

Table 3-11. Multiprocessor Operations (Read-Modify-Write) 

Instruction ] Operand Syntax ] Operand Size I Operation 
Read-Modify-Write 

CAS Dc,Du,<ea> 8,16,32 I destination - -  Dc $ CC; if Z then Du 0 destination 

~ D c . 2 . ~  . . . .  

CAS2 Dcl:Dc2,(Rn}:(Rn)OUl:Du2, 8,16,32 dual operand CAS 

TAS <ea> 8 I destination - -  0; set condition codes; 1 I) destination [7] 

Coprocessor 

cpBcc (label) 16, 32 if cpcc true then pc - d i PC 

cpDBcc (label),Dn 16 if cpcc false then Dn - 1 I) Dn 
i fDn ¢ - 1, then PC - d l P C  

cpGEN User Defined User Defined operand i coprocessor 

cp RESTORE (ea) none restore coprocessor state from (ea) 

cpSAVE (ea) none save coprocessor state at (ea) 

cpScc (ea) 8 if cpcc true, then l 's j destination; else O's I) destination 

cpTRAPcc 

I 
none 

#(data) 
none 
16, 32 

if cpcc true then TRAPcc exception 

I 

MOTOROLA MC68030 USER'S MANUAL 3-13 

3 



3 

3.3 INTEGER C O N D I T I O N  CODES 

The CCR portion of the SR contains five bits which indicate the results of 
many integer instructions. Program and system control instructions use cer- 
tain combinations of these bits to control program and system flow. 

The first four bits represent a condition resulting from a processor operation. 
The X bit is an operand for multiprecision computations; when it is used, it 
is set to the value of the C bit. The carry bit and the multiprecision extend 
bit are separate in the M68000 Family to simplify programming techniques 
that use them (refer to Table 3-8 as an example). 

The condition codes were developed to meet two criteria: 
• Cons i s tency -  across instructions, uses, and instances 
• Meaningful Results I no change unless it provides useful information 

Consistency across instructions means that all instructions that are special 
cases of more general instructions affect the condition codes in the same 
way. Consistency across instances means that all instances of an instruction 
affect the condition codes in the same way. Consistency across uses means 
that conditional instructions test the condition codes similarly and provide 
the same results, regardless of whether the condition codes are set by a 
compare, test, or move instruction. 

In the instruction set definitions, the CCR is shown as follows: 

where: 
X (extend) 

x N Z V C 
I I I I I I 

Set to the value of the C bit for arithmetic operations. Otherwise not 
affected or set to a specified result. 

N (negative) 
Set if the most significant bit of the result is set. Cleared otherwise. 

Z (zero) 
Set if the result equals zero. Cleared otherwise. 

V (overflow) 
Set if arithmetic overflow occurs. This implies that the result cannot be 
represented in the operand size. Cleared otherwise. 

C (carry) 
Set if a carry out of the most significant bit of the operand occurs for an 
addition. Also set if a borrow occurs in a subtraction. Cleared otherwise. 

3-14 MC68030 USER'S MANUAL MOTOROLA 



3.3.1 Condi t ion Code C o m p u t a t i o n  

Most operations take a source operand and a destination operand, compute, 
and store the result in the destination location. Single-operand operations 
take a destination operand, compute, and store the result in the destination 
location. Table 3-12 lists each instruction and how it affects the condition 
code bits. 

Operat ions 

ABCD 

ADD, ADDI, ADDQ 

ADDX 

AND, ANDI, EOR, EORI, 
MOVEQ, MOVE, OR, ORI, 
CLR, EXT, NOT, TAS, TST 

CHK - -  * U U U 

CHK2, CMP2 - -  U ? U ? 

SUB, SUBI, SUBQ * * * ? ? 

SUBX * * ? ? ? 

CAS, CAS2, CMP, CMPI, - -  * * ? ? 
CMPM 

DIVS, DUVI - -  * * ? 0 

MULS, MULU - -  * * ? 0 

SBCD, NBCD * U ? U ? 

NEG * * * ? ? 

NEGX * * ? ? ? 

Table 3-12. Condition Code Computations (Sheet 1 of 2) 

X N Z V C Special Definit ion 

* U ? U ? C = Decimal Carry 
Z = Z  .\ Rm A . . . .  ,k 

* * * ? ? V = S m . ~ D m A R m V S m A D m  A R m  
C = S m A  D m V R m , . \ D m V S m A R m  

* * ? ? ? V = Sm A Dm A R m V S m  A Dm A R m  
C = Sm A D m V R m , , \  D m V S m  A R m  
Z = Z A  R m A  . . . .  ,\ R0 

- -  * * 0 0 

Z = (R = LB) V (R  = UB) 
C = (LB < = UB) ,.~. (IR < LB) V (R > UB)) 

V ( U B  < L B )  A ( R > U B ) A ( B < L B )  

V = S m A D m A R m V S m  A D m A R m  
C = S m  A D m V R m . \  D m V S m  A Rm 

V = S m ? , D m A R m V S m . \ D m  A R m  
C = Sm A D m V R m , ' , D m V S m  A R m  
Z = Z A  R m A . . . A R 0  

V = Sm A I 3 m A R m V S m A D m A R m  
C = S m A D m V R m A D m V S m A R m  

V = Division Over f low 

V = Mult ipl icat ion Over f low 

C = Decimal Borrow 
Z = Z A  R m A . . . A  Ro 

V = Dm A R m  
C = D m V R m  

V = Dm A Rm 
C = D m V R m  
Z = Z A R m A . . . A R 0  

M O T O R O L A  M C 6 8 0 3 0  U S E R ' S  M A N U A L  3 - 1 5  

3 



3 

Table 3-12. Condition Code Computations (Sheet 2 of 2) 

Operat ions X N Z V C I Special Definit ion 

BTST, BCHG; BSET, BCLR ? I Z = 

BFTST, BFCHG, BFSET, - -  ? ? 0 0 N = D m  
BFCLR Z = Dm, '~  D M - 1  \ . . . .  'k DO 

BFEXTS,  BFEXTU,  BFFFO - -  ? ? 0 0 N = S m  
Z = S m ? , S m - 1  .*, . . . .  \ S 0  

BFINS - -  ? ? 0 0 N = D m  
Z = D i n , \  D M - 1  ,\ . . . .  'k DO 

A S L  * * * ? ? V = D m : ~ . ( D m - 1  V . . . V D m - r )  V D m  
( D M - 1  V . . . + D m - r )  

C = D i n - r + 1  

A S L  ( R = 0 )  - -  * * 0 

LSL, ROXL * * * 0 

LSR ( r = 0 )  - -  * * 0 

ROXL ( r = 0 )  - -  * * 0 

ROL - -  * * 0 

ROL ( r = 0 )  - -  * * 0 

ASR,  LSR, ROXR * * * O 

ASR,  LSR ( r=O)  - -  * * 0 

ROXR ( r = 0 )  - -  * * 0 

ROR - -  * * O 

ROR ( r = 0 )  - -  * * 0 

- -  = No t  A f fec ted  
U = U n d e f i n e d ,  Resu l t  M e a n i n g l e s s  
? = O the r  - -  See Spec ia l  De f i n i t i on  
• = Genera l  Case 

X = C  
N = Rm 
z = R--~ A . . .  ,,~ f i5 

S m =  Sou rce  O p e r a n d  - -  M o s t  S i g n i f i c a n t  Bit 
D m =  Des t i na t i on  O p e r a n d  - -  M o s t  S i g n i f i c a n t  Bi t  

? C = D m - r + l  

? C = X  

? C = D m - r + l  

0 

? C = D r - 1  

0 

? C = X  

? C = D r - 1  

0 

Rm = Resu l t  O p e r a n d  - -  M o s t  S i g n i f i c a n t  Bi t  
R = Reg is te r  Tested 
n = Bi t  N u m b e r  
r = Sh i f t  C o u n t  

LB = L o w e r  B o u n d  

UB = U p p e r  B o u n d  
.\ = B o o l e a n  A N D  
V = B o o l e a n  OR 

Rm = NOT Rm 

3 - 1 6  M C 6 8 0 3 0  U S E R ' S  M A N U A L  M O T O R O L A  



3.3 .2  C o n d i t i o n a l  Tests  

Table 3-13 lists the condition names, encodings, and tests for the conditional 
branch and set instructions. The test associated with each condition is a 
logical formula using the current states of the condition codes. If this formula 
evaluates to one, the condition is true. If the formula evaluates to zero, the 
condition is false. For example, the T condition is always true, and the EQ 
condition is true only if the Z bit condition code is currently true. 

Table 3-13. Conditional Tests 

Mnemonic Condition Encoding Test 

T* 0000 1 True 

False F* 0001 0 

HI High 0010 C.Z 

LS Low or Same 0011 C+Z 

CC(HS) Carry Clear 0100 

CS(LO) , Carry Set 0101 C 

NE Not Equal 0110 

EQ Equal 0111 Z 

VC Overflow Clear 1000 

V£ Overflow Set 1001 V 

PL Plus 1010 "N 

MI M inus  1011 N 

GE Greater or Equal 1100 N°V+ NoV 

LT 

GT 
LE 

• = Boolean AND 
+ = Boolean OR 

= Boolean NOT N 

Less Than 

Greater Than 

Less or Equal 

1101 

1110 

1111 

N.V + N.V 

Z+N.V+N.V 

*Not available for the Bcc instruction. 

M O T O R O L A  M C 6 8 0 3 0  USER'S  M A N U A L  3-17 

3 



3.4 INSTRUCTION SET SUMMARY 

Table 3-14 provides a alphabetized listing of the MC68030 instruction set 
listed by opcode, operation, and syntax. 

Table 3-14 use notational conventions for the operands, the subfields and 
qualifiers, and the operations performed by the instructions. In the syntax 
descriptions, the left operand is the source operand, and the right operand 
is the destination operand. The following list contains the notations used in 
Table 3-14. 

Notation for operands: 
PC--Program counter 
SR--Status register 

V--Overflow condition code 
Immediate Data--Immediate data from the instruction 

Source--Source contents 
Destination--Destination contents 

Vector--Location of exception vector 
+ inf--Positive infinity 
- inf--Negative infinity 

<fmt>--Operand data format: byte (B), word (W), long 
(L), single (S), double (D), extended (X), or packed 
(P). 

FPm--One of eight floating-point data registers (always 
specifies the source register) 

FPn--One of eight floating-point data registers (always 
specifies the detination register) 

Notation for subfields and qualifiers: 
<bit> of <operand>--Selects a single bit of the operand 

<ea>{offset:width}--Selects a bit field 
(<operand>)--The contents of the referenced location 

<operand>lO--The operand is binary coded decimal, operations 
a r e  performed in decimal 

(<address register>)--The register indirect operator 
- (<address register>)--Indicates that the operand register points to the 

memory 
(<address register>) +--Location of the instruction operand - - t h e  op- 

tional, mode qualifiers are - ,  +, (d), and (d,ix) 
#xxx or #<data>-- Immediate data that fol lows the instruction 

word(s) 

3-18 M C 6 8 0 3 0  USER'S  M A N U A L  M O T O R O L A  



Notations for operations that have two operands, written <0Perand> <op> 
<operand>, where <op> is one of the following: 

0--The source operand is moved to the destination 
operand 

el--The two operands are exchanged 
+--The operands are added 
- - -The destination operand is subtracted from the 

source operand 
x--The operands are multiplied 
- The source operand is divided by the destination 

operand 
<--Relational test, true if source operand is less than 

destination operand 
>--Relational test, true if source operand is greater 

than destination operand 
V--Logical OR 
Q--Logical exclusive OR 
A--Logical AND 

shifted by, rotated by--The source operand is shifted or rotated by the 
number of positions specified by the second 
operand 

Notation for single-operand operations: 
-<operand>--The operand is logically complemented 

<operand>sign-extended--The operand is sign extended; all bits of the upper 
portion are made equal to the high-order bit of 
the lower portion 

<operand>tested--The operand is compared to zero, and the con- 
dition codes are set appropriately 

Notation for other operations: 
TRAP--Equivalent to Format/Offset Word J (SSP); SSP-2 

J SSP; PC i (SSP); SSP-4 0 SSP; SR t (SSP); 
SSP-2 I) SSP; (vector) 0 PC 

STOP--Enter the stopped state, waiting for interrupts 
If <condition> then--The condition is tested. If true, the operations 

<operations> else after "then" are performed. If the condition is 
<operations> false and the optional "else" clause is present, 

the operations after "else" are performed. If the 
condition is false and else is omitted, the instruc- 
tion performs no operation. Refer to the Bcc in- 
struction description as an example. 

MOTOROLA MC68030 USER'S MANUAL 3-19 

3 



3 

Table 3-14. Instruction Set Summary (Sheet 1 of 5) 

Opcode 

ABCD 

ADD 

ADDA 

ADDI 

ADDQ 

ADDX 

AND 

ANDI 

ANDI 
toCCR 

ANDI 
toSR 

ASL,ASR 

Bcc 

BCHG 

8CLR 

BFCHG 

BFCLR 

BFEXTS 

BFEXTU 

BFFFO 

BFINS 

BFSET 

BFTST 

BKPT 

BRA 

BSET 

Operation 

Source10 + Destination 10 + X i Destination 

Source + Destination $ Destination 

Source + Destination 0 Destination 

Immediate Data + Destination I) Destination 

Immediate Data + Destination ~ Destination 

Source + Destination + X O Destination 

Source',Destination t Destination 

Immediate DataADestination J Destination 

Source.\CCR 0CCR 

If supervisor state 
the SourceASR 0 SR 

else TRAP 

Destination Shifted by (count) 0 Destination 

If (condition true) then PC+d I) PC 

-((number) of Destination) I) Z; 
-((number) of Destination) I) (bit number) of Destination 

-((bi t  number) of Destination) t Z; 
0 J (bit number) of Destination 

-((bi t  field) of Destination) ~ (bit field) of Destination 

0 I) (bit field) of Destination 

(bit field) of Source I) Dn 

(bit offset) of Source I) Dn 

(bit offset) of Source Bit Scan ~ Dn 

Dn 0 (bit field) of Destination 

ls I) (bit field) of Destination 

(bit field) of Destination 

, Run breakpoint acknowledge cycle; 
TRAP as illegal instruction 

PC+d t PC 

-((bi t  number) of Destination) l Z; 
! 1 J) (bit number) of Destination 

Syntax 

I ABCD Dy,Dx 
ABCD - (Ay), - (Ax) 

ADD (ea),Dn 
:AD D Dn,(ea) 

ADDA (ea),An 

ADDI #(data),(ea) 

ADDQ #(data),(ea) 

ADDX Dy,Dx 
ADDX - (Ay), - (Ax) 

AND (ea),Dn 
AND Dn,(ea) 

ANDI #(data),(ea) 

ANDI #(data),CCR 

ANDI  #(data),SR 

ASd Dx,Dy 
ASd #(data),Dy 
ASd (ea) 

Bcc (label) 

BCHG Dn,(ea) 
BCHG #(data),(ea) 

BcLR Dn,(ea) 
BCLR #(data),(ea) 

BFCHG (ea){offset:width} 

BFCLR (ea){offset:width} 

BFEXTS (ea){offset :width},Dn 

BFEXTU (ea){offset :width},Dn 

BFFFO (ea){offset:width},Dn 

BFINS Dn,(ea){offset:width} 

BFSET (ea){offset:width} 

8FTST (ea){offset:width} 

BKPT #(data) 

BRA (label) 

BSET Dn,(ea) 
BSET #(data),(ea) 

BSR SP-4  I) SP; PC J (SP); PC+d j PC BSR (label) 

BTST -((bi t  number) of Destination) i Z; BTST Dn,(ea) 
BTST #(data),(ea) 

3-20 MC68030 USER'S MANUAL MOTOROLA 



Table 3-14. Instruction Set Summary (Sheet 2 of 5) 

Opcode Operation 

CAS 
CAS2 

CAS Destination - -  Compare Operand i) cc; 
if Z, Update Operand I) Destination 
else Destination 0 Compare Operand 

CAS2 Destination 1 - -  Compare 1 i cc; 
if Z, Destination 2 - -  Compare I) cc; 
if Z, Update 1 0 Destination 1; Update 2 i) Dest r:e::c" 2 
else Destination 1 j Compare 1; Destination 2 o Ccmpare 2 

Syntax 

CAS Dc,Du,(ea) 
CAS2 Dcl :Dc2,Dul :Du2,(Rn 1 ):(Rn2) 

CHK If Dn < 0 or Dn > Source then TRAP CHK (ea),Dn 

CHK2 If Rn < lower bound or CHK2 (ea),Rn 
Rn > upper bound 
then TRAP 

CLR 0 i Destination CLR (ea) 

CMP Destination - -  Source ~ cc CMP (ea),Dn 

CMPA Destination - -  Source CMPA (ea),An 

CMPI Destination - -  Immediate Data CMPI #(data),(ea) 

CMPM Destination - -  Source ~ cc CMPM (Ay)+ ,(Ax)+ 

CMP2 Compare Rn < lower-bound or CMP2 (ea),Rn 
Rn > upper-bound 
and Set Condition Codes 

cpBcc If cpcc true then scanPC + d I) PC cpBcc (label) 

cpDBcc If cpcc false then (Dn 1 0 Dn; cpDBcc Dn,(labe0 
If Dn =~ - 1 then ecanPC+d j PC) 

cpGEN Pass Command Word to Coprocessor cpGEN (parameters as defined by co- 
processor) 

cpRESTORE If supervisor state cpRESTORE (ea) 
then Restore Internal State of Coprocessor 

else TRAP 

cpSAVE If supervisor state cpSAVE (ea) 
then Save Internal State of Coprocessor 

else TRAP 

cpScc If cpcc true then ls I Destination cpScc (ea) 
else 0s I Destination 

cpTRAPcc If cpcc true then TRAP cpTRAPcc 
cpTRAPcc #(data) 

DBcc If condition false then (Dn - 1 J) Dn; DBcc Dn,(label) 
If Dn#- -1 then PC+d I PC) 

DIVS Destination/Source J Destination DIVS.W (ea),Dn 32/16 I) 16r:i6q 
DIVSL DIVS.L (ea),Dq 32/32 1 32q 

DIVS.L (ea),Dr:Dq 64/32 I 32r:32q 
DIVSL.L (ea),Dr:Dq 32/32 i 32r:32q 

Destination/Source ~ Destination 

Source O Destination i. Destination 

DIVU 
DIVUL 

EOR 

EORI Immediate Data (~ Destination j Destination 

DIVU.W (ea),Dn 32/16 i 16r.16q 
DIVU.L (ea),Dq 32/32 0 32q 
DIVU.L (ea),Dr:Dq 64/32 0 32r:32q 
DIVUL.L (ea),Dr:Dq 32/32 j 32r:32,q 

EOR Dn,(ea) 

EORI #(data),(ea) 

MOTOROLA MC68030 USER'S MANUAL 3-21 



3 

Table 3-14. Instruction Set Summary (Sheet 3 of 5) 

Opcode Operation Syntax 

EORI Source ~ CCR II. CCR EORI #(data),CCR 
to CCR 

EORI If supervisor state EORI #(data},SR 
to SR the Source ® SR 0 SR 

else TRAP 

EXG Rx il) Ry EXG Dx,Dy 
EXG Ax,Ay 
EXG Dx,Ay 
EXG Ay,Dx 

EXT Destination Sign-Extended 0 Destination EXT,W Dn extend byte to word 
EXTB EXT.L L Dn extend word to long word 

EXTB.L Dn extend byte to long word 

ILLEGAL SSP-2 0 SSP; Vector Offset I) (SSP); ILLEGAL 
SSP-4 0 SSP; PC 0 (SSP); 
SSp-2 ~) SSP; SR J (SSP); 
Illegal Instruction Vector Address I PC 

JMP Destination Address I) PC I JMP (ea) 

JSR SP-4 0 SP; PC 0 (SP) JSR (ea} 
Destination Address I) PC 

LEA (ea) I) An I LEA (ea),An 

LINK SP-4 I) SP; An 0 (SP) LINK An,#(displacement) 
SP 0 An, SP+d i SP 

LSL,LSR Destination Shifted by (count) I) Destination LSd 5 Dx,Dy 
LSd 5 #(data),Dy 
LSd 5 (ea) 

MOVE Source j Destination MOVE (ea),(ea) 

MOVEA Source J Destination MOVEA (ea),An 

MOVE CCR i) Destination MOVE CCR,(ea} 
from CCR 

MOVE Source J CCR i MOVE (ea},CCR 
to CCR 

MOVE If supervisor state MOVE SR,(ea) 
from SR then SR J Destination 

else TRAP 

MOVE If supervisor state MOVE (ea),SR 
to SR then Source J SR 

else TRAP 

MOVE , If supervisor state MOVE USP,An 
USP then USP I) An or An i USP MOVE An,USP 

else TRAP 

MOVEC If supervisor state , MOVEC Rc,Rn 
then Rc j Rn or Rn I) Rc MOVEC Rn,Rc 

i else TRAP 

MOVEM Registers I Destination MOVEM register list,(ea) 
Source I Registers MOVEM (ea),register list 

MOVEP Source I) Destination MOVEP Dx,(d,Ay) 
MOVEP (d,Ay),Dx 

MOVEQ Immediate Data II Destination MOVEQ #(data),Dn 

3-22 MC68030 USER'S MANUAL MOTOROLA 



Table 3,14. Instruction Set Summary Sheet 4 of 5) 

Opcode Operation 

MOVES if supervisor state 
then Rn j Destination [DFC] or Source ISFC~ I~ Rn 

else TRAP 

MULS Source x Destination I) Destination 

MULU Source x Destination l) Destination 

NBCD 0- (Dest ina t ion l0) -X ~ Destination 

NEG 0-(Destination) 0 Destination 

NEGX 0-(Dest inat ion)-X I) Destination 

NOP None 

NOT ~Destination j Destination 

OR Source V Destination 0 Destination 

ORI Immediate Data V Destination I) Destination 

ORI Source V CCR 0 CCR 
to CCR 

ORI If supervisor state 
to SR then Source V SR i SR 

else TRAP 

PACK Source (Unpacked BCD)+adjustment 0 Destintion (Packed BCD) 

PEA S p - 4  I) SP; (ea) i) (SP) 

PFLUSH If supervisor state 
then invalidate instruction and data ATC entries for destination 
address 

else TRAP 

PLOAD If supervisor state 
then entry i ATC 

else TRAP 

PMOVE if supervisor state 
then (Source) 0 MRn or MRn i) (Destination) 

PTEST If supervisor state 
then logical address status 0 MMUSR; entry J ATC 

else TRAP 

RESET If supervisor state 
then Assert RSTO Line 

else TRAP 

Syntax 

I MOVES Rn,(ea) 
MOVES (ea),Rn 

MULS.W (aa),Dn 16x 16 I) 32 
MULS.L (ea),DI 32 x 32 $ 32 
MULS.L (ea),Dh:DI 32 x32 0 64 

i MULU.W (ea),Dn 16x161) 32 
MULU.L (ea),DI 32 x 32 ]) 32 
MULU.L {ea),bh:DI 32x32 i 64 

NBCD (ea) 

NEG (ea) 

NEGX (ea) 

NOP 

NOT (ea) 

OR (ea),Dn 
OR Dn,(ea) 

ORI #(data),(ea) 

ORI #(data),CCR 

ORI #(data),SR 

PACK - (Ax), - (Ay),#(adjustment) 
PACK Dx,Dy,#(adjustment) 

PEA (ea) 

PFLUSH (An) 
PFLUSHN (An) 
PFLUSHA 
PFLUSHAN 

PLOADR (function code),(ea) 
PLOADW (function code),(ea) 

PMOVE MRn,(ea) 
PMOVE (ea),MRn 
PMOVEFD (ea),MRn 

PTESTR (An) 
PTESTW (An) 

RESET 

ROd 5 Rx,Dy 
ROd 5 #(data),Dy 
ROd 5 (ea) 

ROXd 5 Dx,Dy 
ROXd 5 #(data),Dy 
ROXd 5 (ea) 

ROL,ROR Destination Rotated by (count) i Destination 

ROXL,ROXR Destination Rotated with X by (count 0 Destination 

M O T O R O L A  M C 6 8 0 3 0  USER'S  M A N U A L  3-23 

3 



3 

Opcode 

RTD 

RTE 

RTR 

Table 3-14. Instruction Set Summary (Sheet 5 of 5) 

Operation 

(SP) I) PC; SP+4+d 0 SP 

If supervisor state 
the (SP) I) SR; SP+20 SP; (SP) I) PC; 
SP + 4 i SP; 
restore state and deallocate stack according to (SP) 

else TRAP 

(SP) j CCR; SP+2 0 SP; 
<SP/0 PC, SP+4 ~ SP 

RTS (SP) B PC; SP÷4 ~ SP 

SBCD Destination10 Source l0-X I) Destination 

Scc If Condition True 
then ls 0 Destination 

else Os 0 Destination 

STOP If supervisor state 
then Immediate Data J SR; STOP 

else TRAP 

SUB Destination-Source j Destination 

SUBA Destination- Source ~ Destination 

SUBI Destination Immediate Data 0 Destination 

SUBQ Destination Immediate Data ~ Destination 

SUBX Destination-Source X ~ Destination 

SWAP Register [31:16] ~0 Register [15:0] 

TAS Destination Tested I) Condition Codes; 1 I) bit 7 of Destination 

TRAP SSP 2 I SSP; Format/Offset ~ (SSP); 
SSP-4 B SSP; PC 0 (SSP); SSP-2 1 SSP; 
SR i) (SSP); Vector Address J PC 

TRAPcc If cc then TRAP 

TRAPV If V then TRAP 

TST Destination Tested J Condition Codes 

UNLK An i SP; (SP) I~ An; SP+4 I) SP 

UNPK Source (Packed BCD)+ adjustment J Destination (Unpacked BCD) 

NOTES: 
1. Specifies either the instruction (IC), data (DC), or IC/DC caches. 
2. Where r is rounding precision, S or D. 

Syntax 

RTD #(disp]acement) 

RTE 

RTR 

RTS 

SBCD Dx,Dy 
SBCD -(Ax), (Ay) 

Scc (ea) 

STOP #<data) 

SUB (ea),Dn 
SUB Dn,(ea) 

SUBA (ea),An 

SUBI #(data),(ea) 

SUBQ #(data),(ea) 

SUBX Dx,Dy 
SUBX-(Ax) ,  (Ay) 

SWAP Dn 

TAS (ea) 

TRAP #<vector) 

TRAPcc 
TRAPcc.W #<data} 
TRAPcc.L #<data} 

TRAPV 

TST (ea) 

UNLK An 

UNPACK - (Ax),- (Ay),#(adjustment) 
UNPACK Dx,Dy,#(adjustment) 

3. A list of any combination of the eight floating-point data registers, with individual register names separated by a slash 
(/J; and/or contiguous blocks of registers specified by the first and last register names separated by a dash (-). 

4. A list of any combination of the three floating-point system control registers (FPCR, FPSR, and FPIAR) with individual 
register names separated by a slash (/). 

5. where d is direction, L or R. 

3-24 MC68030 USER'S MANUAL MOTOROLA 



3.5 INSTRUCTION EXAMPLES 
The fol lowing paragraphs provide examples of how to use selected instruc- 
tions. 

3.5.1 Using the CAS and CAS2 Instructions 
The CAS instruction compares the value in a memory location with the value 
in a data register, and copies a second data register into the memory location 
if the compared values are equal. This provides a means of updating system 
counters, history information, and globally shared pointers. The instruction 
uses an indivisible read-modify-write cycle; after CAS reads the memory 
location, no other instruction can change that location before CAS has written 
the new value. This provides security in single-processor systems, in multi- 
tasking environments, and in mult iprocessor environments. In a single- 
processor system, the operation is protected from instructions of an interrupt 
routine. In a mult i tasking environment, no other task can interfere with wri t ing 
the new value of a system variable. In a mult iprocessor environment, the 
other processors must wait until the CAS instruction completes before ac- 
cessing a global pointer. 

The fol lowing code fragment shows a routine to maintain a count, in location 
SYS-CNTR, of the executions of an operation that may be performed by any 
process or processor in a system. The routine obtains the current value of 
the count in register DO and stores the new count value in register D1. The 
CAS instruction copies the new count into SYS-CNTR if it is valid. However, 
if another user has incremented the counter between the t ime the count was 
stored and the read-modify-write cycle of the CAS instruction, the write por- 
t ion of the cycle copies the new count in SYS-CNTR into Do, and the routine 
branches to repeat the test. The fol lowing code sequence guarantees that 
SYS-CNTR is correctly incremented. 

INC-LOOP 
MOVE.W SYS-CNTR,D0 
MOVE.W D0,D1 
ADDQ.W #1,D1 
CAS.W D0,D1,SYS_CNTR 
BNE INC-LOOP 

get the old value of the counter 
make a copy of it 
and increment it 
if counter value is still the same, update it 
if not, try again 

MOTOROLA MC68030 USER'S MANUAL 3-25 

3 



3 

The CAS and CAS2 instructions together allow safe operations in the ma- 
nipulation of system linked lists. Controlling a single location, HEAD in the 
example, manages a last-in-first-out linked list (see Figure 3-2). If the list is 
empty, HEAD contains the NULL pointer (0); otherwise, HEAD contains the 
address of the element most recently added to the list. The code fragment 
shown in Figure 3-2 illustrates the code for inserting an element. The MOVE 
instructions load the address in location HEAD into DO and into the NEXT 
pointer in the element being inserted, and the address of the new element 
into DI. The CAS instruction stores the address of the inserted element into 
location HEAD if the address in HEAD remains unaltered. If HEAD contains 
a new address, the instruction loads the new address into DO and branches 
to the second MOVE instruction to try again. 

The CAS2 instruction is similar to the CAS instruction except that it performs 
two  comparisons and updates two variables when the results of the com- 
parisons are equal. If the results of both comparisons are equal, CAS2 copies 
new values into the destination addresses. If the result of either comparison 
is not equal, the instruction copies the values in the destination addresses 
into the compare operands. 

SINSERT 

SILOOP 
MOVE.L HEAD,DO 
MOVE.L DO,(NEXT.A1) 
MOVE.L A1.D1 
CAS.L DO, DI.HEAD 
BNE SILOOP 

ALLOCATE NEW ENTRY, ADDRESS IN AI 
MOVE HEAD POINTER VALUE TO DO 
ESTABLISH FORWARD LINK IN NEW ENTRY 
MOVE NEW ENTRY POINTER VALUE TO D1 
IF WE STILL POINT TO TOP OF STACK, UPDATE THE HEAD POINTER 
IF NOT. TRY AGAIN 

BEFORE INSERTING AN ELEMENT: 

NEW ~ / ~  ENTRY I 

HEAD ~ / ~  

I ENTRY I 

AFTER INSERTING AN ELEMENT: 

H E A D ~  ENTRY I / ~  ENTRY ///~1 ENTRY J 

Figure 3-2. Linked List Insertion 

3-26 MC68030 USER'S MANUAL MOTOROLA 



The next code (see Figure 3-3) fragment shows the use of a CAS2 instruction 
to delete an element from a linked list. The first LEA instruction loads the 
effective address of HEAD into A0. The MOVE instruction loads the address 
in pointer HEAD into DO. The TST instruction checks for an empty list, and 
the BEQ instruction branches to a routine at label SDEMPTY if the list is 
empty. Otherwise, a second LEA instruction loads the address of the NEXT 
pointer in the newest element on the list into A1, and the following MOVE 
instruction loads the pointer contents into D1. The CAS2 instruction compares 
the address of the newest structure to the value in HEAD and the address in 
D1 to the pointer in the address in A1. If no element has been inserted or 
deleted by another routine while this routine has been executing, the results 
of these comparisons are equal, and the CAS2 instruction stores the new 
value into location HEAD. If an element has been inserted or deleted, the 
CAS2 instruction loads the new address in location HEAD into DO, and the 
BNE instruction branches to the TST instruction to try again. 

SDELETE 
LEA HEAD.AO 
MOVE.L {AOEDO 

SDLOOP TST L DO 
BEQ SDEMPTY 
LEA (NEXT DO .At 
MOVE.L (AlkOl 
CAS2.L DO:D1 01:0" AO):(A1 
BNE SDLOOP 

SDEMPTY 

LOAD ADDRESS OF HEAD POINTER INTO AO 
MOVE VALUE OF HEAD POINTER INTO DO 
CHECK FOR NULL HEAD POINTER 
IF EMPTY NOTHING TO DELETE 
_DAD ADDRESS OF FORWARD LINK INTO A1 
~UT FORWARD LINK VALUE IN D1 
IF STILL POINT TO ENTRY TO BE DELETED, THEN UPDATE HEAD AND FORWARD POINTERS 
IF NOT TRY AGAIN 
SUCCESSFUL DELETION ADDRESS OF DELETED ENTRY IN DO (MAY BE NULL) 

3EFORE DELETING AN ELEMEN T` 

'I I 
ENTRY ] 

AFTER DELETING AN ELEMENT' 

ENTRY 1 ~ ENTRY I . . . ~  

Figure 3-3. Linked List Deletion 

ENTRY I 

MOTOROLA MC68030 USER'S MANUAL 3-27 

3 



3 

The CAS2 instruction can also be used to correctly maintain a first-in-first- 
out doubly linked list. A doubly linked list needs two controlled locations, 
LIST-PUT and LIST-GET, which contain pointers to the last element inserted 
in the list and the next to be removed, respectively. If the list is empty, both 
pointers are NULL (0). 

The code fragment shown in Figure 3-4 illustrates the insertion of an element 
in a doubly linked list. The first two instructions load the effective addresses 
of LIST-PUT and LIST-GET into registers A0 and A1, respectively. The next 
instruction moves the address of the new element into register D2. Another 
MOVE instruction moves the address in LIST-PUT into register DO. At label 
DILOOP, a TST instruction tests the value in DO, and the BEQ instruction 
branches to the MOVE instruction when DO is equal to zero. Assuming the 
list is empty, this MOVE instruction is executed next; it moves the zero in 
DO into the NEXT and LAST pointers of the new element. Then the CAS2 
instruction moves the address of the new element into both LIST_PUT and 
LIST-GET, assuming that both of these pointers still contain zero. If not, the 
BNE instruction branches to the TST instruction at label DILOOP to try again. 
This time, the BEQ instruction does not branch, and the following MOVE 
instruction moves the address in DO to the NEXT pointer of the new element. 
The CLR instruction clears register D1 to zero, and the MOVE instruction 
moves the zero into the LAST pointer of the new element. The LEA instruction 
loads the address of the LAST pointer of the most recently inserted element 
into register A1. Assuming the LIST-PUT pointer and the pointer in A1 have 
not been changed, the CAS2 instruction stores the address of the new element 
into these pointers. 

The code fragment to delete an element from a doubly linked list is similar 
(see Figure 3-5). The first two instructions load the effective addresses of 
pointers LIST-PUT and LIST-GET into registers A0 and A1, respectively. The 
MOVE instruction at label DDLOOP moves the LIST-GET pointer into register 
DI. The BEQ instruction that follows branches out of the routine when the 
pointer is zero. The MOVE instruction moves the LAST pointer of the element 
to be deleted into register D2. Assuming this is not the last element in the 
list, the Z condition code is not set, and the branch to label DDEMPTY does 
not occur. The LEA instruction loads the address of the NEXT pointer of the 
element at the address in D2 into register A2. The next instruction, a CLR 
instruction, clears register DO to z e r o .  The CAS2 instruction compares the 
address in D1 to the LIST-GET pointer and to the address in register A2. If 
the pointers have not been updated, the CAS2 instruction loads the address 
in D2 into the LIST-GET pointer and zero into the address in register A2. 

3-28 MC68030 USER'S MANUAL MOTOROLA 



DINSERT 

DILOOP 

DIEMPTY 

DIDONE 

LEA LIST PUT, AO 
LEA LIST_GET, A 1 
MOVE.L A2,D2 
MOVE.L (AO),DO 
TST L DO 
BED DIEMPTY 
MOVE.L DO,(NEXT, A2) 
CLR.L D1 
MOVE.L DI,(LAST, A2) 
lEA (LAST, D0),AI 
CAS2.L DO:D I,D 2:D 2,(A 0):(A I) 
BNE DILDOP 
BRA DIDONE 
MOVE.L DO,(NEXT, A2) 
MOVE& D0,(LAST, A2) 
CAS2.L DO:DO, D2:D2,(A0):(AI} 
BNE DILOOP 

,ALLOCATE NEW LIST ENTRY, LOAD ADDRESS INTO A2) 
LO*tO ADDRESS OF HEAD POINTER INTO AO 
LOZ, D ADDRESS OF TAIL POINTER INTO A1 
LD~'D t~EW ENTRY POINTER INTO D2 
~C~'3 POINTER TO HEAD ENTRY INTO DO 
3 ~E'O POINTER NULL (0 ENTRIES IN LIST)? 
:: SO 'A% NEED ONLY TO ESTABLISH POINTERS 
;L~ HE'~£ POINTER INTO FORWARD POINTER OF NEW ENTRY 
:_- ~C.LL POINTER VALUE IN D1 
~.- M.'.L POINTER IN BACKWARD POINTER OF NEW ENTRY 
.~ ' :  E-'CKWARD POINTER OF OLD HEAD ENTRY INTO A] 
r: '~E ST,~ POINT TO OLD HEAD ENTRY, UPDATE POINTERS 
: NC- TRY AGAIN 

RUT NULL POINTER [N FORWARD POINTER OF NEW ENTRY 
PUT t;[JLL POINTER IN BACKWARD POINTER OF NEW ENTRY 
IF WE S]qLL HAVE NO ENTRIES, SET BOTH POINTERS TO THIS ENTRY 
IF NO'[ TRY AGAIN 
SUCCESSFUL LIST ENTRY INSERTION 

BEFORE INSERTING NEW ENTRY: 

ENTRY I 

NEW ENTRY - ~  

AFTER INSERTING NEW ENTRY: 

ENTRY ~ ENTRY ] 

L,SLPUT L,ST_ ET - J  

Figure 3-4. Doubly Linked List Insertion 

When the list contains only one element, the routine branches to the CAS2 
instruction at label DDEMPTY after moving a zero pointer value into D2. This 
instruction checks the addresses in LIST-PUT and LIST_GET to verify that 
no other routine has inserted another element or deleted the last element. 
Then the instruction moves zero into both pointers, and the list is empty. 

MOTOROLA MC68030 USER'S MANUAL 3-29 

3 



3 

OOELETE 

DOLOOP 

OOEMPTY 

ODOONE 

LEA LIST__PUT,AO GET ADDRESS OF HEAD POINTER IN AO 
LEA LIST_GET. A1 GET ADDRESS OF TAIL POINTER IN A1 
MOVE.L (A1),O } MOVE TAIL POINTER INTO 01 
BEQ DODONE IF NO LIST. QUIT 
MOVE.L (LAST,O1),D2 PUT BACKWARO POINTER IN D2 
BEQ DDEMPTY IF ONLY ONE ELEMENT. UPDATE POINTERS 
LEA (NEXT. D2),A2 PUT AODRESS OF FORWARD POINTER IN A2 
CLB.L DO PUT NULL POINTER VALUE IN DO 
CAS2.L Dl:O1,D2:DO,(A1):(A2) IF BOTH POINTERS STILL POINT TO THIS ENTRY, UPDATE THEM 
BNE DDLOOP IF NOT. TRY AGAIN 
BRA DDDONE 
CAS2.L DI:D1,D2:D2,(A1):(AO) IF STILL FIRST ENTRY, SET HEAD AND TAIL POINTERS TO NULL 
BNE DDLOOP IF NOT, TRY AGAIN 

SUCCESSFUL ENTRY DELETION, ADDRESS OF DELETED ENTRY IN Ol (MAY BE NULL) 

BEFORE DELETING ENTRY: 

1 

LISTPUT J LIST_G ET - ~  

AFTER DELETING ENTRY: 

LIST_PUT ~ LIST_GET ~ DELETED ENTRY 

Figure 3-5. Doubly Linked List Deletion 

3.5.2 Nested Subroutine Calls 

The LINK instruction pushes an address onto the stack, saves the stack ad- 
dress at which the address is stored, and reserves an area of the stack. Using 
this instruction in a series of subroutine calls results in a linked list of stack 
frames. 

The UNLK instruction removes a stack frame from the end of the list by 
loading an address into the stack pointer and pulling the value at that address 
from the stack. When the operand of the instruction is the address of the link 
address at the bottom of a stack frame, the effect is to remove the stack 
frame from the stack and from the linked list. 

3-30 MC68030 USER'S MANUAL MOTOROLA 



3.5.3 Bit Field Operations 

One data type provided by the MC68030 is the bit field, consisting of as many 
as 32 consecutive bits. A bit field is defined by an offset from an effective 
address and a width value. The offset is a value in the range of -231 through 
231 - 1 from the most significant bit (bit 7) at the effective address. The width 
is a positive number, 1-32. The most signif icant bit of a bit field is bit 0; the 
bits number in a direction opposite to the bits of an integer. 

The instruction set includes eight instructions that have bit field operands. 
The inser tb i t  field (BFINS) instruction inserts a bit field stored in a register 
into a bi t  field. The extract bit field signed (BFEXTS) instruction loads a bit 
field into the least signif icant bits of a register and extends the sign to the 
left, f i l l ing the register. The extract bit field unsigned (BFEXTU) also loads a 
bit field, but zero fil ls the unused portion of the destination register. 

The set bit field (BFSET) instruction sets all the bits of a field to ones. The 
clear bit field (BFCLR) instruction clears a field. The change bit field (BFCHG) 
instruction complements all the bits in a bit field. These three instructions 
all test the previous value of the bit field, setting the condit ion codes ac- 
cordingly. The test bit field (BFTST) instruction tests the value in the field, 
setting the condit ion codes appropriately wi thout  altering the bit field. The 
find first one in bit field (BFFFO) instruction scans a bit field from bit 0 to the 
right until it f inds a bit set to one and loads the bit offset of the first set bit 
into the specified data register. If no bits in the field are set, the field offset 
and the field width is loaded into the register. 

An important application of bit field instructions is the manipulat ion of the 
exponent field in a f loating-point number. In the IEEE standard format, the 
most signif icant bit is the sign bit of the mantissa. The exponent value begins 
at the next most signif icant bit position; the exponent field does not begin 
on a byte boundary. The extract bit field (BFEXTU) instruction and the BFTST 
instruction are the most useful for this application, but other bit field instruc- 
t ions can also be used. 

Programming of input and output operations to peripherals requires testing, 
setting, and inserting of bit fields in the control registers of the peripherals, 
which is another application for bit field instructions. However, control reg- 
ister locations are not memory locations; therefore, it is not always possible 
to insert or extract bit fields of a register wi thout  affecting other fields within 
the register. 

MOTOROLA MC68030 USER'S MANUAL 3-31 

3 



3 

Another widely used application for bit field instructions is bit-mapped graph- 
ics. Because byte boundaries are ignored in these areas of memory, the field 
definitions used with bit field instructions are very helpful. 

3.5.4 Pipeline Synchronization with the NOP Instruction 
Although the no operation (NOP) instruction performs no visible operation, 
it serves an irhportant purpose. It forces synchronization of the integer unit 
pipeline by waiting for all pending bus cycles to complete. All previous integer 
instructions and floating-point external operand accesses complete execution 
before the NOP begins. The NOP instruction does not synchronize the FPU 
pipeline; floating-point instructions with floating-point register operand des- 
tinations can be executing when the NOP begins. 

3-32 MC68030 USER'S MANUAL MOTOROLA 



SECTION 4 
PROCESSING STATES 

This section describes the processing states of the MC68030. It describes the 
functions of the bits in the supervisor portion of the status register and the 
actions taken by the processor in response to exception conditions. 

Unless the processor has halted, it is always in either the normal or the 
exception processing state. Whenever the processor is executing instructions 
or fetching instructions or operands, it is in the normal processing state. The 
processor is also in the normal processing state while it is storing instruction 
results or communicat ing with a coprocessor. 

NOTE 

Exception processing refers specifically to the transit ion from normal 
processing of a program to normal processing of system routines, 
interrupt routines, and other exception handlers. Exception pro- 
cessing includes all stacking operations, the fetch of the exception 
vector, and f i l l ing of the instruction pipe caused by an exception. It 
has completed when execution of the first instruction of the excep- 
tion handler routine begins. 

The processor enters the exception processing state when an interrupt is 
acknowledged, when an instruction is traced or results in a trap, or when 
some other exceptional condit ion arises. Execution of certain instructions or 
unusual condit ions occurring during the execution of any instructions can 
cause exceptions. External condit ions, such as interrupts, bus errors, and 
some coprocessor responses, also cause exceptions. Exception processing 
provides an efficient transfer of control to handlers and routines that process 
the exceptions. 

A catastrophic system failure occurs whenever the processor receives a bus 
error or generates an address error whi le in the exception processing state. 
This type of failure halts the processor. For example, if during the exception 
processing of one bus error another bus error occurs, the MC68030 has not 
completed the transit ion to normal processing and has not completed saving 
the internal state of the machine, so the processor assumes that the system 
is not operational and halts. Only an external reset can restart a halted pro- 

El 

MOTOROLA MC68030 USER'S MANUAL 4-1 



cessor. (When the processor executes a STOP instruction, it is in a special 
type of normal processing state, one wi thout  bus cycles. It is stopped, not 
halted.) 

4.1 PRIVILEGE LEVELS 

The processor operates at one of two levels of privilege: the user level or 
the supervisor level. The supervisor level has higher privileges than the user 
level. Not all processor or coprocessor instructions are permitted to execute 
in the lower privileged user level, but all are available at the supervisor level. 
This allows a separation of supervisor and user so the supervisor can protect 
system resources from uncontrol led access. The processor uses the privilege 
level indicated by the S bit in the status register to select either the user or 
supervisor privilege level and either the user stack pointer or a supervisor 
stack pointer for stack operations. The processor identifies a bus access 
(supervisor or user mode) via the function codes so that differentiation be- 
tween supervisor and user can be maintained. The memory management 
unit uses the indication of privilege level to control and translate memory 
accesses to protect supervisor code, data, and resources from access by user 
programs. 

In many systems, the majority of programs execute at the user level. User 
programs can access only their own code and data areas and can be restricted 
from accessing other information. The operating system typical ly executes 
at the supervisor privilege level. It has access to all resources, performs the 
overhead tasks for the user level programs, and coordinates their activities. 

4.1.1 Supervisor Privilege Level 
The supervisor level is the higher privilege level. The privilege level is de- 
termined by the S bit of the status register; if the S bit is set, the supervisor 
privi lege level applies, and all instructions are executable. The bus cycles for 
instructions executed at the supervisor level are normal ly classified as su- 
pervisor references, and the values of the function codes on FC0-FC2 refer 
to supervisor address spaces. 

In a mult i tasking operating system, it is more efficient to have a supervisor 
stack space associated with each user task and a separate stack space for 
interrupt associated tasks. The MC68030 provides two supervisor stacks, 
master and interrupt; the M bit of the status register selects which of the 
two is active. When the M bit is set to one, supervisor stack pointer references 
(either implicit  or by specifying address register A7) access the master stack 

4-2 MC68030 USER'S MANUAL MOTOROLA 



pointer (MSP). The operating system sets the MSP for each task to point to 
a task-related area of supervisor data space. This separates task-related su- 
pervisor activity from asynchronous, I/O-related supervisor tasks that may 
beon ly  coincidental to the currently executing task. The master stack (MSP) 
can separately maintain task control information for each currently executing 
user task, and the software updates the MSP when a task switch is performed, 
providing an efficient means for transferring task-related stack items. The 
other supervisor stack (ISP) can be used for interrupt control information and 
workspace area as interrupt handling routines require. 

When the M bit is clear, the MC68030 is in the interrupt mode of the supervisor 
privilege level, and operation is the same as in the MC68000, MC68008, and 
MC68010 supervisor mode. (The processor is in this mode after a reset op- 
eration.) All supervisor stack pointer references access the interrupt stack 
pointer (ISP) in this mode. 

The value of the M bit in the status register does not affect execution of 
privi leged instructions; both master and interrupt modes are at the supervisor 
privilege level. Instructions that affect the M bit are MOVE to SR, ANDI to 
SR, EORI to SR, ORI to SR, and RTE. Also, the processor automatically saves 
the M-bit value and clears it in the SR as part of the exception processing 
for interrupts. 

All exception processing is performed at the supervisor privilege level. All 
bus cycles generated during exception processing are supervisor references, 
and all stack accesses use the active supervisor stack pointer. 

4.1.2 User Privi lege Level 

The user level is the lower privilege level. The privilege level is determined 
by the S bit of the status register; if the S bit is clear, the processor executes 
instructions at the user privilege level. 

Most instructions execute at either privilege level, but some instructions that 
have important system effects are privileged and can only be executed at 
the supervisor level. For instance, user programs are not allowed to execute 
the STOP instruction or the RESET instruction. To prevent a user program 
from entering the supervisor privilege level, except in a controlled manner, 
instructions that can alter the S bit in the status register are privileged. The 
TRAP #n instruction provides controlled access to operating system services 
for user programs. 

MOTOROLA MC68030 USER'S MANUAL 4-3 

4 



4 

The bus cycles for an instruction executed at the user privi lege level are 
classified as user references, and the values of the function codes on FCO-FC2 
specify user address spaces. The memory management unit of the processor, 
when it is enabled, uses the value of the function codes to dist inguish be- 
tween user and supervisor activity and to control access to protected port ions 
of the address space. While the processor is at the user level, references to 
the system stack pointer implicit ly, or to address register seven (A7) explicit ly, 
refer to the user stack pointer (USP). 

4.1.3 Changing Privilege Level 
To change from the user to the supervisor privi lege level, one of the con- 
dit ions that causes the processor to perform exception processing must oc- 
cur. This causes a change from the user level to the supervisor level and can 
cause a change from the master mode to the interrupt mode. Exception 
processing saves the current values of the S and M bits of the status register 
(along with the rest of the status register) on the active supervisor stack, and 
then sets the S bit, forcing the processor into the supervisor privilege level. 
When the exception being processed is an interrupt and the M bit is set, the 
M bit is cleared, putt ing the processor into the interrupt mode. Execution of 
instructions continues at the supervisor level to process the exception con- 
dition. 

To return to the user privilege level, a system routine must execute one of 
the fol lowing instructions: MOVE to SR, ANDI to SR, EORI to SR, ORI to SR, 
or RTE. The MOVE, ANDI, EORI, and ORI to SR and RTE instructions execute 
at the supervisor privilege level and can modify the S bit of the status register. 
After these instructions execute, the instruction pipeline is f lushed and is 
refilled from the appropriate address space. This is indicated externally by 
the assertion of the REFILL signal. 

The RTE instruction returns to the program that was executing when the 
exception occurred. It restores the exception stack frame saved on the su- 
pervisor stack. If the frame on top of the stack was generated by an interrupt, 
trap, or instruction exception, the RTE instruction restores the status register 
and program counter to the values saved on the supervisor stack. The pro- 
cessor then continues execution at the restored program counter address 
and at the privilege level determined by the S bit of the restored status 
register. If the frame on top of the stack was generated by a bus fault (bus 
error or address error exception), the RTE instruction restores the entire saved 
processor state from the stack. 

4-4 MC68030 USER'S MANUAL MOTOROLA 



4.2 A D D R E S S  S P A C E  T Y P E S  

The processor specifies a target address space for every bus cycle with the 
function code signals according to the type of access required. In addition 
to distinguishing between supervisor user and program/data, the processor 
can identify special processor cycles, such as the interrupt acknowledge cycle, 
and the memory management unit can control accesses and translate ad- 
dresses appropriately. Table 4-1 lists the types of accesses defined for the 
MC68030 and the corresponding values of function codes FC0-FC2. 

Table 4-1. Address Space Encodings 

FC2 FCl FC0 Address Space 

0 0 0 (Undefined, Reserved)~ 

0 0 1 User Data Space 

0 1 0 User Program Space 

0 1 1 (Undefined, Reserved)~ 

1 0 0 (Undefined, Reserved)~ 

1 0 1 Supervisor Data Space 

1 1 0 Supervisor Program Space 

1 1 1 CPU Space 

~Address space 3 is reserved for user definition, while 0 and 4 
are reserved for future use by Motorola. 

The memory locations of user program and data accesses are not predefined. 
Neither are the locations of supervisor data space. During reset, the first two 
long words beginning at memory location zero in the supervisor program 
space are used for processor initialization. No other memory locations are 
explicitly defined by the MC68030. 

A function code of $7 ([FC2: FC0] = 111) selects the CPU address space. This 
is a special address space that does not contain instructions or operands but 
is reserved for special processor functions. The processor uses accesses in 
this space to communicate with external devices for special purposes. For 
example, all M68000 processors use the CPU space for interrupt acknowledge 
cycles. The MC68020 and MC68030 also generate CPU space accesses for 
breakpoint acknowledge and coprocessor operations. 

Supervisor programs can use the MOVES instruction to access all address 
spaces, including the user spaces and the CPU address space. Although the 
MOVES instruction can be used to generate CPU space cycles, this may 
interfere with proper system operation. Thus, the use of MOVES to access 
the CPU space should be done with caution. 

MOTOROLA MC68030 USER'S MANUAL 4-5 

m 



4 

4.3 EXCEPTION PROCESSING 

An exception is defined as a special condition that pre-empts normal pro- 
cessing. Both internal and external conditions cause exceptions. External 
conditions that cause exceptions are interrupts from external devices, bus 
errors, coprocessor detected errors, and reset. Instructions, address errors, 
tracing, and breakpoints are internal conditions that cause exceptions. The 
TRAP, TRAPcc, TRAPV, cpTRAPcc, CHK, CHK2, RTE, and DIV instructions can 
all generate exceptions as part of their normal execution. In addition, illegal 
instructions, privilege violations, and coprocessor protocol violations cause 
exceptions. 

Exception processing, which is the transition from the normal processing of 
a program to the processing required for the exception condition, involves 
the exception vector table and an exception stack frame. The following par- 
agraphs describe the vector table and a generalized exception stack frame. 
Exception processing is discussed in detail in SECTION 8 EXCEPTION PRO- 
CESSING. Coprocessor detected exceptions are discussed in detail in SEC- 
TION 10 COPROCESSOR INTERFACE DESCRIPTION. 

4.3.1 Exception Vectors 
The vector base register (VBR) contains the base address of the 1024-byte 
exception vector table, which consists of 256 exception vectors. Exception 
vectors contain the memory addresses of routines that begin execution at 
the completion of exception processing. These routines perform a series of 
operations appropriate for the corresponding exceptions. Because the ex- 
ception vectors contain memory addresses, each consists of one long word, 
except for the reset vector. The reset vector consists of two long words: the 
address used to initialize the interrupt stack pointer and the address used to 
initialize the program counter. 

The address of an exception vector is derived from an 8-bit vector number 
and the VBR. The vector numbers for some exceptions are obtained from an 
external device; others are supplied automatically by the processor. The 
processor multiplies the vector number by four to calculate the vector offset, 
which it adds to the VBR. The sum is the memory address of the vector. All 
exception vectors are located in supervisor data space, except the reset vec- 
tor, which is located in supervisor program space. Only the initial reset vector 
is fixed in the processor's memory map; once initialization is complete, there 
are no fixed assignments. Since the VBR provides the base address of the 
vector table, the vector table can be located anywhere in memory; it can 

4-6 MC68030 USER'S MANUAL MOTOROLA 



even be dynamically relocated for each task that is executed by an operating 
system. Details of exception processing are provided in SECTION 8 EXCEP- 
TION PROCESSING, and Table 8-1 lists the exception vector assignments. 

4.3.2 Exception Stack Frame 
Exception processing saves the most volatile portion of the current processor 
context on the top of the supervisor stack. This context is organized in a 
format called the exception stack frame. This information always includes a 
copy of the status register, the program counter, the vector offset of the 
vector, and the frame format field. The frame format field identifies the type 
of stack frame. The RTE instruction uses the value in the format field to 
properly restore the information stored in the stack frame and to deallocate 
the stack space. The general form of the exception stack frame is illustrated 
in Figure 4-1. Refer to SECTION 8 EXCEPTION PROCESSING for a complete 
list of exception stack frames. 

SP 

15 12 

STATUS REGISTER 

PROGRAM COUNTER 

FORMAT l VECTOR OFFSET 

ADDITIONAL PROCESSOR STATE INFORMATION 
(2, 6. 12. OR 42 WORDS. IF NEEDED) 

Figure 4-1. General Exception Stack Frame 

MOTOROLA MC68030 USER'S MANUAL 4-7 

4 



4 



SECTION 5 
SIGNAL DESCRIPTION 

This section contains brief descriptions of the input and output signals in 
their functional groups, as shown in Figure 5-1. Each signal is explained in 
a brief paragraph with reference to other sections that contain more detail 
about the signal and the related operations. 

F ~  
FUNCTION CODES --~ ~ FCO-FC2 

BUS - - ~ <  AO-A31 ADDRESS 

DATA BUS --~(~ D0-031 

__[= s,zo 

TRANSFERS,ZE S,,, 

- -  OCS 
ECS ,q 
R/W 
HMC 

ASYNCHRONOUS A'S 
BUS CONTROL -- 

OBEN 
DSACKO 
DSACK1 

CIIN 
CLOUT 

. q  

CACHE CONTROL CBREQ 
CBACK ~. 

MC68030 

h IPLO _ ~  q[ - -  
IPL1 

9 1  - -  

IPL2 iNTERRUPT 
"~ - -  CONTROL IPENO 
,t AVEC 

---] BUS ARBITRATION 
B'G ~_._~v--- CONTROL BGACK 

RESET 
HALT BUS EXCEPTION 
BER'~'R CONTROL 

STERM SYNCHRONOUS 
"= BUS CONTROL 

REFILL ~ _ ~  

STATUS ~ EMULATOR 
COIS SUPPORT 
MMUOIS 

C~ 

VCC ,q 

GND 

Figure 5-1. Functional Signal Groups 

MOTOROLA MC68030 USER'S MANUAL 5-1 

5 



5 

NOTE 

In th is  sec t ion  and in the  r e m a i n d e r  of  the  m a n u a l ,  a s s e r t i o n  and 

n e g a t i o n  are used to  spec i f y  f o r c i ng  a s igna l  to  a pa r t i cu l a r  state.  In 
pa r t i cu la r ,  asse r t i on  and  a s s e r t  re fer  to a s igna l  t ha t  is ac t i ve  o r  t rue ;  

n e g a t i o n  and  nega te  ind ica te  a s igna l  t ha t  is i nac t i ve  o r  fa lse.  These  

t e r m s  are used i n d e p e n d e n t l y  of  the  v o l t a g e  level  (h igh o r  l o w ) t h a t  
t hey  rep resen t .  

5.1 SIGNAL INDEX 

The i npu t  and  o u t p u t  s igna ls  fo r  the  MC68030 are l is ted in Tab le  5-1. Both 
the  n a m e s  and  m n e m o n i c s  a r e  s h o w n  a l ong  w i t h  b r ie f  s igna l  desc r i p t i ons .  

For m o r e  de ta i l  on each s igna l ,  re fer  to  t he  p a r a g r a p h  in th is  sec t ion  n a m e d  
fo r  the  s igna l  and the  re fe rence  in t ha t  p a r a g r a p h  to  a d e s c r i p t i o n  o f  the  
re la ted  o p e r a t i o n s .  

Guaranteed timing specifications for the signals listed in Table 5-1 can be 
found in M68030EC/D, MC68030 E/ectrical Specifications.. 

Table 5-1. Signal Index (Sheet 1 of 2) 

Signal Name Mnemonic Function 

Function Codes FC0-FC2 3-bit function code used to identify the address space of 
each bus cycle. 

Address Bus A0-A31 32-bit address bus. 

Data Bus D0-D31 32-bit data bus used to transfer 8, 16, 24, or 32 bits of data 
3er bus cycle. 

Size SIZO/SIZ1 Indicates the number of bytes remaining to be transferred 
for this cycle. These signals, together with A0 and A1, define 
the active sections of the data bus. 

Operand Cycle Start OCS 

ECS 

Read-Modify-Write Cycle 

Identical operation to that of ECS except that OCS is asserted 
only during the first bus cycle of an operand transfer. 

External Cycle Start Provides an indication that a bus cycle is beginning. 

Read/Write R/W Defines the bus transfer as a processor read or write. 

RMC Provides an indicator that the current bus cycle is part of an 
indivisible read-modify-write operation. 

Address Strobe AS Indicates that a valid address is on the bus. 

Data Strobe DS Indicates that valid data is to be placed on the data bus by 
an external device or has been placed on the data bus by 
the MC68030. 

Data Buffer Enable DBEN Provides an enable signal for external data buffers. 

5-2 MC68030 USER'S MANUAL MOTOROLA 



Table 5-1. Signal Index (Sheet 2 of 2) 

Signal Name 

Data Transfer and 
Size Acknowledge 

Synchronous 
Termination 

Cache Inhibit In 

Cache Inhibit Out 

Cache Burst Request 

Cache Burst 
Acknowledge 

Interrupt Priority Level 

Interrupt Pending 

Au tovec to r  

Mnemonic 

DSACK0 
DSACK1 

STERM 

ClIN 

CLOUT 

CBREQ 

CBACK 

IPLO-IPL2 

IPEND 

AVEC 

Function 

Bus response signals that indicate the requested data trans- 
fer oceration is completed. In addition, these two lines in- 
dica:e :he size of the external bus port on a cycle-by-cycle 
basis anc are used for asynchronous transfers. 

Bus response signal that indicates a port size of 32 bits and 
that data may be latched on the next falling clock edge. 

Prevents data from being loaded into the MC68030 instruc- 
tion and data caches. 

Reflects the CI bit in ATC entries or TTx register; indicates 
that external caches should ignore these accesses. 

Indicates a burst request for the instruction or data cache. 

Indicates that the accessed device can operate in burst mode. 

Provides an encoded interrupt level to the processor. 

Indicates that an interrupt is pending. 

Requests an autovector during an interrupt acknowledge 
cycle. 

m 

Bus Request BR Indicates that an external device requires bus mastership. 

BUS Grant BG Indicates that an external device may assume bus master- 
ship. 

Bus Grant Acknowledge BGACK Indicates that an external device has assumed bus master- 
ship. 

Reset 

Halt 

Bus Error 

Cache Disable 

MMU Disable 

Pipe Refill 

RESET 

HALT 

BERR 

CDIS 

MMUDIS 

REFILL 

System reset. 

Indicates that the processor should suspend bus activity. 

Indicates that an erroneous bus operation is being at- 
tempted. 

Dynamically disables the on-chip cache to assist emulator 
support. 

Dynamically disables the translation mechanism of the MMU. 

Indicates when the MC68030 is beginning to fill pipeline. 

Microsequencer Status STATUS Indicates the state of the microsequencer. 

Clock CLK Clock input to the processor. 

Power Supply VCC Power supply. 

Ground GND Ground connection. 

MOTOROLA MC68030 USER'S MANUAL 5-3 

: - 5  



5 

5.2 FUNCTION CODE SIGNALS (FC0-FC2) 

These three-state outputs identify the address space of the current bus cycle. 
Table 4-1 shows the relationship of the function code signals to the privilege 
levels and the address spaces. Refer to 4.2 ADDRESS SPACE TYPES for more 
information. 

5.3 ADDRESS BUS (A0-A31) 

These three-state outputs provide the address for the current bus cycle, ex- 
cept in the CPU address space. Refer to 4.2 ADDRESS SPACE TYPES for more 
information on the CPU address space. A31 is the most significant address 
signal, Refer to 7.1.2 Address Bus for information on the address bus and 
its relationship to bus operation. 

5.4 DATA BUS (D0-D31) 

These three-state bidirectional signals provide the general-purpose data path 
between the MC68030 and all other devices. The data bus can transfer 8, 16, 
24, or 32 bits of data per bus cycle. D31 is the most significant bit of the data 
bus. Refer to 7.1.4 Data Bus for more information on the data bus and its 
relationship to bus operation. 

5.5 TRANSFER SIZE SIGNALS (SIZ0, SIZ1) 

These three-state outputs indicate the number of bytes remaining to be trans- 
ferred for the current bus cycle. With A0, A1, DSACK0, DSACK1, and STERM, 
SIZ0 and SIZ1 define the number of bits transferred on the data bus. Refer 
to 7.2.1 Dynamic Bus Sizing for more information on the size signals and 
their use in dynamic bus sizing. 

5-4 MC68030 USER'S MANUAL MOTOROLA 



5.6 BUS CONTROL SIGNALS 

The following signals control synchronous bus transfer operations for the 
MC68030. 

5.6.10perand Cycle Start (OCS) 

This output signal indicates the beginning of the first external bus cycle for 
an instruction prefetch or a data operand transfer. OCS is not asserted for 
subsequent cycles that are performed due to dynamic bus sizing or operand 
misalignment. Refer to 7.1.1 Bus Control Signals for information about the 
relationship of OCS to bus operation. 

5.6.2 External Cycle Start (ECS) 

This output signal indicates the beginning of a bus cycle of any type. Refer 
to 7.1.1 Bus Control Signals for information about the relationship of ECS to 
bus operation. 

m 

5.6.3 Read/Write (R/W) 

This three-state output signal defines the type of bus cycle. A high level 
indicates a read cycle; a low level indicates a write cycle. Refer to 7.1.1 Bus 
Control Signals for information about the relationship of R/W to bus oper- 
ation. 

5.6.4 Read-Modify-Write Cycle (RMC) 

This three-state output signal identifies the current bus cycle as part of an 
indivisible read-modify-write operation; it remains asserted during all bus 
cycles of the read-modify-write operation. Refer to 7.1.1 Bus Control Signals 
for information about the relationship of RMC to bus operation. 

5.6.5 Address Strobe (AS) 

This three-state output indicates that a valid address is on the address bus. 
The function code, size, and read/write signals are also valid when AS is 
asserted. Refer to 7.1.3 Address Strobe for information about the relationship 
of AS to bus operation. 

MOTOROLA MC68030 USER'S MANUAL 5-5 

5 



5 

5.6.6 Data Strobe (DS) 

During a read cycle, this three-state output indicates that an external device 
should place valid data on the data bus. During a write cycle, the data strobe 
indicates that the MC68030 has placed valid data on the bus. During two- 
clock synchronous write cycles, the MC68030 does not assert DS. Refer to 
7.1.5 Data Strobe for more information about the relationship of DS to bus 
operation. 

5.6.7 Data Buffer Enable (DBEN) 

This output is an enable signal for external data buffers. This signal may not 
be required in all systems. The timing of this signal may preclude its use in 
a system that supports two-clock synchronous bus cycles. Refer to 7.1.6 Data 
Buffer Enable for more information about the relationship of DBEI~ to bus 
operation. 

5.6.8 Data Transfer and Size Acknowledge (DSACK0, DSACK1) 

These inputs indicate the completion of a requested data transfer operation. 
In addition, they indicate the size of the external bus port at the completion 
of each cycle. These signals apply only to asynchronous bus cycles. Refer to 
7.1.7 Bus Cycle Termination Signals for more information on these signals 
and their relationship to dynamic bus sizing. 

5.6.9 Synchronous Termination (STERM) 

This input is a bus handshake signal indicating that the addressed port size 
is 32 bits and that data is to be latched on the next falling clock edge for a 
read cycle. This signal applies only to synchronous operation. Refer to 7.1.7 
Bus Cycle Termination Signals for more information about the relationship 
of STERM to bus operation. 

5-6 MC68030 USER'S MANUAL MOTOROLA 



5.7 CACHE CONTROL SIGNALS 

The following signals relate to the on-chip caches. 

5.7.1 Cache Inhibit Input (CIIN) 

This input signal prevents data from being loaded into the MC68030 instruc- 
tion and data caches. It is a synchronous input signal and is interpreted on 
a bus-cycle-by-bus-cycle basis. CIIhi is ignored during all write cycles. Refer 
to 6.1 ON-CHIP CACHE ORGANIZATION AND OPERATION for information 
on the relationship of CIIN to the on-chip caches. 

5.7.2 Cache Inhibit Output (CLOUT) 

This three-state output signal reflects the state of the CI bit in the address 
translation cache entry for the referenced logical address, indicating that an 
external cache should ignore the bus transfer. When the referenced logical 
address is within an area specified for transparent translation, the CI bit of 
the appropriate transparent translation register controls the state of CLOUT. 
Refer to SECTION 9 MEMORY MANAGEMENT UNIT for more information 
about the address translation cache and transparent translation. Also, refer 
to SECTION 6 ON-CHIP CACHE MEMORIES for the effect of CLOUT on the 
internal caches. 

5.7.3 Cache Burst Request (CBREQ) 

This three-state output signal requests a burst mode operation to fill a line 
in the instruction or data cache. Refer to 6.1.3 Cache Filling for fill ing infor- 
mation and 7.3.7 Burst Operation Cycles for bus cycle information pertaining 
to burst mode operations. 

5.7.4 Cache Burst Acknowledge (CBACK) 

This input signal indicates that the accessed device can operate in the burst 
mode and can supply at least one more long word for the instruction or data 
cache. Refer to 7.3.7 Burst Operation Cycles for information about burst mode 
operation. 

MOTOROLA MC68030 USER'S MANUAL 5-7 

5 



5 

5.8 INTERRUPT CONTROL SIGNALS 

The following signals are the interrupt control signals for the MC68030. 

5.8.1 Interrupt Priority Level Signals 

These input signals provide an indication of an interrupt condition and the 
encoding of the interrupt level from a peripheral or external prioritizing cir- 
cuitry. IPL2 is the most significant bit of the level number. For example, since 
the IPLn signals are active low, IPL0-1PL2 equal to $5 corresponds to an 
interrupt request at interrupt level 2. Refer to 8.1.9 Interrupt Exceptions for 
information on MC68030 interrupts. 

5,8.2 Interrupt Pending (IPEND) 

This output signal indicates that an interrupt request has been recognized 
internally and exceeds the current interrupt priority mask inthe status register 
(SR). This output is for use by external devices (coprocessors and other bus 
masters, for example) to predict processor operation on the following in- 
struction boundaries. Refer to 8.1.9 Interrupt Exceptions for interrupt infor- 
mation. Also, refer to 7.4.1 Interrupt Acknowledge Bus Cycles for bus 
information related to interrupts. 

5.8.3 Autovector (AVEC) 

This input signal indicates that the MC68030 should generate an automatic 
vector during an interrupt acknowledge cycle. Refer to 7.4.1.2 AUTOVECTOR 
INTERRUPT ACKNOWLEDGE CYCLE for more information about automatic 
vectors. 

5.9 BUS ARBITRATION CONTROL SIGNALS 

The following signals are the three bus arbitration control signals used to 
determine which device in a system is the bus master. 

5.9.1 BUS Request (BR) 

This input signal indicates that an external device needs to become the bus 
master. This is typically a "wire-ORed" input (but does not need to be con- 
structed from open-collector devices). Refer to 7.7 BUS ARBITRATION for 
more information. 

5-8 MC68030 USER'S MANUAL MOTOROLA 



5.9.2 Bus Grant (BG) 

This output indicates that the MC68030 will release ownership of the bus 
master when the current processor bus cycle completes. Refer to 7,7.2 Bus 
Grant for more information. 

5.9.3 Bus Grant Acknowledge (BGACK) 

This input indicates that an external device has become the bus master. Refer 
to 7.7.3 Bus Grant Acknowledge for more information. 

5.10 BUS EXCEPTION CONTROL S IGNALS 

The following signals are the bus exception control signals for the MC68030. 
5 

5.10.1 Reset (RESET) 

This bidirectional open-drain signa is used to initiate a system reset. An 
external reset signal resets the MC68030 as well as all external devices. A 
reset signal from the processor (asserted as part of the RESET instruction) 
resets external devices only; the internal state of the processor is not altered. 
Refer to 7.8 RESET OPERATION for a description of reset bus operation and 
8.1.1 Reset Exception for information about the reset exception. 

5.10.2 Halt (HALT) 

The halt signal indicates that the processor should suspend bus activity or, 
when used with BERR, that the processor should retry the current cycle. Refer 
to 7.5 BUS EXCEPTION CONTROL CYCLES for a description of the effects of 
HALT on bus operations. 

5.10,3 Bus Error (BERR) 

The bus error signal indicates that an invalid bus operation is being attempted 
or, when used with HALT, that the processor should retry the current cycle. 
Refer to 7.5 BUS EXCEPTION CONTROL CYCLES for a description of the 
effects of BERR on bus operations. 

MOTOROLA MC68030 USER'S MANUAL 5-9 



5 

5.11 EMULATOR SUPPORT SIGNALS 

The following signals support emulation by providing a means for an em- 
ulator to disable the on-chip caches and memory management unit and by 
supplying internal status information to an emulator. Refer to SECTION 12 
APPLICATIONS INFORMATION for more detailed information on emulation 
support. 

5.11,1 Cache Disable (CDIS) 

The cache disable signal dynamically disables the on-chip caches to assist 
emulator support. Refer to 6.1 ON-CHIP CACHE ORGANIZATION AND OP- 
ERATION for information about the caches; refer to SECTION 12 APPLICA- 
TIONS INFORMATION for a description of the use of this signalby an emulator. 
CDIS does not flush the data and instruction caches; entries remain unaltered 
and become available again when CDIS is negated. 

5.11.2 M M U  Disable (MMUDIS)  

The MMU disable signal dynamically disables the translation of addresses 
by the MMU. Refer to 9.4 ADDRESS TRANSLATION CACHE for a description 
of address translation; refer to SECTION 12 APPLICATIONS INFORMATION 
for a description of the use of this signal by an emulator. The assertion of 
MMUDIS does not flush the address translation cache (ATC); ATC entries 
become available again when MMUDIS is negated. 

5.11,3 Pipeline Refill (REFILL) 

The pipeline refill signal indicates that the MC68030 is beginning to refill the 
internal instruction pipeline. Refer to SECTION 12 APPLICATIONS INFOR- 
MATION for a description of the use of this signal by an emulator. 

5.11.4 Internal Microsequencer Status (STATUS) 

The microsequencer status signal indicates the state of the internal micro- 
sequencer. The varying number of clocks for which this signal is asserted 
indicates instruction boundaries, pending exceptions, and the halted con- 
dition. Refer to SECTION 12 APPLICATIONS INFORMATION for a description 
of the use of this signal by an emulator. 

5-10 MC68030 USER'S MANUAL MOTOROLA 



5.12 CLOCK (CLK) 

The clock signal is the clock input to the MC68030. It is a TTL-compatible 
signal Refer to SECTION 12 APPLICATIONS INFORMATION for suggestions 
on clock generation. 

5.13 POWER SUPPLY CONNECTIONS 

The MC68030 requires connection to a VCC power supply, positive with 
respect to ground. The VCC connections are grouped to supply adequate 
current for the various sections of the processor. The ground connections 
are similarly grouped. SECTION 14 ORDERING INFORMATION AND ME- 
CHANICAL DATA describes the groupings of VCC and ground connections, 
and SECTION 12 APPLICATIONS INFORMATION describes a typical power 
supply interface. 

5.14 SIGNAL SUMMARY 

Table 5-2 provides a summary of the electrical characteristics of the signals 
discussed in this section. 

• M O T O R O L A  M C 6 8 0 3 0  U S E R ' S  MANUAL 5-11 



5 

Table 5-2. Signal Summary 

Signal Function Signal Name Input/Output Active State Three-State 

Function Codes FC0-FC2 Output High Yes 

Address 8us A0-A31 Output High Yes 

Data Bus D0-D31 Input/Output High Yes 

Transfer Size SIZ0/SlZ1 Yes 

Operand Cycle Start 

External Cycle Start 

Read/Write 

Read-Modify-Write Cycle 

Address Strobe 

Data Strobe 

Data Buffer Enable 

Data Transfer and Size Acknowledge i 

Synchronous Termination 

Cache Inhibit In 

Cache Inhibit Out 

Cache Burst Request 

Cache Burst Acknowledge 

Interrupt Priority Level 

Interrupt Pending 

Autovector 

OCS 

Bus Grant Acknowledge 

ECS 
E 

R/VV 

Output 

Output 

Output 

Output 

High 

Low 

Low 

High/Low 

No 

No 

Yes 

RMC Output Low Yes 

AS Output Low Yes 

DS Output Low Yes 

DBEN Low Yes 

DSACKO/ 
DSACK1 

OutPut 

Input 

Input 

Input 

Output 

Output 

Input 

Input 

Output 

STERM 

CIIN 

CLOUT 

CBREQ 

Low 

Low 

Low 

Low 

Low 

Low 

Low 

Low 

CBACK 

IPLO-IPL2 

Input 

IPEND 

Yes 

Yes 

No 

AVEC Input Low - -  

Bus Request BR Input Low - -  

Bus Grant BG Output Low No 

BGACK Low - -  

Input/Output 

Input 

Reset 

Halt 

Bus Error 

Cache Disable 

MMU Disable 

Pipeline Refill 

Microsequencer Status 

Clock 

RESET 

HALT 

BERR 

CDIS 

MMUDIS 

REFILL 

Low 

Low 

Low 

Low 

Low 

Low 

Low STATUS 

Input 

Input 

Input 

Output 

Output 

No 

No 

No 

CLK Input - -  - -  

Power Supply Vcc Input - -  - -  

Ground GND Input - -  - -  

5-12 MC68030 USER'S MANUAL MOTOROLA 



SECTION 6 
ON-CHIP CACHE MEMORIES 

The MC68030 microprocessor includes a 256-byte on-chip instruction cache 
and a 256-byte on-chip data cache that are accessed by logical (virtual) ad- 
dresses. These caches improve performance by reducing external bus activity 
and increasing instruction throughput. 

Reduced external bus activity increases overall performance by increasing 
the availability of the bus for use by external devices (in systems with more 
than one bus master, such as a processor and a DMA device) without de- 

grading the performance of the MC68030. An increase in instruction through- 
put results when instruction words and data required by a program are 
available in the on-chip caches and the time required to access them on the 
external bus is eliminated. Additionally, instruction throughput increases when 
instruction words and data can be accessed simultaneously. 

As shown in Figure 6-1, the instruction cache and the data cache are con- 
nected to separate on-chip address and data buses. The address buses are 
combined to provide the logical address to the memory management unit 
(MMU). The MC68030 initiates an access to the appropriate cache for the 
requested instruction or data operand at the same time that it initiates an 
access for the translation of the logical address in the address translation 
cache of the MMU. When a hit occurs in the instruction or data cache and 
the MMU validates the access on a write, the information is transferred from 
the cache (on a read) or to the cache and the bus controller (on a write). 
When a hit does not occur, the MMU translation of the address is used for 
an external bus cycle to obtain the instruction or operand. Regardless of 
whether or not the required operand is located in one of the on-chip caches, 
the address translation cache of the MMU performs logical-to-physical ad- 
dress translation in parallel with the cache lookup in case an external cycle 
is required. 

MOTOROLA MC68030 USER'S MANUAL 6-1 

6 



03 
MICROSEOUENCER AND CONTROL 

CONTROL 
STORE 

CONTROL 
LOGIC 

01 

I ,NSTROCT, ON~,~E ~1 ,  I~ 
HE 

HI liNG 
RE ;TER l~-J 
( ~ R )  I ~ - -  

iNTERNAL 
DATA 
BUS 

0 )  

0 

0 

m 

08 

2 
C 

o 
--t 
0 

0 

INSTRUCTION 
AOORESS 

BUS 

PHYSICAL 

BUS CONTROLLER 

I 
I_~ ~,~RO~O~ ~ I 

CONTROLLER 

BUS CONTROL 
SIGNALS 

EXECUTION UNIT 

DATA 
ADDRESS 

BUS 

I 

Figure 6-1. Internal Caches and the MC68030 

z' 

1 
~ OATA 

BUS 



6.1 ON-CHIP  CACHE O R G A N I Z A T I O N  A N D  O P E R A T I O N  

Both on-chip caches are 256-byte direct-mapped caches, each organized as 
16 lines. Each line consists of four entries, and each entry contains four bytes. 
The tag field for each line contains a valid bit for each entry in the line; each 
entry is independently replaceable. When appropriate, the bus controller 
requests a burst mode operation to replace an entire cache line. The cache 
control register (CACR) is accessible by supervisor programs to control the 
operation of both caches. 

System hardware can assert the cache disable (CDIS) signal to disable both 
caches. The assertion of CDIS disables the caches, regardless of the state of 
the enable bits in CACR. CDIS is primarily intended for use by in-circuit 
~emulators. 

Another input signal, cache inhibit in (CIIN), inhibits caching of data reads 
or instruction prefetches on a bus-cycle by bus-cycle basis. Examples of data 
that should not be cached are data for I/O devices and data from memory 
devices that cannot supply a full port width of data, regardless of the size of 
the required operand. 

Subsequent paragraphs describe how CIIN is used during the filling of the 
caches. 

An output signal, cache inhibit out (CLOUT), reflects the state of the cache 
inhibit (CI) bit from the MMU of either the address translation cache entry 
that corresponds to a specified logical address or the transparent translation 
register that corresponds to that address. Whenever the appropriate CI bit 
is set for either a read or a write access and an external bus cycle is required, 
CLOUT is asserted and the instruction and data caches are ignored for the 
access. This signal can also be used by external hardware to inhibit caching 
in external caches. 

Whenever a read access occurs and the required instruction word or data 
operand is resident in the appropriate on-chip cache (no external bus cycle 
is required), the MMU is completely ignored, unless an invalid translation 
resides in the MMU at that time (see next two paragraphs). Therefore, the 
state of the corresponding CI bits in the MMU are also ignored. The MMU 
is used to validate all accesses that require external bus cycles; an address 
translation must be available and valid, protections are checked, and the 
CLOUT signal is asserted appropriately. 

MOTOROLA MC68030 USER'S MANUAL 6-3 

6 



6 

An external access is defined as "cachable" for either the instruction or data 
cache when all the fol lowing condit ions apply: 

• The cache is enabled with the appropriate bit in the CACR set. 

• The CDIS signal is negated. 

• The CIIN signal is negated for the access. 

• The CLOUT signal is negated for the access. 

• The MMU validates the access. 

Because both the data and instruction caches are referenced by logical ad- 
dresses, they should be flushed during a task switch or at any t ime the logical- 
to-physical address mapping changes, including when the MMU is first en- 
abled. In addition, if a page descriptor is currently marked as valid and is 
later changed to the invalid type (due to a context switch or a page replace- 
ment operation) entries in the on-chip instruction or data cache correspond- 
ing to the physical page must be first c/eared (invafidated). Otherwise, if on- 
chip cache entries are Valid for pages with descriptors in memory marked 
invalid, processor operation is unpredictable. 

Data read and write accesses to the same address should also have consistent 
cachabil ity status to ensure that the data in the cache remains consistent 
with external memory. For example, if CLOUT is negated for read accesses 
within a page and the MMU configuration is changed so that CLOUT is sub- 
sequently asserted for write accesses within the same page, those write 
accesses do not update data in the cache, and stale data may result. Similarly, 
when the MMU maps mult iple logical addresses to the same physical ad- 
dress, all accesses to those logical addresses should have the same cacha- 
bil i ty status. 

6.1.1 Ins t ruct ion  C a c h e  

The instruction cache is organized with a line size of four long words, as 
shown in Figure 6-2. Each of these long words is considered a separate cache 
entry as each has a separate valid bit. All four entries in a line have the same 
tag address. Burst f i l l ing all four long words can be advantageous when the 
t ime spent in f i l l ing the line is not long relative to the equivalent bus-cycle 
t ime for four nonburst long-word accesses, because of the probabil i ty that 
the contents of memory adjacent to or close to a referenced operand or 
instruction is also required by subsequent accesses. Dynamic RAMs sup- 
port ing fast access modes (page, nibble, or static column) are easily em- 
ployed to support the MC68030 burst mode. 

6-4 MC68030 USER'S MANUAL MOTOROLA 



ih 

Ill 1 

CACHE SIZE = 64 (LONG WORDS) 
LINE SIZE = 4 (LONG WORDS) 
SET SIZE = 1 

LONG WORD 
SELECT 

TAG ,NOEX I~--] 
I II 1. 

A . . . A A A A A A A A A A A A A A A A A A A A A A  A 

3 . . . 2  2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 

1ooo3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 0 

t TA6 

1 OF 16 / 
SELECT ~ ,~ 

TAG ~ , 
REPLACE 

ACCESS ADDRESS 

II I IIII 

I COMPARATOR 

V V V V  

• • • • 
! 

t _ _ l  t 

VAUD 

-3 
ENTRY HIT 

DATA FROM INSTRUCTON 
CACHE DATA BUS 

DATA TO INSTRUCTION 
L . _ _ ~  CACHE HOLDING REGISTER 

T ~  CACHE CONTROL LOGIC 

Figure 6-2. On-Chip Instruction Cache Organization 

When enabled, the instruction cache is used to store instruction prefetches 
(instruction words and extension words) as they are requested by the CPU. 
Instruction prefetches are normally requested from sequential memory ad- 
dresses except when a change of program flow occurs (e.g., a branch taken) 
or when an instruction is executed that can modify the status register, in 
which cases the instruction pipe is automatically flushed and refilled. The 
output signal REFILL indicates this condition. For more information on the 
operation of this signal, refer to SECTION 12 APPLICATIONS INFORMATION. 

In the instruction cache, each of the 16 lines has a tag consisting of the 24 
most significant logical address bits, the FC2 function code bit (used to dis- 
tinguish between user and supervisor accesses), and the four valid bits (one 

MOTOROLA MC68030 USER'S MANUAL 6-5 



corresponding to each long word). Refer to Figure 6-2 for the instruction 
cache organization. Address bits A7-A4 select one Of 16 lines and its asso- 
ciated tag. The comparator compares the address and function code bits in 
the selected tag with address bits A31-A8 and FC2 from the internal prefetch 
request to determine if the requested word is in the cache. A cache hit occurs 
when there is a tag match and the corresponding valid bit (selected by A3-A2) 
is set. On a cache hit, the word selected by address bit A1 is supplied to the 
instruction pipe. 

When the address and function code bits do not match or the requested entry 
is not valid, a miss occurs. The bus controller initiates a long-word prefetch 
operation for the required instruction word and loads the cache entry, pro- 
vided the entry is cachable. A burst mode operation may be requested to fill 
an entire cache line. If the function code and address bits match and the 
corresponding long word is not valid (but one or more of the other three 
valid bits for that line are set) a single entry fill operation replaces the required 
long word only, using a normal prefetch bus cycle or cycles (no burst). 

6.1 .2  D a t a  C a c h e  

The data cache stores data references to any address space except CPU space 
(FC =$7), including those references made with PC relative addressing modes 
and accesses made with the MOVES instruction. Operation of the data cache 
is similar to that of the instruction cache, except for the address comparison 
and cache fi l l ing operations. The tag of each line in the data cache contains 
function code bits FC0, FC1, and FC2 in addition to address bits A31-A8. The 
cache control circuitry selects the tag using bits A7-A4 and compares it to 
the corresponding bits of the access address to determine if a tag match has 
occurred. Address bits A3-A2 select the valid bit for the appropriate long 
word in the cache to determine if an entry hit has occurred. Misaligned data 
transfers may span two data cache entries. In this case, the processor checks 
for a hit one entry at a time. Therefore, it is possible that a portion of the 
access results in a hit and a portion results in a miss. The hi t  and miss are 
treated independently. Figure 6-3 illustrates the organization of the data cache. 

The operation of the data cache differs for read and write cycles. A data read 
cycle operates exactly like an instruction cache read cycle; when a miss 
occur s , an external cycle is initiated to obtain the operand from memory, 
and the data is loaded into the cache if the access is cachable. In the case of 
a misaligned operand that spans two cache entries, two long words are 
required from memory. Burst mode operation may also be initiated to fill an 
entire line of the data cache. Read accesses from the CPU address space and 
address translation table search accesses are not stored in the data cache. 

6-6 MC68030 USER'S MANUAL MOTOROLA 



LONG WORO 
SELECT 

~61 I',S~X I 

I H 111 
~ IA..;A A A A A A A A A A A A A A A A a : A a A A A l 

3,..2222111111111100 ~ 30000 
1. . .3  2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 3 2 I 0 

I TAD 

1 OF 16 L ~  
SELECT l ; 

JL_J  

I 

V V V V 

l )  j i O i I I  

• 0 i 

VALID 

LINE HIT 

ACCESS ADDRESS 

CACHE SIZE = 64 (LONG WORDS) 
LINE SIZE = 4 (LONG WORDS) 
SET SIZE = 1 

• • Q 

,L ,L 

- - D  ENTRY HIT 

o 

DATA FROM DATA CACHE 
DATA BUS 

DATA TO 
L ~ "  EXECUTION UNIT 

T ~ CACHE CONTROL LOGIC 

Figure 6-3. On-Chip Data Cache Organization 

The data cache on the MC68030 is a writethrough cache. When a hit occurs 
on a write cycle, the data is written both to the cache and to external memory 
(provided the M M U  validates the access), regardless of the operand size and 
even if the cache is frozen. If the MMU determines that the access is invalid, 
the write is aborted, the corresponding entry is invalidated, and a bus error 
exception is taken. Since the write to the cache completes before the write 
to external memory, the cache contains the new value even if the external 
write terminates in a bus error. The value in the data cache might be used 
by another instruction before the external write cycle has completed, al- 
though this should not have any adverse consequences. Refer to 7.6 BUS 
SYNCHRONIZATION for the details of bus synchronization. 

MOTOROLA MC68030 USER'S MANUAL 6-7 

6 



6 

6.1.2.1 WRITE ALLOCATION. The supervisor program can configure the data cache 
for either of two types of allocation for data cache entries that miss on write 
cycles. The state of the write allocation (WA) bit in the cache control register 
specifies either no write allocation or write allocation with partial validation 
of the data entries in the cache on writes. 

When no write allocation is selected (WA=0), write cycles that miss do not 
alter the data cache contents. In this mode, the processor does not replace 
entries in the cache during write operations. The cache is updated only during 
a write hit. 

When write allocation is selected (WA = 1 ), the processor always updates the 
data cache on cachable write cycles, but only validates an updated entry that 
hits or an entry that is updated with long-word data that is long-word aligned. 
When a tag miss occurs on a write of long-word data that is long-word 
aligned, the corresponding tag is replaced, and only the long word being 
written is marked as valid. The other three entries in the cache line are 
invalidated when a tag miss occurs on a misaligned long-word write or on 
a byte or word write, the data is not writ ten in the cache, the tag is unaltered, 
and the valid bit(s) are cleared. Thus, an aligned long-word data write may 
replace a previously valid entry; whereas, a misaligned data write or a wri te 
o f  data that is not long word may invalidate a previously valid entry or entries. 

Write allocation eliminates stale data that may reside in the cache because 
of either of two unique situations: mult iple mapping of two or more logical 
addresses to one physical address within the same task or al lowing the same 
physical location to be accessed by both supervisor and user mode cycles. 
Stale data condit ions can arise when operating in the no-write-allocation 
mode and all the fol lowing condit ions are satisfied: 

• Mult iple mapping (object aliasing) is allowed by the operating system. 

• A read cycle loads a value for an "al iased" physical address into the 
data cache. 

• A write cycle occurs, referencing the same aliased physical object as 
above but using a different logical address, causing a cache miss and 
no update to the cache (has the same page offset). 

• The physical object is then read using the first alias, which provides stale 
data from the cache. 

6-8 MC68030 USER'S MANUAL MOTOROLA 



In this case, the data in the cache no longer matches that in physical memory 
and is stale. Since the write-allocation mode updates the cache during write 
cycles, the data in the cache remains consistent with physical memory. Note 
that when CLOUT is asserted, the data cache is completely ignored, even on 
write cycles operating in the write-allocation mode. Also note that since the 
CIIN signal is ignored on write cycles, cache entries may be created for 
noncachable data (when CIIN is asserted on a write) when operating in the 
write-allocation mode. Figure 6-4 shows the manner in which each mode 
operates in five different situations. 

TAG' 

I 
I I 

LOGICAL ADDRESS = FC2-FCO, A31-A8, A7-A4, A3-A2 

q----T-- 
LINE 

SELECT USER DATA. $000010 I [ 
($5) 

TAG 

ENTRY SELECT 

1L ,.,.v,:o 1L  .o,V :lj [ j 

EXAMPLE 1: 
USER WORD WRITE OF b2"-b3' TO $00001052 

(CACHE HIT. ALWAYS UPDATE CACHE AND MEMORY) 

EXAMPLE 2: 
USER LONG WORD WRITE OF b6'-b9' TO $00001056 

(TAB MATCH, LONG WORD DATA, MISALIGNED, 
b6-b7 RESULT IN A CACHE MISS. 
b8-b9 RESULT IN A CACHE HIT) 

EXAMPLE 3: 
USER LONG WORD WRITE OF b4'-b7' TO $00001054 

(TAG MATCH, CACHE MISS, LONG WORD DATA, 
LONG WORD ALIGNED) 

EXAMPLE 4: 
USER LONG WORD WRITE OF b4'-b7' TO $00002054 

(NO TAG MATCH, LONG WORD DATA. LONG WORD ALIGNED) 

EXAMPLE 5: 
USER LONG WORD WRITE OF b6'-b9'TO $00002056 

(NO TAG MATCH, LONG WORD DATA, MISAUGNED) 

NO WRITE.ALLOCATE WRITE ALLOCATE 

A) START EXTERNAL CYCLE A) START EXTERNAL CYCLE 
R) b2-b3~-b2'-b3 ' B) b2-b3"~-b2'-b3' 

A) START EXTERNAL CYCLE A) START EXTERNAL CYCLE 
B) bS-b9"~-b8'-b9' B) b8-b9-~-bG'-b9' 

A) START EXTERNAL CYCLE 

A) START EXTERNAL CYCLE 

A) START EXTERNAL CYCLE 
B) b4-b7-~- b4'-bT" 
C) V1 ~ - -  1 

A) START EXTERNAL CYCLE 
B) TAG-~- TAG' 
C) b4-b7~- b4'-b7" 
D) V0~4{ -- 0 

VI~E- 1 
V2"~- O 
V3 -qE- 0 

A) START EXTERNAL CYCLE A) START EXTERNAL CYCLE 
B) V2 ~-" 0 

Figure 6-4. No-Write-Allocation and Write-Allocation Mode Examples 

M O T O R O L A  M C 6 8 0 3 0  U S E R ' S  M A N U A L  6 -9  

6 



B 

6.1.2.2 READ-MODIFY-WRITE ACCESSES. The read portion of a read-modify-write 
cycle is always forced to miss in the data cache. However, if the system 
allows internal caching of read-modify-write cycle operands (CLOUT and CIIN 
both negated), the processor either uses the data read from memory to 
update a matching entry in the data cache or creates a new entry with the 
read data in the case of no matching entry. The write portion of a read- 
modify-write operation also updates a matching entry in the data cache. In 
the case of a cache miss on the write, the allocation of a new cache entry 
for the data being written is controlled by the WA bit. Table search accesses, 
however, are completely ignored by the data cache; it is never updated for 
a table search access. 

6 .1 .3  C a c h e  F i l l i ng  

The bus control ler can load either cache in either of two ways: 

• Single entry mode 

• Burst fill mode 

In the single entry mode, the bus control ler loads a single long-word entry 
of a cache line. In the burst fill mode, an entire line (four long words) can be 

f i l led .  Refer to SECTION 7 BUS OPERATION for detailed information about 
the bus cycles required for both modes. 

6.1.3.1 SINGLE ENTRY MODE. When a cachable access is initiated and a burst 
mode operation is not requested by the MC68030 or is not supported by 
external hardware, the bus controller transfers a single long word for the 
corresponding cache entry. An entire long word is required. If the port size 
of the responding device is smaller than 32 bits, the MC68030 executes all 
bus cycles necessary to fill the long word. 

When a device cannot supply its entire port width of data, regardless of the 
size of the transfer, the responding device must consistently assert the cache 
inhibit  input (CIIN) signal. For example, a 32-bit port must always supply 32 
bits, even for 8- and 16-bit transfers; a 16-bit port must supply 16 bits, even 
for 8-bit transfers. The MC68030 assumes that a 32-bit terminat ion signal for 
the bus cycle indicates availabil i ty of 32 valid data bits, even if only 16 or 8 
bits are requested. Similarly, the processor assumes that a 16-bit terminat ion 
signal indicates that all 16 bits are valid. If the device cannot supply its full 
port width of data, it must assert CIIN for all bus cycles corresponding to a 
cache entry. 

6-10 MC68030 USER'S MANUAL MOTOROLA 



When a cachable read cycle provides data with both CIIN and BERR negated, 
the MC68030 attempts to fill the cache entry. Figure 6-5 shows the organi- 
zation of a line of data in the caches. The notation b0, bl, b2, and so forth 
identifies the bytes within the line. For each entry in the line, a valid bit in 
the associated tag corresponds to a long-word entry to be loaded. Since a 
single valid bit applies to an entire long word, a single entry mode operation 
must provide a full 32 bits of data. Ports less than 32 bits wide require several 
read cycles for each entry. 

Figure 6-5 shows an example of a byte data operand read cycle starting at 
byte address $03 from an 8-bit port. Provided the data item is cachable, this 
operation results in four bus cycles. The first cycle requested by the MC68030 
reads a byte from address $03. The 8-bit DSACKx response causes the 
MC68030 to fetch the remainder of the long word starting at address $00. 
The bytes are latched in the following order: b3, b0, bl, and b2. Note that 
during cache loading operations, devices must indicate the same port size 
consistently throughout all cycles for that long-word entry in the cache. 

Figure 6-6 shows the access of a byte data operand from a 16-bit port. This 
operation requires two read cycles. The first cycle requests the byte at address 
$03. If the device responds with a 16-bit DSACKx encoding, the word at 
address $02 (including the requested byte) is accepted by the MC68030. The 
second cycle requests the word at address $00. Since the device again re- 
sponds with a 16-bit DSACKx encoding, the remaining two bytes of the long 
word are latched, and the cache entry is filled. 

CYCLE SIZE ADDRESS 

$00 $04 S08 $0C 

COMMENT 

1 BYTE $03 r ~  _ THIS is THE REQUESTED OPERAND 

2 3-BYTE $00 ~ - tIEXT BYTE FOR COMPLETING CACHE ENTRY 

3 WORD $01 ~ - NEXT BYTE FOR COMPLETING CACHE ENTRY 

4 BYTE $02 ~ - ]  - ~ST BYTE TO COMPLETE THE LONG WORD 

Figure 6-5. Single Entry Mode Operation - -  8-Bit Port 

MOTOROLA MC68030 USER'S MANUAL 6-11 

6 



6 

CYCLE SIZE ADDRESS 

1 BYTE $03 

2 WORD $00 

$00 $04 $08 $OC 

Figure 6-6. Single Entry Mode Operation - -  16-Bit Port 

COMMENT 

- INCLUDES THE REQUESTED OPERAND AND THE PREVIOUS BYTE 

- THE REMAINING WORD FOR THE LONG WORD CACHE ENTRY 

With a 32-bit port, the same operation is shown in Figure 6-7. Only one read 
cycle is required. All four bytes (including the requested byte) are latched 
during the cycle. 

CYCLE SIZE ADDRESS 

SOD $04 

 11111 
$08 

COMMENT 

$0C 

BYTE $03 - THE ENTIRE LONG WORD MUST BE VALID 

Figure 6-7. Single Entry Mode Operation - -  32-Bit Port 

If a requested access is misaligned and spans two cache entries, the bus 
controller attempts to fill both associated long-word cache entries. An ex- 
ample of this is an operand request for a long word on an odd-word boundary. 
The MC68030 first fetches the initial byte(s) of the operand (residing in the 
first long word} and then requests the remaining bytes to fill that cache entry 
(if the port size is less than 32 bits) before it requests the remainder of the 
operand and corresponding long word to fill the second cache entry. If the 
por t  size is 32 bits, the processor performs two accesses, one for each cache 
entry. 

6-12 MC68030 USER'S MANUAL MOTOROLA 



Figure 6-8 shows a misaligned access of a long word at address $06 from 
an 8-bit port requiring eight bus cycles to complete. Reading this long-word 
operand requires eight read cycles, since accesses to all eight addresses 
return 8-bit port-size encodings. These cycles fetch the two cache entries that 
the requested long-word spans. The first cycle requests a long word at ad- 
dress $06 and accepts the first requested byte (b6). The subsequent transfers 
of the first long word are performed in the following order: b7, b4, b5. The 
remaining four read cycles transfer the four bytes of the second cache entry. 
The sequence of access for the entire operation is b6, b7, b4, b5, b8, b9, bA, 
and bB. 

CYCLE SIZE ADDRESS 

SOB $04 $08 

1 LONGWORD $06 [ ~  

2 3-BYTE $07 B 

3 WORD $04 [ - ~  

4 BYTE $05 

5 WORD $08 

6 BYTE $09 

7 WORD $OA 

8 BYTE SOB 

1-I-i 

El 

$0C 

coMMENT 

- FIRST BYTE OF OPERANDLATCHED 

- SECOND BYTE OF DPERAND 

- TO FILL THE CACHE ENTRY ATS04 

- REMAINDER OF CACHE ENTRY ATSO4 

- THIRD BYTE OF OPERAND 

- LAST BYTE OF DPERAND 

- TO FILL CACHE ENTRY AT$08 

- REMAINDER DF ENTRY AT$08 

6 

Figure 6-8. Single Entry Mode Operation - -  
Misaligned Long Word and 8-Bit Port 

MOTOROLA MC68030 USER'S MANUAL 6-13 



6 

The next example, shown in Figure 6-9, is a read of a misaligned long-word 
operand from devices that return 16-bit DSACKx encodings. The processor 
accepts the first portion of the operand, the word from address $06, and 
requests a word from address $04 to fill the cache entry. Next, the processor 
reads the word at address $08, the second portion of the operand, and stores 
it in the cache also. Finally, the processor accesses the word at $0A to fill 
the second long-word cache entry. 

CYCLE SIZE ADDRESS 

1 LON6 WORD $06 

2 WORD $04 

$00 $OC $04 $08 

COMMENT 

- FIRST WORD OF OPERANO LATCHED 

- TO FILL THE CACHE ENTRY AT$04 

3 WORD $08 E E l  - SECOND WORD OF OPERAND 

4 WORD $OA ~ ]  - TO FILL ENTRY AT $08 

Figure 6-9. Single Entry Mode Operation - -  
Misaligned Long Word and 16-Bit Port 

Two read cycles are required for a misaligned long-word operand transfer 
from devices that return 32-bit DSACKx encodings. As shown in Figure 6-10, 
the first read cycle requests the long word at address $06 and latches the 
long word at address $04. The second read cycle requests and latches the 
long word corresponding to the second cache entry at address $08. Two read 
cycles are also required if STERM is used to indicate a 32-bit port instead of 
the 32-bit DSACKx encoding. 

6-14 MC68030 USER'S MANUAL MOTOROLA 



CYCLE 

$oo $O4 $08 $OC 

SIZE ADDRESS COMMENT 

LONG WORD $06 b, I - FIRST WORD OF OPERANO PLUS 
REST OF ENTRY AT $04 

LONG WORD $08 l I IbA b O - SECOND WORB OF OPERAND PLUS 
b8 b9 REST OF ENTRY AT$08 

Figure 6-10. Single Entry Mode Operation 
Misaligned Long Word and 32-Bit DSACKx Port 

If all bytes of a long word are cachable, CIIN must be negated for all bus 
cycles required to fill the entry. If any byte is not cachable, CIIN must be 
asserted for all corresponding bus cycles. The assertion of the CIIN signal 
prevents the ~ caches from being updated during read cycles. Write cycles 
(including the write portion of a read-modify-write cycle) ignore the assertion 
of the CIIN signal and may cause the data cache to be altered, depending on 
the state of the cache (whether or not the write cycle hits), the state of the 
WA bit in the CACR, and the condit ions indicated by the MMU. 

The occurrence of a bus error whi le attempting to load a cache entry aborts 
the entry fill operation but does not necessarily cause a bus error exception. 
If the bus error occurs on a read cycle for a portion of the required operand 
(not the remaining bytes of the cache entry) to be loaded into the data cache, 
the processor immediately takes a bus error exception. If the read cycle in 
error is made only to fill the data cache (the data is not part of the target 
operand), no exception occurs, but the corresponding entry is marked invalid. 
For the instruction cache, the processor marks the entry as invalid, but only 
takes an exception if the execution unit attempts to use the instruction word(s). 

6.1.3.2 BURST MODE:FILLING. Burst mode fi l l ing is enabled by bits in the cache 
control register. The data burst enable bit must be set to enable burst fi l l ing 
of the data cache. Similarly, the instruction burst enable bit must be set to 
enable burst f i l l ing of the instruction cache. When burst f i l l ing is enabled and 
the corresponding cache is enabled, the bus controller requests a burst mode 
fill operation in either of these cases: 

• A read cycle for either the instruction or data cache misses due to the 
indexed tag not matching. 

• A read cycle tag matches, but all long words in the line are invalid. 

MOTOROLA MC68030 USER'S MANUAL 6-15 

6 



The bus controller requests a burst mode fill operation by asserting the cache 
burst request signal (CBREQ). The responding device may sequentially supply 
one to four long words of cachable data, or it may assert the cache inhibit 
input signal (CIIN) when the data in a long word is not cachable. If the 
responding device does not support the burst mode and it terminates cycles 
with STERM, it should not acknowledge the request with the assertion of the 
cache burst acknowledge (CBACK) signal. The MC68030 ignores the assertion 
of CBACK during cycles terminated with DSACKx. 

The cache burst request signal (CBREQ) requests burst mode operation from 
the referenced external device. To operate in the burst mode, the device or 
external hardware must be able to increment the low-order address bits if 
required, and the current cycle must be a 32-bit synchronous transfer (STERM 
must be asserted) as described in SECTION 7 BUS OPERATION. The device 
must also assert CBACK (at the same time as STERM) at the end of the cycle 
in which the MC68030 asserts CBREQ. CBACK causes the processor to con- 
tinue driving the address and bus control signals and to latch a new data 
value for the next cache entry at the completion of each subsequent cycle 
(as defined by STERM), for a total of up to four cycles (until four long words 
have been read). 

When a cacne burst is initiated, the first cycle attempts to load the cache 
entry corresponding to the instruction word or data item explicitly requested 
by the execution unit. The subsequent cycles are for the subsequent entries 
in the cache line. In the case ofa misaligned transfer when the operand spans 
two cache entries within a cache line, the first cycle corresponds to the cache 
entry containing the portion of the operand at the lower address. 

Figure 6-11 illustrates the four cycles of a burst operation and shows that 
the second, third, and fourth cycles are run in burst mode. A distinction is 
made between the first cycle of a burst operation and the subsequent cycles 
because the first cycle is requested by the microsequencer and the burst fill 
cycles are requested by the bus controller. Therefore, when data from the 
first cycle is returned, it is immediately available for the execution unit (EU). 
However, data from the burst fill cycles is not available to the EU until the 
burst operation is complete. Since the microsequencer makes two separate 
requests for misaligned data operands, only the first portion of the misaligned 
operand returned during a burst operation is available to the EU after the 
first cycle is complete. The microsequencer must wait for the burst operation 
to complete before requesting the second portion of the operand. Normally, 
the request for the second portion results in a data cache hit unless the second 
cycle of the burst operation terminates abnormally. 

6-16 MC68030 USER'S MANUAL MOTOROLA 



CYCLE 1 CYCLE 2 

XFIRST ACCESS OF 8URST OPERATION V 
REQUIRED OPERAND OR PREFETCH / ~  8URST FILL CYCLE 

BURST MODE REQUESTED AND BURST MODE BEGINS HERE 
ACKNOWLEDGED ~ 

BURST OPERATION 

CYCLE 3 CYCLE 4 

X BURST FILL CYCLE X BURST FILL CYCLE X 

Figure 6-11. Burst Operation Cycles and Burst Mode 

The bursting mechanism allows addresses to wrap around so that the entire 
four long words in the cache line can be filled in a single burst operation, 
regardless of the initial address and operand alignment. Depending on the 
structure of the external memory system, address bits A2 and A3 may have 
to be incremented externally to select the long words in the proper order for 
loading into the cache. The MC68030 holds the entire address bus constant 
for the duration of the burst cycle. Figure 6-12 shows an example of this 
address wraparound. The initial cycle is a long-word access from address 
$6. Because the responding device returns CBACK and STERM (signaling a 
32-bit port), the entire long word at base address $04 is transferred. Since 
the initial address is $06 when CBREQ is asserted, the next entry to be burst 
filled into the cache should correspond to address $08, then $0C, and last, 
$00. This addressing is compatible with existing nibble-mode dynamic RAMs, 
and can be supported by page and static column modes with an external 
modulo 4 counter for A2 and A3. 

$00 $04 $08 

i I ~ I i J 
I 1 I 

FINAL CACHE ENTRY FIRST LONG WORD SECOND CACHE ENTRY 
TO BE FILLED ACCESS- INCLUDES TO BE FILLED 

FIRST PART OF 
DPERAND REQUIRED 

$0C 

I I 
I 

THIRD CACHE ENTRY 
TO BE FILLED 

Figure 6-12. Burst Filling Wraparound Example 

MOTOROLA MC68030 USER'S MANUAL 6-17 

6 



6 

The MC68030 does not assert CBREQ during the first portion of a misaligned 
access if the remainder of the access does not correspond to the same cache 
line. Figure 6-13 shows an example in which the first portion of a misaligned 
access is at address $OF. With a 32-bit port, the first access corresponds to 
the cache entry at address $0C, which is filled using a single-entry load 
operation. The second access, at address $10 corresponding to the second 
cache line, requests a burst fill and the processor asserts CBREQ. During this 
burst operation, long words $10, $14, $18, and $1C are all fi l led in that order. 

$00 $04 

 IIIIIIIILI 

$10 

Ib'°H°'+'31 
I I 

$08 

$14 $18 

$0C 

I I 
I 

FIRST LONG WORD CACHED - 
NO DURST REQUEST 

$1C 

I I 
I I 

SECOND CYCLE - THE REMAINING CACHE ENTRIES FDR SECOND BLOCK ARE 8URSTED 
BURST REQUESTED 

Figure 6-13. Deferred Burst Filling Example  

The processor does not assert CBREQ if any of the fol lowing condit ions exist: 

The appropriate cache is not enabled 

Burst f i l l ing for the cache is not enabled 

The cache freeze bit for the appropriate cache is set 

The current operation is the read portion of a read-modify-write oper- 
ation 

• The MMU has inhibited caching for the current page 

• The cycle is for the first access of an operand that spans two cache lines 
(crosses a modulo 16 boundary) 

Addit ional ly, the assertion of CIIN and BERR and the premature negation of 
CBACK affect burst operation as described in the fol lowing paragraphs. 

6-18 MC68030 USER'S MANUAL MOTOROLA 



The assertion of CIIN during the first cycle of a burst operation causes the 
data to be latched by the processor, and if the requested operand is aligned 
(the entire operand is latched in the first cycle), the data is passed on to the 
instruction pipe or execution unit. However, the data is not loaded into its 
corresponding cache. In addition, the MC68030 negates CBREQ, and the burst 
operation is aborted. If a portion of the requested operand remains to be 
read (due to misalignment), a second read cycle is initiated atthe appropriate 
address with CBREQ negated. 

The assertion of CIIN during the second, third, or fourth cycle of a burst 
operation prevents the data during that cycle from being loaded into the 
appropriate cache and causes CBREQ to negate, aborting the burst operation. 
However, if the data for the cycle contains part of the requested operand, 
the execution unit uses that data. 

The premature negation of the CBACK signal during the burst operation 
causes the current cycle to complete normally, loading the data successfully 
transferred into the appropriate cache. However, the burst operation aborts 
and CBREQ negates. 

A bus error occurring during a burst operation also causes the burst operation 
to abort. If the bus error occurs during the first cycle of a burst (i.e., before 
burst mode is entered), the data read from the bus is ignored, and the entire 
associated cache line is marked "invalid". If the access is a data cycle, ex- 
ception processing proceeds immediately. If the cycle is for an instruction 
fetch, a bus error exception is made pending. This bus error is processed 
only if the execution unit attempts to use either instruction word. Refer to 
11.2.2 Instruction Pipe for more information about pipeline operation. 

For either cache, when a bus error occurs after the burst mode has been 
entered (that is, on the second cycle or later), the cache entry corresponding 
to that cycle is marked invalid, but the processor does not take an exception 
(the microsequencer has not yet requested the data). In the case of an in- 
struction cache burst, the data from the aborted cycle is completely ignored. 
Pending instruction prefetches are still pending and are subsequently run by 
the processor. If the second cycle is for a portion of a misaligned data operand 
fetch and a bus error occurs, the processor terminates the burst operation 
and negates CBREQ. Once the burst terminates, the microsequencer requests 
a read cycle for the second portion. Since the burst terminated abnormally 
for the second cycle of the burst, the data cache results in a miss, and a 
second external cycle is required. If BERR is again asserted, the MC68030 
then takes an exception. 

MOTOROLA MC68030 USER'S MANUAL 6-19 

6 



On the initial access of a burst operation, a "retry"  (indicated by the assertion 
of BERR and HAL-I = ) causes the processor to retry the bus cycle and assert 
CBREQ again. However, signaling a retry with simultaneous BERR and HALT 
during the second, third, or fourth cycle of a burst operation does not cause 
a retry operation, even if the requested operand is misaligned. Assertion of 
BERR and HALT during burst fill cycles of a burst operation causes inde- 
pendent bus error and halt operations. The processor remains halted until 
HALT is negated, and then handles the bus error as described in the previous 
paragraphs. 

6.2 CACHE RESET 

When a hardware reset of the processor occurs, all valid bits of both caches 
are cleared. The cache enable bits, burst enable bits, and the freeze bits in 
the cache control register (CACR) for both caches (refer to Figure 6-14) are 
also cleared, effectively disabling both caches. The WA bit in the CACR is 
also cleared. 

6.3 CACHE CONTROL 

Only the MC68030 cache control circuitry can directly access the cache arrays, 
but the supervisor program can set bits in the CACR to exercise control over 
cache operations. The supervisor also has access to the cache address reg- 
ister (CAAR), which contains the address for a cache entry to be cleared. 

6.3.1 Cache Control Register 

The CACR, shown in Figure 6-14, is a 32-bit register that can be written or 
read by the MOVEC instruction or indirectly modified by a reset. Five of the 
bits (4-0) control the instruction cache; six other bits (13-8) control the data 
cache. Each cache is controlled independently of the other, al though a similar 
operation can be performed for both caches by a single MOVEC instruction. 
For example, loading a long word in which bits 3 and 11are set into the 
CACR clears both caches. Bits 31-14 and 7-5 are reserved for Motorola 
definit ion. They are currently read as zeros and are ignored when written. 
For future compatibi l i ty, writes should not set these bits. 

6-20 MC68030 USER'S MANUAL MOTOROLA 



31 14 13 12 11 !0 9 8 7 6 5 4 3 2 1 0 
000000000000000000 WA DBE CD tED FD ED 0 0 0 IBE CI CEI FI El 

WA = Write Allocate 
DBE = Data Burst Enable 
CD = Clear Data Cache 

CED = Clear Entry in Data Cache 
FD = Freeze Data Cache 
ED = Enable Data Cache 
IBE = Instruction Burst Enable 
CI = Clear Instruction Cache 

CEI = Clear Entry in Instruction Cache 
FI = Freeze Instruction Cache 
El = Enable Instruction Cache 

Figure 6-14. Cache Control Register 

6.3.1,1 WRITE ALLOCATE. Bit 13, the WA bit, is set to select the wr i te-a l locat ion 
mode (refer to 6,1.2.1 WRITE ALLOCATION) for wr i te  cycles. Clearing this bit 
selects the no-wr i te-a l locat ion mode. A reset operat ion clears th is  bit. The 
superv isor  should set this bit when  it shares data w i th  the user task or when  
any task maps mul t ip le  logical addresses to one physical address. If the data 
cache is disabled or frozen, the WA bit is ignored. 

6.3.1.2 DATA BURST ENABLE. Bit 12, the DBE bit, is set to enable burst f i l l ing of 
the data cache. Operat ing systems and other sof tware set th is bit when burst 
f i l l ing of the data cache is desired. A reset operat ion clears the DBE bit. 

6.3.1.3 CLEAR DATA CACHE. Bit 11, the CD bit, is set to clear all entries in the 
data cache. Operat ing systems and other sof tware set this bit to clear data 
f rom the cache pr ior  to a context  switch. The processor clears all val id bits 
in the data cache at the t ime a MOVEC instruct ion loads a one into the CD 
bit of the CACR. The CD bit is a lways read as a zero. 

6.3.1.4 CLEAR ENTRY IN DATA CACHE. Bit 10, the CED bit, is set to clear an entry 
in the data cache. The index f ield of the CAAR (see Figure 6-15) corresponding 
to the index and long-word select por t ion of an address specif ies the entry 
to be cleared. The processor clears on ly  the specif ied long word  by clearing 
the val id  bit for the entry at the t ime a MOVEC instruct ion loads a one into 
the CED bit of the CACR, regardless of the states of the ED and FD bits. The 
CED bit is a lways read as a zero. 

MOTOROLA MC68030 USER'S MANUAL 6-21 

6 



6.3.1.5 FREEZE DATA CACHE. Bit 9, the FD bit, is set to freeze the data cache. 
When the FD bit is set and a miss occurs during a read or write of the data 
cache, the indexed entry is not replaced. However, write cycles that hit in 
the data cache cause the entry to be updated even when the cache is frozen. 
When the FD bit is clear, a miss in the data cache during a read cycle causes 
the entry (or line) to be filled, and the fi l l ing of entries on writes that miss 
are then controlled by the WA bit. A reset operation clears the FD bit. 

6.3.1.6 ENABLE DATA CACHE. Bit 8, the ED bit, is set to enable the data cache. 
When it is cleared, the data cache is disabled. A reset operation clears the 
ED bit. The supervisor normal ly enables the data cache, but it can clear ED 
for system debugging or emulation, as required. Disabling the data cache 
does not flush the entries. If it is enabled again, the previously valid entries 
remain valid and can be used. 

6.3.1.7 INSTRUCTION BURST ENABLE. Bit 4, the IBE bit ,  is set to enable burst 
fill!ng of the instruction cache. Operating systems and other software set this 
bit when burst f i l l ing of the instruction cache is desired. A reset operation 
clears the IBE bit. 

6.3.1.8 CLEAR INSTRUCTION CACHE. Bit 3, the CI bit, is set to clear all entries in 
the instruction cache. Operating systems and other software set this bit to 
clear instructions from the cache prior to a context switch. The processor 
clears all valid bits in the instruction cache at the t ime a MOVEC instruction 
loads a one into the CI bit of the CACR. The CI bit is always read as a zero. 

6.3.1.9 CLEAR ENTRY IN INSTRUCTION CACHE. Bit 2, the CEI bit, is set to clear 
an entry in the instruction cache. The index field of the CAAR (see Figure 
6-15) corresponding to the index and long-word select portion of an address 
specifies the entry to be cleared. The processor clears only the specified long 
word by clearing the valid bit for the entry at the t ime a MOVEC instruction 
loads a one into the CEI bit of the CACR, regardless of the states of the El 
and FI bits. The CEI bit is always read as a zero. 

6-22 MC68030 USER'S MANUAL MOTOROLA 



6.3.1.10 FREEZE INSTRUCTION CACHE. Bit 1, the FI bit, is set to freeze the in- 
struction cache. When the FI bit is set and a miss occurs in the instruction 
cache, the entry (or line) is not replaced. When the FI bit is cleared to zero, 
a miss in the instruction cache causes the entry (or line) to be filled. A reset 
operation clears the FI bit. 

6.3.1.11 ENABLE INSTRUCTION CACHE. Bit 0, the El bit, is set to enable the in- 
struction cache. When it is cleared, the instruction cache is disabled. A reset 
operation clears the El bit. The supervisor normal ly enables the instruction 
cache, but it can clear El for system debugging or emulation, as required. 
Disabling the instruction cache does not flush the entries. If it is enabled 
again, the previously valid entries remain valid and may be used. 

6.3.2 Cache Address Register 

The CAAR is a 32-bit register shown in Figure 6-15. The index field (bits 7-2) 
contains the address for the "clear cache entry" operations. The bits of this 
field correspond to bits 7-2 of addresses; they specify the index and a long 
word of a cache line. Al though only the index field is used currently, all 32 
bits of the register are implemented and are reserved for use by Motorola. 

31 8 7 
l CACHE FUNCTION ADDRESS [ INDEX 

2 1 0 

Figure 6-15. Cache Address Register 

MOTOROLA MC68030 USER'S MANUAL 6-23 



6 



SECTION 7 
BUS OPERATION 

This section provides a functional description of the bus, the signals that 
control it, and the bus cycles provided for data transfer operations, It also 
describes the error and halt conditions, bus arbitration, and the reset oper- 
ation. Operation of the bus is the same whether the processor or an external 
device is the bus master; the names and descriptions of bus cycles are from 
the point of view of the bus master. For exact timing specifications, refer to 
SECTION 13 ELECTRICAL CHARACTERISTICS. 

The MC68030 architecture supports byte, word, and long-word operands, 
allowing access to 8-, 16-, and 32-bit data ports through the use of asyn- 
chronous cycles controlled by the data transfer and size acknowledge inputs 
(DSACK0 and DSACK1). 

Synchronous bus cycles controlled by the synchronous termination signal 
(STERM) can only be used to transfer data to and from 32-bit ports. 

The MC68030 allows byte, word, and long-word operands to be located in 
memory on any byte boundary. For a misaligned transfer, more than one 
bus cycle may be required to complete the transfer, regardless of port size. 
For a port less than 32 bits wide, multiple bus cycles may be required for an 
operand transfer due to either misalignment or a port width smaller than the 
operand size. Instruction words and their associated extension words must 
be aligned on word boundaries. The user should be aware that misalignment 
of word or long-word operands can cause the MC68030 to perform multiple 
bus cycles for the operand transfer; therefore, processor performance is 
optimized if word and long-word memory operands are aligned on word or 
long:word boundaries, respectively. 

J 

7.1 B U S  T R A N S F E R  S I G N A L S  

The bus transfers information between the MC68030 and an external mem- 
ory, coprocessor, or peripheral device. External devices can accept or provide 
8 bits, 16 bits, or 32 bits in parallel and must follow the handshake protocol 
described in this section. The maximum number of bits accepted or provided 
during a bus transfer is defined as the port width. The MC68030 contains an 

MOTOROLA MC68030 USER'S MANUAL 7-1 

7 



7 

address bus that specifies the address for the transfer and a data bus that 
transfers the data. Control signals indicate the beginning of the cycle, the 
address space and the size of the transfer, and the type of cycle. The selected 
device then controls the length of the cycle with the signal(s) used to ter- 
minate the cycle. Strobe signals, one for the address bus and another for the 
data bus, indicate the validity of the address and provide timing information 
for the data. 

The bus can operate in an asynchronous mode identical to the MC68020 bus 
for any port width. The bus and control input signals used far asynchronous 
operation are internally synchronized to the MC68030 clock, introducing a 
delay. This delay is the time period required for the MC68030 to sample an 
asynchronous input signal, synchronize the input to the internal clocks of the 
processor, and determine whether it is high or low. Figure 7-1 shows the 
relationship between the clock signal and the associated internal signal of a 
typical asynchronous input. 

CLK 

EXT 

INT 

-~ SYNC DELAY 

Figure 7-1. Relationship between External and Internal Signals 

Furthermore, for all asynchronous inputs, the processor latches the level of 
the input during a sample window around the falling edge of the clock signal. 
This window is illustrated in Figure 7-2. To ensure that an input signal is 
recognized on a specific falling edge of the clock, that input must be stable 
during the sample window. If an input makes a transition during the window 
time period, the level recognized by the processor is not predictable; how- 
ever, the processor always resolves the latched level to either a logic high 
or low before using it. in addition to meeting input setup and hold times for 
deterministic operation, all input signals must obey the protocols described 
in this section. 

7-2 MC68030 USER'S MANUAL MOTOROLA 



CLK 

EXT 

tSU 

I 

L u  

~ t~ 

W&V&v&V&V&v&Y&V&  LV&V&VAVAV~VAV&V&V&V4 

] 
SAMPLE WINDDW 

Figure 7-2. Asynchronous Input Sample Window 

A device with a 32-bit port size can also provide a synchronous mode transfer. 
In synchronous operation, input signals are externally synchronized to the 
processor clock, and the synchronizing delay is not incurred. 

Synchronous inputs (STERM, CBACK, and ClIN) must remain stable during 
a sample window for all rising edges of the clock during a bus cycle (i.e., 
while address strobe (AS) is asserted), regardless of when the signals are 
asserted or negated, to ensure proper operation. This sample window is 
defined by the synchronous input setup and hold times (see MC68030EC/D, 
MC68030 E/ectrica/ Specifications). 

7.1.1 Bus Control Signals 
The external cycle start (ECS) signal is the earliest indication that the pro- 
cessor is initiating a bus cycle. The MC68030 initiates a bus cycle by driving 
the address, size, function code, read/write, and cache inhibit-out outputs 
and by asserting ECS. However, if the processor finds the required program 
or data item in an on-chip cache, if a miss occurs in the address translation 
cache (ATC) of the memory management unit (MMU), or if the MMU finds 
a fault with the access, the processor aborts the cycle before asserting AS. 
ECS can be used to initiate various timing sequences that are eventually 
qualified with AS. Qualification with AS may be required since, in the case 
of an internal cache hit, an ATC miss, or an MMU fault, a bus cycle may be 
aborted after ECS has been asserted. The assertion of AS ensures that the 
cycle has not been aborted by these internal conditions. 

During the first external bus cycle of an operand transfer, the operand cycle 
start (OCS) signal is asserted with ECS. When several bus cycles are required 

MOTOROLA MC68030 USER'S MANUAL 7-3 

7 



7 

to transfer the entire operand, OCS is asserted only at the beginning of the 
first external bus cycle. With respect to OCS, an "operand" is any entity 
required by the execution unit, whether a program or data item. 

The function code signals (FC0-FC2) are also driven at the beginning of a 
bus cycle. These three signals select one of eight address spaces (refer to 
Table 4-1) to which the address applies. Five address spaces are presently 
defined. Of the remaining three, one is reserved for user definition and two 
are reserved by Motorola for future use. The function code signals are valid 
while AS is asserted. 

At the beginning of a bus cycle, the size signals (SIZ0 and SIZ1) are driven 
along with ECS and the FC0-FC2. SIZ0 and SIZ1 indicate the number of bytes 
remaining to be transferred during an operand cycle (consisting of one or 
more bus cycles) or during a cache fill operation from a device with a port 
size that is less than 32 bits. Table 7-2 shows the encoding of SIZ0 and SIZ1. 
These signals are valid while AS is asserted. 

The read/write (R/W) signal determines the direction of the transfer dUring 
a bus cycle. This signal changes state, when required, at the beginning of a 
bus cycle and is valid while AS is asserted. R/W only transitions when a write 
cycle is preceded by a read cycle or vice versa. The signal may remain low 
for two consecutive write cycles. 

The read-modify-write cycle signal (RMC) is asserted at.the beginning of the 
first bus cycle of a read-modify-write operation and remains asserted until 
completion of the final bus cycle of the operation. The RM(~ signal is guar- 
anteed to be negated before the end of state 0 for a bus cycle following a 
read-modify-write operation. 

7.1.2 Address  Bus 

The address bus signals (A0-A31) define the address of the byte (or the most 
significant byte) to be transferred during a bus cycle. The processor places 
the address on the bus at the beginning of a bus cycle. The address is valid 
while AS is asserted. 

7.1.3 Address  St robe  

AS is a timing signal that indicates the validity of an address on the address 
bus and of many control signals. It is asserted one-half clock after the be- 
ginning of a bus cycle. 

7-4 MC68030 USER'S MANUAL MOTOROLA 



7.1.4 Data Bus 

The data bus signals (D0-D31) comprise a bidirectional, nonmultiplexed par- 
allel bus that contains the data being transferred to or from the processor. 
A read or write operation may transfer 8, l&  24, or 32 bits of data (one, two, 
three, or four bytes) in one bus cycle. During a read cycle, the data is latched 
by the processor on the last falling edge of the clock for that bus cycle. For 
a write cycle, all 32 bits of the data bus are driven, regardless of the port 
width or operand size. The processor places the data on the data bus one- 
half clock cycle after AS is asserted in a write cycle. 

7.1.5 Data Strobe 

The data strobe (DS) is a timing signal that applies to the data bus. For a 
read cycle, the processor asserts DS to signal the external device to place 
data on the bus. It is asserted at the same time as AS during a read cycle. 
For a write cycle, D-S signals to the external device that the data to be written 
is valid on the bus. The processor asserts DS one full clock cycle after the 
assertion of AS during a write cycle. 

7.1.6 Data Buffer Enable 

The data buffer enable signal (DBEN) can be used to enable external data 
buffers while data is present on the data bus. During a read operation, DBEN 
is asserted one clock cycle after the beginning of the bus cycle and is negated 
as DS is negated. In a write operation, DBEN is asserted at the time AS is 
asserted and is held active for the duration of the cycle. In a synchronous 
system supporting two-clock bus cycles, DBEN timing may prevent its use. 

7.1.7 Bus Cycle Termination Signals 

During asynchronous bus cycles, external devices assert the data transfer 
and size acknowledge signals (DSACK0 and/or DSACK1) as part of the bus 
protocol. During a read cycle, the assertion of DSACKx signals the processor 
to terminate the bus cycle and to latch the data. During a write cycle, the 
assertion of DSACKx indicates that the external device has successfully stored 
the data and that the cycle may terminate. These signals also indicate to the 
processor the size of the port for the bus cycle just completed, as shown in 
Table 7-1. Refer to 7.3.1 Asynchronous Read Cycle for timing relationships 
of DSACK0 and DSACK1. 

MOTOROLA MC68030 USER'S MANUAL 7-5 

7 



7 . 7  

For synchronous bus cycles, external devices assert the synchronous ter- 
mination signal (STERM) as part of the bus protocol. During a read cycle, 
the assertion of STERM causes the processor to latch the data. During a write 
cycle, it indicates that the external device has successfully stored the data. 
In either case, it terminates the cycle and indicates that the transfer was made 
to a 32-bit port. Refer to 7.3.2 Asynchronous Write Cycle for timing relation- 
ships of STERM. 

The bus error (BERR) signal is also a bus cycle termination indicator and can 
be used in the absence of DSACKx or STERM to indicate a bus error condition. 
It can also be asserted in conjunction with DSACKx or STERM to indicate a 
bus error condition, provided it meets the appropriate timing described in 
this section and in MC68030EC/D, MC68030 E/ectr/ca/Specff/cat/ons. Addi- 
tionally, the BERF~ and HALT signals can be asserted together to indicate a 
retry termination. Again, the BERR and HALT signals can be asserted simul- 

taneously in lieu of or in conjunction with the DSACKx or STERM signals. 

Finally, the autovector (AVEC) signal can be used to terminate interrupt ac- 
knowledge cycles, indicating that the MC68030 should internally generate a 
vector number to locate an interrupt handler routine. AVEC is ignored during 
all other bus cycles. 

7.2 DATA TRANSFER MECHANISM 

The MC68030 architecture supports byte, word, and long-word operands 
allowing access to 8-, 16-, and 32-bit data ports through the use of asyn- 
chronous cycles controlled by DSACK0 and DSACK1. It also supports syn- 
chronous bus cycles to and from 32-bit ports, terminated by STERM. Byte, 
word, and long-word operands can be located on any byte boundary, but 
misaligned transfers may require additional bus cycles, regardless of port 
size. 

When the processor requests a burst mode fill operation, it asserts the cache 
burst request (CBREQ) signal to attempt to fill four entries within a line in 
one ofthe on-chip caches. This mode is compatible with nibble, static column, 
or page mode dynamic RAMs. The burst fill operation uses synchronous bus 
cycles, each terminated by STERM, to fetch as many as four long words. 

7.2.1 Dynamic Bus Sizing 

The MC68030 dynamically interprets the port size of the addressed device 
during each bus cycle, allowing operand transfers to or from 8-, 16-, and 32- 
bit ports. During an asynchronous operand transfer cycle, the slave device 

7-6 MC68030 USER'S MANUAL MOTOROLA 



signals its port size (byte, word, or long word) and indicates completion of 
the bus cycle to the processor through the use of the DSACKx inputs. Refer 
to Table 7-1 for DSACKx encodings and assertion results. 

Table 7-1. DSACK Codes and Results 

DSACK1 DSACK0 Result 
H H Inse.~ Wait States in Current Bus Cycle 
H L Complete Cycle -- Data Bus Port Size is 8 Bits 

L H Complete Cycle-- Data Bus PortSize is 16 Bits 
Complete Cycle -- Data Bus Port Size is 32 Bits 

For example, if the processor is executing an instruction that reads a long- 
word operand from a long-word aligned address, it attempts to read 32 bits 
during the first bus cycle. (Refer to 7.2.2 Misaligned Operands for the case 
of a word or byte address.) If the port responds that it is 32 bits wide, the 
MC68030 latches all 32 bits of data and continues with the next operation. If 
the port responds that it is 16 bits wide, the MC68030 latches the 16 bits of 
valid data and runs another bus cycle to obtain the other 16 bits. The operation 
for an 8-bit port is similar, but requires four read cycles. The addressed device 
uses the DSACKx signals to indicate the port width. For instance, a 32-bit 
device a/ways returns DSACKx for a 32-bit port (regardless of whether the 
bus cycle is a byte, word, or long-word operation). 

Dynamic bus sizing requires that the portion of the data bus used for a transfer 
to or from a particular port size be fixed. A 32-bit port must reside on data 
bus bits 0-31, a 16-bit port must reside on data bus bits 16-32, and an 8-bit 
port must reside on data bus bits 24-31. This requirement minimizes the 
number of bus cycles needed to transfer data to 8- and 16-bit ports and 
ensures that the MC68030 correctly transfers valid data. The MC68030 always 
attempts to transfer the maximum amount of data on all bus cycles; for a 
long-word operation, it always assumes that the port is 32 bit wide when 
beginning the bus cycle. 

The bytes of operands are designated as shown in Figure 7-3. The most 
significant byte of a long-word operand is OP0, and OP3 is the least significant 
byte. The two bytes of a word-length operand are OP2 (most significant) and 
OP3. The single byte of a byte-length operand is OP3. These designations 
are used in the figures and descriptions that follow. 

MOTOROLA MC68030 USER'S MANUAL 7-7 

El 



7 

LONG WORD OPERAND I OPO I 0PI 

WORD OPERANO 

I OP2 } OP3 

[ OP2 1 0P3 

7 

BYTE OPEBAND L OP3 

Figure 7-3. Internal Operand Representation 

Figure 7-4 shows the required organization of data ports on the MC68030 
bus for 8-, 16-, and 32-bit devices. The four bytes shown in Figure 7-4 are 
connected through the internal data bus and data multiplexer to the external 
data bus. This path is the means through which the MC68030 supports dy- 
namic bus sizing and operand misalignment. Refer to 7.2.2 Misaligned Op- 
erands for the definition of misaligned operand. The data multiplexer 
establishes the necessary connections for different combinations of address 
and data sizes. 

The multiplexer takes the four bytes of the 32-bit bus and routes them to 
their required positions. For example, OP0 can be routed to D24-D31, as 
would be the normal case, or it can be routed to any other byte position to 
support a misaligned transfer. The same is true for any of the operand bytes. 
The positioning of bytes is determined by the size (SIZ0 and SIZ1) and address 
(A0 and A1) outputs. 

The SIZ0 and SIZ1 outputs indicate the remaining number of bytes to be 
transferred during the current bus cycle, as shown in Table 7-2. 

The number of bytes transferred during a write or noncachable read bus 
cycle is equal to or less than the size indicated by the SIZ0 and SIZ1 outputs, 
depending on port width and operand alignment. For example, during the 
first bus cycle of a long-word transfer to a word port, the size outputs indicate 
that four bytes are to be transferred, although only two bytes are moved on 
that bus cycle. Cachable read cycles must always transfer the number of 
bytes indicated by the port size. 

A0 and A1 also affect operation of the data multiplexer. During an operand 
transfer, A2-A31 indicate the long-word base address of that portion of the 
operand to be accessed; A0 and A1 indicate the byte offset from the base. 
Table 7-3 shows the encodings of A0 and A1 and the corresponding byte 
offsets from the long-word base. 

7-8 MC68030 USER'S MANUAL MOTOROLA 



REGISTER I 

MULTIPLEXER 

. . . . .  EXTERNAL __[ 
DATA BUS I 

0PO 0P1 0P2 0P3 

\ \ / /, 
I ROUTING AND OUPUC~ON l ~, 

B31-D24 D23-D16 g;5-gB D7-DO I 

ADDRESS 
xxxxxxxO I BYTE O J BYTE | 

INCREASING 

ADDRESSES 

2 BYTE 2 BYTE 3 

a 

xxxxxxxO BYTE O 

1 BYTE 1 
B-BIT PORT 

2 BYTE2 

3 BYTE 3 

~ EXTERNAL BUS 

16-81"i" PORT 

Figure 7-4. MC68030 Interface to Various Port Sizes 

Table 7-4 lists the bytes required on the data bus for read cycles that are 
cachable. The entries shown as OPn are portions of the requested operand 
that are read or written during that bus cycle and are defined by SIZO, SlZl, 
AO, and A1 for the bus cycle. The PRn and the Nn bytes correspond to the 
previous and next bytes in memory, respectively, that must be valid on the 
data bus for the specified port size (long word or word) so that the internal 
caches operate correctly. (For cachable accesses, the MC68030 assumes that 
all portions of the data bus for a given port size are valid.) This same table 
applies to noncachable read cycles except that the bytes labeled PRn and Nn 
are not required and can be replaced by "don't cares". 

Table 7-2. Size Signal 
Encoding 

SIZ1 SIZO Size 

0 1 Byte 

1 0 Word 

1 1 3 Bytes 

0 0 Long Word 

Table 7-3. Address Offset 
Encodings 

A1 A0 Offset 

0 O +0 Bytes 

0 1 + 1 Byte 

1 0 + 2 Bytes 

1 1 + 3 Bytes 

MOTOROLA MC68030 USER'S MANUAL 7-9 

7 



7 

Table 7-4. Data Bus Requirements for Read Cycles 

Transfer 
Size Size Address 

SlZl SIZ0 A1 A0 

Byte 0 1 0 0 

0 1 0 1 

0 1 1 0 

0 1 1 1 

Word 1 0 0 0 

1 0 0 1 

1 0 1 0 

1 0 1 1 

3 Byte 1 1 0 0 

1 1 0 1 

1 1 1 0 

1 1 1 1 

Long 0 0 0 0 

Word 0 0 0 1 

0 0 1 0 

0 0 1 1 

Long-Word Port 
External Data Bytes Required 

Word Port 
External Data Bytes 

Required 

Byte Port 
External 

Data Bytes 
Required 

D31:D24 D23:D16 D15:D8 D7:D0 D31:D24 D23:D16 D31:D24 

loP31 N IN1 IN2 I 
I PR loP31 N I N1 I 
I PR1 I PR loP3 I N I 

loP2 lops I N I N1 I 
I PR loP2 lops I N I 
I PR1 I PR loP2 lops I 

I.P~I I P~ loP1 I oP~ I 
I PR2 I P~I I P~ loP1 I 

lops I N rl 
I PR loP3 I 
loP3 I N I 
I PR loP3 I 

loP2 lops I 
I PR loP2 I 
loP2 loP3 I 
I PR loP2 I 

loP1 loP2 I 
I PR loP1 I 
loP1 loP2 I 
I PR loP1 I 

I oPo loP1 I 
I PR I oPo I 
I oPo loP1 I 
I PR I oPo I 

I oPo lop1 loP2 loP3 I 
I PR I oPo loP1 loP2 I 
I PR1 I PR I oPo loP1 I 
I ~PR2 I PR1 I PR I oPo I 

Fs-~q 

Fs-~q 
Fs-~q 

Fs~-q 
r~q  
Fs~q 

NOTE: The bytes labeled as Nn (Next n) and PRn (Previous n) are only required to be valid for cachable read cycles. They 
can be interpreted as don't cares for noncachable read cycles. 

Table 7-5 lists the combination~ of SIZ0, SlZ1, A0, and A1 and the corre- 
sponding pattern of the data transfer for write cycles from the internal mul- 
tiplexer of the MC68030 to the external data bus. 

Figure 7-5 shows the transfer of a long-word operand to a word port. In the 
first bus cycle, the MC68030 places the four operand bytes on the external 
bus. Since the address is long-word aligned in this example, the mL~ltiplexer 
follows the pattern in the entry of Table 7-5 corresponding to 
SlZ0_SlZl_A0_A1 =0000. The port latches the data on bits D16-D31 of the 
data bus, asserts DSACK1 (DSACK0 remains negated), and the processor 

7-10 MC68030 USER'S MANUAL MOTOROLA 



Table 7-5. MC68030 Internal to External Data Bus 
Mult iplexer - -  Write Cycles 

Transfer Size Address External Data Bus Connection 

Size ..... SIZ1 SIZ0 A1 A0 D31:D24 D23:D16 D15:D8 D7:D0 

Byte 0 1 ~ x loP3  loP3  loP3  loP3 I 

Wor~ 1 0 ~ 0 tOP2 I OP~ lOP2 lOP3 I 

1 0 x ~ I O P 2 1 O P 2 1 0 ~ I o P ~ I  

~yte  1 1 0 0 l o P '  I OP~ lOP3 I OPO~ I 

1 1 0 1 I O P I l O P I l O P ~ I o P 3 1  

1 1 ~ lOP1 I ° ~  I o ~ l o P ,  I 

'on, Word 0 0 0 0 lOP0 I OP~ lOP2 I o~3 I 

0 0 0 ~ I O P 0 1 O P 0 1 O P ~ I o P ~ I  

0 0 t 0 I O P 0 1 O P ~ I o P 0 1 O P l l  

0 0 1 1 I O P 0 1 O P O I O P ~ I o P 0 1  

*Due to the current implementation, this byte is output but never used. 
x =  don't care 

NOTE: The OP tables on the external data bus refer to a particular byte of the operand 
that is written on that section of the data bus. 

31 LONG WORD 0PERA~ID 0 

I 0Po 1 0P1 I 0~2 I oP3 I 

031 DATA BUS D16 

1 I 

WORD MEMORY 

MSB LS8 

MC68030 MEMORY CONTROL 

SIZ1 SIZ0 A1 A0 DSACK~ DSACK0 

0 0 0 0 L H 

1 0 1 0 L H 

Figure 7-5. Example of Long-Word Transfer to Word Port 

MOTOROLA MC68030 USER'S MANUAL 7-11 

m 



7 

SO $2 $4 SO $2 $4 

CLK 

A2A31 Z X  X 
A~---k / 

AD 

FCOFC2 C-X X 

SIZO " ~  

R~ --k 

DC---~ 

OSACK1 

DSACKO 

k__/ 

k___/ k ~ /  

DBE~ ~ ' ~  

D24-D31 

D16-D23 

OPO 

DP1 

WORD WRITE 

OP2 

OP3 

~- ~ WORD WRITE 

LONG WORD OPERAND WRITE TO 16-BIT PORT 

Figure 7-6. Long-Word Operand Write Timing (16-Bit Data Port) 

7-12 MC68030 USER'S M A N U A L  MOTOROLA 



terminates the bus cycle. It then starts a new bus cycle with 
SIZ0_SIZI_A0_A1 =1010 to transfer the remaining 16 bits. SIZ0 and SIZ1 
indicate that a word remains to be transferred; A0 and A1 indicate that the 
word corresponds to an offset of two from the base address. The multiplexer 
follows the pattern corresponding to this configuration of the size and address 
signals and places the two least significant bytes of the long word on the 
word portion of the bus (D16-D31). The bus cycle transfers the remaining 
bytes to the word-size port. Figure 7-6 shows the timing of the bus transfer 
signals for this operation. 

Figure 7-7 shows a word transfer to an 8-bit bus port. Like the preceding 
example, this example requires two bus cycles. Each bus cycle transfers a 
single byte. The size signals for the first cycle specify two bytes; for the 
second cycle, one byte. Figure 7-8 shows the associated bus transfer signal 
timing. 

15 WORD DPERAND 0 

I DP2 ] DP3 1 

031 DATA SUS D24 

I I 

BYTE MEMORY MC68030 MEMORYCONTROL 

SIZ1 SIZO A1 AO OSACK1 OSACKO 

I 0 0 0 H L 

0 I O I H L 

Figure 7-7. Example of Word Transfer to Byte Port 

7.2.2 Misaligned Operands 

Since operands may reside at any byte boundaries, they may be misaligned. 
A byte operand is properly aligned at any address; a word operand is mis- 
aligned at an odd address; a long word is misaligned at an address that is 
not evenly divisible by four. The MC68000, MC68008, and MC68010 imple- 
mentations allow long-word transfers on odd-word boundaries but force 
exceptions if word or long-word operand transfers are attempted at odd-byte 
addresses. Although the MC68030 does not enforce any alignment restric- 
tions for data operands (including PC relative data addresses), some per- 
formance degradation occurs when additional bus cycles are required for 

MOTOROLA MC68030 USER'S MANUAL 7-13 

7 



SO $2 S4 S0 $2 $4 

X 

/ 

X 
\ 

/ 

k_/ 

k_J  

CLK 

A2-A31 ~ ,  

A0 \ 

FC0-FC2 

SIZ1 J 

S/ZO 

R/W " ~  

~ --k_../ 

oc--~ 

DSACK1 J 

DSACK0 _ J - - - ' - ' - - ~  

~ C 2 - k  / - k  
D24031 ~ oP2 ~ oP3 

016 D23 ~ - - - ' ~  0P3 ~ oP3 

o8-ol, ~ . - - - - ~  oP2 ~ oP3 

oo-o7 _ ~ - . ~  oP3 ~ oP3 

l - ~  BYTE WRITE = =  BYTE WRITE ~ - ~  

i = WORD OPERAND WRITE - 

Figure 7-8. Word Operand Write Timing (8-Bit Data Port) 

7-14 MC68030 USER'S M A N U A L  MOTOROLA 



long-word or word operands that are misaligned. For maximum performance, 
data items should be aligned on their natural boundaries. All instruction 
words and extension words must reside on word boundaries. Attempting to 
prefetch an instruction word at an odd address causes an address error 
exception. 

Figure 7-9 shows the transfer of a long-word operand to an odd address in 
word-organized memory, which requires three bus cycles. For the first cycle, 
the size signals specify a long-word transfer, and the address offset (A2:A0) 
is 001. Since the port width is 16 bits, only the first byte of the long word is 
transferred. The slave device latches the byte and acknowledges the data 
transfer, indicating that the port is 16 bits wide. When the processor starts 
the second cycle, the size signals specify that three bytes remain to be trans- 
ferred with an address offset (A2:A0) of 010. The next two bytes are trans- 
ferred during this cycle. The processor then initiates the third cycle, with the 
size signals indicating one byte remaining to be transferred. The address 
offset (A2:A0) is now 100; the port latches the final byte; and the operation 
is complete. Figure 7-10 shows the associated bus transfer signal timing. 

Figure 7-1 1 shows the equivalent operation for a cachable data read cycle. 

Figures 7-12 and 7-13 show a word transfer to an odd address in word- 
organized memory. This example is similar to the one shown in Figures 7-9 
and 7-10 except that the operand is word sized and the transfer requires only 
two bus cycles. 

Figure 7-14 shows the equivalent operation for a cachable data read cycle. 

31 LONG WORD OPERAND 0 

I oP0 I oP, I oP2 I 1 

031 DATA BUS Dlfi 

I I 

WORD MEMORY MCSO030 MEMORY CONTROL 

MSB LSB SIZI SIZO A2 A1 AO DSACKi DSACKO 

XXX OPO 0 0 0 0 1 L H 

OPI OP2 I ; 0 l 0 L H 

OP3 XXX 0 i l O 0 L H 

Figure 7-9. Misaligned Long-Word Transfer to Word Port Example 

MOTOROLA MC68030 USER'S MANUAL 7-15 

7 



7 

CLK 

~2-~, Z[;X X X 

Ao ~ \ 

'co-'~ Z X  X X 

~,~,-X ! \ 

~,zo~ / 

SO $2 $4 SO $2 $4 SO $2 $4 

k__/ 

\ ~ f------k F 

o~c,, \ / k____/ k_.._/ 

OSACKO 

D24-031 

D16-D23 

D8-015 

00-07 

o~0 

(~ OPO 

OP1 

OP2 

~ ~ - -  BYTE WRITE 

> < oP, > < oP, 

> < o~2 > < o~3 

/ 

~ WORO WRITE ~ ~ BYTE WRITE - ~  

- I  LONG WORD OPERAND WRITE 

Figure 7-10. Misaligned Long-Word Transfer to Word Port 

7-16 MC68030 USER'S MANUAL MOTOROLA 



31 

I OPO 

D31 

I 

LONG WORD OPERAND (REGISTER) 

OP1 OP2 

3; 

1 
31 

I 
DATA BUS 

D16 

WORD MEMORY 

I oP3 
CACHE ENTRIES 0 

PR I oP0 i 0P, I oP2 I 
D 

MC68030 MEMORYCONTROL 

MSR LSB SlZl SIZ0 A2 A1 A0 DSACK1 DSACK0 

PR OP0 0 0 0 0 1 L H 

OP1 OP2 1 1 0 1 0 L H 

OP3 N 0 l 1 0 0 L H 

N1 N2 1 0 1 l 0 L H 

Figure 7-11. Misaligned Cachable Long-Word Transfer from Word Port Example 

15 WORD OPERAND 0 

I 0P2 I oP3 I 

D31 DATA BUS D16 

I I 

WORD MEMORY 

MSB LSB 

MC68030 MEMORY CONTROL 

SIZ1 SIZO A2 A1 AO DSACK1 DSACKO 

1 0 0 0 I L H 

O 1 0 1 O L H 

Figure 7-12. Misaligned Word Transfer to Word Port Example 

M O T O R O L A  M C 6 8 0 3 0  U S E R ' S  M A N U A L  7 - 1 7  

m 



7 

so $2 $4 so $2 $4 

CLK 

A~A3' Z X  X 

A1-- k / 

Ao j \ 

'C°EC~ Z X  X 

s,z, ___/ \ 

s,zo - - k  / 

R/W 

~ - - k J  k_/ 
oc--~ 

~ ~ ~  F 
\ _ _ /  k__.,/-- 

OS,DK, \ / 

DSACKO 

ORE7 

D24-D31 

D16-D23 

DR-Of5 

DD-D7 

WORD WRITE 

/--k 

< oP2 ~ oP3 

< oP2 ~ oP3 

< oP3 ~ oP3 

< oP2 >- - - -<  oP3 

~ BYTE WRITE 

WORD OPERAND WRITE TO A1/AO=01 

F i g u r e  7-13.  M i s a l i g n e d  W o r d  T r a n s f e r  t o  W o r d  P o r t  

7-18 MC68030 USER'S MANUAL MOTOROLA 



Figures 7-15 and 7-16 show an example of a long-word transfer to an odd 
address in long-word-organized memory. In this example, a long-word access 
is attempted beginning at the least significant byte of a long-word-organized 
memory. Only one byte can be transferred in the first bus cycle. The second 
bus cycle then consists of a three-byte access to a long-word boundary. Since 
the memory is long-word organized, no further bus cycles are necessary. 

Figure 7-17 shows the equivalent operation for a cachable data read cycle. 

7.2.3 Effects of Dynamic Bus Sizing and Operand Misalignment 

The combination of operand size, operand alignment, and port size deter- 
mines the number of bus cycles required to perform a particular memory 
access. Table 7-6 shows the number of bus cycles required for different 
operand sizes to different port sizes with all possible alignment conditions 
for write cycles and noncachable read cycles. 

Table 7-6. Memory Alignment and Port Size Influence 
on Write Bus Cycles 

Number of Bus Cycles 
A1/A0 

00 01 10 11 

Instruction* 1:2:4 N/A N/A N/A 

Byte Operand 1:1:1 1:1:1 1:1:1 1:1:1 

!Word Operand 1:1:2 1:2:2 1:1:2 2:2:2 

! Long-Word Operand 1:2:4 2:3:4 2:2:4 2:3:4 

Data Port S i z e -  32 Bits:16 Bits:8 Bits 
*Instruction prefetches are always two words from a long-word boundary. 

This table shows that bus cycle throughput is significantly affected by port 
size and alignment. The MC68030 system designer and programmer should 
be aware of and account for these effects, particularly in time-critical appli- 
cations. 

MOTOROLA MC68030 USER'S MANUAL 7-19 

7 



7 

15 WORD OPERAND (REGISTER) 0 

DATA BUS 
031 D16 

I I 
f 

WORD MEMORY 

MSB LSB 

31 CACHE ENTRY 

P, L 0P2 m m  

MC68030 MEMORYCONTROL 

SIZ1 SIZO A2 A1 AO DSACK1 OSACKO 

1 O 0 0 1 L H 

0 1 0 1 0 L H 

Figure 7-14. Example of Misaligned Cachable Word Transfer from Word Bus 

31 

i 

D31 

I, 

LONG WORD OPERAND 0 

l 0~2 I 0P3 I OPO J OP1 

DATA BUS 

LONG WORD MEMORY 

MSB UMB LMB LSB 

DO 

I 

MC68030 MEMORY CONTROL 

SIZ1 SIZO A2 A1 AO OSACK1 DSACKO 

0 O 0 1 1 L L 

1 1 1 0 0 L L 

Figure 7-15. Misaligned Long-Word Transfer to Long-Word Port 

Table 7-6 shows that the processor always prefetches instructions by reading 
a long word from a long-word address (A1 :A0=00), regardless of port size 
or alignment. When the required instruction begins at an odd-word boundary, 
the processor attempts to fetch the entire 32 bits and loads both words into 
the instruction cache, if possible, although the second one is the required 
word. Even if the instruction access is not cached, the entire 32 bits are latched 
into an internal cache holding register from which the two instructions words 
can subsequently be referenced. Refer to SECTION 11 INSTRUCTION EXE- 
CUTION TIMING for a complete description of the cache holding register and 
pipeline operation. 

7-20 MC68030 USER'S MANUAL MOTOROLA 



SO $2 $4 SO $2 $4 

CLK 

A2-A31 

A1 

AO 

FCO-FC2 

SIZ1 

SIZO 

ECS 

OCS 

D24-D31 

D16-D23 

ZX X 
___/ \ 

__/ \ 

x X 
- 7  / 
- 7  / 
- k  

--k._J k.__/ 
--k_./ 

..... r 

k__/ k___/- 
OSACK~ ____//------'~ 

DSACKO _ _ _ / - - - - - ~  

~ Z 7 - 7  /-7 
oPo ~ oP~ 

oPo ~ .... oP2 

oo-o7 ~ oPo ~ oP, 

1 - - ~  BYTE WRITE . . . . .  3-8Y'E WRITE - ~  

I-- LONG WORD OPERAND WRITE ~l 

Figure 7-16. Misaligned Write Cycles to Long-Word Port 

MOTOROLA MC68030 USER'S MANUAL 7-21 

lm 



IN 

LONG WORD OPERAND (REGISTER) 0 

OP1 OP2 I OP3 I OPO 

31 CACHE ENTRIES 0 

I PR2 I PR, I PR I I 
31 0 

DATA BUS 
D31 D0 

I I 
t 

LONG WORD MEMORY MC68030 MEMORY CONTROL 

MSB UMB LMB LSB SIZ1 SIZO A2 A1 AO 

0 0 0 I I 

1 1 1 0 0 

DSACKI DSACKO 

L L 

L L 

Figure 7-17. Misaligned Cachable Long-Word Transfer from Long-Word Bus 

7.2.4 Address, Size, and Data Bus Relationships 
The data transfer examples show how the MC68030 drives data onto or 
receives data from the correct byte sections of the data bus. Table 7-7 shows 
the combinations of the size signals and address signals that are used to 
generate byte enable signals for each of the four sections of the data bus for 
noncachable read cycles and all write cycles if the addressed device requires 
them. The port size also affects the generation of these enable signals as 
shown in the table. The four columns on the right correspond to the four 
byte enable signals. Letters B, W, and L refer to port sizes: B for 8-bit ports, 
W for 16-bit ports, and L for 32-bit ports. The letters B, W, and L imply that 
the byte enable signal should be true for that port size. A dash (--) implies 
that the byte enable signal does not apply. 

The MC68030 always drives all sections of the data bus because, at the start 
of a write cycle, the bus controller does not know the port size. The byte 
enable signals in the table apply only to read operations that are not to be 
internally cached and to write operations. For cachable read cycles, during 
which the data is cached, the addressed port must drive all sections of the 
bus on which it resides. 

7-22 MC68030 USER'S MANUAL MOTOROLA 



T a b l e  7 - 7 .  D a t a  B u s  W r i t e  E n a b l e  S i g n a l s  f o r  

B y t e ,  W o r d ,  a n d  L o n g - W o r d  P o r t s  

Transfer 
SlZl SIZ0 A1 A0 Size 

Byte 0 1 0 0 
0 1 0 1 
0 1 1 0 
0 1 1 1 

Word 1 0 0 0 
1 0 0 1 
1 0 1 0 
1 0 1 1 

3 Byte 1 1 0 0 
I I 0 I 

I I I 0 
I I I I 

Long Word 0 0 0 0 
0 0 0 1 
0 0 1 0 
0 0 1 1 

Data Bus Active Sections 
Byte (B) - Word (W) - Long-Word (L) Ports 

D31 :D24 

BWL 
B 
BW 
B 

BWL 
B 
BW 
B 

BWL 
B 
BW 
B 

BWL 
B 
BW 

: B 

D23:D16 

WL 

W 

WL 
WL 
W 
W 

WL 
WL 
W 
W 

WL 
WL 
W 
W 

D15:D8 D7:D0 

L 
- -  L 

L 
L L 

- -  L 

L 
L L 
L L 

- -  L 

L L 
L L 
L L 

- -  L 

The table shows that the MC68030 transfers the number of bytes specified 
by the size signals to or f rom the specified address unless the operand is 
misal igned or the number of bytes is greater than the port width. In these 
cases, the device transfers the greatest number of bytes possible fo r the port. 
For example,  if the size is four bytes and the address offset (A1 :A0) is 01, a 
32-bit slave can only receive three bytes in the current bus cycle. A 16- or 
8-bit slave can only receive one byte. The table defines the byte enables for 
all port sizes. Byte data strobes can be obtained by combining the enable 
signals with the data strobe signal. Devices residing on 8-bit ports can use 
the data strobe by itself since there is only one val id byte for every transfer. 
These enable or strobe signals select only the bytes required for wr i te cycles 
or for noncachable read cycles. The other bytes are not selected, which 
prevents incorrect accesses in sensit ive areas such as I/O. 

Figure 7-18 shows a logic diagram for one method for generating byte data 
enable signals for 16- and 32-bit ports f rom the size and address encodings 
and the read/write signal. 

MOTOROLA MC68030 USER'S MANUAL 7-23 

7 



7 

7.2.5 MC68030 versus MC68020 Dynamic Bus Sizing 

The MC68030 supports the dynamic bus sizing mechanism of the MC68020 
for asynchronous bus cycles (terminated with DSACKx) with two restrictions. 
First, for a cachable access within the boundaries of an aligned long word, 
the port size must be consistent throughout the transfer of each long word. 
For example, when a byte port resides at address $00, addresses $01, $02, 
and $03 must also correspond to byte ports. Second, the port must supply 
as much data as it signals as port size, regardless of the transfer size indicated 
with the size signals and the address offset indicated by A0 and A1 for 
cachable accesses. Otherwise, dynamic bus sizing is identical in the two 
processors. 

7.2.6 Cache Fil l ing 

The on-chip data and instruction caches, described in SECTION 6 ON-CHIP 
CACHE MEMORIES, are each organized as 16 lines of four long-word entries 
each. For each line, a tag contains the most significant bits of the logical 
address, FC2 (instruction cache) or FC0-FC2 (data cache), and a valid bit for 
each entry in the line. An entry fill operation loads an entire long word 
accessed from memory into a cache entry. This type of fill operation is per- 
formed when one entry of a line is not valid and an access is cachable. A 
burst fill operation is requested when a tag miss occurs for the current cycle 
or when all four entires in the cache line are invalid (provided the cache is 
enabled and burst filling for the cache is enabled). The burst fill operation 
attempts to fill all four entries in the line. To support burst filling, the slave 
device must have a 32-bit port and must have a burst mode capability; that 
is, it must acknowledge a burst request with the cache burst acknowledge 
(CBACK) signal. It must also terminate the burst accesses with STERM and 
place a long word on the data bus for each transfer. The device may continue 
to supply successive long words, asserting STERM with each one, until the 
cache line is full. For further information about filling the cache, both entry 
fills and burst mode fills, refer to 6.1.3 Cache Filling, 7.3.4 Synchronous Read 
Cycle, 7.3.5 Synchronous Write Cycle, and 7.3.7 Burst Operation Cycles, which 
discuss in detail the required bus cycles. 

7-24 MC68030 USER'S MANUAL MOTOROLA 



AO 

A1 

SIZO 

SIZ1 

R/W 

I ! 

i 

i 

i 

i 

: i 

: I 

I 

r 
I 
I 

I 

I- 

I 
I 
i 

D ~ UUO 

UMO 

l 

D - -  

LLO 

uo 

~ : ~  LD 

LMO 

UUO = UPPER UPPER DATA (32-BIT PORT) 
UMD = UPPER MIDDLE DATA (32-OIT PORT) 
LMD = LOWER MIDDLE DATA (32-BIT PORT) 
LLO = LOWER LOWER DATA (32-BIT PORT) 
UO = UPPER DATA (16-BIT PORT) 
LD = LOWER DATA (16-BIT PORT) 

NOTE: These select lines can be combined with the address decode circuitry, or all 
can be generated within the same programmed array logic unit. 

Figure 7-18. Byte Data Select Generation for 16- and 32-Bit Ports 

MOTOROLA MC68030 USER'S MANUAL 7-25 

7 



Im 

7.2.7 C a c h e  Interactions 

The organization and requirements of the on-chip instruction and data caches 
affect the interpretation of the DSACKx and STERM signals. Since the MC68030 
attempts to load all data operands and instructions that are cachable into 
the on-chip caches, the bus may operate differently when caching is enabled. 
Specifically, on cachable read cycles that terminate normally, the low-order 
address signals (A0 and A1) and the size signals do not apply. 

The slave device must supply as much aligned data on the data bus as its 
port size allows, regardless of the requested operand size. This means that 
an 8-bit port must supply a byte, a 16-bit port must supply a word, and a 
32-bit port must supply an entire long word. This data is loaded into the 
cache. For a 32-bit port, the slave device ignores A0 and A1 and supplies the 
long word beginning at the long-word boundary on the data bus. For a 
16-bit port, the device ignores A0 and supplies the entire word beginning at 
the lower word boundary on D16-D31 of the data bus. For a byte port, the 
device supplies the addressed byte on D24-D31. 

If the addressed device cannot supply port-sized data or if the data should 
not be cached, the device must assert cache inhibit in (CIIN) as it terminates 
the read cycle. If the bus cycle terminates abnormally, the MC68030 does not 
cache the data. For details of interactions of port sizes, misalignments, and 
cache filling, refer to 6.1.3 Cache Filling. 

The caches can also affect the assertion of AS and the operation of a read 
cycle. The search of the appropriate cache by the processor begins when the 
microsequencer requires an instruction or a data item. At this time, the bus 
controller may also initiate an external bus cycle in case the requested item 
is not resident in the instruction or data cache. If the bus is not occupied with 
another read or write cycle, the bus controller asserts the EC,~ signal (and 
the OCS signal, if appropriate). If an internal cache hit occurs, the external 
cycle aborts, and AS is not asserted. This makes it possible to have ECS 
asserted on multiple consecutive clock cycles. Notice that there is a minimum 
time specified from the negation of ECS to the next assertion of ECS (refer 
to MC68030EC/D, MC68030 E/ectrica/ Specifications. 

Instruction prefetches can occur every other clock so that if, after an aborted 
cycle due to an instruction cache hit, the bus controller asserts ECS on the 
next clock, this second cycle is for a data fetch. However, data accesses that 
hit in the data cache can also cause the assertion of ECS and an aborted 
cycle. Therefore, since instruction and data accesses are mixed, it is possible 
to see multiple successive ECS assertions on the external bus if the processor 

7-26 MC68030 USER'S MANUAL MOTOROLA 



is hitting in both caches and if the bus controller is free. Note that, if the bus 
controller is executing other cycles, these aborted cycles due to cache hits 
may not be seen externally. Also, OCS is asserted for the first external cycle 
of an operand transfer. Therefore, in the case of a misaligned data transfer 
where the first portion of the operand results in a cache hit (but the bus 
controller did not begin an external cycle and then abort it) and the second 
portion in a cache miss, OCS is asserted for the second portion ofthe operand. 

7.2.8 Asynchronous Operation 

The MC68030 bus may be used in an asynchonous manner. In that case, the 
external devices connected to the bus can operate at clock frequencies dif- 
ferent from the clock for the MC68030. Asynchronous operation requires 
using only the handshake line (AS, DS, DSACK1, DSACK0, BERR, and HALT) 
to control data transfers. Using this method, AS signals the start of a bus 
cycle, and DS is used as a condition for valid data on a write cycle. Decoding 
the size outputs and lower address lines (A0 and A1) provides strobes that 
select the active portion of the data bus. The slave device (memory or pe- 
ripheral) then responds by placing the requested data on the correct portion 
of the data bus for a read cycle or latching the data on a write cycle, and 
asserting the DSACKt/DSACK0 combination that corresponds to the port size 
to terminate the cycle. If no slave responds or the access is invalid, external 
control logic asserts the BERR or BERR and HALT signal(s) to abort or retry 
the bus cycle, respectively. 

The DSACKx signals can be asserted before the data from a slave device is 
valid on a read cycle. The length of time that DSACKx may precede data is 
given by parameter #31, and it must be met in any asynchronous system to 
insure that valid data is latched into the processor. (Refer to MC68030EC/D, 
MC68030 Electrical Specifications for timing parameters.) Notice that no max- 
imum time is specified from the assertion of AS to the assertion of DSACKx. 
Although the processor can transfer data in a minimum of three clock cycles 
when the cycle is terminated with DSACKx, the processor inserts wait cycles 
in clock period increments until DSACKx is recognized. 

The BERF~ and/or HALT signals can be asserted after the DSACKx signal(s) 
is asserted. BERR and/or HALT must be asserted within the time given as 
parameter #48, after DSACKx is asserted in any asynchronous system. If this 
maximum delay time is violated, the processor may exhibit erratic behavior. 

MOTOROLA MC68030 USER'S MANUAL 7-27 



7 

For asynchronous read cycles, the value of CIIN is internally latched on the 
rising edge of bus cycle state 4. Refer to 7.3.1 Asynchronous Read Cycle for 
more details on the states for asynchonous read cycles. 

During any bus cycle terminated by DSACKx or BERR, the assertion of CBACK 
is completely ignored. 

7.2.9 Synchronous Operation with DSACKx 

Although cycles terminated with the DSACKx signals are classified as asyn- 
chronous and cycles terminated with STERM are classified as synchronous, 
cycles terminated with DSACKx can also operate synchronously in that sig- 
nals are interpreted relative to clock edges. 

The devices that use these cycles must synchronize the responses to the 
MC68030 clock to be synchronous. Since they terminate bus cycles with the 
DSACKx signals, the dynamic bus sizing capabilities of the MC68030 are 
available. In addition, the minimum cycle time for these cycles is also three 
clocks. 

To support those systems that use the system clock to generate DSACKx and 
other asynchronous inputs, the asynchronous input setup time (parameter 
#47A) and the asynchronous input hold time (parameter #47B) are given. If 
the setup and hold times are met for the assertion or negation of a signal, 
such as DSACKx, the processor can be guaranteed to recognize that signal 
level on that specific falling edge of the system clock. If the assertion of 
DSACKx is recognized on a particular falling edge of the clock, valid data is 
latched into the processor (for a read cycle) on the next falling clock edge 
provided the data meets the data setup time (parameter #27). In this case, 
parameter #31 for asynchronous operation can be ignored. The timing pa- 
rameters referred to are described in MC68030EC/D, MC68030 Electrical Spec- 
ifications. If a system asserts DSACKx for the required window around the 
falling edge of $2 and obeys the proper bus protocol by maintaining DSACKx 
(and/or BERR/HALT) until and throughout the clock edge that negates AS 
(with the appropriate asynchronous input hold time specifiedby parameter 
#47B), no wait states are inserted. The bus cycle runs at its maximum speed 
(three clocks per cycle) for bus cycles terminated with DSACKx. 

7-28 MC68030 USER'S MANUAL MOTOROLA 



To assure proper operation in a synchronous system when BERR or BERR 
and HALT is asserted after DSACKx, BERR (and HALT) must meet the ap- 
propriate setup time (parameter #27A) prior to the falling clock edge one 
clock cycle after DSACKx is recognized. This setup time is critical, and the 
MC68030 may exhibit erratic behavior if it is violated. 

When operating synchronously, the data-in setup and hold times for syn- 
chronous cycles may be used instead of the timing requirements for data 
relative to the DS signal. 

The value of CIIN is latched on the rising edge of bus cycle state 4 for all 
cycles terminated with DSACKx. 

7.2.10 Synchronous Operation with STERM 

The MC68030 supports synchronous bus cycles terminated with STERM. 
These cycles, for 32-bit ports only, are similar to cycles terminated with 
DSACKx. The main difference is that STERM can be asserted (and data can 
be transferred) earlier than for a cycle terminated with DSACKx, causing the 
processor to perform a minimum access time transfer in two clock periods. 
However, wait cycles can be inserted by delaying the assertion of STERM 
appropriately. 

Using STERM instead of DSACKx in any bus cycle makes the cycle synchron- 
ous. Any bus cycle is synchronous if: 

1. Neither DSACKx nor AVEC is recognized during the cycle. 

2. The port size is 32 bits. 

3. Synchronous input setup and hold time requirements (specifications 
#60 and #61) for STERM are met. 

Burst mode operation requires the use of STERM to terminate each of its 
cycles. The first cycle of any burst transfer must be a synchronous cycle as 
described in the preceding paragraph. The exact timing of this cycle is con- 
trolled by the assertion of STERM, and wait cycles can be inserted as nec- 
essary. However, the minimum cycle time is two clocks. If a burst operation 
is initiated and allowed to terminate normally, the second, third, and fourth 
cycles latch data on successive falling edges of the clock at a minimum. 
Again, the exact timing for these subsequent cycles is controlled bythe timing 
of STERM for each of these cycles, and wait cycles can be inserted as nec- 
essary. 

MOTOROLA MC68030 USER'S MANUAL 7-29 

m 



7 

Although the synchronous input signals (STERM, CIIN, and CBACK) must be 
stable for the appropriate setup and hold times relative to every rising edge 
of the clock during which AS is asserted, the assertion or negation of CBACK 
and CIIN is internally latched on the rising edge of the clock for which STERM 
is asserted in a synchronous cycle. 

The STERM signal can be generated from the address bus and function code 
value and does not need to be qualified with the AS signal. If STERM is 
asserted and no cycle is in progress (even if the cycle has begun, ECS is 
asserted and then the cycle is aborted), STERM is ignored by the MC68030. 

Similarly, CBACK can be asserted independently of the assertion of CBREQ. 
If a cache burst is not requested, the assertion of CBACK is ignored. 

The assertion of CIIN is ignored when the appropriate cache is not enabled 
or when cache inhibit out (CLOUT) is asserted. It is also ignored during write 
cycles or translation table searches. 

NOTE 

STERM and DSACKx should n e v e r  be asserted during the same bus 
cycle. 

7.3 DATA TRANSFER CYCLES 

The transfer of data between the processor and other devices involves the 
following signals: 

• Address Bus A0-A31 

• Data Bus D0-D31 

• Control Signals 

The address and data buses are both parallel nonmultiplexed buses. The bus 
master moves data on the bus by issuing control signals, and the asynchron- 
ous/synchronous bus uses a handshake protocol to insure correct movement 
of the data. In all bus cycles, the bus master is responsible for de-skewing 
all signals it issues at both the start and the end of the cycle. In addition, the 
bus master is responsible for de-skewing the acknowledge and data signals 
from the slave devices. The following paragraphs define read, write, and 
read-modify-write cycle operations. An additional paragraph describes burst 
mode transfers. 

7-30 MC68030 USER'S MANUAL MOTOROLA 



Each of the bus cycles is defined as a succession of states. These states apply 
to the bus operation and are different from the processor states described 
in SECTION 4 PROCESSING STATES. The clock cycles used in the descrip- 
tions and timing diagrams of data transfer cycles are independent of the 
clock frequency. Bus operations are described in terms of external bus states. 

7.3.1 Asynchronous Read Cycle 

During a read cycle, the processor receives data from a memory, coprocessor, 
or peripheral device. If the instruction specifies a long-word operation, the 
MC68030 attempts to read four bytes at once. For a word operation, it at- 
tempts to read two bytes at once, and for a byte operation, one byte. For 
some operations, the processor requests a three-byte transfer. The processor 
properly positions each byte internally. The section of the data bus from 
which each byte is read depends on the operand size, address signals (A0-A1), 
ClIN and CLOUT, whether the internal caches are enabled, and the port size. 
Refer to 7.2.1 Dynamic Bus Sizing, 7.2.2 Misaligned Operands, and 7.2.6 
Cache Filling for more information on dynamic bus sizing, misaligned op- 
erands, and cache interactions. 

Figure 7-19 is a flowchart of an asynchronous long-word read cycle. Figure 
7-20 is a flowchart of a byte read cycle. The following figures show functional 
read cycle timing diagrams specified in terms of clock periods. Figure 7-21 
corresponds to byte and word read cycles from a 32-bit port. Figure 7-22 
corresponds to a long-word read cycle from an 8-bit port. Figure 7-23 also 
applies to a long-word read cycle, but from a 16-bit port. 

State 0 
The read cycle starts in state 0 (SO). The processor drives ECS low, indi- 
cating the beginning of an external cycle. When the cycle is the first external 
cycle of a read operand operation, operand cycle start (OCS) is driven low 
at the same time. During SO, the processor places a valid address on 
A0-A31 and valid function codes on FC0-FC2. The function codes select 
the address space for the cycle. The processor drives R/W high for a read 
cycle and drives DBEI~ inactive to disable the data buffers. SIZ0-SIZ1 be- 
come valid, indicating the number of bytes requested to be transferred. 
CLOUT also becomes valid, indicating the state of the MMU CI bit in the 
address translation descriptor or in the appropriate TTx register. 

MOTOROLA MC68030 USER'S MANUAL 7-31 



7 

PROCESSOR EXTERNAL DEVICE 

ADDRESS DEVICE 

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK 
2) SET R/WTO READ 
3) DRIVE ADDRESS ON AO-A31 
4) DRIVE FUNCTION CODE ON FCO-FC2 
5) DRIVE SIZE (SIZO-SIZ1) (FOUR BYTES) 
6) CACHE INHIBIT OUT (CLOUT) BECOMES VALID 
7) ASSERT ADDRESS STROBE (~ )  
8) ASSERT DATA STROBE (O'S) 
9) ASSERT DATA BUFFER ENABLE (DBEN) 

ACQUIRE DATA 

1) SAMPLE CACHE INHIBIT IN (CIIN) 
2) LATCH DATA 
31 NEGATE AS AND DS 
4) NEGATE DBEN 

START NEXT CYCLE 

PRESENT DATA 

1) DECODE ADDRESS 
2) PLACE DATA ON DO-D31 
3) ASSERT DATA TRANSFER AND SIZE ACKNOWLEDGE (DSACKx) 

TERMINATE CYCLE 

1) REMOVE DATA FROM DO-D31 
2) NEGATE DSACKx 

Figure 7-19. Asynchronous Long-Word Read Cycle Flowchart 

PROCESSOR 

ADDRESS DEVICE 

EXTERNAL DEVICE 

II ASSERT ECS/OCS FOR ONE-HALF CLOCK 
2) SET R/WTO READ 
3) DRIVE ADDRESS ON AO-A3" 
4) DRIVE FUNCTION CODE ON FCO-FC2 
5) DRIVE SIZE fSIZO-SlZll lONE BYTE) 
6) CACHE INHIBIT OUT (CLOUT1 BECOMES VAUD 
7) ASSERT ADDRESS STROBE IA'S~ 
81 ASSERT DATA STROBE (D'S) 
9) ASSERT DATA BUFFER ENABLE (DBEN) 

ACQU RE DATA 

1 SAMPLE CACHE INHIBIT IN (CIIN) 
2t LATCH DATA 
31 NEGATE AS AND OS 
4~ NEGATE DBEN 

START NEXT CYCLE 

L 1 

PRESENT DATA 

1) DECODE ADDRESS 
2) PLACE DATA ON D31-D24 OR 

D23-D16 OR 
D15-D8 DR 
D7-DO 

(BASED ON AO, A].CACHE, AND BUS WIDTH) 
3) ASSERT DATA TRANSFER AND SIZE ACKNOWLEDGE (DSACKx) 

TERMINATE CYCLE 

1) REMOVE DATA FROM DATA BUS 
2) NEGATE DSACKx 

Figure 7-20. Asynchronous Byte Read Cycle Flowchart 

7-32 MC68030 USER'S MANUAL MOTOROLA 



CLK 

A2-A3, ZX × X 

A,---- k / 
AO ---k / 

,CO-,C2 Z3( X X 

s,z, __ /  \ 
WORD BYTE 

s,z0 ---k / 

SO S2 $4 SO $2 $4 SO $2 $4 

B/~ ____/ 

~ - - - kJ  %_/ k_/ 
0c-~ - - k _ /  k _ /  k _ /  

~ \  /----k / - - -k  

0sAc~ \ ~ _ _ _ / - - - - - - - k  / ~ k  

/-- 

/ -  

~ . _ /  \ 

B24-D31 

016-023 

D8-Df5 

00-07 

/ \ / \ F 

<ZC> 

/ 
WORD READ - -  ~ ~ BYTE READ ~ ~ BYTE READ - ~  

Figure 7-21. Asynchronous Byte and Word Read Cycles - -  32-Bit Port 

MOTOROLA MC68030 USER'S MANUAL 7-33 

7 



7 

CLK 

Ao--'~ / 

F<°E<~ = X  × 

LONG WORD 

G,zo ---k / 

SO $2 $4 SO $2 $4 SO $2 $4 SO $2 $4 

3-BYTE 

X 

I 

\ 

X 

WORD 

/ 

X 
\ 

/ 
BYTE 

R~ J 
~ -----k--/ 

0c---~ 

k_/ k_/ k_/ 

AS 

OS 

CLOUT k 

DSACK1 J 

I 

/ ---X / - - -k  

/ - - - k  / - - -X 

/ - - -k  / -  

ORE~ ___/ \ I \ I \ 

016-D23 " ~  

I \ F 

D8-D15 

DO-D7 

b BYTE READ ~ ~ BYTE READ ~ ~ BYTE READ ~ ~ BYTE READ 
/ 
J LONG WORD OPERAND READ FROM 8-BIT PORT ~1 

Figure 7-22. Long-Word Read - -  8-Bit  Port w i t h  CLOUT Asserted 

7-34 MC68030 USER'S MANUAL MOTOROLA 



CLK 

A2-A31 

A1 

AO 

SO 82 $4 SO S2 $4 SO $2 $4 

ZX 
--k 
--k 

X X 
/ \. 

FCO-FC2 ~ X  

SlZl 

SIZO 

LONG WORD 

X x 
f \ . .  

WORD LONG WORD 

R ~  _ /  

oc--s 

~ - - - k  

8SACKT 

D8ACKO J 

D8EN 

D24-D31 

D16-D23 

D8-D15 

DO-D7 

/---% / ~  

/ \ / 

\ 

\ 

/-- 

/ -  

/ -  

o ~  

~ wo,, RFAo =1= WORD R~O 

'ONG WO,D OPFR.ND ,FAD FROM ,68~ P G ~ - -  

LONG WORD READ 
FROM 32-BIT PORT 

Figure 7-23, Long,Word Read - -  16-Bit and 32-Bit Port 

M O T O R O L A  MC68030  USER'S M A N U A L  7-35 



7 

State 1 
One-half clock later in state 1 ($1), the processor asserts AS indicating that 
the address on the address bus is valid. The processor also asserts DS also 
during $1. In addition, the ECS (and OCS, if asserted) signal is negated 
during $1. 

State 2 
During state 2 ($2), the processor asserts DBEN to enable external data 
buffers. The selected device uses R/W, SIZ0-SIZ1, A0-A1, CLOUT, and DS 
to place its information on the data bus, and drives CIIN if appropriate. 
Any or all of the bytes (D24-D31, D16-D23, D8-D15, and D0-D7) are se- 
lected by SIZ0-SIZ1 and A0-AI.  Concurrently, the selected device asserts 
DSACKx. 

State 3 
As long as at least one of the DSACKx signals is recognized by the end of 
$2 (meeting the asynchronous input setup time requirement), data is latched 
on the next falling edge of the clock, and the cycle terminates. If DSACKx 
is not recognized by the start of state 3 ($3), the processor inserts wait 
states instead of proceeding to states 4 and 5. To ensure that wait states 
are inserted, both DSACK0 and DSACK1 must remain negated throughout 
the asynchronous input setup and hold times around the end of $2. If wait 
states are added, the processor continues to sample the DSACKx signals 
on the falling edges of the clock until one is recognized. 

State 4 
The processor samples CIIN at the beginning of state 4 ($4). Since CIIN is 
defined as a synchronous input, whether asserted or negated, it must meet 
the appropriate synchronous input setup and hold times on every rising 
edge of the clock while AS is asserted. At the end of $4, the processor 
latches the incoming data. 

State 5 
The processor negates AS, DS, and DBEN during state 5 ($5). It holds the 
address valid during $5 to provide address hold time for memory systems. 
R/W, SIZ0-SIZ1, and FC0-FC2 also remain valid throughout $5. 

The external device keeps its data and DSACKx signals asserted until it 
detects the negation of AS or DS (whichever it detects first). The device 
must remove its data and negate DSACKx within approximately one clock 
period after sensing the negation of AS or DS. DSACKx signals that remain 
asserted beyond this limit may be prematurely detected for the next bus 
cycle. 

7-36 MC68030 USER'S MANUAL MOTOROLA 



7.3.2 Asynchronous Write Cycle 
During a write cycle, the processor transfers data to memory or a peripheral 
device. 

Figure 7-24 is a flowchart of a write cycle operation for a long-word transfer. 
The following figures show the functional write cycle timing diagrams spec- 
ified in terms of clock periods. Figure 7-25 shows two write cycles (between 
two read cycles with no idle time) for a 32-bit port, Figure 7-26 shows byte 
and word write cycles to a 32-bit port. Figure 7-27 shows a long-word write 
cycle to an 8-bit port. Figure 7-28 shows a long-word write cycle to a 16-bit 
port. 

PROCESSOR EXTERNAL DEVICE 

AODRESS DEVICE 

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK 
2) DRIVE ADDRESS ON AO-A3] 
3) DRIVE FUNCTION CODE ON FCO-FC2 
41 DRIVE SIZE {SIZO-SIZ1) (FOUR BYTES; 
St SET R/W TO WRITE 
6) CACHE INHIBIT OUT rCIOUT) BECOMES VALID 
7) ASSERT ADDRESS STROBE (~)  
8) ASSERT DATA BUFFER ENABLE (DBENI 
9) DRIVE DATA LINES DO-D31 

101 ASSERT DATA STROBE In]  

TERMINATE OUTPUT TRANSFER 

I) NEGATE AS AND DS 

ACCEPT DATA 

]~ DECODE ADDRESS 
2) STORE DATA FROM O0-D31 
3) ASSERT DATA TRANSFER AND SIZE ACKNOWLEDGE ( ~ I  

TERMINATE CYCLE 

]) NEGATE OSAOKx 

2) REMOVE DATA FROM 00-03' 
3) NEGATE DBEN 

START NEXT CYCLE 

Figure 7-24. Asynchronous Write Cycle Flowchart 

MOTOROLA MC68030 USER'S MANUAL 7-37 

IB 



7 ¸̧  

SO S2 $4 S0 $2 $4 SO $2 $4 SO S2 Sw Sw $4 

CLK 

A,.~--_X x ~ X 
A,-- k 
A0-~ 

'co-'~' D( x x X 
SlZ1 =--'~ 

LON6 WORD 

size 

.,~ __/ \ / 

~ - ' k_ /  k__/ k_/ ~_/ 

°c~-k__/ k__/ k_/ k__/ 

°sAc,, \ / - - - k  / ~  / \ / 

osAc ,0~ \  ~ / - - - -k  / ' \ / 

O , E - - ~ ~  /-----k F 

oo.o,, >.- . - -< > < _  
/ 

REA0 ~ WRITE ~ ~ WRITE ~ READ WITH WAIT STATES - ~  
I 

Figure 7-25. Asynchronous Read-Write-Read C y c l e s -  32-Bit Port 

State 0 
The write cycle starts in SO. The processor drives ECS low, indicating the 
beginning of an external cycle. When the cycle is the first external cycle 
of a write operation, OCS is driven low at the same time. During SO, the 
processor places a valid address on A0-A31 and valid function codes on 
FC0-FC2. The function codes select the address space for the cycle. The 
processor drives R/W low for a write cycle. SIZ0-SIZ1 become valid, in- 
dicating the number of bytes to be transferred. CLOUT also becomes valid, 
indicating the state of the MMU CI bit in the address translation descriptor 
or in the appropriate TTx register. 

7-38 MC68030 USER'S MANUAL MOTOROLA 



CLK 

SO $2 $4 S~ $2 $4 S0 S2 $4 

A, __/ 

A0 " - - ~  

FC0oFC2 ~ X  

SIZ| . ~ /  

WORD 

SIZO 

R/W 

= - - k _ /  

~ --k__/ 

DSACK1 

DSACKO 

O BE--'--N - - ~  

/ 

X X 

BYTE 

/ 

k__/ 

k__/ 
/----k 

____/ 

L_/ 

k__/ 
/----k /-- 

k____/-- 

D~,-O,, ~ 0~ >-----< OP, ~ OP' 

0~6-D23 ~ OP3 ~ OP3 ~ OP3 

08-0~5 ~ OP2 ~ OP3 ~ OP3 

~ --WOROWR,,, -- ,~,w,,~ -- ~,,wR,,,----. 
-I- -F 

Figure 7-26. Asynchronous Byte and Word Write Cycles - -  32-Bit Port 

MOTOROLA MC68030 USER,S MANUAL 7-39 



CLK 

A2A31 Z X  X X X 

A,---" k / 

A° "-'-k / \ / 

'<°-'<~ ZX X X X 

LONG WORD 3-BYTE WORD BYTE 

'"o - k  / t / 

R/~ 

SO $2 S4 SO $2 $4 SO S2 S4 30 $2 $4 

k i _ _ /  k_____/ k _ _ _ /  X----.--/-- 
DSACKI J 

OSA<<O ---J------k /------k /------k /------k 

ORE'---~ ~ k  

D 24-D31 ~ - - - - - - - ~  OPO ~ OP1 

016-023 ~ - . ~  0P1 ~ 0P1 

08-015 ~ OP2 ~ OP2 

00-07 ~ . ~ - - ~  OP3 ~ OP3 

1----~ BYTE WRITE BYTE WRITE 

OP2 ~ OP3 

OP3 ~ OP3 

>---< oP2 ~ 0,3 

>-- -< DE3 >- - - -<  oP3 
/ 

~l ~ BYTE WRITE ~1~ BYTE WRITE - ~  

" 1  LONG WORO OPERAND READ TO 8-BIT PORT 

Figure 7-27. Long-Word Operand Write - -  8-Bit Port 

7-40 MC68030 USER'S MANUAL MOTOROLA 



SO $2 $4 SO $2 $4 SO $2 S¢ 

CLK 

'2"'3' E3( X X 
" -'-k / \ 

FCO-FC2 

SIZ1 

SIZO 

RJW 

X X 
/ \ 

LONG WORD WORD LONG WORD 

~ ---k_/ k_/  k__/ 

E - - k _ /  k_/ 

os k____/ k____/ 

DsAoK, ___/-----k / - ----k /-----k 

osAcK0 ___/ \ 

OBE~ ~ 

/ -  

k____/- 

O24-O31 ~ OPO ~ ) ~ - - - ~  OPO 

016-D23 ~ OP1 ~ OP1 

08-015 ~ OP2 ~ OP2 

00-07 ~ OP3 ~ ) ~ - - - ~ ,  OP3 

LONG WORD WRITE _ ~  
TO 32-BIT PORT r I 

OP2 

OP3 

OP2 

OP3 

/ 

WORD WRITE ~ ~ WORD WRITE ~-I ~ 

[ LONG WORD OPERANO WRITE TO 1R-BIT PORT 

Figure 7-28. Long-Word Operand Write - -  16-Bit Port 

MOTOROLA MC68030 USER'S MANUAL 7-41 

7 



7 

State 1 
One-half clock later in $1, the processor asserts AS, indicating that the 
address on the address bus is valid. The processor also asserts DBEN 
during $1, which can enable external data buffers. In addition, the ECS 
(and OCS, if asserted) signal is negated during $1. 

State 2 
During $2, the processor places the data to be written onto the D0-D31, 
and samples DSACKx at the end of $2. 

State 3 
The processor asserts DS during $3, indicating that the data is stable on 
the data bus. As long as at least one of the DSACKx signals is recognized 
by the end of $2 (meeting the asynchronous input setup time requirement), 
the cycle terminates one clock later. If DSACKx is not recognized by the 
start of $3, the processor inserts wait states instead of proceeding to $4 
and $5. To ensure that wait states are inserted, both DSACK0 and DSACK1 
must remain negated throughout the asynchronous input setup and hold 
times around the end of $2. If wait states are added, the processor con- 
tinues to sample the DSACKx signals on the falling edges of the clock until 
one is recognized. The selected device uses R/W, DS, SIZ0-SIZ1, and A0-A1 
to latch data from the appropriate byte(s) of the data bus (D24-D31, D16-D23, 
D8-D15, and D0-D7). SIZ0-SIZi and A0-A1 select the bytes of the data 
bus. If it has not already done so, the device asserts DSACKx to signal that 
it has successfully stored the data. 

State 4 
The processor issues no new control signals during $4. 

State 5 
The processor negates AS and DS during $5. It holds the address and data 
valid during $5 to provide address hold time for memory systems. R/W, 
SIZ0-SIZ1, FC0-FC2, and DBEN also remain valid throughout $5. 

The external device must keep DSACKx asserted until it detects the ne- 
gation of AS or DS (whichever it detects first). The device must negate 
DSACKx within approximately one clock period after sensing the negation 
of AS or DS. DSACKx signals that remain asserted beyond this limit may 
be prematurely detected for the next bus cycle. 

7-42 MC68030 USER'S MANUAL MOTOROLA 



7.3.3 A s y n c h r o n o u s  R e a d - M o d i f y - W r i t e  Cycle 

The read-modify-write cycle performs a read, conditionally modifies the data 
in the arithmetic logic unit, and may write the data out to memory. In the 
MC68030 processor, this operation is indivisible, providing semaphore ca- 
pabilities for multiprocessor systems. During the entire read-modify-write 
sequence, the MC68030 asserts the RMC signal to indicate that an indivisible 
operation is occurring. The MC68030 does not issue a bus grant (BG) signal 
in response to a bus request (BR) signal during this operation. The read 
portion of a read-modify-write operation is forced to miss in the data cache 
because the data in the cache would not be valid if another processor had 
altered the value being read. However, read-modify-write cycles may alter 
the contents of the data cache as described in 6.1.2. Data Cache. 

No burst fill ing of the data cache occurs during a read-modify-write operation. 

The test and set (TAS) and compare and swap (CAS and CAS2) instructions 
are the only MC68030 instructions that utilize read-modify-write operations. 
Depending on the compare results of the CAS and CAS2 instructions, the 
write cycle(s) may not occur. Table search accesses required for the MMU 
are always read-modify-write cycles to the supervisor data space. During 
these cycles, a write does not occur unless a descriptor is updated. No data 
is internally cached for table search accesses since the MMU uses physical 
addresses to access the tables. Refer to SECTION 9 MEMORY MANAGEMENT 
UNIT for information about the MMU. 

Figure 7-29 is a flowchart of the asynchronous read-modify-write cycle op- 
eration. Figure 7-30 is an example of a functional timing diagram of a TAS 
instruction specified in terms of clock periods. 

State 0 
The processor asserts ECS and OCS in SO to indicate the beginning of an 
external operand cycle. The processor also asserts RMC in SO to identify 
a read-modify-write cycle. The processor places a valid address on A0-A31 
and valid function codes on FC0-FC2. The function codes select the address 
space for the operation. SIZ0-SIZ1 become valid in SO to indicate the 
operand size. The processor drives R/W high for the read cycle and sets 
CLOUT according to the value of the MMU CI bit in the address translation 
descriptor or in the appropriate TTx register. 

State 1 
One-half clock later in $1, the processor asserts AS, indicating that the 
address on the address bus is valid. The processor asserts DS during $1. 
In addition, the ECS (and OCS, if asserted) signal is negated during $1. 

MOTOROLA MC68030 USER'S MANUAL 7-43 

m 



7 

PROCESSOR 

lOCK BUS - -  t 

1) ASSERT READ-MODIFY-WRITE CYCLE (RMC) 

ADDRESS DEVICE 

1) ASSERT EDS/OSC FOR ONE-HALF CLOCK 
2) SET R/WTO READ 
3) DRIVE ADDRESS ON AO-A31 
4) DRIVE FUNCTION CODE ON FCO-FC2 
5) DRIVE SIZE (SIZO-SIZ1) 
6) CACHE INHIBIT OUT (CI-'i'OUT) BECOMES VALID 
7) ASSERT ADDRESS STROBE (A'S) 
8) ASSERT DATA STROBE (O'S) 
9) ASSERT DATA BUFFER ENABLE (DREN) 

ACQUIRE DATA 

11 SAMPLE CACHE INHIOITIN ICIIN~ 
2) LATCH DATA 
3) NEGATE AS AND OS 
4) NEGATE DBEN 
5) START DATA MODIFICATION 

START OUTPUT TRANSFER 

1) ASSERT ECS/OCS FOR ONE*HALF CLOCK 
2) DRIVE ADDRESS ON AD-A31 (IF DIFFERENT) 
3) DRIVE SIZE (SIZO-SIZ1) 
4) SET R/WTO WRITE 
5) CLOUT BECOMES VALID 
6) ASSERT ~ 
7) ASSERT OBEN 
8) PLACE DATA ON DO-D31 
9) ASSERT O-S 

EXTERNAL DEVICE 

PRESENT DATA 

1) OECODE ADDRESS 
2) PLACE DATA ON DO-D31 
3) ASSERT DATA TRANSFER 

AND SIZE ACKNOWLEDGE (DSACKx) 

TERMINATE CYCLE 

1) REMOVE DATA FROM DO-D31 
2) NEGATE OSACKx 

ACCEPT DATA 

1) DECODE ADORESS 
2) STORE DATA FROM DO-D31 

TERMINATE OUTPUT TRANSFER 3) ASSERT DSACKx 

}) NEGATE AS AND DS 
2) REMOVE DATA FROM DO-D3| 
3) NEGATE DBEN TERMINATE CYCLE 

1) NEGATE DSACKx 

UNLOCK BUS 

1) NEGATE BMC t 

I 

START NEXT CYCLE I 

® 

IF CAS2 INSTRUCTION AND 
ONLY ONE OPERAND REAO, 
THEN GO TO (~ ;  IF 
OPERANDS DO NOT MATCH. 
THEN GO TO © ;  ELSE 
GO TO © 

® © 

® 

IF CAS2 INSTRUCTION ANO 
ONLY ONE OPERAND 
WR]TfEN. THEN GO TO (~); 
ELSE GO TO (~) 

® 

Figure 7-29. Asynchronous Read-Modify-Write Cycle Flowchart 

7-44 MC68030 USER'S MANUAL MOTOROLA 



CLK 

A2-A31 

A1 

AO 

FCO-FC2 

SIZ1 

SI20 

S0 $2 $4 Si Si $6 S8 SI0 $11 

_ _ ~  
ED( 

__/ 
--k 

Z3( 

- k  

__/ 

k____ 
/ - - -  

X__ 

I - -  

,~w _ _ /  

~ "--k_/ 

~ ' \  

SO 

J--L_ 

x : z  

/ \ 

/ 

c3E \ __ 

OSACK1 ~ /r \ 

os,c,o _ _ _ / - - - ' k  .[ \ 

~sE7 _ _ /  k _ _ _ _ _ /  "~\ 

°2,°3, ~ - -  < oP, 

°,,.°23 ~ - -  < oP, 

°,-°,, ~ <EEE> - -  < oP, 

o o o , ~  < oP, 

k___  

l 

k___/ 
/ 

k_ 

k_ 

/ -  
/ 

}>--- 

t 

BE R'-~ J 

HA~ _../ 

/ -kk___/ 
/ 

r~ INOIVISIBLE CYCLE ~ ~ NEXT CYCLE. 

Figure 7-30. Asynchronous Byte Read-Modify-Write Cycle 1 32-Bit Port 
(TAS Instruction with CLOUT or CIIN Asserted) 

MOTOROLA MC68030 USER'S MANUAL 7-45 

m 



7 

State 2 
During state 2 ($2), the processor drives DBEN active to enable external 
data buffers. The selected device uses R/W, SIZ0-SIZ1, A0-A1, and DS to 
place information on the data bus. Any or all of the bytes (D24-D31, D16-D23, 
D8-D15, and D0-D7) are selected by SIZ0-SIZ1 and A0-AI.  Concurrently, 
the selected device may assert the DSACKx signals. 

State 3 
As long as at least one of the DSACKx signals is recognized by the end of 
$2 (meeting the asynchronous input setup time requirement), data is latched 
on the next falling edge of the clock, and the cycle terminates. If DSACKx 
is not recognized by the start of $3, the processor inserts wait states instead 
of proceeding to $4 and $5. To ensure that wait states are inserted, both 
DSACK0 and DSACK1 must remain negated throughout the asynchronous 
input setup and hold times around the end of $2. If wait states are added, 
the processor continues to sample the DSACKx signals on the falling edges 
of the clock until one is recognized. 

State 4 
The processor samples the level of CIIN at the beginning of $4. At the end 
of $4, the processor latches the incoming data. 

State 5 
The processor negates AS, DS, and DBEN during $5. If more than one read 
cycle is required to read in the operand(s), S0-$5 are repeated for each 
read cycle. When finished reading, the processor holds the address, R/W, 
and FC0-FC2 valid in preparation for the write portion of the cycle. 

The external device keeps its data and DSACKx signals asserted until it 
detects the negation of AS or DS (whichever it detects first). The device 
must remove the data and negate DSACKx within approximately one clock 
period after sensing the negation of AS or DS. DSACKx signals that remain 
asserted beyond this limit may be prematu rely detected for the next portion 
of the operation. 

Idle States 
The processor does not assert any new control signals during the idle 
states, but it may internally begin the modify portion of the cycle at this 
time. $6-$11 are omitted if no write cycle is required. If a write cycle is 
required, the R/W signal remains in the read mode until $6 to prevent bus 
conflicts with the preceding read portion of the cycle; the data bus is not 
driven until $8. 

7-46 MC68030 USER'S MANUAL MOTOROLA 



State 6 
The processor asserts ECS and OCS in $6 to indicate that another external 
cycle is beginning. The processor drives R/W low for a write cycle. CLOUT 
also becomes valid, indicating the state of the MMU CI bit in the address 
translation descriptor or in a relevant TTx register. Depending on the write 
operation to be performed, the address lines may change during $6. 

State 7 
In $7, the processor asserts AS, indicating that the address on the address 
bus is valid. The processor also asserts DBEN, which can be used to enable 
data buffers during $7. In addition, the ECS (and OCS, if asserted) signal 
is negated during $7. 

State 8 
During $8, the processor places the data to be written onto D0-D31. 

State 9 
The processor asserts DS during $9 indicating that the data is stable on 
the data bus. As long as at least one of the DSACKx signals is recognized 
by the end of $8 (meeting the asynchronous input setup time requirement), 
the cycle terminates one clock later. If DSACKx is not recognized by the 
start of $9, the processor inserts wait states instead of proceeding to $10 
and $11. To ensure that wait states are inserted, both DSACK0 and DSACK1 
must remain negated throughout the asynchronous input setup and hold 
times around the end of $8. If wait states are added, the processor con- 
tinues to sample DSACKx signals on the falling edges of the clock until 
one is recognized. 

The selected device uses R/W, DS, SIZ0-SIZ1, and A0-A1 to latch data from 
the appropriate section(s) of the data bus (D24-D31, D16-D23, DS-D15, 
and D0-D7). SIZ0-SIZ1 and A0-A1 select the data bus sections. If it has 
not already done so, the device asserts DSACKx when it has successfully 
stored the data. 

State 10 
The processor issues no new control signals during $10. 

MOTOROLA MC68030 USER'S MANUAL 7-47 

7 



7 

State  11 
The processor negates AS and DS during $11. It holds the address and 
data valid during $11 to provide address hold time for memory systems. 
R/W and FC0-FC2 also remain valid throughout $11. 

If more than one write cycle is required, $6-$11 are repeated for each write 
cycle. 

The external device keeps DSACKx asserted until it detects the negation 
of AS or DS (whichever it detects first). The device must remove its data 
and negate DSACKx within approximately one clock period after sensing 
the negation of AS or DS. 

7.3.4 Synchronous Read Cycle 
A synchronous read cycle is terminated differently from an asynchronous 
read cycle; otherwise, the cycles assert and respond to the same signals, in 
the same sequence. STERM rather than DSACKx is asserted bythe addressed 
external device to terminate a synchronous read cycle. Since STERM must 
meet the synchronous setup and hold times with respect to all rising edges 
of the clock while AS is asserted, it does not need to be synchronized by the 
processor. Only devices with 32-bit ports may assert STERM. STERM is also 
used with the CBREQ and CBACK signals during burst mode operation. It 
provides a two-clock (minimum) bus cycle for 32-bit ports and single-clock 
(minimum) burst accesses, although wait states can be inserted for these 
cycles as well. Therefore, a synchronous cycle terminated with STERM with 
one wait cycle is a three-clock bus cycle. However, note that STERM is as- 
serted one-half clock later than DSACKx would be for a similar asynchronous 
cycle with zero wait cycles (also three clocks). Thus, if dynamic bus sizing is 
not needed, STERN can be used to provide more decision time in an external 
cache design than is available with DSACKx for three-clock accesses. 

Figure 7-31 is a flowchart of a synchronous long-word read cycle. Byte and 
word operations are similar. Figure 7-32 is a functional timing diagram of a 
synchronous long-word read cycle. 

7-48 MC68030 USER'S MANUAL MOTOROLA 



PROCESSOR EXTERNAL DEVICE 

ADDRESS DEVICE 

I) ASSERT ECSIOCS FOR 0NE-HALF CLOCK 
2) SET R/WTO READ 
3) DRIVE ADDRESS ON AO-A31 
4) DRIVE FUNCTION CODE ON FCO-FC2 
5) DRIVE SIZE (SIZO-SIZ1) (FOUR BYTES) 
6) CACHE INHIBIT OUT (CLOUT) BECOMES VALID 
7) ASSERT ADDRESS STROBE (~ )  
8) ASSERT CACHE BURST REQUEST (CBREQ) (IF BURST POSSIBLE) 
9) ASSERT DATA STROBE ( ~ )  

10) ASSERT DATA BUFFER ENABLE (DBEN) 

ACQUIRE DATA 

1) SAMPLE CACHE INHIBIT IN (CIIN) 
AND CACHE BURST ACKNOWLEDGE (CBACK) 

2) LATCH DATA 
3) NEGATE AS AND 05 
4) NEGATE DBEN 

START NEXT CYCLE 

PRESENT DATA 

1) DECODE ADDRESS 
2) PLACE DATA ON 00-031 
3) ASSERT SYNCHRONOUS TERMINATION (STERM) 

TERMINATE CYCLE 

1) REMOVE DATA FROM D0-O3! 
2) NEGATE STERM 

Figure 7-31. Synchronous Long-Word Read Cycle Flowchart - -  
No Burst Allowed 

State 0 
The read cycle starts with SO. The processor drives ECS low, indicating the 
beginning of an external cycle. When the cycle is the first cycle of a read 
operand operation, OCS is driven low at the same time. During SO, the 
processor places a valid address on A0-A31 and valid function codes on 
FC0-FC2. The function codes select the address space for the cycle. The 
processor drives R/W high for a read cycle and drives DBEN inactive to 
disable the data buffers. SIZ1-SIZ0 become valid, indicating the number 
of bytes to be transferred. CLOUT also becomes valid, indicating the state 
of the MMU CI bit in the address translation descriptor or in the appropriate 
TTx register. 

State 1 
One-half clock later in $1, the processor asserts AS, indicating that the 
address on the address bus is valid. The processor also asserts DS during 
$1. If the burst mode is enabled for the appropriate on-chip cache and alt 
four long words of the cache entry are invalid, (i.e., four long words can 
be read in), CBREQ is asserted. In addition, the ECS (and OCS, if asserted) 
signal is negated during $1. 

MOTOROLA MC68030 USER'S MANUAL 7-49 

m 



7 

SO $2 

CLK 

AO-A31 

FCO-FC2 

SlZl 

SIZO " ~  

~/~ J 

DSACK1 J 

DSACKO J 

STERM 

c,,-~ J k ~ /  
CIOU1 J 

CBREG - - ~  

CBACK J 

D0-°31 

0B..j k__/- 

Figure 7-32. Synchronous Read with ClIN Asserted and CBACK Negated 

7=50 MC68030 USER'S MANUAL MOTOROLA 



State 2 
The selected device uses R/W, SIZ0-SIZ1, A0-A1, and CLOUT to place its 
information on the data bus. Any or all of the byte sections of the data bus 
(D24-D31, D16-D23, D8-D15, and D0-D7) are selected by SlZ0-SlZl and 
A0-A1. During S2, the processor drives DBEN active to enable external 
data buffers. In systems that use two-clock synchronous bus cycles, the 
timing of DBEN may prevent its use. At the beginning of S2, the processor 
samples the level of STERM. If STERM is recognized, the processor latches 
the incoming data at the end of S2. If the selected data is not to be cached 
for the current cycle or if the device cannot supply 32 bits, CIIN must be 
asserted at the same time as STERM. In addition, the state of CBACK is 
latched when STERM is recognized. 

Since ClIN, CBACK, and STERM are synchronous signals, they must meet 
the synchronous input setup and hold times for all rising edges of the clock 
while AS is asserted. If STERM is negated at the beginning of S2, wait 
states are inserted after S2, and STERM is sampled on every rising edge 
thereafter until it is recognized. Once STERM is recognized, data is latched 
on the next falling edge of the clock (corresponding to the beginning of 
S3). 

State 3 
The processor negates AS, DS, and DBEN during $3. It holds the address 
valid during $3 to simplify memory interfaces. R/W, SIZ0-SIZ1, and FC0-FC2 
also remain valid throughout $3. 

The external device must keep its data asserted throughout the synchron- 
ous hold time for data from the beginning of $3. The device must remove 
its data within one clock after asserting STERM and negate STERM within 
two clocks after asserting STERM; otherwise, the processor may inad- 
vertently use STERM for the next bus cycle. 

7.3.5 Synchronous Write Cycle 
A synchronous write cycle is terminated differently from an asynchronous 
write cycle and the data strobe may not be useful. Otherwise, the cycles 
assert and respond to the same signal, in the same sequence. STERM is 
asserted by the external device to terminate a synchronous write cycle. The 
discussion of STERM in the preceding section applies to write cycles as well 
as to read cYCles. 

DS is not asserted for two-clock synchronous write cycles; therefore, the 
clock (CLK) may be used as the timing signal for latching the data. In addition, 
there is.no time from the latest assertion of AS and the required assertion 

MOTOROLA MC68030 USER'S MANUAL 7-51 

7 



7 

of STERM for any two-clock synchronous bus cycle. The system must qualify 
a memory write with the assertion of AS to ensure that the write is not aborted 
by internal conditions within the MC68030. 

Figure 7-33 is a flowchart of a synchronous write cycle. Figure 7-34 is a 
functional timing diagram of this operation with wait states. 

PROCESSOR EXTERNAL DEVICE 

ADDRESS DEVICE 

1} ASSERT ECS/OCS FOR ONE-HALF CLOCK 
2) DRIVE ADDRESS ON AO-A31 
3) DRIVE FUNCTION CODE ON FCO-FC2 
4) DRIVE SIZE (SIZO-SIZ1) (FOUR BYTES) 
5) SET R/WTO WRITE 
6} CACHE INHIBIT OUT (CLOUT) BECOMES VALID 
7) ASSERT ADDRESS STROBE (~) 
8} ASSERT DATA BUFFER ENABLE (DBEN) 
9) DRIVE DATA LINES DO-D31 

10) ASSERT DATA STROBE ('O'S) (IF WAIT STATES) 

TERMINATE OUTPUT TRANSFER 

1) NEGATE ~(AND ~)" 
2) REMOVE DATA FROM DO-D31 
3) NEGATE OBEN 

I START NEXT DYCLE I 

ACCEPT DATA 

1) DECODE ADDRESS 
2) STORE DATA FROM DO-D31 

j 3} ASSERT SYNCHRONOUS TERMINATION (STERM) 

TERMINATE CYCLE 

1) NEGATE STERM 

Figure 7-33. Synchronous Write Cycle Flowchart 

State 0 
The write cycle starts with S0. The processor drives ECS low, indicating 
the beginning of an external cycle. When the cycle is the first cycle of a 
write operation, OCS is driven low at the same time. During SO, the pro- 
cessor places a valid address on A0"A31 and valid function codes on 
FC0-FC2. The function codes select the address space for the cycle. The 
processor drives R/W low for a write cycle. SIZ0-SIZ1 become valid, in- 
dicating the number of bytes to be transferred. CLOUT also becomes valid, 
indicating the state of the MMU CI bit in the address translation descriptor 
or in the appropriate TTx register. 

State 1 
One-half clock later in $1, the processor asserts AS, indicating that the 
address on the address bus is valid. The processor also asserts DBEN 
during Sl, which may be used to enable the external data buffers. In ad- 
dition, the ECS (and OCS, if asserted) signal is negated during Sl. 

7-52 MC68030 USER'S MANUAL MOTOROLA 



SO S' $2 Sw Sw $3 

CLK _--I L_ 

AO-A31 ~ ) ~  

FC0-FC2 

SIZ1 

SlZO 

R/W 

EC--~ 

OC--~ 

DSACKI J 

DSACKO J 

STERM J 

Cll---~ J 

CIDUT T ~  

k___/ 

CBREQ 

CBACK J 

DD-D3] > 
m 

Figure 7-34. Synchronous Write Cycle with Wait States - -  CLOUT Asserted 

MOTOROLA MC68030 USER'S MANUAL 7-53 

7 



Im 

State 2 
During $2, the processor places the data to be written onto D0-D31. The 
selected device uses R/W, CLK, SIZ0-SIZ1, and A0-A1 to latch data from 
the appropriate section(s) of the data bus (D24-D31, D16-D23, D8-D15, 
and D0-D7). SIZ0-SIZ1 and A0-A1 select the data bus sections. The device 
asserts STERM when it has successfully stored the data. If the device does 
not assert STERM by the rising edge of $2, the processor inserts wait states 
until it is recognized. The processor asserts DS at the end of $2 if wait 
states are inserted. For zero-wait-state synchronous write cycles, DS is not 
asserted. 

State 3 
The processor negates AS (and DS, if necessary) during $3. It holds the 
address and data valid during $3 to simplify memory interfaces. R/W, 
SIZ0-SlZl, FC0-FC2, and DBEN also remain valid throughout $3. 

The addressed device must negate STERM within two clock periods after 
asserting it, or the processor may use STERM for the next bus cycle. 

7.3.6 Synchronous Read-Modify-Write Cycle 
A synchronous read-modify-write operation differs from an asynchronous 
read-modify-write operation only in the terminating signal of the read and 
write cycles and in the use of CLK instead of DS latching data in the write 
cycle. Like the asynchronous operation, the synchronous read-modify-write 
operation is indivisible. Although the operation is synchronous, the burst 
mode is never used during read-modify-write cycles. 

Figure 7-35 is a flowchart of the synchronous read-modify-write operation. 
Timing for the cycle is shown in Figure 7-36. 

7-54 MC68030 USER'S MANUAL MOTOROLA 



J 
I 

PROCESSOR 

LOCK RUE - -  I 

1) ASSERT READ-MODIFY-WRITE CYCLE (RMC) 

START INPUT TRANSFER 

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK 
2) DRLVE R/WTO REAO 
3) DRIVE FUNCTION CODE ON FCO-FC2 
4) DRIVE ADDRESS ON AO-A31 
5) DRIVE SIZE (SIZO-SIZ1) 
6) CACHE INHIBIT OUT (CLOUT) BECOMES VALID 
7) ASSERT ADDRESS STROBE (~) 
8) ASSERT DATA STROBE (~) 
9) ASSERT DATA GUFFER ENABLE (O~BEN) 

TERMINATE INPUT TRANSFER 

E 

I) SAMPLE CACHE INHIRIT IN (CI!N) 
2) LATCH DATA 
3) NEGATE AS AND DS 
4) NEGATE DBEN 
5) START DATA MODIFICATION 

START OUTPUT TRANSFER 

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK 
2) SETR~TO WRITE 
3) DRIVE ADDRESS ON AO-A31 (IF DIFFERENT) 
4) DRIVE SIZE (SIZO-SIZ1) 
5) CLOUT BECOMES VAUD 
6) ASSERT 
7) ASSERT DREN 
8) PLACE DATA ON O0-D31 
9) ASSERT O'S (IF WAIT STATES) 

TERMINATE OUTPUT TRANSFER 

1) NEGATE AS (AND DE) 
2) REMOVE DATA FROM DO-D31 
3) NEGATE OBEN 

UNLOCK BUS 

1) NEGATE RMC 

START NEXT CYCLE 

EXTERNAL DEVICE 

PRESENT DATA 

1) DECODE ADDRESS 
2) PLACE DATA ON DO~D31 
3) ASSERT SYNCHRONOUS TERMINATION 

(STERM) 

TERMINATE CYCLE 

1) REMOVE DATAFROM 00-031 
2) NEGATE STERM 

® 

IF CAS2 INSTRUCTION AND 
ONLY ONE OPERANO READ. 
THEN GO TO (~); IF 
OPERANDS DO NOT MATCH. 
THEN GO_TO ®; ELSE 
GOTO@ 

® ® 

ACCEPT DATA 

1) DECODE ADORESS 
2) STORE DATA FROM DO-D31 
3) ASSERT STERM 

TERMINATE CYCLE 

1) NEGATE STERM 

® 

IF CAS2 INSTRUCTION AND 
ONLY ONE OPERANO 
WRI~EN, THEN GO TO ® :  
ELSE GO TO ® 

® 

Figure 7-35. Synchronous Read-Modify-Write Cycle Flowchart 

MOTOROLA MC68030 USER'S MANUAL 7-55 



7 

~ _ _ r ~ J - L I - L  _ _ _ _ . I - L . I - R _  

FC0-FC2 

s,z, _ _ j  \ 

SIZ0 ~ ----_ 

, '~ J \ 

EC-~ 
/ I  

0SACK----~ j /  

°SACK0 J 

~ J  

CBREQ 

CBACK J 

°°°3,> ~ C Z  
00~-~ j ~__/ \ 

Figure 7-36. Synchronous Read-Modify-Write Cycle Timing - -  CIIN Asserted 

7-56 MC68030 USER'S MANUAL MOTOROLA 



State 0 
The processor asserts ECS and OCS in SO to indicate the beginning of an 
external operand cycle. The processor also asserts RMC in SO to identify 
a read-modify-write cycle. The processor places a valid address on A0-A31 
and valid function codes on FC0-FC2. The function codes select the address 
space for the operation. SIZ0-SIZ1 become valid in SO to indicate the 
operand size. The processor drives R/W high for a read cycle and sets 
CLOUT to the value of the MMU CI bit in the address translation descriptor 
or in the appropriate TTx register. The processor drives DBEN inactive to 
disable the data buffers. 

State 1 
One-half clock later in $1, the processor asserts AS, indicating that the 
address on the address bus is valid. The processor also asserts DS during 
$1. In addition, the ECS (and OCS, if asserted) signal is negated during $1. 

State  2 
The selected device uses R/W, SIZ0-SIZ1, A0-A1, and CLOUT to place its 
information on the data bus. Any or all of the byte sections (D24-D31, 
D16-D23, D8-D15, and D0-D7) are selected by SIZ0-SIZ1 and A0-A1. Dur- 
ing $2, the processor drives DBEN active to enable external data buffers. 
In systems that use two-clock synchronous bus cycles, the timing of DBEN 
may prevent its use. At the beginning of $2, the processor samples the 
level of STERM. If STERM is recognized, the processor latches the incoming 
data. If the selected data is not to be cached for the current cycle or if the 
device cannot supply 32 bits, CIIN must be asserted at the same time as 
STERM. 

Since CIIN and STERM are synchronous signals, they must meet the syn- 
chronous input setup and hold times for all rising edges of the clock while 
AS is asserted. If STERM is negated at the beginning of S2, wait states are 
inserted after $2, and STERM is sampled on every rising edge thereafter 
until it is recognized. Once STERM is recognized, data is latched on the 
next falling edge of the clock (corresponding to the beginning of $3). 

MOTOROLA MC68030 USER'S MANUAL 7-57 

m 



7 

State 3 
The processor negates AS, DS, and DBEN during $3. If more than one read 
cycle is required to read in the operand(s), S0-$3 are repeated accordingly. 
When finished with the read cycle, the processor holds the address, R/W, 
and FCO-FC2 valid in preparation for the write portion of the= cycle. 

The external device must keep its data asserted throughout the synchron- 
ous hold time for data from the beginning of $3. The device must remove 
the data within one-clock cycle after asserting STERM to avoid bus con- 
tention. It must also negate STERM within two clocks after asserting STERM; 
otherwise, the processor may inadvertently use STERIVI for the next bus 
cycle. 

Idle States 
The processor does not assert any new control signals during the idle 
states, but it may begin the modify portion of the cycle at this time. The 
R/W signal remains in the read mode until $4 to prevent bus conflicts with 
the preceding read portion of the cycle; the data bus is not driven until $6. 

State 4 
The processor asserts ECS and OCS in $4 to indicate that an external cycle 
is beginning. The processor drives R/W low for a write cycle. CLOUT also 
becomes valid, indicating the state of the MMU CI bit in the address trans- 
lation descriptor or in the appropriate TTx register. Depending on the write 
operation to be performed, the address lines may change during $4. 

State 5 
In state 5 ($5), the processor asserts AS to indicate that the address on the 
address bus is valid. The processor also asserts DBEN during $5, which 
can be used to enable external data buffers. 

State 6 
During $6, the processor places the data to be written onto the D0-D31, 

The selected device uses R/W, CLK, SIZ0-SIZ1, and A0-A1 to latch data 
from the appropriate byte(s) of the data bus (D24-D31, D16-D23, D8-D15, 
and D0-D7). SIZ0-SIZ1 and A0-A1 select the data bus sections. The device 
asserts STERM when it has successfully stored the data. If the device does 
not assert STERM by the rising edge of $6, the processor inserts wait states 
until it is recognized. The processor asserts DS at the end o f  $6 if wait 
states are inserted. Note that for zero-wait-state synchronous write cycles, 
DS is not asserted. 

7-58 MC68030 USER'S MANUAL MOTOROLA 



State 7 
The processor negates AS (and DS, if necessary) during $7. It holds the 
address and data valid during $7 to simpl i fy memory interfaces. R/W and 
FC0-FC2 also remain valid throughout  $7. 

If more than one write cycle is required, $8-$11 are repeated for each write 
cycle. 

The external device must negate STERM within two clock periods after 
asserting it, or the processor may inadvertently use STERM for the next 
bus cycle. 

7.3.7 Burst Operat ion Cycles 

The MC68030 supports a burst mode for f i l l ing the on-chip instruction and 
data caches. 

The MC68030 provides a set of handshake control signals for the burst mode. 
When a miss occurs in one of the caches, the MC68030 initiates a bus cycle 
to obtain the required data or instruction stream fetch. If the data or instruc- 
t ion can be cached, the MC68030 attempts to fill a cache entry. Depending 

o n  the al ignment for a data access, the MC68030 may attempt to fill two 
cache entries. The processor may also assert CBREQ to request a burst fill 
operation. That is, the processor can fill additional entries in the line. The 
MC68030 allows a burst of as many as four long words. 

7 

The mechanism that asserts the CBREQ signal for burstable cache entries is 
enabled by the data burst enable (DBE) and instruction burst enable (IBE) 
bits of the cache control register (CACR) for the data and instruction caches, 
respectively. Either of the fol lowing condit ions cause the MC68030 to initiate 
a cache burst request (and assert CBREQ) for a cachable read cycle: 

• The logical address and function code signals of the current instruct ion 
or data fetch do not match the indexed tag field in the respective in- 
struction or data cache. 

• All four long words corresponding to the indexed tag in the  appropriate 
cache are marked invalid. 

However, the MC68030 does not assert CBREQ during the first portion of a 
misaligned access if the remainder of the access does not correspond to the 
same cache line. Refer to 6.1.3.1 SINGLE ENTRY MODE for details. 

MOTOROLA MC68030 USER'S MANUAL 7-59 



7 

If the appropriate cache is not enabled or if the cache freeze bit for the cache 
is set, the processor does not assert CBREQ. CBREQ is not asserted during 
the read or write cycles of any read-modify-write operation: 

The MC68030 allows burst fill ing only from 32-bit ports that terminate bus 
cycles with STERM and respond to CBREQ by asserting CBACK. When the 
MC68030 recognizes STERM and CBACK and it has asserted CBREQ, it main- 
tains AS, DS, R/W, A0-A31, FC0-FC2, SIZ0-SlZl in their current state through- 
out the burst operation. The processor continues to accept data on every 
clock during which STERM is asserted until the burst is complete or an 
abnormal termination occurs: 

CBACK indicates that the addressed device can respond to a cache burst 
request by supplying one more long word of data in the burst mode. It can 
be asserted independently of the CBREQ signal, and burst mode is only 
initiated if both of these signals are asserted for a synchronous cycle. If the 
MC68030 executes a full burst operation and fetches four long words, CBREQ 
is negated after STERM is asserted for the third cycle, indicating that the 
MC68030 only requests one more long word (the fourth cycle). CBACK can 
then be negated, and the MC68030 latches the data for the fourth cycle and 
completes the cache line fill. 

The following conditions can abort a burst fill: 

• CIIN asserted, 

• BERR asserted, or 

• CBACK negated prematurely. 

The processing of a bus error during a burst fill operation is described in 
7.5.1 Bus Errors. 

For the purposes of halting the processor or arbitrating the bus away from 
the processor with BR, a burst operation is a single cycle since AS remains 
asserted during the entire operation. If the HALT signal is asserted during a 
burst operation, the processor halts at the end of the operation. Refer to 7.5.3 
Halt Operation for more information about the halt operation. An alternate 
bus master requesting the bus with BR may become bus master at the end 
of the operation provided BR is asserted early enough to be internally syn- 
chronized before another processor cycle begins. Refer to 7.7 BUS ARBI- 
TRATION for more information about bus arbitration. 

7-60 MC68030 USER'S MANUAL MOTOROLA 



The simultaneous assertion of BERR and HALT during a bus cycle normally 
indicates that the cycle should be retried. However, during the second, third, 
or fourth cycle of a burst operation, this signal combination indicates a bus 
error condition, which aborts the burst operation. In addition, the processor 
remains in the halted state until HALT is negated. For information about bus 
error processing, refer to 7.5.1. Bus Errors. 

Figure 7-37 is a flowchart of the burst operation. The following timing dia- 
grams show various burst operations. Figure 7-38 shows burst operations 
for long-word requests with two wait states inserted in the first access and 
one wait cycle inserted in the subsequent accesses. Figure 7-39 shows a burst 
operation that fails to complete normally due to CBACK negating prema- 
turely. Figure 7-40 shows a burst operation that is deferred because the entire 
operand does not correspond to the same cache line. Figure 7-41 shows a 
burst operation aborted by CIIN. Because CBACK corresponds to the next 
cycle, three long words are transferred even though CBACK is only asserted 
for two clock periods. 

The burst operation sequence begins with states S0-$3, which are very sim- 
ilar to those states for a synchronous read cycle except that CBREQ is as- 
serted. $4-$9 perform the final three reads for a complete burst operation. 

State 0 
The burst operation starts with SO. The processor drives ECS low, indicating 
the beginning of an external cycle. When the cycle is the first cycle of a 
read operation, OCS is driven low at the same time. During SO, the pro- 
cessor places a valid address on A0-A31 and valid function codes on 
FC0-FC2. The function codes select the address space for the cycle. The 
processor drives R/W high, indicating a read cycle, and drives DBEN in- 
active to disable the data buffers. SIZ0-SIZ1 become valid, indicating the 
number of operand bytes to be transferred. CLOUT also becomes valid, 
indicating the state of the MMU CI bit in the address translation descriptor 
or in the appropriate TTx register. 

State 1 
One-half clock later in $1, the processor asserts AS to indicate that the 
address on the address bus is valid. The processor also asserts DS during 
$1. CBREQ is also asserted, indicating that the MC68030 can perform a 
burst operation into one of its caches and can read in four long words. In 
addition, ECS (and OCS, if asserted) is negated during $1. 

MOTOROLA MC68030 USER'S MANUAL 7-61 

7 



7 

PROCESSOR 

ADDRESS DEVICE 

EXTERNAL DEVICE 

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK 
2) SET R/WTO READ 
3) DRIVE ADDRESS ON AO-A31 
4) DRIVE FUNCTION CODE ON FCO-FC2 
5) DRIVE SIZE (SIZO-SIZ1) (FOUR BYTES) 
6) CACHE INHIBIT OUT (CLOUT) BECOMES VALID 
7) ASSERTADDRESS STROBE (~ )  
8) ASSERT CACHE BURST REQUEST (CBREQ) 
9) ASSERT DATA STROBE (~)  

10) ASSERT DATA BUFFER ENABLE (OBEN) 

ACQUIRE DATA 

1) SAMPLE CACHE INHIBIT IN (CIIN) 
AND CACHE BURST ACKNOWLEDGE (CBACK) 

2) lATCH DATA 

]) NEGATE ASND DS END OF BURST i i ~ 

2) NEGATE DBEN 

START NEXT CYCLE 

PRESENT DATA 

1) DECODE ADDRESS 
2} PLACE DATA ON DO-D31 
3) ASSERT SYNCHRONOUS TERMINATION (STERM) 
4) ASSERT CACHE DURST ACKNOWLEDGE (CBACK) 

TERMINATE CYCLE 

t) REMOVE DATA FROM 00-D31 
2) NEGATE STERM (IF NECESSARY) 
3) NEGATE CRACK (IF NECESSARY) 

WHEN 4 LONG WORDS TRANSFERRED I UNTIL 4 LONG WOROS TRANSFERRED 

Figure 7-37. Burst Operation Flowchart - -  Four Long Words Transferred 

r 

State 2 
The selected device uses R/W, SIZ0-SIZ1, A0-A1, and CLOUT to place the 
data on the data bus. (The first cycle must supply the long word at the 
corresponding long-word boundary.) All of the byte sections (D24-D31, 
D16-D23, D8-D15, and D0-D7) of the data bus must be driven since the 
burst operation latches 32 bits on every cycle. During $2, the processor 
drives DBEN active to enable external data buffers. In systems that use 
two-clock synchronous bus cycles, the timing of DBEN may prevent its 
use. At the beginning of $2, the processor tests the level of STERM. If 
STERM is recognized, the processor latches the incoming data at the end 
of $2. For the burst operation to proceed, CBACK must be asserted when 
STERM is recognized. If the data for the current cycle is not to be cached, 
CIIN must be asserted at the same time as STERM. The assertion of ClIN 
also has the effect of aborting the burst operation. 

7-62 MC68030 USER'S MANUAL MOTOROLA 



SO $1 $2 Sw Sw Sw Sw Sw S,', $3 S',',' Sw $4 $5 Sw Sw $6 $7 Sw Sw $8 $9 

CLK 

A4-A31 

A3-- k 

AO-A2 J 

FCO-FC2 

StZO-SIZ1 

R/~ ____/ 

Ec7 

s - - k _ /  

STERM J 

CLOUT J 

CSREQ 

CSACK 

D0-D31 

DBE7 J 

m \  

\ 

/ 
\ / 

b4-b7 bS-b8 bC-bl: b0-b3 

/-  

01 ~0 11 

VALUE OF ~ ~ :'~CREMENTEO BY THE SYSTEM HARDWARE 

Figure 7-38. Long-Word Operand Request from $07 with 
Burst Request and Wait Cycle 

MOTOROLA MC68030 USER'S MANUAL 7-63 

7 



m 

SO $2 $4 S6 

CLK 

A4-A31 

A3 

A0-A2 

FC0-FC2 ~ X  

SIZ0-SIZ1 

R/W . __ /  

= - - k__ /  

0~ - - - ' k_ /  Q 
I 

STERM 7 ~ k _ _ / - - k _ _ / - -  ~__/--- 

cll--~ . /  

CLOUT J 

C,R,0 ~ \  /-- 

I 
L . . . . . .  -1- - -  4 CONTROL NEXT CYCLE 

DO-D31 ~ 
OREN 

0 1 1 1 0 1 1 1  

VALUE OF A3:A2 INCREMENTED BY THE SYSTEM HARDWARE 

NOTES: 
1. Assertion of CBACK causes data to be placed on DO-D31. 
2. Continued assertion of CBACK causes data to be placed on D0-D31. 
3. Negation of CBACK cause AS to be negated, 

Figure 7-39. Long-Word Operand Request from $07 with 
Burst Request - -  CBACK Negated Early 

7-64 MC68030 USER'S MANUAL MOTOROLA 



SO $1 $2 Sw Sw $3 SO $1 $2 S,', $~ $3 Sw Sw $4 $5 Sw Sw $6 $7 Sw Sw $8 S9 

CLK 

AB'A3' :--X X 

Ao 

FCO-FC2 ~ Z ~ X  X 

slzl " - ' ~  / 

SIZO 

RJW 

EC~ 

OCT 

STERM J m 

CBREO 

CBAC~ J 

DO-D31 ~ 

0BE~ J \ ~ /  

PREVIOUS CACHE BLOCK 

/---k 

Y 
\ 

/ -  

_y- 

/ 

\ / 

b0-b3 b4-b7 bS-bB bC-bF 

/ -  

NEXT CACHE BLOCK - START BURST CYCLE 

Figure 7-40. Long-Word Operand Request from SOE - -  Burst Fill Deferred 

MOTOROLA MC68030 USER'S MANUAL 7-65 

7 



7 

SO S2 $4 

CLK 

AO-A31 

FCO-FC2 

SIZ1 ~ - ~  

StZO 

R/~ 

~ - - k _ /  

0= - - k _  / 

BSACK] J 

DSACKO J 

STER7 

c,,-~ _ /  k____/ 

CIOU'--~ J 

CDAC--~ ~ 7 - - ~ k  / 

DO-D31 

DDE--~ J \ / -  

h BURST MODE ENDS, 
DATA NOT CACHED 

01 10 

VALUE OF A3:A2 INCREMENTEO BY THE SYSTEM HARDWARE 

Figure 7-41, Long-Word Operand Request from $07 with 
Burst Request m CBACK and CIIN Asserted 

7-66 MC68030 USER'S MANUAL MOTOROLA 



Since CIIN, CBACK, and STERM are synchronous signals, they must meet 
the synchronous input setup and hold times for all rising edges of the clock 
while AS is asserted. If STERM is negated at the beginning of $2, wait 
states are inserted after $2, and STERM is sampled on every rising edge 
of the clock thereafter until it is recognized. Once STERM is recognized, 
data is latched on the next falling edge of the clock (corresponding to the 
beginning of $3). 

State 3 
The processor maintains AS, DS, and DBEN asserted during $3. It also 
holds the address valid during $3 for continuation of the burst. R/W, 
SIZ0-SIZ1, and FC0-FC2 also remain valid throughout $3. 

The external device must keep the data driven throughout the synchronous 
hold time for data from the beginning of $3. The device must negate STERM 
within one clock after asserting STERM; otherwise, the processor may 
inadvertently use STERM prematurely for the next burst access. STERM 
need not be negated if subsequent accesses do not require wait cycles. 

State 4 
At the beginning of $4, the processor tests the level of STERM. This state 
signifies the beginning of burst mode, and the remaining states correspond 
to burst fill cycles. If STERM is recognized, the processor latches the in- 
coming data at the end of $4. This data corresponds to the second long 
word of the burst. If STERM is negated at the beginning of $4, wait states 
are inserted instead of S4 and $5, and STERM is sampled on every rising 
edge of the clock thereafter until it is recognized. As for synchronous cycles, 
the states of CBACK and CIIN are latched at the time STERM is recognized. 
The assertion of CBACK at this time indicates that the burst operation 
should continue, and the assertion of CIIN indicates that the data latched 
at the end of $4 should not be cached and that the burst should abort. 

State 5 
The processor maintains all the signals on the bus driven throughout S5 
for continuation of the burst. The same hold times for STERM and data 
described for S3 apply here. 

State 6 
This state is identical to S4 except that once STERM is recognized, the third 
long word of data for the burst is latched at the end of $6. 

MOTOROLA MC68030 USER'S MANUAL 7-67 

7 



7 

State 7 
During this state, the processor negates CBREQ, and the memory device 
may negate CBACK. Aside from this, all other bus signals driven by the 
processor remain driven. The same hold times for STERM and data de- 
scribed for S3 apply here. 

State 8 
This state is identical to $4 except that CBREQ is negated, indicating that 
the processor cannot continue to accept more data after this. The data 
latched at the end of $8 corresponds to the fourth long word of the burst. 

State 9 
The processor negates AS, DS, and DBEN during S9. It holds the address, 
R/W, SIZ0-SIZ1, and FC0-FC2 valid throughout $9. The same hold times 
for data described for $3 apply here. 

Note that the address bus of the MC68030 remains driven to a constant value 
for the duration of a burst transfer operation (including the first transfer before 
burst mode is entered). If an external memory system requires incrementing 
of the long-word base address to supply successive long words of infor- 
mation, this function must be performed by external hardware. Additionally, 
in the case of burst transfers that cross a 16-byte boundary (i.e., the first long 
word transferred is not located at A3/A2= 00), the external hardware must 
correctly control the continuation or termination of the burst transfer as 
desired. The burst may be terminated by negating CBACK during the transfer 
of the most significant long word of the 16-byte image (A3/A2= 11) or may 
be continued (with CBACK asserted) by providing the long word located at 
A3/A2=00 (i.e., the count sequence wraps back to zero and continues as 
necessary). The MC68030 caches assume the higher order address lines 
(A4-A31) remain unchanged as the long-word accesses wrap back around 
to A3/A2 = 00. 

7.4 CPU SPACE CYCLES 

FC0-FC2 select user and supervisor program and data areas as listed in Table 
4-1. The area selected by FC0-FC2=$7 is classified as the CPU space. The 
interrupt acknowledge, breakpoint acknowledge, and coprocessor commu- 
nication cycles described in the following sections utilize CPU space. 

7-68 MC68030 USER'S MANUAL MOTOROLA 



The CPU space type s encoded on A16-A19 during a CPU space operation 
and indicates the function that the processor is performing. On the MC68030, 
three of the encodings are implemented as shown in Figure 7-42. All unused 
values are reserved by Motorola for future additional CPU space types. 

BREAKPOINT 
ACKNOWLEDGE 

COPROCESSOR 
COMM. 

INTERRUPT 
ACKNOWLEDGE 

FUNCTION 
CODE 

2 0 

2 O 

2 0 

ADDRESS BUS 
i 

,, 123 ,0 ,, , , 0 

Io  O OC o o  o 0 o o o OlO 0 0 OlO 0 0 0 0 0 0 0 0 0  01 B'P" fD 01 

31 15 13 4 O 

JO O 0 0 0 O 0 0 O 0 0 0 ~ 0  0 0 0 0 0 O O L CPREG l 

31 I I 3 1 0 

[ "  1 1 1 • 1 1 1 i i 1 1 ] 1  1 1 1 1 1  1 1 , 1 1 I 1 1 1 1 1 ~  

, I 
l 

CPU SPACE 
TYPE FIELD 

Figure 7-42. NIC68030 CPU Space Address Encoding 

7.4.1 Interrupt Acknowledge Bus Cycles 

When a peripheral device signals the processor (with the IPL0-1PL2 signals) 
that the device requires serv ce, and the internally synchronized value on 
these signals indicates a higher priority than the interrupt mask in the status 
register (or that a transition has occurred in the case of a level 7 interrupt), 
the processor makes the interrupt a pending interrupt. Refer to 8.1.9 Interrupt 
Exceptions for details on the recognition of interrupts. 

The MC68030 takes an interrupt exception for a pending interrupt within one 
instruction boundary (after processing any other pending exception with a 
higher priority). The following paragraphs describe the various kinds of in- 
terrupt acknowledge bus cycles that can be executed as part of interrupt 
exception processing. 

MOTOROLA MC68030 USER'S MANUAL 7-69 

7 



7.4.1.1 INTERRUPT ACKNOWLEDGE C Y C L E - -  TERMINATED NORMALLY. When 
the MC68030 processes an interrupt exception, it performs an interrupt ac- 
knowledge cycle to obtain the number of the vector that contains the starting 
location of the interrupt service routine. 

Some interrupting devices have programmable vector registers that contain 
the interrupt vectors for the routines they use. The fol lowing paragraphs 
describe the interrupt acknowledge cycle for these devices. Other interrupting 
condit ions or devices cannot supply a vector number and use the autovector 
cycle described in 7.4.1.2 AUTOVECTOR INTERRUPT ACKNOWLEDGE CYCLE. 

The interrupt acknowledge cycle is a read cycle. It differs from the asyn- 
chronous read cycle described in 7.3.1 Asynchronous Read Cycle or the syn- 
chronous read cycle described in 7.3.4 Synchronous Read Cycle in that it 
accesses the CPU address space. Specifically, the differences are: 

1. FC0-FC2 are set to seven (FC0/FC1/FC2 = 111) for CPU address space. 

2. A1, A2, and A3 are set to the interrupt request level (the inverted values 
of IPL0, IPL1, and IPL2, respectively). 

3. The CPU space type field (A16-A19) is set to $F, the interrupt acknowl- 
edge code. 

4. A20-A31, A4-A15, and A0 are set to one. 

The responding device places the vector number on the data bus during the 
interrupt acknowledge cycle. Beyond this, the cycle is terminated normal ly 
with either STERM or DSACKx. Figure 7-43 is the f lowchart of the interrupt 
acknowledge cycle. 

7-70 MC68030 USER'S MANUAL MOTOROLA 



PROCESSOR INTERRUPTING DEVICE 

ACKNOWIEOGE INTERRUPT 

1) INTERRUPT PENOING (IPEND) RECOGNIZED BY CURRENT INSTRUC]!C~ - 
WAIT FOR INSTRUCTION BOUNDARY 

2) SET R/'~TO REAO 
3) SET FUNCTION CODE TO CPU SPACE 
4) PLACE INTERRUPT LEVEL ON A1, A2, AND A3. 

TYPE FIELD = INTERRUPT ACKNOWLEDGE (lACK) 
5) SET SIZE TO BYTE 
6} NEGATE IPEND 
7) ASSERT ADDRESS STROBE (~ )  AND DATA STROBE (O-S) 

ACQUIRE VECTOR NUMBER 

1) LATCH VECTOR NUMBER 
2) NEGATE AS AND OS 

I DONON,E ,NTERRORT EXCEPTION PROCESSING I 

*--t 

i 

REQUESTINTERRUPT 

PROVIDE VECTOR INFORMATION 

1) PLACE VECTOR NUMBER ON LEAST SIGNIFICANT BYTE 
OF DATA PORT (DEPENDS ON PORT SIZE) 

2) ASSERT DATA TRANSFER AND SIZE ACKNOWLEDGE (DSACKx) 
- O R -  

ASSERT SYNCHRONOUS TERMINATION (STERM) 

RELEASE 

1) REMOVE VECTOR NUMBER FROM DATA BUS 
2} NEGATE DSACKx 

Figure 7-43. Interrupt Acknowledge Cycle Flowchart 

Figure 7-44 shows the timing for an interrupt acknowledge cycle terminated 
with DSACKx. 

7.4.1.2 AUTOVECTOR INTERRUPT ACKNOWLEDGE CYCLE. When the interrupt- 
ing device Cannot supply a vector number, it requests an automatically gen- 
erated vector or autovector. Instead of placing a vector number on the data 
bus and asserting DSACKx or STERM, the device asserts the autovector signal 
(AVEC) to terminate the cycle. Neither STERM nor DSACKx may be asserted 
during an interrupt acknowledge cycle terminated by AVEC. 

The vector number supplied in an autovector operation is derived from the 
interrupt level of the current interrupt. When AVEC is asserted instead of 
DSACK or STERM during an interrupt acknowledge cycle, the MC68030 ig- 
nores the state of the data bus and internally generates the vector number, 
the sum of the interrupt level plus 24 ($18). There are seven distinct auto- 
vectors that can be used, corresponding to the seven levels of interrupt 
available with signals IPL0-1PL2. Figure 7-45 shows the timing for an auto- 
vector operation. 

MOTOROLA MC68030 USER'S MANUAL 7-71 

7 



7 

CLK 

A4A=' Z X  / 

A"A3 ZZX X 

A o ~  / 

FCOFC2 ZCR / 

="' ZX \ 
s,zo ZCK / 

SO $2 $4 SO S2 S4 SO $2 

~ _ _ _ _ F - I _ _ f - - L _  

\ 

INTERRUPT LEVEL X 

\ 

/ 

\ 

,,~ ____/ 

~ - - -kJ  k_/ 

~ ----kJ k_/ 
\ /-----X 

o = - - \  

\ 

~ _ _ / - -  

~ _ / - -  

/ 
/-- \ 

DSACK1 

DSACKO 

o =-~ _ _ _ _ /  \ 

D24-D31 

D16-D23 

DO-07 

IPLO-IPL2 

IPENO 

/ \ / 

/ \ / 

/ \ f 

CZZ}----<VECTO" o FR =-=Z PORt> 

<~C>------KVEOTDR ° FR =-R,T PORT>- -- 

~ V E C T O R  # FR 32-BIT PORI~ 

- -  

< _ _  

/ 

V 4 '--'T 4 ; - READ CYCLE - -  - -  ACKNOWLEDGE - -  WRITE STACK 

Figure 7-44. Interrupt Acknowledge Cycle Timing 

7-72 MC68030 USER'S MANUAL MOTOROLA 



CLK 

A4-A31 

A1-A3 

A0 

SO $2 $4 S0 S2 $4 SO $2 

ZX 
ED~ / 

\ 

I~'TERRUPT LEVEL X 

\ 

ECOEC2 E ~  / 

s,z, E ~  \ 

SIZO 

R/W _ _ j /  

DO-D31 

IPLO-IPL2 

AVEC 

~ - - k i _ /  k _ /  

~ ----k_J k _ /  
\ / - - - -k  

\ / - - 7 k  

OSAC<, ~ / 

OSACKO ____._.J-----k / 

oB,,~ ____/ \ I 

<IE]> 

\ 

I 
\ 

\ 
- - - - - - . - ~ ~  

k _ _ / ~  

/ \ 

k _  

k_ 

\ f k__ 

\ ;< k.__ 

\ / 

ACKNOWLEDGE READ CYCLE ~, 
I AUTOVECTORED 

~ WRITE STACK 

Figure 7-45. Autovector Operation Timing 

MOTOROLA MC68030 USER'S MANUAL 7-73 

7 



7 

7.4.1.3 SPURIOUS INTERRUPT CYCLE. When a device does not respond to an 
interrupt acknowledge cycle with AVEC, STERM, or DSACKx, the external 
logic typically returns BERR. The MC68030 automatically generates the spu- 
rious interrupt vector number, 24, instead of the interrupt vector number in 
this case. If HALT is also asserted, the processor retries the cycle. 

7.4.2 Breakpoint Acknowledge Cycle 

The breakpoint acknowledge cycle is generated by the execution of a break- 
point instruction (BKPT). The breakpoint acknowledge cycle allows the ex- 
ternal hardware to provide an instruction word directly into the instruction 
pipeline as the program executes. This cycle accesses the CPU space with a 
type field of zero and provides the breakpoint number specified by the in- 
struction on address lines A2-A4. If the external hardware terminates the 
cycle with DSACKx or STERM, the data on the bus (an instruction word) is 
inserted into the instruction pipe, replacing the breakpoint opcode, and is 

executed after the breakpoint acknowledge cycle completes. The breakpoint 
instruction requires a word to be transferred so that if the first bus cycle 
accesses an 8-bit port, a second cycle is required. If the external logic ter- 
minates the breakpoint acknowledge cycle with BERR (i.e., no instruction 
word available), the processor takes an illegal instruction exception. Figure 
7-46 is a flowchart of the breakpoint acknowledge cycle. Figure 7-47 shows 
the timing for a breakpoint acknowledge cycle that returns an instruction 
word. Figure 7-48 shows the timing for a breakpoint acknowledge cycle that 
signals an exception. 

7.4.3 Coprocessor Communication Cycles 

The MC68030 coprocessor interface provides instruction-oriented commu- 
nication between the processor and as many as seven coprocessors. The bus 
communication required to support coprocessor opera~ions uses the MC68030 
CPU space with a type field of $2. 

Coprocessor accesses use the MC68030 bus protocol except that the address 
bus supplies access information rather than a 32-bit address. The CPU space 
type field (A16-A19) for a coprocessor operation is $2. A13"A15 contain the 
coprocessor identification number (CplD), and A0-A4 specify the coprocessor 
interface register to be accessed. Coprocessor accesses to a CplD of zero 
correspond to MMU instructions and are not generated by the MC68030 as 
a result of the coprocessor interface. These cycles can only be generated by 
the MOVES ~ instruction. Refer to SECTION 10 COPROCESSOR INTERFACE 
DESCRIPTION for further information. 

7-74 MC68030 USER'S MANUAL MOTOROLA 



PROCESSOR 

BREAKPOINT ACKNOWLEDGE 

1} SET R/WTO READ 
2) SET FUNCTION CODE TO cPu SPACE 
3) PLACE CPU SPACE TYPE 0 ON A16-A1R 
4) BLADE BREAKPOINT NDMBEB ON A2-At~ 
5) SET SIZE TO WORD 
6) ASSERT ADDRESS STROBE (~) AND DATA STROBE (D-S} 

IF DSACKx OR STERM ASSERTED: 
1) LATCH DATA 
2) NEGATE AS AND OS 
3) G0 TO@ 

IF BERR ASSERTED: 
1) NEGATE AS AND OS 
21DOTD® ® 

l 1) PtACE LATCHED DATA IN INSTRUCTION PIPELINE 
2) CON~NUE PROCESSING 

l 1) INITIATE ILLEGAL INSTRUCTION PROCESSING 

EXTERNAl DEVICE 

, PLACE REPLACEMENT OPCODE ON DATA BUS 
2= ASSERT DATA TRANSFER AND SIZE ACKNOWLEDGE (DSACKx) 

OR SYNCHRONOUS TERMINATION (STERM) 
- O R  - 

! ~ ASSERT BUS ERROR (BERR} TO INITIATE EXCEPTION PROCESSING 

or 
J SLAVE NEGATES DSACKx. STERM OR BERR 

, .  I 
I- 

Figure 7-46. Breakpoint Operation Flow 

7.5 B U S  E X C E P T I O N  C O N T R O L  C Y C L E S  

The MC68030 bus architecture requires assertion of either DSACKx or STERM 
from an external device to signal that a bus cycle is complete. DSACKx, 
STERM, or AVEC is not asserted if: 

• The external device does not respond. 

• No interrupt vector is provided. 

• Various other application-dependent errors occur. 

External circuitry can provide BERR when no device responds by asserting 
DSACKx, STERM, or AVEC within an appropriate period of time after the 
processor asserts AS. This allows the cycle to terminate and the processor 
to enter exception processing for the error condition. 

The M M U  can also detect an internal bus error. This occurs when the pro- 
cessor attempts to access an address in a protected area of memory (a user 
program attempts to access supervisor data, for example) or after the MMU 
receives a bus error while searching the address table for an address trans- 
lation description. 

MOTOROLA MC68030 USER'S MANUAL 7-75 

7 



7 

CLK 

A20-A3, "--"~j)( \ 

A,,-A~, E3( \ 

A2-A" - -X X 

AO, A] 

ECO-FC~ Z X  / 

B'Z° E3( \ 

SO 82 $4 SO $2 $4 SO $2 

~ r q J ~ ~ ~ ~ ~ _ r T _  .... _r-L/-l_ 

/ 
(0000) 

BREAKPOINT ENCODING / '  

BREAKPOINT NUMBER ~)~ 

CPU SPACE . . . . .  ~X 

WORD 
k_ 
/ 

RJW ___/ 

D --k_/  k._/ 

a - -k_/  k__/ 

°SACK1 

BSACKO _ _ . j / ~ - - ~  / 

k_/ 

I \ 

I \ 
\ I 

~ _ _ /  \ / 

o2,_o3, ~ <~E>  

k_ / 
\ ! 

< ~  

< ~  

BERT 

HA--~ J 
~ _ _  . ~  BREAKPOINT __~ 

REAO CYCLE ACKNOWLEDGE 
INSTRUCTION WORD 

FETCH 
~ ._ FETCHED INSTRUCTION 

EXECUTION 

Figure 7-47. Breakpoint Acknowledge Cycle Timing 

7-76 MC68030 USER'S MANUAL MOTOROLA 



CLK 

AO-A31 

FCO-FC2 ~ X  

SIZO-SIZ1 

~/W __J 

'~ - - k J  
0c--; 

DS 

DSACK~ . . . J  

DSACKO . _ J  

~ _ _ /  \ 

DO-D31 

SO $2 Sw Sw S~ S4 SO $2 $4 

X 
X 

. . . . .  ~X 

k.._/ 

~_/ 

/ \ F 
/ 

- - \  

\ 
\ 

< 
BERR \ / 

_/ 
/ 

= ~ INTERNAL 
I -  BEA0 WtTB BUS EBROB ASS~-RTEO r I PROCESSING / STACK WRITE 

Figure 7-48. Breakpoint Acknowledge Cycle Timing (Exception Signaled) 

Another signal that is used for bus exception control is HALT. This signal 
can be asserted by an external device for debugging purposes to cause single 
bus cycle operation or (in combination with BERR) a retry of a bus cycle in 
error. 

MOTOROLA MC68030 USER'S MANUAL 7-77 

m 



7 

To properly control terminat ion of a bus cycle for a retry or a bus error 
condit ion, DSACKx, BERR, and HALT can be asserted and negated with the 
rising edge of the MC68030 clock. This assures that when two signals are 
asserted simultaneously, the required setup time (#47A) and hold time (#47B) 
for both of them is met for the same fall ing edge of the processor clock. 
(Refer to MC68030EC/D, MC68030 Electrical Specifications for t iming require- 
ments.) This or some equivalent precaution should be designed into the 
external circuitry that provides these signals. 

The acceptable bus cycle terminations for asynchronous cycles are sum- 
marized in relation to DSACKx assertion as fol lows (case numbers refer to 
Table 7-8): 

Normal Termination: 
DSACKx is asserted; BERR and HALT remain negated (case 1). 

Halt Termination: 
HALT is asserted at same time or before DSACKx, and BERR remains 
negated (case 2). 

Bus Error Termination: 
BERR is asserted in lieu of, at the same time, or before DSACKx (case 
3) or after DSACKx (case 4), and HALT remains negated; BERR is 
negated at the same time or after DSACKx. 

Retry Termination: 
HALT and BERR are asserted in lieu of, at the same time, or before 
DSACKx (case 5) or after DSACKx (case 6); BERR is negated at the 
same time or after DSACKx; HALT may be negated at the same time 
or after BERR. 

7-78 MC68030 USER'S MANUAL MOTOROLA 



Table 7-8. DSACK, BERR, and HALT Assertion Results 

Case Control 
No. Signal 

1 DSACKx 
BERR 
HALT 

2 DSACKx 
BERR 
HALT 

3 DSACKx 
BERR 
HALT 

4 DSACKx 
BERR 
HALT 

5 DSACKx 
BERR 
HALT 

6 DSACKx 
BERR 
HALT 

LEGEND: 

Asserted on Rising 
Edge of State 
N N+2 

A S 
NA NA 
NA X 

A S 
NA NA 
A/S S 

NA/A X 
A S 

NA NA 

A X 
NA A 
NA NA 

NA/A X 
A S 

A/S S 

A X 
NA A 
NA A 

Result 

~ormal cycle terminate and continue. 

Xormal cycle terminate and halt. Continue when HALT 
negated. 

Terminate and take bus error exception, possibly 
deferred. 

Terminate and take bus error exception, possibly 
deferred. 

Terminate and retry when HALT negated. 

Terminate and retry when HALT negated. 

N --  The number of current even bus state (e.g., $2, $4, etc.) 
A --  Signal is asserted in this bus state 
NA--  Signal is not asserted in this state 
X --  Don't care 
S --  Signal was asserted in previous state anti remains asserted in this state 

Tab le  7-8 shows  va r ious  c o m b i n a t i o n s  of  con t ro l  s igna l  sequences  and the 
resu l t ing  bus cycle t e rm ina t i ons .  To ensure  p red ic tab le  opera t i on ,  BERR and 
HALT shou ld  be nega ted  accord ing  to the spec i f i ca t ions  in MC68030EC/D, 
MC68030 Electrical Specifications. DSACKx,  BERR, and HALT may  be negated 
af ter  AS. If DSACKx or  BERR rema in  asser ted in to $2 of  the next  bus cycle, 
tha t  cycle may  be t e r m i n a t e d  p rematu re l y .  

The t e r m i n a t i o n  s igna l  for  a s y n c h r o n o u s  cycle is STERM. An a n a l o g o u s  set 
o f  bus cycle t e r m i n a t i o n  cases exists in re la t i onsh ip  to STERM assert ion.  
Note  that  STERM and DSACKx must  never  both be asserted in the same 
cycle. STERM has setup t ime  (#60) and ho ld  t ime  (#61) requ i remen ts  re lat ive 
to each r is ing edge  of  the processor  c lock w h i l e  AS is asserted. Bus er ror  
and retry t e r m i n a t i o n s  dur ing  burst  cycles opera te  as descr ibed in 6.1.3.2 
BURST M O D E  FILLING, 7.5.1 Bus Error, and 7.5.2 Retry Operation.  

MOTOROLA MC68030 USER'S MANUAL 7-79 

7 



7 

For STERM, the bus cycle terminations are summarized as fol lows (case 
numbers refer to Table 7-9): 

Normal Termination: 
STERM is asserted; BERR and HALT remain negated (case 1). 

Halt Termination: 
HALT is asserted before STERM, and BERR remains negated (case 
2). 

Bus Error Termination: 
BERR is asserted in lieu of, at the same time, or before STERM (case 
3) or after STERM (case 4), and HALT remains negated; BERR is 
negated at the same time or after STERM. 

Retry Termination: 
HALT and BERR are asserted in lieu of, at the same time, or before 
STERM (case 5) or after STERM (case 6); BERR is negated at the 
same t ime or after STERM; HALT may be negated at the same t ime 
or after BERR. 

7-80 MC68030 USER'S MANUAL MOTOROLA 



Table 7-9. STERM, BERR, and HALT Assertion Results 

Asserted on Rising 
Case Control Edge of State 
No. Signal N N+2  

1 STERM A - -  
BERR NA - -  
HALT NA - -  

2 STERM NA A 
BERR NA NA 
HALT A/S S 

3 STERM NA A 
BERR A/S S 
HALT NA NA 

4 STERM A - -  
BERR A - -  
HALT NA - -  

5 STERM NA A 
BERR A S 
HALT A/S S 

6 STERM A - -  
BERR A - -  
HALT A - -  

LEGEND: 

Result 

\ o r m a l  cycle terminate and continue. 

No:mal  cycle terminate and halt. Continue when HALT 
negated. 

Terminate and take bus error exception, possibly 
deferred. 

Terminate and take bus error  exception, possibly 
deferred. 

Terminate and retry when HALT negated. 

Terminate and retry when HALT negated. 

N - -  The number of current even bus state (e.g., $2, $4, etc.) 
A - -  Signal is asserted in this bus state 
N A - -  Signal is not asserted in this state 
X - -  D o n ' t  care 
S - -  Signal was asserted in previous state and remains asserted in this state 
- -  - -  State N + 2  not part of  bus cycle 

EXAMPLE A: 
A system uses a watchdog t imer to terminate accesses to an unpopulated 
address space. The timer asserts BERR after t imeout (case 3). 

MOTOROLA MC68030 USER'S MANUAL 7-81 

7 



7 

EXAMPLE B: 
A system uses error detection and correction on RAM contents. The de- 
signer may: 

1. Delay DSACKx until data is verified; assert BERR and HALT simul- 
taneously to indicate to the processor to automatically retry the 
error cycle (case 5) or, if data is valid, assert DSACKx (case 1). 

2. Delay DSACKx until data is verified and assert BERR with or without 
DSACKx if data is in error (case 3). This initiates exception pro- 
cessing for software handling of the condition. 

3. Return DSACKx prior to data verification. If data is invalid, BERR is 
asserted on the next clock cycle (case 4). This initiates exception 
processing for software handling of the condition. 

4. Return DSACKx prior to data verification; if data is invalid, assert 
BERR and HALT on the next clock cycle (case 6). The memory con- 
troller can then correct the RAM prior to or during the automatic 
retry. 

7.5.1 Bus Errors 

The bus error signal can be used to abort the bus cycle and the instruction 
being executed. BERR takes precedence over DSACKx or STERM provided 
it meets the timing constraints described in MC68030EC/D, MC68030 Elec- 
trical Specifications. If BERR does not meet these constraints, it may cause 
unpredictable operation of the MC68030. If BERR remains asserted into the 
next bus cycle, it may cause ncorrect operation of that cycle. 

When the bus error signal is issued to terminate a bus cycle, the MC68030 
: may enter exception processing immediately following the bus cycle, or it 

may defer processing the exception. The instruction prefetch mechanism 
requests instruction words from the bus controller and the instruction cache 
before it is ready to execute them. If a bus error occurs on an instruction 
fetch, the processor does not take the exception until it attempts to use that 
instruction word. Should an intervening instruction cause a branch or should 
a task switch occur, the bus error exception does not occur. 

7-82 MC68030 USER'S MANUAL MOTOROLA 



The bus error signal is recognized during a bus cycle in any of the following 
cases: 

• DSACKx (or STERM) and HALT are negated and BERR is asserted. 

• HALT and BERR are negated and DSACKx is assertedl BERR is then 
asserted within one clock cycle (HALT remains negated). 

• BERR is asserted and recognized on the next falling clock edge following 
the rising clock edge on which STERM is asserted and recognized (HALT 
remains negated). 

When the processor recognizes a bus error condition, it terminates the current 
bus cycle in the normal way. Figure 7-49 shows the timing of a bus error for 
the case in which neither DSACKx nor STERM is asserted. Figure 7-50 shows 
the timing for a bus error that is asserted after DSACKx. Exceptions are taken 
in both cases. (Refer to 8.1.2 Bus Error Exception for details of bus error 
exception processing.) When BERR is asserted during a read cycle that sup- 
plies data to either on-chip cache, the data in the cache is marked invalid. 
However, when a write cycle that writes data into the data cache results in 
an externally generated bus error, the data in the cache is not marked invalid. 

In the second case, where BERR is asserted after DSACKx is asserted, BERR 
must be asserted within specification #48 (refer to MC68030EC/D, MC68030 
Electrical Specifications) for purely asynchronous operation, or it must be 
asserted and remain stable during the sample window, defined by specifi- 
cations #27A and #47B, around the next falling edge of the clock after DSACKx 
is recognized. If BERR is not stable at this time, the processor may exhibit 
erratic behavior. BERR has priority over DSACKx. In this case, data may be 
present on the bus, but may not be valid. This sequence may be used by 
systems that have memory error detection and correction logic and by ex- 
ternal cache memories. 

The assertion of  BERR described in the third case (recognized after STERM) 
has requirements similar to those described in the preceding paragraph. 
BERR must be stable throughout the sample window for the next falling edge 
of the clock, as defined by specifications #27A and #28A. Figure 7-51 shows 
the timing for this case. 

MOTOROLA MC68030 USER'S MANUAL 7-83 

N 



7 

CLK 

A20-A31 ~ ]  X 

(OOO0) 
A16-A19 ~ ~ BREAKPOINT ENCODING 

A2-A15 ~ X  X BREAKPOINT NUMBER 

AO, AI 

FCO-FC2 ~ [ ] X  / CPU SPACE 

s,z, Z X  / 
WORD 

sIZO - -X  \ 

R~ . _ J  

~ --k__/ k_/ 

~ --k__/ k_/ 
~ - - \  / - - - k  / 

OSACK1---/------k / 

D,ACKO ~ / 

O~EN _ _ J  \ _ _ /  \ I 

o,,_o,, ~ O 

o,,.o,, ~ C Z ~  

o,-o,, ZZ> E E l >  

oo-o' ~ <CZ~ 

SO $2 $4 SO $2 $4 SO $2 

~ER-i J \ f 

. . . .  

X 

. . . . .  X 

\ 

/ 

\ 

X__/ 

\ 

k__ 

< _ _  

I 

- -  

.A~ __J 
~ BREAKPOINT 

ACKNOWLEDGE 
READ CYCLE ~l~ BUS ERROR 

I ASSERTED 

Figure 7-49. Bus Error without DSACKx 

EXCEPTION 
STACKING 

7-84 MC68030 USER'S MANUAL MOTOROLA 



CLK 

AO-A31 

FCO-FC2 

SIZO-SIZ1 

R/W 

EC--~ 

OC--; 

DSACK1 J 

DSACKO J 

O~E--~ _ _ /  \ 

DO-D3] 

SO $2 Sw Sw $4 

\ 

\ 

S0 $2 $4 

I t_ . .2 - t__J~  

K X 
f,._ .... _9( 

K EX 
f \ 

k__/ 
k_/ 

/ \ F 
/ k___/- 

f - - \  

f \ 
/ \ 

O < 
IPLO-IPL2 J 

~E,--~ _ /  k_______/--- 

NA---¢ . . . /  
/ 

WRITE WITH BUS ERROR ASSERTEO ~ - L I - -  
/ 

INTERNAL 
PROCESSIN6 

STACK WRITE 

Figure 7-50. Late Bus Error with DSACKx 

A bus error occurring during a burst fill operation is a special case. If a bus 
error occurs during the first cycle of a burst, the data is ignored, the entire 
cache line is marked invalid, and the burst operation is aborted. If the cycle 
is for an instruction fetch, a bus error exception is made pending. This bus 
error is processed only if the execution unit attempts to use either of the two 

I 

MOTOROLA MC68030 USER'S MANUAL 7-85 



7 

CLK 

AOA3, Z X  X___ . . . .  2(  

,c°,o, 2EX X X 

s'z°s'z' ZZX X X 

R,~ - - k  I \ 

~ ---k__/ k _ /  

°= - - k _ /  k__/ 

~ \  f \ 

SO $2 Sw Sw Sw $3 SO $2 

. . . .  _ r - L _ r - L  

°~ \ f L_ 
~-<~ _._/ k_..___/ 

~___ /  \ / \ 

DER--~ _ _ J  X-______/ 

RA--¢ J 

WRITE WITH BUS ERROR ASSERTED ~ J - ~ - ~  / 
INTERNAL 

PROCESSING ~ STACK WRITE 

Figure 7-51. Late Bus Error with STERM - -  Exception Taken 

words latched during the bus cycle. If the cycle is for a data fetch, the bus 
error exception is taken immediately. Refer to SECTION 11 INSTRUCTION 
EXECUTION TIMING for more information about pipeline operation. 

When a bus error occurs after the burst mode has been entered (that is, on 
the second access or later), the processor terminates the burst operation, 
and the cache entry corresponding to that cycle is marked invalid, but the 
processor does not take an exception (see Figure 7-52). If the second cycle 
is for a portion of a misaligned operand fetch, the processor runs another 

7-86 MC68030 USER'S MANUAL MOTOROLA 



CLK 

A4-A31 

A3 

AO-A2 

FCO-FC2 

SIZO-SIZ1 

R/~ 

ECS 

O~ 

SO $2 S4 $6 

EEX 
--k 

__/ 

ZX 
--k 

__/ 
---k_/ 

--k_/ 

~ \  F 

ST--F~ 

Cll~ J 

CLOUT J 

CBREQ 

CBACK 

D0-g31 

OBE~ J 

BER~ J 

HA~ J 

\ 
C,~-<ZE>G~> 

\ 

/-  
/- 

/ -  

k___ 

0111 

I LATE BERR ENDS BURST; 
NO EXCEPTION TAKEN 

1000 1100 

VALUE OF A3:AO INCREMENTED BY THE SYSTEM HARDWARE 

Figure 7-52. Long-Word Operand Request - -  Late BERR on Third Access 

MOTOROLA MC68030 USER'S MANUAL 7-87 

7 



7 ¸ 

SO SI $2 Sw Sw Sw Sw Sw Sw S3 Sw Sw Sw Sw $4 $5 SO $1 $2 S3 Sw Sw Sw Sw $4 $5 

CLK _ ~  

AO.A3' Z;X ~- -EX. .  

,co PC, ;EX X Z r E X  

SIZO-SIZt " ~  / "  

R/~ _._/ 

A3:AO = 1000 

~- - -~  %../ 

-S / \ 

DSACRI / \ 

\ 

STERM . J  

R E  

cIOU~ ,J 

CBOE~ ~ ' ~  

CBAC~ / 

DO-D31 > 

OBE~ 

BER~ j /  

\ / 

CZE> 

/ 

/ -X 

X / 
HAL~ / 

~,,_ DU.ST ADOR,EO _,.J~_ ,N,ER,A~ J~. RERUN CYCLETO O,T =ST 
BUS ERROR ASSERTED PROCESSING 3 BYTES OF OPERANO 

0,, / ,00o / ( 
VALUE OF A3TAO INCREMENTEO BY THE SYSTEM HAROWARE / 

Figure 7-53. Long-Word  Operand  Request  - -  BERR on Second Access 

read cycle for the second port ion with CBREQ negated, as shown in Figure 
7-53. If BERR is asserted again, the MC68030 then takes an exception. The 
MC68030 supports late bus errors during a burst fill operation; the t iming is 
the same relative to STERM and the clock as for a late bus error in a normal 
synchronous cycle. 

7-88 MC68030 USER'S MANUAL MOTOROLA 



7.5.2 Retry Opera t ion  

When the BERR and HAL-i" signals are both asserted by an external device 
during a bus cycle, the processor enters the retry sequence. A delayed retry, 
similar to the delayed bus error signal described previously, can also occur, 
both for synchronous and asynchronous cycles. 

The processor terminates the bus cycle, places the control signals in their 
inactive state, and does not begin another bus cycle until the HALT signal is 
negated by external logic. After a synchronization delay, the processor retries 
the previous cycle using the same access information (address, function code, 
size, etc.) The BERR signal should be negated before $2 of the read cycle to 
ensure correct operation of the retried cycle. Figure 7-54 shows a retry op- 
eration of an asynchronous cycle, and Figure 7-55 shows a retry operation 
of a synchronous cycle. 

The processor retries any read or write cycle of a read-modify-write operation 
separately; RMC remains asserted during the entire retry sequence. 

On the initial access of a burst operation, a retry (indicated by the assertion 
of BERR and HALT) causes the processor to retry the bus cycle and assert 
CBREQ again. Figure 7-56 shows a late retry operation that causes an initial 
burst operation to be repeated. However, signaling a retry with simultaneous 
BERR and HALT during the second, third, or fourth cycle of a burst operation 
does not cause a retry operation, even if the requested operand is misaligned. 
Assertion of BERR and HALT during a subsequent cycle of a burst operation 
causes independent BERR and HALT operations. The external bus activity 
remains halted until HALT is negated and the processor acts as previously 
described for the bus error during a burst operation. 

L 

Asserting BR along with BERR and HALT provides a relinquish and retry 
operation. The MC68030 does not relinquish the bus during a read-modify- 
write operation, except during the first read cycle. Any device that requires 
the processor to give up the bus and retry a bus cycle during a read-modify- 
write cycle must either assert BERR and BR only (HALT must not be included) 
or use the single wire arbitration method discussed in 7.7.4 Bus Arbitration 
Control. The bus error handler software should examine the read-modify- 
write bit in the special status word (refer to 8.2.1 Special Status Word) and 
take the appropriate action to resolve this type of fault when it occurs. 

MOTOROLA MC68030 USER'S MANUAL 7-89 

7 



7 

SO S1 $2 S3 Sw Sw $4 $5 SO $2 $4 

CLK 

AO-A31 

FC0-FC2 

SIZO-SIZ1 

~,~ . . . . . .  I \ 
~ - - k _ /  

~ ' - k _ /  

~ - - \  , I 

\ , ,  I 
~-~-~ .__/ \ / 

D~AC<O _ _ /  \ / 

OO-DG~ ~ >  < ~-~ O~TA ~O~OR,~E,, 

~ . _ /  \ 

RA--~ _/ \ / 

WRITE CYCLE RETRY SIGNALED - ~ l~  HALT 

~_J 
\ 

L =1- 

/ -  

\ 

\ 

~ k '  

RETRY CYCLE - - ~  

Figure 7-54. Asynchronous Late Retry 

7-90 MC68030 USER'S MANUAL MOTOROLA 



7.5.3 

CLK 

SO S] $2 $3 SO Sl $2 $3 

A0-A3I 

FC0-FC2 

SIZ0-SIZ1 : : ~  

k__ /  

k- - - / .  

R/W . ._ j /  

~ - - k _ /  

STERM 

gO-O3~ 

RER--~ - - / - - - - - -k  / 
"~ --E--------k • / 

ETRY SIGNALED r - HALT , = j - -  RETRY CYCLE 

Figure 7-55, Synchronous Late Retry 

Halt Operation 
When HALT is asserted and BERR is not asserted, the MC68030 halts external 
bus activity at the next bus cycle boundary. HALT by itself does not terminate 
a bus cycle. Negating and reasserting HALT in accordance with the correct 
timing requirements provides a single-step (bus cycle to bus cycle) operation. 
The HALT signal affects external bus cycles only; thus, a program that resides 
in the instruction cache and performs no data writes (or reads that miss in 
the data cache) may continue executing, unaffected by the HALT signal. 

MOTOROLA MC68030 USER'S MANUAL 7-91 

7 



Im 

SO $1 $2 $3 SO $1 $2 $3 $4 
CLK 

AO-A3, Z 3 (  X 

'~0'C2 E3~ X 

S,ZOS,Zl Z X  X 

R/W J 

,~ - - k J  k_./ 
~ - - k _ /  k._/ 

STERM ' Z ~ ' ~ , ~  ~ ' ~ , . ~  

CLOUT . _ ~  

CBRE~ ~ " ~ . J  

CBACK 

00-D31 

BERT 

HA--Of 

~ '-READ ~ 

\ 

/ 

~ RETRY HALT ~] 

Figure 7-56. Late Retry Operation for a Burst 

The single-cycle mode allows the user to proceed through (and debug) ex- 
ternal processor operations, one bus cycle at a time. Figure 7-57 shows the 
t iming requirements for a single-cycle operation. Since the occurrence of a 
bus error whi le HALT is asserted causes a retry operation, the user must 
anticipate retry cycles whi le debugging in the single-cycle mode. The single- 

7-92 MC68030 USER'S MANUAL MOTOROLA 



CLK__J 1 1 I I I I / . . . .  / I I 

A0-A3I 

FC0-FC2 

SIZ0-SIZ1 

R/W ! 

~ ~ \  /----..___ 

~ ~ \  /----..___ 

B~Ac~' _....._F--'---~ I 

BSAC~O ____/-----\ /-- 

°~ __.___/ \ I 

oo_o~ ~ 

SO $2 $4 S0 $2 $4 

~- < 

- C 
/ 

\ 

\ 

\ 

C I  

BERR 

HALT 

BGACK 

\ 
\ / '  

~ , J  

\ \ _ f  

READ - HALT 
(ARBITRATION PERMITTED 
WHILE THE PROCESSOR 

IS HALTED) 

READ 

Figure 7-57. Halt Operation Timing 

MOTOROLA MC68030 USER'S MANUAL 7-93 

7 



7 

step operation and the software trace capabil ity al low the system debugger 
to trace single bus cycles, single instructions, or changes in program flow. 
These processor capabilities, along with a software debugging package, give 
complete debugging flexibil i ty. 

When the processor completes a bus cycle with the HALT signal asserted, 
the data bus is placed in the high-impedance state, and bus control signals 
are driven inactive (not high-impedance state); the address, function code, 
size, and read/write signals remain in the same statel The halt operation has 
no effect on bus arbitration (refer to 7.7 BUS ARBITRATION). When bus 
arbitration occurs while the MC68030 is halted, the address and control sig- 
nals are also placed in the high-impedance state. Once bus mastership is 
returned to the MC68030, if HALT is still asserted, the address, function code, 
size, and read/write signals are again driven to their previous states. The 
processor does not service interrupt requests whi le it is halted, but it may 
assert the ]PEND signal as appropriate. 

7.5.4 Double Bus Fault 

When a bus error or an address error occurs during the exception processing 
sequence for a previous bus error, a previous address error, or a reset ex- 
ception, the bus or address error causes a double bus fault. For example, 
the processor attempts to stack several words containing information about 
the state of the machine while processing a bus error exception. If a bus 
error exception occurs during the stacking operation, the second error is 
considered a double bus fault. Only an external reset operation can restart 
a halted processor. However, bus arbitration can still occur (refer to 7.7 BUS 
ARBITRATION). 

The MC68030 indicates that a double bus fault condit ion has occurred by 
cont inuously asserting the STATUS signal until the processor is reset. The 
processor asserts STATUS for one, two, or three clock periods to signal other 
microsequencer status indications. Refer to SECTION 12 APPLICATIONS IN- 
FORMATION for a description of the interpretation of the STATUS signal. 

A second bus error or address error that occurs after exception processing 
has completed (during the execution of the exception handler routine or later) 
does not cause a double bus fault. A bus cycle that is retried does not con- 
stitute a bus error or contribute to a double bus fault. The processor continues 
to retry the same bus cycle as long as the external hardware requests it. 

7-94 MC68030 USER'S MANUAL MOTOROLA 



7.6 BUS SYNCHRONIZATION 

The MC68030 overlaps instruction execution; that is, during bus activity for 
one instruction, instructions that do not use the external bus can be executed. 
Due to the independent operation of the on-chip caches relative to the op- 
eration of the bus controller, many subsequent instructions can be executed, 
resulting in seemingly nonsequential instruction execution. When this is not 
desired and the system depends on sequential execution following bus ac- 
tivity, the NOP instruction can be used. The NOP instruction forces instruction 
and bus synchronization in that it freezes instruction execution until all pend- 
ing bus cycles have completed. 

An example of the use of the NOP instruction for this purpose is the case of 
a write operation of control information to an external register, where the 
external hardware attempts to control program execution based on the data 
that is written with the conditional assertion of BERR. If the data cache is 
enabled and the write cycle results in a hit in the data cache, the cache is 
updated. That data, in turn, may be used in a subsequent instruction before 
the external write cycle completes. Since the MC68030 cannot process the 
bus error until the end of the bus cycle, the external hardware has not suc- 
cessfully interrupted program execution. To prevent a subsequent instruction 
from executing until the external cycle completes, a NOP instruction can be 
inserted after the instruction causing the write. In this case, bus error excep- 
tion processing proceeds immediately after the write before subsequent in- 
structions are executed. T h i s s  an irregular situation, and the use of the NOP 
instruction for this purpose is not required by most systems. 

Note that even in a system with error detection/correction circuitry, the NOP 
is not required for this synchronization. Since the MMU always checks the 
validity of write cycles before they proceed to the data cache and are executed 
externally, the MC68030 is guaranteed to write correct data to the cache. 
Thus, there is no danger in subsequent instructions using erroneous data 
from the cache before an external bus error signals an error. 

A bus synchronization example is given in Figure 7-58. 

MOTOROLA MC68030 USER'S MANUAL 7-95 



7 

SO Sw 

WRITE TO O. CACHE 

MOVE L DO.(AO) 

EXTERNAL WRITE 

m 

~f 
O. CACHE READ X 

MOVE.L (AO).O1 

NOP PREVENTS EXECUTION OF SUBSEQUENT 
INSTRUCTIONS UNTIL MOVEL DO,(AO) 
WRITE CYCLE COMPLETES 

Figure 7-58. Bus Synchronization Example 

7.7 BUS ARBITRATION 

The bus design of the MC68030 provides for a single bus master at any one 
time: either the processor or an external device. One or more of the external 
devices on the bus can have the capability of becoming bus master. Bus 
arbitration is the protocol by which an external device becomes bus master; 
the bus controller in the MC68030 manages the bus arbitration signals so 
that the processor has the lowest priority. External devices that need to obtain 
the bus must assert the bus arbitration signals in the sequences described 
in the following paragraphs, Systems having several devices that can become 
bus master require external circuitry to assign priorities to the device so that, 
when two or more external devices attempt to become bus master at the 
same time, the one having the highest priority becomes bus master first. The 
sequence of the protocol is: 

1. An external device asserts the bus request signal. 

2. The processor asserts the bus grant signal to indicate that the bus will 
become available at the end of the current bus cycle. 

3. The external device asserts the bus grant acknowledge signal to indicate 
that it has assumed bus mastership. 

BR may be issued any time during a bus cycle or between cycles. BG is 
asserted in response to BR; it is usually asserted as soon as BR has been 
synchronized and recognized, except when the MC68030 has made an in- 
ternal decision to execute a bus cycle. Then, the assertion of BG is deferred 
until the bus cycle has begun. Additionally, BG is not asserted until the end 
of a read-modify-write operation (when RMC is negated) in response to a BR 

7-96 MC68030 USER'S MANUAL MOTOROLA 



signal. When the requesting device receives BG and more than one external 
device can be bus master, the requesting device should begin whatever 
arbitration is required. The external device asserts BGACK when it assumes 
bus mastership and maintains BGACK during the entire bus cycle (or cycles) 
for which it is bus master. The following conditions must be met for an 
external device to assume mastership of the bus through the normal bus 
arbitration procedure: 

• It must have received BG through the arbitration process. 

• AS must be negated, indicating that no bus cycle is in progress, and the 
external device must ensure that all appropriate processor signals have 
been placed in the high-impedance state (by observing specification #7 
in MC68030EC/D, MC68030 Electrical Specifications). 

• The termination signal (DSACKx or STERM) for the most recent cycle 
must have become inactive, indicating that external devices are off the 
bus (optional, refer to 7.7.3 Bus Grant Acknowledge). 

• BGACK must be inactive, indicating that no other bus master has claimed 
ownership of the bus, 

Figure 7-59 is a flowchart showing the detail involved in bus arbitration for 
a single device. Figure 7-60 is a timing diagram for the same operation. This 
technique allows processing of bus requests during data transfer cycles. 

The timing diagram shows that BR is negated at the time that BGACK is 
asserted. This type of operation applies to a system consisting of the pro- 
cessor and one device capable of bus mastership. In a system having a 
number of devices capable of bus mastership, the bus request line from each 
device can be wire-ORed to the processor. In such a system, more than one 
bus request can be asserted simultaneously. 

The timing diagram in Figure 7-60 shows that BG is negated a few clock 
cycles after the transition of the BGACK signal. However, if bus requests are 
still pending after the negation of BG, the processor asserts another BG within 
a few clock cycles after it was negated. This additional assertion of BG allows 
external arbitration circuitry to select the next bus master before the current 
bus master has finished with the bus. The following paragraphs provide 
additional information about the three steps in the arbitration process. 

Bus arbitration requests are recognized during normal processing, RESET 
assertion, HALT assertion, and even when the processor has halted due to 
a double bus fault. 

MOTOROLA MC68030 USER'S MANUAL 7-97 

N 



Im 

PROCESSOR 

GRANT BUS ARBITRATION 

1) ASSERT BUS GRANT (~) 

TERMINATE ARBITRATION 

1) NEGATE B'6 AND WAIT FOR DOACK TO 8E NEGATED 

RE-ARBITRATE OR RESUME PROCESSOR OPERATION 

J 

1 
.4 

REQUESTING DEVICE 

REQUEST THE BUS 

1) ASSERT BUS REQUEST (~) 

ACKNOWLEDGE BUS MASTERSHIP 

1) EXTERNAL ARBITRATION DETERMINES NEXT BUS MASTER 
2) NEXT BUS MASTER WAITS FOR CURRENT CYCLE TO COMPLETE 
3) NEXT BUS MASTER ASSERTS BUS GRANT ACKNOWLEDGE (BGACK) 

TO BECOME NEW MASTER 
4) BUS MASTER NEGATES 

OPERATE AS BUS MASTER 

1) PERFORM DATA TRANSFERS (READ AND WRITE CYCLES) 

+ 
RELEASE BUS MASTERSHIP 

1) NEGATE BGACK 

Figure 7-59. Bus Arbitration Flowchart for Single Request 

7.7.1 Bus Request 

External devices capable of becoming bus masters request the bus by as- 
serting DR. This can be a wire-ORed signal (although it need not be con- 
structed from open-collector devices) that indicates to the processor that 
some external device requires control of the bus. The processor is effectively 
at a lower bus priority level than the external device and relinquishes the 
bus after it has completed the current bus cycle (if one has started). 

If no acknowledge is received while the BR is active, the processor remains 
bus master once BR is negated. This prevents unnecessary interference with 
ordinary processing if the arbitration circuitry inadvertently responds to noise 
or if an external device determines that it no longer requires use of the bus 
before it has been granted mastership. 

7-98 MC68030 USER'S MANUAL MOTOROLA 



CLK 

AO-A31 

FCO-FC2 

SIZO-SIZ1 

R/W 

ECS 

OCS 

DSACK1 

DSACKO 

DBE-'~ ~ 

DO-D31 

BGACK 

SO $2 $4 SO $2 

> < 
> < 

> < 
\ / 

ZZX 
ZZX 
ZZX 

__/ 
-k_/ 
-k_/ 

\ / 

\ / 

< > 

PROCESSOR 

7.7.2 Bus Grant 

/ \ 

\ / 
\ 

DMA DEVICE 

,'--k___ 

/ 

=1 ~ PROCESSOR 

Figure 7-60. Bus Arbitration Operation Timing 

The processor asserts BG as soon as possible after receipt of BR. This is 
immediately following internal synchronization except during a read-modify- 
write cycle or following an internal decision to execute a bus cycle. During 
a read-modify-write cycle, the processor does not assert BG until the entire 
operation has completed. RMC is asserted to indicate that the bus is locked, 
in the case an internal decision to execute another bus cycle, BG is deferred 
until the bus cycle has begun. 

MOTOROLA MC68030 USER'S MANUAL 7-99 

7 



7 

BG may be routed through a daisy-chained network or through a specific 
priority-encoded network. The processor allows any type of external arbitra- 
tion that follows the protocol. 

7.7.3 Bus Grant Acknowledge 

Upon receiving BG, the requesting device waits until AS, DSACKx (or syn- 
chronous termination, STERM), and BGACK are negated before asserting its 
own BGACK. The negation of the AS indicates that the previous master 
releases the bus after specification #7 (refer to MC68030EC/D, MC68030 Elec- 
trica/Spec/f/cations). The negation of [)SACKx or STERM indicates that the 
previous slave has completed its cycle with the previous master. Note that 
in some applications, DSACKx might not be used in this way. 

General-purpose devices are then connected to be dependent only on AS. 
When BGACK is asserted, the device isthe bus master until it negates BGACK. 
BGACK should not be negated until all bus cycles required by the alternate 
bus master are completed. Bus mastership terminates at the negation of 
BGACK. The BR from the granted device should be negated after BGACK is 
asserted. If a BR is still pending after the assertion of BGACK, another BG is 
asserted within a few clocks of the negation of BG, as described in the 7.7.4 
Bus Arbitrat ion Control, Note that the processor does not perform any ex- 
ternal bus cycles before it reasserts BG in this case. 

7.7.4 Bus Arbitration Control 

The bus arbitration control unit in the MC68030 is implemented with a finite 
state machine. As discussed previously, all asynchronous inputs to the 
MC68030 are internally synchronized in a maximum of two cycles of the 
processor Clock. 

As shown in Figure 7-61, input signals labeled R and A are internally syn- 
ch ronized versions of the BR and BGACK signals, respectively. The BG output 
is labeled G, and the internal high-impedance control signal is labeled T. If 
T is true, the address, data, and control buses are placed in the high- 
impedance state after the next rising edge following the negation of AS and 
RMC. All signals are shown in positive logic (active high), regardless of their 
true active voltage level. 

7-100 MC68030 USER'S MANUAL MOTOROLA 



RA 

R • BUS REQUEST 

A - BUS GRANTACKNOWLEDGE 

G • BUS GRANT 

T . THREE-STATE CONTROL TO BUS CONTROL LOGIC 

X • DON'T CARE 

NOTE: The B-G o u t p u t  w i l l  not  be asser ted  w h i l e  RMC is asser ted.  

Figure 7-61. Bus Arbitration State Diagram 

State changes occur on the next rising edge of the clock after the internal 
signal is valid. The BG signal transit ions on the fall ing edge of the clock after 
a state is reached during which G changes. The bus control signals (controlled 
by T) are driven by the processor, immediately fol lowing a state change, 
when bus mastership is returned to the MC68030. 

State 0, at the top center of the diagram, in which G and T are both negated, 
is the state of the bus arbiter whi le the processor is bus master. Request R 
and acknowledge A keep the arbiter in state 0 as long as they are both 
negated. When a request R is received, both grant G and signal T are asserted 
(in state 1 at the top left). The next clock causes a change to state 2, at the 
lower left, in which G and T are held, The bus arbiter remains in that state 
until acknowledge A is asserted or request R is negated. Once either occurs, 
the arbiter changes to the center state, state 3, and negates grant G. The next 
clock takes the arbiter to state 4, at the upper right, in which grant G remains 

MOTOROLA MC68030 USER'S MANUAL 7=101 

7 



7 

negated and signal T remains asserted. With acknowledge A asserted, the 
arbiter remains in state 4 until A is negated or request R is again asserted. 
When A is negated, the arbiter returns to the original state, state 0, and 
negates signal T. This sequence of states follows the normal sequence of 
signals for relinquishing the bus to an external bus master. Other states apply 
to other possible sequences of combinations of R and A. As shown by the 
path from state 0 to state 4, BGACK alone can be used to place the processor's 
external bus buffers in the high-impedance state, providing single-wire ar- 
bitration capability. 

The read-modify-write sequence is normally indivisible to support sema- 
phore operations and multiprocessor synchronization. During this indivisible 
sequence, the MC68030 asserts the RMC signal and causes the bus arbitration 
state machine to ignore bus requests (assertions of BR) that occur after the 
first read cycle of the read-modify-write sequence by not issuing bus grants 
(asserting BG). 

In some cases, however, it may be necessary to force the MC68030 to release 
the bus during an read-modify-write sequence. One way for an alternate bus 
master to force the MC68030 to release the bus applies only to the first read 
cycle of an read-modify-write sequence. The MC68030 allows normal ~bus 
arbitration during this read cycle; a normal relinquish and retry operation 
(asserting BERR, HALT, and BR at the same time) is used. Note that this 
method applies only to the first read cycle of the read-modify-write sequence, 
but this method preserves the integrity of the read-modify-write sequence 
without imposing any constraint on the alternate bus master. 

A second method is single-wire arbitration, the timing of which is shown in 
Figure 7-62: An alternate master forces the MC68030 to release the bus by 
asserting BGACK and waits for AS to negate before taking the bus. It applies 
to all bus cycles of a read-modify-write sequence, but can cause system 
integrity problems if used improperly. The alternate bus master must guar- 
antee the integrity of the read-modify-write sequence by not altering the 
contents of memory locations accessed by the read-modify-write sequence. 
Note that for the method to operate properly, AS must be observed to be 
negated (high) on two consecutive clock edges before the alternate bus mas- 
ter takes the bus. Waiting for this condition ensures that any current or 
pending bus activity has completed or has been pre-empted. 

7-102 MC68030 USER'S MANUAL MOTOROLA 



I~ SEE NOTE 
~ _  DO NOT , - -  r 

TAKE BUS ~ ~-TAKE BUS 

CLK__ 

AS 
BGACK 

ADDRESS X > - -  

NOTE: The alternate bus master must sample AS high on two consecutive rising edges ofthe clock (after BGACK is recognized 
low) before taking the bus. 

Figure 7-62. Single-Wire Bus Arbitration Timing Diagram 

A timing diagram of the bus arbitration sequence during a processor bus 
cycle is shown in Figure 7-60. The bus arbitration sequence while the bus is 
inactive (i.e., executing internal operations such as a multiply instruction) is 
shown in Figure 7-63. 

7.8 RESET OPERATION 

RESET is a bidirectional signal with which an external device resets the 
system or the processor resets external devices. When power is applied to 
the system, external circuitry should assert RESET for a minimum of 520 
clocks after VCC is within tolerance. Figure 7-64 is a timing diagram of the 
powerup reset operation, showing the relationships between RESET, VCC, 
and bus signals. The clock signal is required to be stable by the time VCC 
reaches the minimum operating specification. During the reset period, the 
entire bus three-states (except for non-three-statable signals, which are dri- 
ven to their inactive state). Once RESET negates, all control signals are driven 
to their inactive state, the data bus is in read mode, and the address bus is 
driven. After this, the first bus cycle for reset exception processing begins. 

MOTOROLA MC68030 USER'S MANUAL 7-103 



• 

$4 SO 

CLK 

AO-A31 

FCO-FC2 

SIZO-StZI 

R/W 

ECS 

> < 
> < 
> < 
\ / 

k_/ 
OCS 

~ _ _ _ /  

~_____/ 

k_/ 

DSACKO 

DBE7 . ~  

00-031 

BOACK 

PROCESSOR 

,/ 

> 

\ / 

m 

\ / 

\ / 

\ / 

BUS INACTIVE ~- ~ ALTERNATE MASTER 
-~ I (ARBITRATION PERMll-fEO WHILE THE 

PROCESSOR IS INACTIVE OR HALTED) 

PROCESSOR =1- 

Figure 7-63. Bus Arbitration Operation (Bus Inactive) 

The external RESET signal resets the processor and the entire system. Except 
for the initial reset, RESET should be asserted for at least 520 clock periods 
to ensure that the processor resets. Asserting RESET for 10 clock periods is 
sufficient for resetting the processor logic; the additional clock periods pre- 
vent a reset instruction from overlapping the external RESET signal. 

7-104 MC68030 USER'S MANUAL MOTOROLA 



CLK 

PLUS 5 
VOLTS ' ~  

VCC I ~  t = >520 C I O C K S ~ I ~  

RESET -- ! ~'<4CLOOKS 4 

 osc, LEs AL  ONTROLS,ONA S 

ENTIRE BUS NEGATED, DATA BUS IN | ISP 
HI6H IMPEDANCE READ MODE, ADDRESS pl~ READ 

/ 

BUS DR VEN - -  STARTS 

BUS STATE UNKNOWN 

Figure 7-64. Initial Reset Operation Timing 

Resetting the processor causes any bus cycle in progress to terminate as if 
DSACKx, BERR, or STERM had been asserted. In addition, the processor 
initializes registers appropriately for a reset exception. Exception processing 
for a reset operation is described in 8.1.1 Reset Exception. 

When a reset instruction is executed, the processor drives the RESET signal 
for 512 clock cycles. In this case, the processor resets the external devices 
of the system, and the internal registers of the processor are unaffected. The 
external devices connected to the RESET signal are reset at the completion 
of the reset instruction. An external RESET signal that is asserted to the 
processor during execution of a reset instruction must extend beyond the 
reset period of the instruction by at least eight clock cycles to reset the 
processor. Figure 7-65 shows the timing information for the reset instruction. 

MOTOROLA MC68030 USER'S MANUAL 7-105 

7 



7 

CLK 

AO-A31 

FCO-FC2 

SIZD-SI21 

SO S2 $4 SO $2 
_ _ . . ~ ' ~ . ~ ' ~ . ~ - ' ~  

ZZX x 

;C)( X 

E3. X 
R/W ___/ 

=- -k_ /  k_./ 

oc-~ ' k _ /  k_/  
~ _ / - - - k  / 

~ _ / ~ - k  / k . ~  

OSACK, / ' - - -~  / 

OSAOKO _.___/'---k... / 

°°-°~, Z > - - - <  > C' - - -  

HALT J 

RESET 

~ - ~  READ 

\ _ _ _ _ J  

~ - ~  RESET INTERNAL 512 CLOCKS ~ _  RESUME NORMAL 
OPERATJON 

Figure 7-65. Processor-Generated Reset Operation 

7-106 MC68030 USER'S MANUAL MOTOROLA 



SECTION 8 
EXCEPTION PROCESSING 

Exception processing is defined as the activities performed by the processor 
in preparing to execute a handler routine for any condition that causes an 
exception. In particular, exception processing does not include execution of 
the handler routine itself. An introduction to exception processing, as one of 
the processing states of the MC68030 processor, was given in SECTION 4 
PROCESSING LEVELS. This section describes exception processing in detail, 
describing the processing for each type of exception. It describes the return 
from an exception and bus fault recovery. This section also describes the 
formats of the exception stack frames. For details of MMU-related exceptions, 
refer to SECTION 9 MEMORY MANAGEMENT UNIT. For more detail on pro- 
tocol violation and coprocessor-related exceptions, refer to SECTION 10 
COPROCESSOR INTERFACE DESCRIPTION. Also, for more detail on excep- 
tions defined for floating-point coprocessors, refer to the user's manual for 
the MC68881/MC68882. 

8.1 E X C E P T I O N  P R O C E S S I N G  S E Q U E N C E  

Exception processing occurs in four functional steps. However, all individual 
bus cycles associated with exception processing (vector acquisition, stacking, 
etc.) are not guaranteed to occur in the order in which they are described in 
this section. Nonetheless, all addresses and offsets from the stack pointer 
are guaranteed to be as described. 

The first step of exception processing involves the status register. The pro- 
cessor makes an internal copy of the status register. Then the processor sets 
the S bit, changing to the supervisor privilege level. Next, the processor 
inhibits tracing of the exception handler by clearing the T1 and TO bits. For 
the reset and interrupt exceptions, the processor also updates the interrupt 
priority mask. 

In the second step, the processor determines the vector number of the ex- 
ception. For interrupts, the processor performs an interrupt acknowledge 
cycle (a read from the CPU address space type $F; see Figures 7-45 and 
7-46) to obtain the vector number. For coprocessor-detected exceptions, the 
vector number is included in the coprocessor exception primitive response. 

MOTOROLA MC68030 USER'S MANUAL 8-1 

8 



8 

(Refer to SECTION 10 COPROCESSOR INTERFACE DESCRIPTION for a com- 
plete discussion of coprocessor exceptions.) For all other exceptions, internal 
logic provides the vector number. This vector number  is used in the last step 
to calculate the address of the except ion vector. Throughout  this section, 
9vector numbers are g iven in decimal notation. 

For all except ions other than reset, the third step is to save the current 
processor context. The processor creates an except ion stack f rame on the 
active supervisor stack and fills it wi th context  informat ion appropr iate for 
the type of exception. Other informat ion may also be stacked, depending on 
which except ion is being processed and the state of the processor prior to 
the except ion. If the except ion is an interrupt and the M bit of the status 
register is set, the processor clears the M bit in the status register and builds 
a second stack f rame on the interrupt stack. 

The last step init iates execut ion of the except ion handler. The processor 
mult ipl ies the vector number  by four to determine the except ion vector offset. 
It adds the offset to the value stored in the vector base register to obtain the 
memory  address of the except ion vector. Next, the processor loads the pro- 
gram counter  (and the interrupt stack pointer (ISP) for the reset except ion) 
f rom the except ion vector table in memory,  Af ter  prefetching the first three 
words  to fill the instruction pipe, the processor resumes normal processing 
at the address in the program counter. Table 8-1 contains a descr ipt ion of 
all the except ion vector offsets def ined for the MC68030. 

Table 8-1. Exception Vector  Assignments (Sheet 1 of 2) 

Vector 
Number(s) 

8 
9 

10 
11 

12 
13 
14 
15 

Vector Offset 
Assignment 

Hex Space 

000 SP Reset Initial Interrupt Stack Pointer 
004 SP Reset Initial Program Counter 
008 SD Bus Error 
00C SD Address Error 

010 SD Illegal Instruction 
014 SD Zero Divide 
018 SD CHK, CHK2 Instruction 
01C SD cpTRAPcc, TRAPcc, TRAPV Instructions 

020 SD Privilege Violation 
024 SD Trace 
028 SD Line 1010 Emulator 
02C SD Line 1111 Emulator 

030 SD (Unassigned, Reserved) 
034 SD Coprocessor Protocol Violation 
038 SD Format Error 
03C SD UninJtialized Interrupt 

STATUS 
Asserted 

Yes 
Yes 

N o  

No 
No 
No 

N o  

Yes 
No 
Yes 
m 

No 
No 
Yes 

8-2 MC68030 USER'S MANUAL MOTOROLA 



Table 8-1. Exception Vector Assignments (Sheet 2 of 2) 

Vector Vector Offset 
Number(s) Hex Space 

16 040 SD 
Through 

23 05C SD 

24 060 SD 
25 O64 SD 
26 068 SD 
27 06C SD 

28 070 SD 
29 074 SD 
30 078 SD 
31 07C SD 

32 080 SD 
Through 

47 0BC SD 

48 0C0 SD 
49 0C4 SD 
50 0C8 SD 
51 0CC SD 

52 0D0 SD 
53 0D4 SD 
54 0D8 SD 
55 0DC SD 

56 0E0 SD 
57 0E4 SD 
58 0E8 SD 

59 0EC SD 
Through 

63 0FC SD 

64 100 SD 
Through 

255 3FC SD 

SP = Supervisor Program Space 
SD = Supervisor Data Space 

STATUS 
Assignment Asserted 

Unassigned, Reserved 

Spurious Interrupt Yes 
Leve! 1 interrupt Autovector Yes 
Level 2 !nterrupt Autovector Yes 
Level 3 Interrupt Autovector Yes 

Level 4 Interrupt Autovector Yes 
Level 5 Interrupt Autovector Yes 

: Level 6 Interrupt Autovector Yes 
Level 7 Interrupt Autovector Yes 

TRAP #0-15 Instruction Vectors No 

FPCP Branch or Set on Unordered Condition No 
:FPCP Inexact Result No 
FPCP Divide by Zero No 

FPCP Underflow No 

i FPCP Operand Error No 
FPCP Overflow No 

FPCP Signaling NAN No 
Unassigned, Reserved No 

M M U  Configuration Error No 
Defined for MC68851 not used by MC68030 
Defined for MC68851 not used by MC68030 

Unassigned, Reserved I 

User Defined Vectors (192) Yes 

As shown in Table 8-1, the first 64 vectors are defined by Motorola and 192 
vectors are reserved for interrupt vectors defined by the user. However, 
external devices may use vectors reserved for internal purposes at the dis- 
cretion of the system designer. 

MOTOROLA MC68030 USER'S MANUAL 8-3 

~ 8 



E3 

The MC68030 provides the STATUS signal to identify instruction boundaries 
and some exceptions. As shown in Table 8-2, STATUS indicates an instruction 
boundary and exceptions to be processed, depending on the state of the 
internal microsequencer. In addition, STATUS indicates when an MMU ad- 
dress translation cache miss has occurred and the processor is about to begin 
a table search access for the logical address that caused the miss. Instruction- 
related exceptions do not cause the assertion of STATUS as shown in Table 
8-1. For STATUS signal timing information, refer to SECTION 12 APPLICA- 
TIONS INFORMATION. 

Table 8-2. Microsequencer STATUS Indications 

Asserted for Indicates 

1 Clock Sequencer at instruction boundary will begin execution of next instruction. 

2 Clocks Sequencer at instruction boundary but will not begin the next instruction im- 
mediately due to: 

• pending trace exception 
OR 

• pending interrupt exception 

3 Clocks MMU address translation cache miss - -  processor to begin table serach 
OR 

Exception processing to begin for: 
• reset OR 
• bus error OR 
• address error OR 
• spurious interrupt OR 
• autovectored interrupt OR 
• F-line instruction (no coprocessor responded) 

Continuously Processor halted due to double bus fault. 

8-4 MC68030 USER'S MANUAL MOTOROLA 



8.1.1 Reset Except ion 

Assertion by external hardware of the RESE-I = signal causes a reset exception. 
For details on the requirements for the assertion of RESET, refer to 7.8 RESET 
OPERATION. 

The reset exception has the highest priority of any exception; it provides for 
system initialization and recovery from catastrophic failure. When reset is 
recognized, it aborts any processing in progress, and that processing cannot 
be recovered. Figure 8-1 is a f lowchart of the reset exception, which performs 
the fol lowing operations: 

1. Clears both trace bits in the status register to disable tracing. 

2. Places the processor in the interrupt mode of the supervisor privilege 
level by setting the supervisor bit and clearing the master bit in the 
status register. 

3. Sets the processor interrupt priority mask to the highest priority level 
(level 7). 

4. Initializes the vector base register to zero ($00000000). 

5. Clears the enable, freeze, and burst enable bits for both on-chip caches 
and the write-allocate bit for the data cache in the cache control register. 

6. Invalidates all entries in the instruction and data caches. 

7. Clears the enable bit in the translation control register and the enable 
bits in both transparent translation registers of the MMU. 

8. Generates a vector number to reference the reset exception vector (two 
long words) at offset zero in the supervisor program address space. 

9. Loads the first long word of the reset exception vector into the interrupt 
stack pointer. 

10. Loads the second long word of the reset exception vector into the 
program counter. 

After the initial instruction prefetches, program execution begins at the ad- 
dress in the program counter. The reset exception does not flush the address 
translation cache (ATC), nor does it save the value of either the program 
counter or the status register. 

MOTOROLA MC68030 USER'S MANUAL 8-5 



8 

ENTRY 

I 
S ~ - - -  1 
M -4---  0 

TO, TI ~ O 
12:10 ~ $7 

VBR -~-- $0 
CACR ~ $0 

INSTRUCTION AND DATA CACHE 
ENTRIES INVAUDATED 

I 
I 

FETCH VECTOR #O I 
I 

OTHERWISE BUS ERROR 

SP ~ (VECTOR #0) 

I 
FETCH VECTOR #1 I ] CONTINUOUSLY 

OTHERWISE BUS ERROR 
PC ~ (VECTOR #1) 

PREFETCH 3 WORDS I ASSERT STATUS 

I CONTINUOUSLY 

, 

BEGIN INSTRUCTION EXECUTION 

I 
CONTINUOUSLY 

I C ) 

ASSERT STATUS 

I 

(DOUBLE BUS FAULT) 

(DOUBLE BUS FAULT) 

(DOUBLE BUS FAULT) 

Figure 8-1. Reset Operation Flowchart 

8-6 MC68030 USER'S MANUAL MOTOROLA 



As described in 7.5.4 Double Bus Fault, if bus error or address error occur 
during the exception processing sequence for a reset, a; double bus fault 
occurs. The processor halts, and the STATUS signal is asserted continuously 
to indicate the halted condition. 

Execution of the reset instruction does not cause a reset exception, nor does 
it affect any internal registers, but it does cause the MC68030 to assert the 
RESET signal, resetting all external devices. 

8.1.2 Bus Error Except ion 

A bus error exception occurs when external logic aborts a bus cycle by 
asserting the BERR input signal. If the aborted bus cycle is a data access, the 
processor immediately begins exception processing. If the aborted bus cycle 
is an instruction prefetch, the processor may delay taking the exception until 
it attempts to use the prefetched information. The assertion of the BERR 
signal during the second, third, or fourth access of a burst operation does 
not cause a bus error exception, but the burst is aborted. Refer to 6.1.3.2 
BURST MODE FILLING and 7.5.1 Bus Errors for details on the effects of bus 
errors during burst operation. 

A bus error exception also occurs when the MMU detects that a successful 
address translation is not possible. Furthermore, when an ATC miss occurs 
and an external bus cycle is required, the MMU must abort the bus cycle, 
search the translation tables in memory for the mapping, and then retry the 
bus cycle. If a valid translation for the logical address is not available due to 
a problem encountered during the table search (the attempt to access the 
appropriate page descriptor in the translation tables for that page), a bus 
error exception occurs when the aborted bus cycle is retried. 

The problem encountered could be a limit violation, an invalid descriptor, or 
the assertion of the BERR signal during a bus cycle used to access the trans- 
lation tables. A miss in the ATC causes the processor to automatically initiate 
a table search but does not cause a bus error exception unless one of the 
specific conditions mentioned above is encountered. 

MOTOROLA MC68030 USER'S MANUAL 8-7 

8 



8 

The processor begins exception processing for a bus error by making an 
internal copy of the current status register. The processor then enters the 
supervisor privilege level (by setting the S bit in the status register) and clears 
the trace bits. The processor generates exception vector number 2 for the 
bus error vector. It saves the vector offset, program counter, and the internal 
copy of the status register on the stack. The saved program counter value is 
the logical address of the instruction that was executing at the time the fault 
was detected. This is not necessarily the instruction that initiated the bus 
cycle, since the processor overlaps execution of instructions. The processor 
also saves the contents of some of its internal registers. The information 
saved on the stack is sufficient to identify the cause of the bus fault and 
recover from the error. 

For efficiency, the MC68030 uses two different bus error stack frame formats. 
When the bus error exception is taken at an instruction boundary, less in- 
formation is required to recover from the error, and the processor builds the 
short bus fault stack frame as shown in Table 8-7. When the exception is 
taken during the execution of an instruction, the processor must save its 
entire state for recovery and uses the long bus fault stack frame shown in 
Table 8-7. The format code in the stack frame distinguishes the two stack 
frame formats. Stack frame formats are described in detail in 8.4 EXCEPTION 
STACK FRAME FORMATS. 

If a bus error occurs during the exception processing for a bus error, address 
error, or reset or while the processor is loading internal state information 
from the stack during the execution of an RTE instruction, a double bus fault 
occurs, and the processor enters the halted state as indicated by the contin- 
uous assertion of the STATUS signal. In this case, the processor does not 
attempt to alter the current state of memory. Only an external RESET can 
restart a processor halted by a double bus fault. 

8.1.3 Address  Error Except ion 

An address error exception occurs when the processor attempts to prefetch 
an instruction from an odd address. This exception is similar to a bus error 
exception, but is internally initiated. A bus cycle is not executed, and the 
processor begins exception processing immediately. After exception pro- 
cessing commences, the sequence is the same as that for bus error exceptions 
described in the preceding paragraphs, except that the vector number is 3 
and the vector offset in the stack frame refers to the address error vector. 
Either a short or long bus fault stack frame may be generated. If an address 
error occurs during the exception processing for a bus error, address error, 
or reset, a double bus fault occurs. 

8-8 MC68030 USER'S MANUAL MOTOROLA 



8.1.4 Instruction Trap Exception 

Certain instructions are used to explicit ly cause trap exceptions. The TRAP 
#n instruction always forces an exception and is useful for implementing 
system calls in user programs. The TRAPcc, TRAPV, cpTRAPcc, CHK, and 
CHK2 instructions force exceptions if the user program detects an error, which 
may be an arithmetic overf low or a subscript value that is out of bounds. 

The DIVS and DIVU instructions force exceptions if a division operation is 
attempted with a divisor of zero. 

When a trap exception occurs, the processor copies the status register in- 
ternally, enters the supervisor privilege level, and clears the trace bits. If 
tracing is enabled for the instruction that caused the trap, a trace exception 
is taken after the RTE instruction from the trap handler is executed, and the 
trace corresponds to the trap instruction; the trap handler routine is not 
traced. The processor generates a vector number according to the instruction 
being executed; for the TRAP #n instruction, the vector number is 32 plus 
n. The stack frame saves the trap vector offset, the program counter, and the 
internal copy of the status register on the supervisor stack. The saved value 
of the program counter is the logical address of the instruction fo l lowing the 
instruction that caused the trap. For all instruction traps other than TRAP #n, 
a pointer to the instruction that caused the trap is also saved. Instruction 
execution resumes at the address in the exception vector after the required 
instruction prefetches. 

8.1.5 Illegal Instruction and Unimplemented Instruction Exceptions 

An illegal instruction is an instruction that contains any bit pattern in its first 
word tha t  does not correspond to the bit pattern of the first word of a valid 
MC68030 instruction or is a MOVEC instruction with an undefined register 
specification field in the first extension word. An illegal instruction exception 
corresponds to vector number 4 and occurs when the processor attempts to 
execute an illegal instruction. 

MOTOROLA MC68030 USER'S MANUAL 8-9 

8 ¸ 



8 

An illegal instruction exception is also taken if a breakpoint acknowledge bus 
cycle (see 7.4.2 Breakpoint Acknowledge Cycle) is terminated with the as- 
sertion of the bus error signal. This implies that the external circuitry did not 
supply an instruction word to replace the BKPT instruction word in the in- 
struction pipe. 

Instruction word patterns with bits [15:12] equal to $A are referred to as 
unimplemented instructions with A-line opcodes. When the processor at- 
tempts to execute an unimplemented instruction with an A-line opcode, an 
exception is generated with vector number 10, permitt ing efficient emulation 
of unimplemented instructions. 

Instructions that have word patterns with bits [15:12] equal to $F, bits [11:9] 
equal to $0, and defined word patterns for subsequent words are legal MMU 
instructions. Instructions that have bits [15:12] of the first words equal to $F, 
bits [11:9] equal to $0, and undefined patterns in subsequent words are 
treated as unimplemented instructions with F-line opcodes when execution 
is attempted in supervisor mode. When execution of the same instruction is 
attempted in user mode, a privilege violation exception is taken. The excep- 
tion vector number for an unimplemented instruction with an F-line opcode 
is number 11. 

The word patterns with bits [15:12] equal to $F and bits [11:9] not equal to 
zero are used for coprocessor instructions. When the processor identifies a 
coprocessor instruction, it runs a bus cycle referencing CPU space type $2 
(refer to 4.2 ADDRESS SPACE TYPES) and addressing one of seven copro- 
cessors (1-7, according to bits [11:9]). If the addressed coprocessor is not 
included in the system and the cycle terminates with the assertion of the bus 
error signal, the instruction takes an unimplemented instruction (F-line op- 
code) exception. The system can emulate the funct ions of the coprocessor 
with an F-line exception handler. Refer to SECTION 10 COPROCESSOR 
INTERFACE DESCRIPTION for more details. 

8-10 MC68030 USER'S MANUAL MOTOROLA 



Exception processing for illegal and unimplemented instructions is similar 
to that for instruction traps. When the processor has identified an illegal or 
unimplemented instruction, it initiates exception processing instead of at- 
tempting to execute the instruction. The processor copies the status register, 
enters the supervisor privilege level, and clears the trace bits, disabling fur- 
ther tracing. The processor generates the vector number, either 4, 10, or 11, 
according to the exception type. The illegal or unimplemented instruction 
vector offset, current program counter, and copy of the status register are 
saved on the supervisor stack, with the saved value of the program counter 
being the address of the illegal or u nimplemented instruction, nstruction 
execution resumes at the address contained in the exception vector. It is the 
responsibi l i ty of the handling routine to adjust the stacked program counter 
if the instruction is emulated in software or is to be skipped on return from 
the handler. 

8.1.6 Privi lege V io la t ion  Except ion 

To provide system security, the fol lowing 
ANDI TO SR 
EOR to SR 
cpRESTORE 
cpSAVE 
MOVE from SR 
MOVE to SR 
MOVE USP 
MOVEC 
MOVES 
ORI to SR 
PFLUSH 
PLOAD 
PMOVE 
PTEST 
RESET 
RTE 
STOP 

instructions are privileged: 

An attempt to execute one of the privi leged instructions whi le at the user 
privilege level causes a privilege violation exception. Also, a privilege vio- 
lation exception occurs if a coprocessor requests a privilege check and the 
processor is at the user level. 

8 

MOTOROLA M068030 USER'S MANUAL 8-11 



8 

Exception processing for privilege violations is similar to that for illegal in- 
structions. When the processor identifies a privilege violation, it begins ex- 
ception processing before executing the instruction. The processor copies 
the status register, enters the supervisor privilege level, and clears the trace 
bits. The processor generates vector number 8, the privilege violation ex- 
ception vector, and saves the privilege violation vector offset, the current 
program counter value, and the internal copy of the status register on the 
supervisor stack. The saved value of the program counter is the logical ad- 
dress of the first word of the instruction that caused the privilege violation. 
Instruction execution resumes after the required prefetches from the address 
in the privilege violation exception vector. 

8.1.7 Trace Exception 
To aid in program development, the M68000 processors include instruction- 
by-instruction tracing capability. The MC68030 can be programmed to trace 
all instructions or only instructions that change program flow. In the trace 
mode, an instruction generates a trace exception after it completes execution, 
allowing a debugger program to monitor execution of a program. 

The T1 and TO bits in the supervisor portion of the status register control 
tracing. The state of these bits when an instruction begins execution deter- 
mines whether the instruction generates a trace exception after the instruc~ 
tion completes. Clearing both T bits disables tracing, and instruction execution 
proceeds normally. Clearing the T1 bit and setting the TO bit causes an in- 
struction that forces a change of f low to take a trace exception. Instructions 
that increment the program counter normally do not take the trace exception. 
Instructions that are traced in this mode include all branches, jumps, instruc- 
tion traps, returns, and coprocessor instructions that modify the program 
counter flow. This mode also includes status register manipulations, because 
the processor must re-prefetch instruction words to fill the pipe again any 
time an instruction that can modify the status register is executed. The ex- 
ecution of the BKPT instruction causes a change of flow if the opcode re- 
placing the BKPT is an instruction that causes a change of f low (i.e., a jump, 
branch, etc.). Setting the T1 bit and clearing the TO bit causes the execution 
of all instructions to force trace exceptions. Table 8-3 shows the trace mode 
selected by each combination of T1 and TO. 

8-12 MC68030 USER'S MANUAL MOTOROLA 



T1 

0 

0 

1 

1 

Table 8-3. Tracing Control 

TO Tracing Function 

0 No Tracing 

1 Trace on Change of Row (BRA, JMP, etc,) 

0 Trace on Instruction Execution (Any Instruction) 

1 Undefined, Reserved 

In general terms, a trace exception is an extension to the function of any 
traced instruction - -  that is, the execution of a traced instruction is not com- 
plete until the trace exception processing is completed: If an instruction does 
not complete due to a bus error or address error exception, trace exception 
processing is deferred until after the execution of the suspended instruction 
is resumed and the instruction execution completes normally. If an interrupt 
is pending at the completion of an instruction, the trace exception processing 
occurs before the interrupt exception processing starts. If an instruction forces 
an exception as part of its normal execution, the forced exception processing 
occurs before the trace exception is processed. See 8.1.12 Multiple Excep- 
tions for a more complete discussion of exception priorities. 

When the processor is inthe trace mode and attempts to execute an illegal 
or unimplemented instruction, that instruction does not cause a trace ex- 
ception since it is not executed. This is of particular importance to an instruc- 
tion emulation routine that  performs the instruction function, adjusts the 
stacked program counter to skip the unimplemented instruction, and returns. 
Before returning, the trace bits of the status register on the stack should be 
checked. If tracing is enabled, the trace exception processing should also be 
emulated for the trace exception handler to account for the emulated instruc- 
tion. 

The exception processing for a trace starts at the end of normal processing 
for the traced instruction and before the start of the next instruction. The 
processor makes an internal copy of the status register and enters the su- 
pervisor privilege level. It also clears the TO and T1 bits of the status register, 
disabling further tracing. The processor supplies vector number 9 for the 
trace exception and saves the trace exception vector offset, program counter 
value, and the copy of the status register on the supervisor stack. The saved 
value of the program counter is the logical address of the next instruction 
to be executed. Instruction execution resumes after the required prefetches 
from the address in the trace exception vector. 

MOTOROLA MC68030 USER'S MANUAL 8-13 

8 



8 

The STOP instruction does not perform its function when it is traced. A STOP 
instruction that begins execution with T1 = 1 and TO = 0 forces a trace excep- 
tion after it loads the status register. Upon return from the trace handler 
routine, execution continues with the instruction following the STOP, and 
the processor never enters the stopped condition. 

8.1.8 Format Error Exception 

Just as the processor checks that prefetched instructions are valid, the pro- 
cessor (with the aid of a coprocessor, if needed) also performs some checks 
of data values for control operations, including the coprocessor state frame 
format word for a cpRESTORE instruction and the stack frame format for an 
RTE instruction. 

The RTE instruction checks the validity of the stack format code. For long 
bus cycle fault format frames, the RTE instruction also compares the internal 
version number of the processor to that contained in the frame at memory 
location SP+54 (SP+$36). This check ensures that the processor can cor- 
rectly interpret internal state information from the stack frame. 

The cpRESTORE instruction passes the format word of the coprocessor state 
frame to the coprocessor for validation. If the coprocessor does not recognize 
the format value, it signals the MC68030 to take a format error exception. 
Refer to SECTION 10 COPROCESSOR INTERFACE DESCRIPTION for details 
of coprocessor-related exceptions. 

If any of the checks previously described determine that the format of the 
stacked data is improper, the instruction generates a format error exception. 
This exception saves a short format stack frame, generates exception vector 
number 14, and continues execution at the address in the format exception 
vector. The stacked program counter value is the logical address of the in- 
struction that detected the format error. 

8.1.9 Interrupt Exceptions 

When a peripheral device requires the services of the MC68030 or is ready 
to send information that the processor requires, it may signal the processor 
to take an interrupt exception. The interrupt exception transfers control to a 
routine that responds appropriately. 

8-14 MC68030 USER'S MANUAL MOTOROLA 



The peripheral device uses the active-low interrupt priority level signals 
(IPL0-1PL2) to signal an interrupt condition to the processor and to specify 
the priority of that condition. The three signals encode a value of zero through 
seven (IPL0 is the least significant bit). High levels on all three signals cor- 
respond to no interrupt requested (level 0) and low levels on IPL0-1PL2 cor- 
respond to interrupt request level 7. Values 1-7 specify one of seven levels 
of prioritized interrupts; level seven has the highest priority. External circuitry 
can chain or otherwise merge signals from devices at each level, allowing 
an unlimited number of devices to interrupt the processor. 

The IPL0-/PL2 interrupt signals must maintain the interrupt request level until 
the MC68030 acknowledges the interrupt to guarantee that the interrupt is 
recognized. The MC68030 continuously samples the IPL0-1PL2 signals on 
consecutive falling edges of the processor clock to synchronize and debounce 
these signals. An interrupt request that is the same for two consecutive falling 
clock edges is considered a valid input. Although the protocol requires that 
the request remain until the processor runs an interrupt acknowledge cycle 
for that interrupt value, an interrupt request that is held for as short a period 
as two clock cycles could be recognized. 

The status register of the MC68030 contains an interrupt priority mask (12, 
I1, 10, bits 10-8). The value in the interrupt mask is the highest priority level 
that the processor ignores. When an interrupt request has a priority higher 

t h a n  the value in the mask, the processor makes the request a pending 
interrupt. Figure 8-2 is a flowchart of the procedure for making an interrupt 
pending. 

C RESET 

I 
i= SAMPLE AND SYNCH 

I ,PL2:IPL0 I 

(COMPARE INTERRUPT LEVEL 

J.j /,ERW,SE 0RTRANSm0  0N'EVi,', 
I ASSERT IPEND 

[ 
Figure 8-2. Interrupt Pending Procedure 

MOTOROLA MC68030 USER'S MANUAL 8-15 

8 



8 

When several devices are connected to the same interrupt level, each device 
should hold its interrupt priority level constant until its corresponding inter- 
rupt acknowledge cycle to ensure that all requests are processed. 

Table 8-4 lists the interrupt levels, the states of IPL2-1PLO that define each 
level, and the mask value that allows an interrupt at each level. 

Table 8-4. Interrupt Levels and Mask Values 

Requested 
Interrupt Level 

0* 

1 

2 

3 

4 

5 Low High 

6 Low Low 

7 Low Low 

*Indicates that no interrupt is requested. 

Control Line Status Interrupt Mask Level 
IP2 IP1 IP0 Required for Recognition 

High High High N/A* 

High High Low 0 

High Low High 0-1 

High Low Low 0-2 

Low High High 0-3 

Low 0-4 

High 0-5 

Low 0-7 

Priority level 7, the nonmaskable interrupt (NMI), is a special case. Level 7 
interrupts cannot be masked by the interrupt priority mask, and they are 
transit ion sensitive. The processor recognizes an interrupt request each t ime 
the external interrupt request level changes from some lower level to level 
7, regardless of the value in the mask. Figure 8-3 shows two examples of 
interrupt recognitions, one for level 6 and one for level 7. When the MC68030 
processes a level 6 interrupt, the status register mask is automatical ly updated 
with a value of 6 before entering the handler routine so that subsequent level 
6 interrupts are masked. Provided no instruction that lowers the mask value 
is executed, the external request can be lowered to level 3 and then raised 
back to level 6 and a second level 6 interrupt is not processed. However, if 
the MC68030 is handling a level 7 interrupt (status register mask set tO 7) 
and the external request is lowered to level 3 and than raised back to level 
7, a second level 7 interrupt is processed. The second level 7 interrupt is 
processed because the level 7 interrupt is transit ion sensitive. A level 7 in- 
terrupt is also generated by a level comparison if the request level and mask 
level are at seven and the priority mask is then set to a lower level (with the 
MOVE to SR or RTE instruction, for example). As shown in Figure 8-3 for 
level 6 interrupt request level and mask level, this is the case for all interrupt 
levels. 

8-16 MC68030 USER'S MANUAL MOTOROLA 



LEVEL 6 EXAMPLE: 

EXTERNAL IPL2 :IPLO 

I 100 ($31 

I IF oo] ($6) 

I ~E too ~$3) 

IF 001 (S0) 

I IF STILL 001 ($6) 

SR ,",;ASK (12:10) ACTION 

101 (S5) ~ INITIAL CONDITIONS I 

THEN ,10 ($6) AND LEVEL 6 INTERRUPT 

÷ 
AND STILL II0 ($6) THEN NO ACTION 

{ 
AND STILL ?10 188) THEN NO ACTION 

AND RTE SO THAT 101 ($5) THEN LEVEL 6 INTERRUPT 

I LEVEL COMPARISON) 

I 

I 
LEVEL COMPARISON) 

LEVEL 7 EXAMPLE: 

J 100 ($3) 

J IF 000 ($7) 

IF TO0 ($3) 

I IF 000 ($7) 

L IF STILL 000 ($7) 

101 ($5) I INITIAL CONDITIONS 

THEN 111 ($7) AND LEVEL 7 INTERRUPT 

AND STILL 111 ($7) THEN NO ACTION 

AND STILL 111 ($7) THEN LEVEL 7 INTERRUPT 

AND RTE SO THAT 101 ($5) THEN LEVEL 7 INTERRUPT 

J TRANSITION) 

I 
I (TRANSITION) 

J (LEVEL COMPARISON) 

Figure 8-3. Interrupt Recognition Examples 

Note that a mask value of 6 and a mask value of 7 both inhibit request levels 
1-6 from being recognized. In addition, neither masks a transition to an 
interrupt request level of 7. The only difference between mask values of 6 
and 7 occurs when the interrupt request level is 7 and the mask value is 7. 
If the mask value is lowered to 6, a second level 7 interrupt is recognized. 

The MC68030 asserts the interrupt pending signal (IPEND) when it makes an 
interrupt request pending. Figure 8-4 shows the assertion of IPEND relative 
to the assertion of an interrupt level on the IPL lines. IPEND signals to external 
devices that an interrupt exception will be taken at an upcoming instruction 
boundary (following any higher priority exception). 

M O T O R O L A  M 0 6 8 0 3 0  USER'S M A N U A L  8-17 

8 



8 

IPL0-1PL2 X 

CLN 

IPEND 

IP~s RECOGNIZED - ~  

Ks 
SYNCHRONIZED 

COMPARE REQUEST 
WITH MASK IN SR 

ASSERT IPEND 

Figure 8-4. Assertion of IPEND 

The state of the IPEND signal is internally checked by the processor once per 
instruction, independently of bus operation. In addition, it is checked during 
the second instruction prefetch associated with exception processing. Figure 
8-5 is a flowchart of the interrupt recognition and associated exception pro- 
cessing sequence. 

To predict the instruction boundary during which a pending interrupt is pro- 
cessed, the timing relationship between the assertion of IPEND for that in- 
terrupt and the assertion of STATUS must be examined. Figure 8-6 shows 
two examples of interrupt recognition. The first assertion of STATUS after 
IPEND is denoted as STAT0. The next assertion of STATUS is denoted as 
STAT1. If STAT0 begins on the falling edge of the clock immediately following 
the clock edge that caused IPEND to assert (as shown in example 1), STAT1 
is at least two clocks long, and, when there are no other pending exceptions, 
the interrupt is acknowledged at the boundary defined by STAT1. If IPEND 
is asserted with more setup time to STAT0, the interrupt may be acknowl- 
edged at the boundary defined by STAT0 (as shown in example 2). In that 
case, STAT0 is asserted for two clocks, signaling this condition. 

If no higher priority interrupt has been synchronized, the IPEND signal is 
negated during state 0 (SO) of an interrupt acknowledge cycle (refer to 7.4.1.1 
INTERRUPT ACKNOWLEDGE CYCLE q TERMINATED NORMALLY), and the 
IPLx signals for the interrupt being acknowledged can be negated at this 
time. 

8-18 MC68030 USER'S MANUAL MOTOROLA 



C 

8 

THESE 
INDIVIDUAL 

BUS CYCLES - -  
MAY OCCUR 

IN ANY ORDER 

EXIT . ~  

..ONCE PER INSTRUCTION~ 

(CHECK RELATIONSHIP BETWEEN IPEND AND STATUS) 

OTHERWISE IPEN'-"-D BEFORE STATUS 

I 
STATO ~ THIS INSTRUCTION BOUNDARY 
STATI ~ NEXT INSTRUCTION BOUNDARY 

I 
i 

WAIT FOR STATU OR STATI" J 

I INDICATE 'INTERRUPT TO BE PROCESSED' 
(ASSERT STATUS FOR 2 CLOCKS) 

I 

- I 
NEGATE IPEND 

EXECUTE INTERRUPT ACKNOWLEDGE CYCLE 

I 
TEMP ~ SR 

S "~--- 1 
TO, T1 ~ O 

UPDATE 12:ID l 

- (SP) ~ TEMP 
-(SP) ~ PC 

- (SP) ~ FORMAT WORD 
- (SP) -4- -  OTHER EXCEPTION DEPENDENT INFORMATION 

¢-._ 
M=B 

PC ~ VECTOR TABLE ENTRY 

I 
I PREFETCH 3 WORDS 

~ ND OF EXCEPTION PROCESSiN~ 
FOR THE INTERRUPT J 

*EXPLAINED FURTHER IN TEXT 

M=1 

1 
TEMP ~ SR 

M ~ O  

BEGIN EXECUTION OF THE INTERRUPT HANDLER 
ROUTINE DR PROCESS A HIGHER PRtOR(TY 
EXCEPTION 

Figure 8-5. Interrupt Exception Processing Flowchart 

M O T O R O L A  MC68030  USER'S  M A N U A L  8-19 



8 

CLK 

IPEN~ --~ 

STATUS • 
STAT1 

EXAMPLE 7: INTERRUPT EXCEPTION SIGNALEO OURING STATi 

PROCEED TO INTERRUPT 
v EXCEPTION PROCESSING 

CLK 

IPE N--'~ --~ 

STATUS __/ 

~ " ~  STATO PROCEED TO INTERRUPT 
EXCEPTION PROCESSING 

EXAMPLE 2: INTEBBUPT EXCEPTION SIGNALED DURING STATO 

Figure 8-6. Examples of Interrupt Recognition and Instruction Boundaries 

When processing an interrupt exception, the processor first makes an internal 
copy of the status register, sets the privilege level to supervisor, suppresses 
tracing, and sets the processor interrupt mask level to the level of the interrupt 
being serviced. The processor attempts to obtain a vector number from the 
interrupting device using an interrupt acknowledge bus cycle with the inter- 
rupt level number output on pins A1-A3 of the address bus. For a device 
that cannot supply an interrupt vector, the autovector signal (AVEC) can be 
asserted, and the MC68030 uses an internally generated autovector, which 
is one of vector numbers 25-31, that corresponds to the interrupt level num- 
ber. If external logic indicates a bus error during the interrupt acknowledge 
cycle, the interrupt is considered spurious, and the processor generates the 
spurious interrupt vector number, 24. Refer to 7.4.1 Interrupt Acknowledge 
Bus Cycles for complete interrupt bus cycle information. 

8-20 MC68030 USER'S MANUAL MOTOROLA 



Once the vector number is obtained, the processor saves the exception vector 
offset, program counter value, and the internal copy of the status register on 
the active supervisor stack. The saved value of the program counter is the 
logical address of the instruction that would have been executed had the 
interrupt not occurred. If the interrupt was acknowledged during the exe- 
cution of a coprocessor instruction, further internal :information is saved on 
the stack so that the MC68030 can continue executing the coprocessor in- 
struction when the interrupt handler completes execution. 

If the M bit of the status register is set, the processor clears the M bit and 
creates a throwaway exception stack frame on top of the interrupt stack as 
part of interrupt exception processing. This second frame contains the same 
program counter value and vector offset as the frame created on top of the 
master stack, but has a format number of 1 instead of 0 or 9. The copy of 
the status register saved on the throwaway frame is exactly the same as that 
placed on the master stack except that the S bit is set in the version placed 
on the interrupt stack. (It may or may not be set in the copy saved on the 
master stack.) The resulting status register (after exception processing) has 
the S bit set and the M bit cleared. 

The processor loads the address in the exception vector into the program 
counter, and normal instruction execution resumes after the required pre- 
fetches for the interrupt handler routine. 

Mos t  M68000 Family peripherals use programmable interrupt vector num- 
bers as part of the interrupt request/acknowledge mechanism of the system. 
If this vector number is not initialized after reset and the peripheral must 
acknowledge an interrupt request, the peripheral usually returns the vector 
number for the uninitialized interrupt vector, 15. 

n 

8.1.10 MMU Configuration Exception 
When the MC68030 executes a PMOVE instruction that attempts to move 
invalid data into the TC, CRP, or SRP register of the MMU, the PMOVE in- 
struction causes an MMU configuration exception. The exception is a post- 
instruction exception; it is processed after the instruction completes. The 
processor generates exception vector number 56 when an MMU configu- 
ration exception occurs. Refer to SECTION 9 MEMORY MANAGEMENT UNIT 
for a description of the valid configurations for the MMU registers. 

MOTOROLA MC68030 USER'S MANUAL 8-21 



8 

The processor copies the status register, enters the supervisor privilege level, 
and clears the trace bits. The processor saves the vector offset, the scanPC 
value (which points to the next instruction), and the copy of the status register 
on the supervisor stack, it also saves the logical address of the PMOVE 
instruction on the stack. Then the processor resumes normal instruction 
execution after the required prefetches from the address in the exception 
vector. 

8.1.11 Breakpoint Instruction Exception 

To use the MC68030 in a hardware emulator, it must provide a means of 
inserting breakpoints in the emulator code and of performing appropriate 
operations at each breakpoint. For the MC68000 and MC68008, this can be 
done by inserting an illegal instruction at the breakpoint and detecting the 
illegal instruction exception from its vector location. However, since the vec- 
tor base register on the MC68010, MC68020, and MC68030 allows arbitrary 
relocation of exception vectors, the exception address cannot reliably identify 
a breakpoint. The MC68020 and MC68030 processors provide a breakpoint 
capability with a set of breakpoint instructions, $4848-$484F, for eight unique 
breakpoints. The breakpoint facility also allows external hardware to monitor 
the execution of a program residing in the on-chip instruction cache without 
severe performance degradation. 

When the MC68030 executes a breakpoint instruction, it performs a break- 
point acknowledge cycle (read cycle) from CPU space type $0 with address 
lines A2-A4 corresponding to the breakpoint number. Refer to Figure 7-44 
for the CPU space type $0 addresses and to 7.4.2 Breakpoint Acknowledge 
Cycle for a description of the breakpoint acknowledge cycle. The external 
hardware can return either BERR, DSACKx, or STERM with an instruction 
word on the data bus. If the bus cycle terminates with BERR, the processor 
performs illegal instruction exception processing. If the bus cycle terminates 
with DSACKx or STERM, the processor uses the data returned to replace the 
breakpoint instruction in the internal instruction pipe and begins execution 
of that instruction. The remainder of the pipe remains unaltered. In addition, 
no stacking or vector fetching is involved with the execution of the instruction. 
Figure 8-7 is a flowchart of the breakpoint instruction execution. 

8-22 MC68030 USER'S MANUAL MOTOROLA 



DSACKx OR STERM 

Y 
PIPE STAGE D ~ INSTRUCTION WORD ON DATA BUS 

EXECUTE INSTRUCTION WORD 

I 
( ,x,, ) 

~_~ ENTRY 

) 
A16-A19 ~ $0 

A2-A4 ~ BREAKPOINT NUMBER 

I 
I INITIATE READ BUS CYCLE I 

~ RMINjTED WITH 

BERR 

~., TAKE &LEGAl INSTRUCTION~'~ 
EXCEPTION ,.,,/ 

Figure 8-7. Breakpoint Instruction Flowchart 

8.1.12 Multiple Exceptions 
When several exceptions occur simultaneously, they are processed according 
to a fixed priority. Table 8-5 lists the exceptions, grouped by characteristics. 
Each group has a priority from 0-4. Priority 0 has the highest priority. 

As soon as the MC68030 has completed exception processing for a condition 
when another exception is pending, it begins exception processing for the 
pending exception instead of executing the exception handler for the original 
exception condition. Also, whenever a bus error or address error occurs, its 
exception processing takes precedence over lower priority exceptions and 
occurs immediately. For example, if a bus error occurs during the exception 
processing for a trace condition, the system processes the bus error and 
executes its handler before completing the trace exception processing. How- 
ever, most exceptions cannot occur during exception processing, and very 
few combinations of the exceptions shown in Table 8-5 can be pending 
simultaneously. 

MOTOROLA MC68030 USER'S MANUAL 8-23 

8 



8 

Table 8-5. Exception Priority Groups 

Group/ Exception and Characteristics Priority Relative Priority 

0 O.0- Reset Aborts all processing (instruction or ex- 
ception) and does not save old context. 

1 1.0--Address Error Suspends processing (instruction or ex- 
1.1 -- Bus Error ception) and saves internal context. 

2 2.0-- BKPT #n, CHK, CHK2, cp Mid-/nstruc- Exception processing is part of instruction 
tion, cp Protocol Violation, cp- execution. 
TRAPcc, Divide by Zero, RTE, TRAP 
#n, TRAPV, MMU Configuration 

3 3.0 -- Illegal Instruction, Line A, Unimple- Exception processing begins before in- 
merited Line F, Privilege Violation, struction is executed. 
cp Pre-lnstruction 

4 4.0 -- cp Post-Instruction Exception processing begins when current 
4.1 --  Trace instruction or previous exception process- 
4.2 --  Interrupt ing is completed. 

0.0 is the highest priority, 4.2 is the lowest. 

The pr ior i ty scheme is very important  in determining the order in which 
exception handlers execute when several exceptions occur at the same t ime. 
As a general rule, the lower the pr ior i ty  of an exception, the sooner the 
handler routine for that exception executes. For example, if s imultaneous 
trap, trace, and interrupt exceptions are pending, the exception processing 
for the trap occurs first, fo l lowed immedia te ly  by exception processing for 
the trace and then for the interrupt. When the processor resumes normal 
instruction execution, it is in the interrupt handler, which returns to the trace 
handler, which returns to the trap exception handler. This rule does not apply 
to the reset exception; its handler is executed f irst even though it has the 
highest pr ior i ty  because the reset operat ion clears all other exceptions. 

8.1.13 Return from Exception 
After the processor has completed exception processing for all pending ex- 
ceptions, the processor resumes normal instruction execution at the address 
in the vector for the last exception processed. Once the exception handler 
has completed execution, the processor must return to the system context 
pr ior  to the exception (if possible). The RTE instruct ion returns f rom the 
handler to the previous system context for any exception. 

8-24 MC68030 USER'S MANUAL MOTOROLA 



When the processor executes an RTE instruction, it examines the stack frame 
on top of the active supervisor stack to determine if it is a valid frame and 
what type of context restoration it requires. This section describes the pro- 
cessing for each of the stack frame types; refer to 8.3 COPROCESSOR CON- 
SIDERATIONS for a description of the stack frame type formats. 

For a normal four-word frame, the processor updates the status register and 
program counter with the data read from the stack, increments the stack 
pointer by eight, and resumes normal instruction execution. 

For the throwaway four-word stack, the processor reads the status register 
value from the frame, increments the active stack pointer by eight, updates 
the status register with the value read from the stack, and then begins RTE 
processing again, as shown in Figure 8-8. The processor reads a new format 
word from the stack frame on top of the active stack (which may or may not 
be the same stack used for the previous operation) and performs the proper 
operations corresponding to that format. In most cases, the throwaway frame 
is on the interrupt stack and when the status register value is read from the 
stack, the S and M bits are set. In that case, there is a normal four-word frame 
or a ten-word coprocessor mid-instruction frame on the master stack. How- 
ever, the second frame may be any format (even another throwaway frame) 
and may reside on any of the three system stacks. 

For the six-word stack frame, the processor restores the status register and 
program counter values from the stack, increments the active supervisor 
stack pointer by 12, and resumes normal instruction execution. 

For the coprocessor mid-instruction stack frame, the processor reads the 
status register, program counter, instruction address, internal register values, 
and the evaluated effective address from the stack, restores these values to 
the corresponding internal registers, and increments the stack pointer by 20. 
The processor then reads from the response register of the coprocessor that 
initiated the exception to determine the next operation to be performed. Refer 
to SECTION 10 COPROCESSOR INTERFACE DESCRIPTION for details of 
coprocessor-related exceptions. 

For both the short and long bus fault stack frames, the processor first checks 
the format value on the stack for validity. In addition, for the long stack frame, 
the processor compares the version number in the stack with its own version 
number. The version number is located in the most significant nibble (bits 
15-12) of the word at location SP+$36 in the long stack frame. This validity 
check is required in a multiprocessor system to ensure that the data is prop- 
erly interpreted by the RTE instruction. The RTE instruction also reads from 

MOTOROLA MC68030 USER'S MANUAL 8-25 

8 



8 

ENTRY 

TEMP ~ (SP) + 
READ FORMAT WORD 

INVALID FORMAT WORD 
OTHERilS E 

TAKE FORMAT 
ERROR EXCEPTION 

OTHERWISE 

FORMAT CODE = $1 

(THROWAWAY FRAME) 

SR ~ - -  TEMP 
SP ~ SP+6 

FORMAT CODE = $0 (4-WORD FRAME) 

OTHERWISE 

1 
PC ~ (SP) + 

OTHER FORMATS " )  SP ~ SP + 6 
J SR "~-- TEMP 

EXIT 

Figure 8-8. RTE Instruction for Throwaway Four-Word Frame 

both ends of the stack frame to make sure it is accessible. If the frame is 
invalid or inaccessible, the processor takes a format error or a bus error 
exception, respectively. Otherwise, the processor reads the entire frame into 
the proper internal registers, deallocates the stack, and resumes normal pro- 
cessing. Once the processor begins to load the frame to restore its internal 
state, the assertion of the BERR signal causes the processor to enter the 
halted state with the continuous assertion of the STATUS signal. Refer to 8.2 
BUS FAULT RECOVERY for a description of the processing that occurs after 
the frame is read into the internal registers. 

If a format error or bus error exception occurs during the frame validation 
sequence of the RTE instruction, either due to any of the errors previously 
described or due to an illegal format code, the processor creates a normal 

8-26 MC68030 USER'S MANUAL MOTOROLA 



four-word or a bus fault stack frame below the frame that it was attempting 
to use. In this way, the faulty stack frame remains intact. The exception 
handler can examine or repair the faulty frame. In a multiprocessor system, 
the faulty frame can be left to be used by another processor of a different 
type (e.g., an MC68010, MC68020, or a future M68000 processor) when ap- 
propriate. 

8.2 BUS FAULT RECOVERY 

An address error exception or a bus error exception indicates a bus fault. 
The saving of the processor state for a bus error or address error is described 
n 8.1.2 Bus Error Exception, and the restoring of the ~3rocessor state by an 

RTE instruction is described in 8.1.13 Return from Exception. 

Processor accesses of either data items or the instruction stream can result 
'n bus errors. When a bus error exception occurs while accessing a data item, 
the exception is taken immediately after the bus cycle terminates. Bus errors 
reported by the on-chip MMU are also processed immediately. A bus error 
occurring during an instruction stream access is not processed until the 
processor attempts to use the information (if ever) that the access should 
have provided. For instruction faults, when the short format frame applies, 
the address of the pipe stage B word is the value in the program counter 
plus four, and the address of the stage C word is the value in the program 
counter plus two. For the long format, the long word at SP+$24 contains 
the address of the stage B word; the address of the stage C word is the 
address of the stage B word minus two. Address error faults occur only for 
instruction stream accesses, and the exceptions are taken before the bus 
cycles are attempted. 

MOTOROLA MC68030 USER'S MANUAL 8-27 

8 



8.2.1 Special Status Word (SSW) 
The internal SSW (see Figure 8-9) is one of several registers saved as part 
of the bus fault  exception stack frame. Both the short bus cycle fault  format  
and the long bus cycle faul t  format  include this word at offset $A. The bus 
cycle fault  stack frame formats are described in detail at the end of this 
section. 

/ : 
< I 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 ~'~j 0 

I Fc I FB J RC I RB I×  I×  I ×  I0F IBM I RWI S,ZE I X l  FC2 00 I 
FC -- Fault on stage C of the instruction pipe 
FB --Fault on stage B of the instruction pipe 
RC --Rerun flag for stage C of the instruction pipe* 
RB --Rerun flag for stage B of the instruction pipe* 
DF --Fault/rerun flag for date cycle* 
RM --Read-m0dify-write on data cycle 
RW -- Read/write for data cycle -- 1 = read, 0 = write 
StZE -- Size code for data cycle 
FC2-FCO --Address space for data cycle 
"1 =Rerun Faulted bus Cycle, or run pending prefetch 
0 = Do not rerun bus sycle 
X = For internal use only 

Figure 8-9. Special Status Word (SSW) 

The SSW informat ion indicates whether  the fault  was caused by an access 
to the instruction stream, data stream, or both. The high-order half of the 
SSW contains two status bits each for the B and C stages of the instruction 
pipe. The fault  bits (FB and FC) indicate that the processor at tempted to use 
a stage (B or C) and found it to be marked inval id due to a bus error on the 
prefetch for that stage. The fault  bits can be used by a bus error handler to 
determine the cause(s) of a bus error exception. The rerun flag bits (RB and 
RC) are set to indicate that a faul t  occurred during a prefetch for the corre- 
sponding stage. A rerun bit is always set when the corresponding fault  bit 
is set. The rerun bits indicate that the word in a stage of the instruction pipe 
is invalid, and the state of the bits can be used by a handler to repair the 
values in the pipe after an address error or a bus error, if necessary. If a rerun 
bit is set when the processor executes an RTE instruction, the processor may 
execute a bus cycle to prefetch the instruction word for the corresponding 
stage of the pipe (if it is required). If the rerun and fault  bits are set for a 
stage of the pipe, the RTE instruct ion automat ical ly  reruns the prefetch cycle 
for that stage. The address space for the bus cycle is the program space for 
the pr iv i lege level indicated in the copy of the status register on the stack. If 
a rerun bit is cleared, the words on the stack for the corresponding stages 

8-28 MC68030 USER'S MANUAL MOTOROLA 



of the pipe are accepted as valid; the processor assumes that there is no 
prefetch pending for the corresponding stage and that software has repaired 
or fil led the image of the stage, if necessary. 

If an address error exception occurs;the fault bits writ ten to the stack frame 
are not set (they are only set due to a bus error, as previously described), 
and the rerun bits alone show the cause of the exception. Depending on the 
state of the pipeline, either RB and RC are both set, or RC alone is set. To 
correct the pipeline contents and continue execution of the suspended in- 
struction, software must place the correct instruction stream data in the stage 
C and/or stage B images requested by the rerun bits and clear the rerun bits. 
The least signif icant half of the SSW applies to data cycles only. If the DF bit 
of the SSW is set, a data fault has occurred and caused the exception. If the 
DF bit is set when the processor reads the stack frame, it reruns the faulted 
data access; otherwise, it assumes that the data input buffer value on the 
stack is valid for a read or that the data has been correctly written to memory 
for a write (or that no data fault occurred). The RM bit of the SSW identifies 
a read-modify-write operation and the RW bit indicates whether the cycle 
was a read or write operation. The SIZE field indicates the size of the operand 
access, and the FC field specifies the address space for the data cycle. Data 
and instruction stream faults may be pending simultaneously; the fault han- 
dler should be able to recognize any combinat ion of the FC, FB, RC, RB, and 
DF bits. 

8.2.2 Using Software To Complete the Bus Cycles 

One method of completing a faulted bus cycle is to use a software handler 
to emulate the cycle. This is the only method for correcting address errors. 
The handler should emulate the faulted bus cycle in a manner that is trans- 
parent to the instruction that caused the fault. For instruction stream faults, 
the handler may need to run bus cycles for both the B and C stages of the 
instruction pipe. The RB and RC bits identify the Stages that may require a 
bus cycle; the FB and FC bits indicate that a stage was invalid when an attempt 
was made to use its contents. Those stages must be repaired. For each faulted 
stage, the software handler should copy the instruction word from the proper 
address space as indicated by the S bit of the copy of the status register 
saved on the stack to the image of the appropriate stage in the stack frame. 
In addi t ion,  the handler must clear the rerun bit associated with the stage 
that it has corrected. The handler should not change the fault bits FB and 
FC. 

MOTOROLA MC68030 USER'S MANUAL 8-29 



3 

To repair data faults (indicated by DF= 1), the software should first examine 
the RM bit in the SSW to determine if the fault was generated during a read- 
modify-write operation. If RM =0, the handler should then check the R/W bit 
of the SSW to determine if the fault was caused by a read or a write cycle. 
For data write faults, the handler must transfer the properly sized data from 
the data output buffer (DOB) on the stack frame to the location indicated by 
the data fault address in the address space defined by the SSW. (Both the 
DOB and the data fault address are part of the stack frame at SP+$18 and 
SP + $10, respectively.) Data read faults only generate the long bus fault frame 
and the handler must transfer properly sized data from the location indicated 
by the fault address and address space to the image of the data input buffer 
(DtB) at location SP+$2C of the long format stack frame. Byte, word, and 
3-byte operands are right-justified in the 4-byte data buffers. In addition, the 
software handler must clear the DF bit of the SSW to indicate that the faulted 
bus cycle has been corrected. 

To emulate a read-modify-write cycle, the exception handler must first read 
the operation word at the program counter address (SP + 2 of the stack frame). 
This word identifies the CAS, CAS2, or TAS instruction that caused the fault. 
Then the handler must emulate this entire instruction (which may consist of 
up to four long word transfers) and update the condition code portion of the 
status register appropriately, because the RTE instruction expects the entire 
operation to have been completed if the RM bit is set and the DF bit is cleared. 
This is true even if the fault occurred on the first read cycle. 

To emulate the entire instruction, the handler must save the data and address 
registers for the instruction (with a MOVEM instruction, for example). Next, 
the handler reads and modifies (if necessary) the memory location. It clears 
the DF bit in the SSW of the stack frame and modifies the condition codes 
in the status register copy and the copies of any data or address registers 
required for the CAS and CAS2 instructions. Last, the handler restores the 
registers that it saved at the beginning of the emulation. Except for the data 
input buffer (DIB), the copy of the status register, and the SSW, the handler 
should not modify a bus fault stack frame. The only bits in the SSW that may 
be modified are DF, RB, and RC; all other bits, including those defined for 
internal use, must remain unchanged. 

Address error faults must be repaired in software. Address error faults can 
be distinguished from bus error faults by the value in the vector offset field 
of the format word. 

8-30 MC68030 USER'S MANUAL MOTOROLA 



8.2.3 Completing the Bus Cycles with RTE 
Another method of completing a faulted bus cycle is to allow the processor 
to rerun the bus cycles during execution of the RTE instruction that terminates 
the exception handler. This method cannot be used to recover from address 
errors. The RTE instruction is always executed. Unless the handler routine 
has corrected the error and cleared the fault (and cleared the rerun and DF 
bits of the SSW), the RTE instruction can complete the bus cycle(s). If the DF 
bit is still set at the time of the RTE execution, the faulted data cycle is rerun 
by the RTE instruction. If the fault bit for a stage of the pipe is set and the 
corresponding rerun bit was not cleared by the software, the RTE reruns the 
associated instruction prefetch. The fault occurs again unless the cause of 
the fault, such as a non-resident page in a virtual memory system, has been 
corrected. If the rerun bit is set for a stage of the pipe and the fault bit is 
cleared, the associated prefetch cycle may or may not be run by the RTE 
instruction (depending on whether the stage is required). 

If a fault occurs when the RTE instruction attempts to rerun the bus cycle(s), 
the processor creates a new stack frame on the supervisor stack after de- 
allocating the previous frame, and address error or bus error exception pro- 
cessing starts in the normal manner. 

The read-modify-write operations of the MC68030 can also be completed by 
the RTE instruction that terminates the handler routine. The rerun operation, 
executed by the RTE instruction with the DF bit of the SSW set, reruns the 
entire instruction. If the cause of the error has been corrected, the handler 
does not need to emulate the instruction but can leave the DF bit set and 
execute the RTE instruction. 

Systems programmers and designers should be aware that the MMU of the 
MC68030 treats any bus cycle with RMC asserted as a write operation for 
protection checking, regardless of the state of R/W signal. Otherwise, the 
potential for partially destroying system pointers with CAS and CAS2 instruc- 
tions exists since one portion of the write operation could take place and the 
remainder be aborted by a bus error. 

MOTOROLA MC68030 USER'S MANUAL 8-31 

8 



3 

8.3 COPROCESSOR CONSIDERATIONS 

Exception handler programmers should consider carefully whether to save 
and restore the context of a coprocessor at the beginning and end of handler 
routines for exceptions that can occur during the execution of a coprocessor 
instruction (i.e., bus errors, interrupts, and coprocessor-related exceptions). 
The nature of the coprocessor and the exception handler routine determines 
whether or not saving the state of one or more coprocessors with the cpSAVE 
and cpRESTORE instructions is required. If the coprocessor allows multiple 
coprocessor instructions to be executed concurrently, it may require its state 
to be saved and restored for all coprocessor-generated exceptions, regardless 
of whether or not the coprocessor is accessed during the handler routine. 
The MC68882 floating-point coprocessor is an example of this type of co- 
processor. On the other hand, the MC68881 floating-point coprocessor re- 
quires FSAVE and FRESTORE instructions within an exception handler routine 
only if the exception handler itself uses the coprocessor. 

8.4 EXCEPTION STACK FRAME FORMATS 

The MC68030 provides six different stack frames for exception processing. 
The set of frames includes the normal four- and six-word stack frames, the 
four-word throwaway stack frame, the coprocessor mid-instruction stack 
frame, and the short and long bus fault stack frames. 

When the MC68030 writes or reads a stack frame, it uses long-word operand 
transfers wherever possible. Using a long-word-aligned stack pointer with 
memory that is on a 32-bit port greatly enhances exception processing per- 
formance. The processor does not necessarily read or write the stack frame 
data in sequential order. 

The system software should not depend on a particular exception generating 
a particular stack frame. For compatibility with future devices, the software 
should be able to handle any type of stack frame for any type of exception. 

Table 8-6 summarizes the stack frames defined for the M68000 Family. 

8-32 MC68030 USER'S MANUAL MOTOROLA 



Table 8-6. Exception Stack Frames (Sheet 1 of 2) 

15 

SP+$02~ 

+son I0  0 0 0 I 

~5 

+S02 

+ 0 0 0 11 I 

Stack Frames 

0 

STATUS REGISTER 

PROGRAM COUNTER 

VECTOR OFFSET 

FOUR WOO0 STACK FRAME - FORMAT $0 

STATUS REGISTER 

PROGRAM COUNTER 

VECTOR OFFSET 

THROWAWAY FOUR WORD STACK FRAME - FORMAT $1 

15 

SP+s02-" ~ $T~IIS RE(E]LR 

S 0 6 [  PROGRAM COUNTER 

+ 0 O 1 O I VECTOR OFFSET 

+$08 I INSTRUCTION ADDRESS - -  

SIX WORB STACK FRAME - FORMAT $2 

SP 

+S02 

+S06 

+S08 

+SOC 

+$12 

STATUS REGISTER 

PROGRAM COUNTER 

1 0 0 I I VECTOR OFFSET 
I 

INSTRUCTION ADORESS 

INTERNAL OEGtSTERSr 
4 WOROS 

COPROCESSOR MID-INSTRUCTION STACK FRAME (10 WORDS) - FORMAT SO 

Exception Types (Stacked PC Points to) 

• Interrupt [Next instruction] 
• Format Error [RTE or cpRESTORE instruction] 
• TRAP =N [Next instruction] 
• II!ega! Instruction [illegal instruction] 
• A-Line Instruction [A-line instructionJ 
• F-Line instruction iF-line instruction] 
• Privilege Violation ]First word of instruction causing 

Privilege Violation] 

Coprocessor TOp-Word of instruction that 
Pre-lnstruction returned the Take Pre-/nstruction 

primitive] 

• Created on Interrupt Stack [Next instruct ion--same 
during interrupt exception as on master stack] 
processing when transition 
from master state to 
interrupt state occurs 

• CHK [Next instruction for all these 
• CHK2 exceptions] 
• cpTRAPcc 
• TRAPcc INSTRUCTION ADDRESS 
• TRAPV is the address of the 
• Trace instruction that caused 
• Zero Divide the exception 
• MMU Configuration 
• Coprocessor Post-Instruction 

• Coprocessor 
Midqnstruction 

• Main-Detected 
Protocol Violation 

• Interrupt Detected 
During Coprocessor 
Instruction (supported 
with 'null come again 
with interrupts 
allowed' primitive) 

[Next word to be fetched 
from instruction stream 
for all these exceptionsl 

INSTRUCTION ADDRESS 
is the address of the 
instruction that caused the 
exception 

M O T O R O L A  MC68030  USER 'S  M A N U A L  8-33 

8 



8 

Table 8-6. Exception Stack Frames (Sheet 2 of 2) 

SP 

+$02 

+S06 

+$08 

+SOA 

+SOC 

+SOE 

+$10 

+S12 

+S14 

+S16 

+$18 

+S1A 

+SIC 

+$1E 

SP - ~  

+$02 

+S06 

+$08 

~SOA 

+SOC 

+SOE 

+SlO 

+S12 

+SI4 

+SI6 

+S18 

+S1A 

+S1C 

+$22 

+S24 

+S28 

+S2A 

+G2C 

+$30 

+&34 

+$36 

+ $38 

*S5A 

Stack Frames Exception Types (Stacked PC Points to) 

STATUS REGISTER 

PROGRAM COUNTER 

i 
1 0 ] 0 I VECTOR OFFSET 

INTERNAL REGISTER 

SPECIAL STATUS WORD 

INSTRUCTION PIPE STAGE C 

INSTRUCTION PIPE STAGE R 

- -  DATA CYCLE FAULTADDRESS - -  

INTERNAL REGISTER 

INTERNALREGISTEN 

DATA OUTPUT BUFFER 

iNTERNAL REGISTER 

INTERNAL REGISTER 

SHORT BUS CYCLE FAULT STACK FRAME (16 WORDS) - FORMAT SA 

STATUS REGISTER 

PROGRAM COUNTER 

1 0 I I I VECTOR OFFSET 

~NTEBNAL RESISTER 

SPECIAL STATUS WORD 

INSTRUCTION PiPE STAGE C 

INSTRUCTION PIPE STAGE O 

- -  DATA CYCLE FAULT ADDRESS - -  

INTERNAL REDISTER 

INTERNAL REGISTER 

DATA OUTPUT BUFFER 

INTERNAL REGISTERS. 4 WORDS 

STAGE B ADDRESS 

INTERNAL REGISTERS, 2 WOROS 

• Address Error or 
Bus Error - -  Execution 
Unit  at Instruction 
Boundary 

[Next instruction] 

DATAINPOTGUFFER 

INTERNAL REGISTERS. 3 WOROS 

VERSION # J INTERNAL INFORMATION 

INTERNAL REGISTERS. 
18 WOGOS 

LONG BUS CYCLE FAULT STACK FRAME (46 WORDS) - FORMAT $B 

• Address Error or 
Bus E r r o r -  Instruction 
Execution in Progress 

]Address of instruction in 
execution when fault  
occurred - -  may not be 
the instruction that 
generated the faulted 
bus cycle] 

8-34 MC68030 USER'S M A N U A L  MOTOROLA 



SECTION 9 
MEMORY MANAGEMENT UNIT 

The MC68030 includes a memory management unit (MMU) that supports a 
demand-paged virtual memory environment. The memory management is 
"demand" in that programs do not specify required memory areas in ad- 
vance, but request them by accessing logical addresses. The physical mem- 
ory is paged, meaning that it is divided into blocks of equal size called page 
frames. The logical address space is divided into pages of the same size. The 
operating system assigns pages to page frames as they are required to meet 
the needs of programs. 

The principal function of the MMU is the translation of logical addresses to 
physical addresses using translation tables stored in memory. The MMU 
contains an address translation cache (ATC) in which recently used logical- 
to-physical address translations are stored. As the MMU receives each logical 
address from the CPU core, it searches the ATC for the corresponding physical 
address. When the translation is not in the ATC, the processor searches the 
translation tables in memory for the translation information. The address 
calculations and bus cycles required for this search are performed by micro- 
code and dedicated logic in the MC68030. In addition, the MMU contains two 
transparent translation registers (TT0 and TT1 ) that identify blocks of memory 
that can be accessed without translation. The features of the MMU are: 

• 32-Bit Logical Address Translated to 32-Bit Physical Address with 3-Bit 
Function Code 

• Supports Two-Clock Cycle Processor Accesses to Physical Address Spaces 

• Addresses Translated in Parallel with Accesses to Data and Instruction 
Caches 

• On-Chip Fully Associative 22-Entry ATC 

• Translation Table Search Controlled by Microcode 

• Eight Page Sizes: 256, 512, 1K, 2K, 4K, 8K, 16K and 32K Bytes 

• Separate User and Supervisor Translation Table Trees Are Supported 

• Two Independent Blocks Can Be Defined as Transparent (Untranslated) 

• Multiple Levels of Translation Tables 

MOTOROLA MC68030 USER'S MANUAL 9-1 

9 



9 

• 0-15 Upper Logical Address Bits Can Be Ignored (Using Initial Shift) 

• Portions of Tables Can Be Undefined (Using Limits) 

• Write Protection and Supervisor Protection 

• History Bits Automatically Maintained in Page Descriptors 

• Cache Inhibit Output (CLOUT) Signal Asserted on Page Basis 

• External Translation Disable Input Signal (MMUDIS) 

• Subset of Instruction Set Defined by MC68851 

The MMU completely overlaps address translation time with other processing 
activity when the translation is resident in the ATC. ATC accesses operate in 
parallel with the on-chip instruction and data caches. 

Figure 9-1 is a block diagram of the MC68030 showing the relationship of 
the MMU to the execution unit and the bus controller. For an instruction or 
operand access, the MC68030 simultaneously searches the caches and 
searches for a physical address in the ATC. If the translation is available, the 
MMU provides the physical address to the bus controller and allows the bus 
cycle to continue. When the instruction or operand is in either of the on-chip 
caches on a read cycle, the bus controller aborts the bus cycle before address 
strobe is asserted. Similarly, the MMU causes a bus cycle to abort before 
the assertion of address strobe when a valid translation is not available in 
the ATC or when an invalid access is attempted. 

An MMU disable input signal ([VlMUDIS) is provided that dynamically disables 
address translation for emulation, diagnostic, or other purposes. 

The programming model of the MMU (see Figure 9-2) consists of two root 
pointer registers, a control register, two transparent translation registers, and 
a status register. These registers can only be accessed by supervisor pro- 
grams. The CPU root pointer register points to an address translation tree 
structure in memory that describes the logical-to-physical mapping for user 
accesses or for both user and supervisor accesses. The supervisor root pointer 
register optionally points to an address translation tree structure for super- 
visor mappings. The translation control register is comprised of fields that 
control the translation operation. Each transparent translation register can 
define a block of logical addresses that are used as physical addresses (with- 
out translation). The MMU status register contains accumulated status in- 
formation from a translation performed as a part of a PTEST instruction. 

9-2 MC68030 USER'S MANUAL MOTOROLA 



o 
- t  
0 

0 

MICRDSEOUENCER AND CONTROt 

I CONTROL STORE 

I CONTROL 
LOGIC 

,r I / ~  
NG | ",N 
ItH I.tl 

INTERNAL 
DATA 
BUS 

C3 
O~ 
O0 
0 
(,0 

o~ 
m 

Of) 

Z 
c 

r- 

INSTRUCTION 

PHYSICAL 

BUS CONTROLLER 

I WRITEEu~NROING I I PBEFETBCu~FPEIRNDING I 

MICRO BUS L ~  CONTROLLER ~ _ I  

BUS CONTROL 
SIGNALS 

ADDRESS 
BUS 

EXECUTION. UNIT I 

, 
ADDRESS ! 

- ~  SECTION 

DATA 
ADDRESS 

8US 

(R 
. .  1 

I 

,•,• DATA 

ROS 

Figure 9-1. MMU Block Diagram 03 

¢) 



9 

63 32 

31 
63 

1 
31 

31 

I 
31 

I 
31 

I 

CPU ROOT I 
POINTER 

0 
32 

SUPERVISOR R00T I 
POINTER 

0 
0 

TRANSLATION CONTROL I 

TRANSPARENT TRANSLATION 0 

TRANSPARENT TRANSLATION 1 

0 

I 
0 

I 

AODRESS 
TRANSLATION 
CONTROL 
REGISTERS 

15 0 ~__ STATUS 
I MMU STATUS (MMUSR) I INFORMATION 

REGISTER 

Figure 9-2. MMU Programming Model 

The ATC in the MMU is a ful ly associative cache that stores 22 logical-to- 
physical address translations and associated page information. It compares 
the logical address and function code internally supplied by the processor 
with all tag entries in the ATC. When the access address and function code 
matches a tag in the ATC (a hit occurs) and no access violation is detected, 
the ATC outputs the corresponding physical address to the bus controller, 
which continues the external bus cycle. Function codes are routed to the bus 
control ler unmodif ied. 

Each ATC entry contains a logical address, a physical address, and status 
bits. Among the status bits are the write protect and cache inhibit  bits. 

When the ATC does not contain the translation for a logical address (a miss 
occurs) and an external bus cycle is required, the MMU aborts the access 
and causes the processor to initiate bus cycles that search the translation 
tables in memory for the correct translation. If the table search completes 
wi thout  any errors, the MMU stores the translation in the ATC and provides 
the physical address for the access, al lowing the bus control ler to retry the 
original bus cycle. 

9-4 MC68030 USER'S MANUAL MOTOROLA 



An MMU translation table has a tree structure with the base of the first table 
defined by a root pointer descriptor. The root pointer descriptor of the current 
translation table is resident in one of two root pointer registers. The general 
tree structure is shown in Figure 9-3. Table entries at the upper levels of a 
tree point to other tables. The table leaf entries are page frame addresses. 
All addresses stored in the translation tables are physical addresses; the 
translation tables reside in the physical address space. 

ROOT POINTER ~ I 

POINTER 
TABLES 

F I 
' I 

DD F ' ~  PABE 
TABLES 

Figure 9-3. Translation Table Tree 

System software selects the parameters for the translation tables by confi- 
guring the translation control register (TC) appropriately. The function codes 
or a portion of the logical address can be defined as the index into the first 
level of lookup in the table. The TC register specifies how many bits of the 
logical address are used as the index for each level of the lookup (as many 
as 15 bits can be used at a given level). 

MOTOROLA MC68030 USER'S MANUAL 9-5 

9 



9 

9.1 T R A N S L A T I O N  T A B L E  S T R U C T U R E  

The M68030 uses the ATC and translation tables stored in memory to perform 
the translation from a logical to a physical address. Translation tables for a 
program are loaded into memory by the operating system. 

The general translation table structure supported by the MC68030 is a tree 
structure of tables. The pointer tables form the branches of the tree. These 
tables contain the base addresses of other tables. Page descriptors can reside 
in pointer tables and, in that case, are called early termination descriptors. 
The tables at the leaves of the tree are called page tables. Only a portion of 
the translation table for the entire logical address space is required to be 
resident in memory at any time: specifically, only the portion of the table 
that translates the logical addresses that the currently executing process(es) 
use(s) must be resident. Portions of translation tables can be dynamically 
allocated as the process requires additional memory. 

As shown in Figure 9-4, the root pointer for a table is a descriptor that contains 
the base address of the top level table for the tree. The pointer tables and 
page tables also consist of descriptors. A descriptor in a pointer table typically 
contains the base address of a table at the next level of the tree. A table 
descriptor can also contain limits for the index into the next table, protection 
information, and history information pertaining to the descriptor. Each table 
is indexed by a field extracted from the logical address. In the example shown 
in Figure 9-4, the A field of the logical address, $00A, is added to the root 
pointer value to select a descriptor at the A level of the translation tree. The 
selected descriptor points to the base of the appropriate page table, and the 
B field of the logical address ($006) is added to this base address to select 
a descriptor within the page table. A descriptor in a page table contains the 
physical base address of the page, protection information, and history in- 
formation for the page. A page descriptor can also reside in a pointer table 
or even in a root pointer to define a contiguous block of pages. A two-level 
page task is shown. The 32-bit logical address space is divided into 4096 
segments of 1024 bytes each. 

Figure 9-5 shows a possible layout of this example translation tree in memory. 

9-6 MC68030 USER'S MANUAL MOTOROLA 



A B PS 

EXAMPLE AODREBB ~OBAB,AOB I B 0 0 0 O B 0 0 ~ ~ ,  0 I0 0 B O 0 O 0 , ,  0 1 . . . . . . . . . .  I 

SA $6 x 

"t t 

I I 

I I 
ROOT POINTER 

ENTRY $OOA i ...... I "  PAGE FRAME 
ADDRESS 

I 
A LEVEL TABLES 

(4K ENTRIES) 

L- I I 

I I 

I I 
I 1 

I 
B LEVEL TABLES 

(4K TABLES MAXIMUM, I K ENTRIES/TABLE) 

TABLE $0 
m 

B LEVEL 

TABLE $OOA m 
B LEVEL 

- -  TABLE SFFF 
B LEVEL 

Figure 9-4. Example Translation Table Tree 

MOTOROLA MC68030 USER'S MANUAL 9-7 

9 



9 

A 

EXAMPLEAODRESS$OOAO1AO0 I0 0 0 0 0 0 0 0 1 0 1 

$A 

B PS 

0 1 0 0 0 0 0 0 0 1 1 0 1  . . . . . . . . . .  I 
$6 x 

ROOT POINTER 
I J 

SIO000 I I 

SLOO281 ~;oO~ I 
I I 

$14000 

I I 

$17FFC [ _ 

A LEVEL TABLE 
(4-BYTE ENTRIES) 

B LEVEL TABLE $0 
(4-BYTE ENTRIES) 

$37000 I I 
$37018 

I I 

I I 

O LEVEL TABLE $OOA 
(4-BYTE ENTRIES) 

Figure 9-5. Example Translation Tree Layout in Memory 

9.1.1 T r a n s l a t i o n  C o n t r o l  

The translation control register (TC) defines the size of pages in memory, 
selects the root pointer register to be used for supervisor accesses, indicates 
whether the top level of the translation tree is indexed by function code, and 
specifies the number of logical address bits used to index into the various 
levels of the translation tree. The initial shift (IS) field of the TC register defines 
the size of the logical address space; it contains the number of most signif- 
icant address bits that are ignored in the translation table lookup. For ex- 
ample, if the IS field is set to zero, the logical address space is 232 bytes. On 
the other hand, if the IS field is set to 15, the logical address space contains 
only 232-215  bytes. 

9-8 MC68030 USER'S MANUAL MOTOROLA 



The page size (PS) field of the TC register specifies the page size for the 
system. The number of pages in the system is equal to the logical address 
space divided by the page size. The maximum number of pages that can be 
defined by a translation tree is greater than 16 million (232/28). The minimum 
number is 4 (217/215). The function code can also be used in the table lookup, 
defining as many as seven regions of the above size (FC=0-6). The entire 
range of the logical address space(s) can be defined by translation tables of 
many sizes. The MC68030 provides flexibility that simplifies the implemen- 
tation of large translation tables. 

The use of a tree structure with as many as five levels of tables provides 
granularity in translation table design. The LIMIT field of the root pointer can 
limit the value of the first index and limits the actual number of descriptors 
required. Optionally, the top level of the structure can be indexed by function 
code bits. In this case, the pointer table at this level contains eight descriptors. 
The next level of the structure (or the top level when the FCL bit of the TC 
register is set to zero) is indexed by the most significant bits of the logical 
address (disregarding the number of bits specified by the IS field). The num- 
ber of logical address bits used for this index is specified by the TIA field of 
the TC register. If, for example, the TIA field contains the value 5, the index 
for this level contains five bits, and the pointer table at this level contains at 
most 32 descriptors. 

Similarly, the TIB, TIC, and TID fields of the TC register define the indexes 
for lower levels of the translation table tree. When one of these fields contains 
zero, the remaining Tlx fields a r e  ignored; the last nonzero Tlx field defines 
the index into the lowest level of the tree structure. The tables selected by 
the index at this level are page tables; every descriptor in these tables is (or 
represents) a page descriptor. Figure 9-6 shows how the TIx fields of the TC 
register apply to a function code and logical address. 

F-q 
2 0 

LOGICAL ADDRESS 

,s I +T,A +TIB +,,C I +T0 I 

i 

I A 8 O D 

31 

Figure 9-6. Derivation of Table Index Fields 

PS 

OFFSET J 

MOTOROLA MC68030 USER'S MANUAL 9-9 

¸¸¸9¸ 



9 

For example, a TC register in which the FCL bit is set to one, the TIA field 
contains five, the TIB field contains nine, and the TIC and TID fields contain 
zero defines a three-level translation tree: The top level is indexed by the 
function code, the next level by five logical address bits, and the bottom level 
by nine logical address bits. If the TIC field contained nine instead of zero, 
the translation tree would have four levels, and the two bottom levels would 
each be indexed by 9-bit portions of the logical address. 

The following equation for fields in the TC register must be satisfied: 
IS+PS+TIA+TIB 1+TIC I+T ID  1 = 32 

That is, every bit of the logical address either addresses a byte within the 
page, is part of the index at some level of the address table, or is explicitly 
ignored by initial shift. 

Table 9-1 lists the valid sizes of the table indexes ateach of the levels indexed 
by the TIx fields and the position of each table index within the logical ad- 
dress. When the function code is also used to select a descriptor, a total of 
five levels can be defined by the logical address. The function code lookup 
level and levels B, C, and D can be suppressed. 

Table 9-1. Size Restrictions 

Field Starting Bit Position Size Restrictions 

A 31-1S 1-15 (TIA must be greater than zero; 
minimum of two if TIB=0) 

B 31-1S-TIA 0-15 

C 31-1S-TIA-TIB 0-15 (ignored if TIB is zero) 

D 31-1S-TIA-TIB-TIC i0-15 (ignored if TIB or TIC is zero) 

9 .1 .2  T r a n s l a t i o n  T a b l e  D e s c r i p t o r s  

The address translation trees consist of tables of descriptors. These descrip- 
tors can be one of four basic types: table descriptors, page descriptors (nor- 
mal or early termination), invalid descriptors, or indirect descriptors. Each of 
these descriptors has both a long-format and a short-format representation. 

A root pointer descriptor defines the root of a tree and can be a table de- 
scriptor or an early termination page descriptor. A table descriptor points to 
a descriptor table in memory that defines the next lower level in the trans- 
lation tree. An early termination page descriptor causes immediate termi- 

NOTE 1 : If any of these fields are zero, the remaining fields are ignored. 

9-10 MC68030 USER'S MANUAL MOTOROLA 



nation of the table search and contains the physical address of an area in 
memory that Contains page frames corresponding to contiguous logical ad- 
dresses (Refer to 9.5.3.1 EARLY TERMINATION AND CONTIGUOUS MEM- 
ORY). 

Tables at intermediate levels of a translation tree contain descriptors that are 
similar to the root pointer descriptors. They can contain table descriptors or 
early terminat ion page descriptors and can also contain invalid descriptors. 

The descriptor tables at the lowest level of a translation tree can only contain 
page descriptors, indirect descriptors, and invalid descriptors. A page de- 
scriptor in the lowest level of a translation tree defines the physical address 
of a page frame in memory that corresponds to the logical address of a page. 
An indirect  descriptor contains a pointer to the actual page descriptor and 
can be used when a single page descriptor is accessed by two  or more logical 
addresses. 

To enhance the f lexibi l i ty of translation table design, descriptors (except for 
root pointer descriptors) can be either short or long format. The short-format 
descriptors consist of one long word and have no index-l imit ing capabilities 
or supervisor-only protection. The long-format descriptors consist of two long 
words and contain all defined descriptor fields for the MC68030. The pointer 
and page tables can each contain either short- or long-format descriptors, 
but no single table can contain both sizes. Tables at different levels of the 
translation tree can contain different formats of descriptors. Tables at the 
same level can also contain descriptors of different formats, but all descrip- 
tors in a particular pointer table or page table must be of the same format. 
Figure 9-7 shows a translation tree that uses several d i f ferent  format de- 
scriptors. 

All descriptors contain a descriptor type (DT) field, which identifies the de- 
scriptor or specifies the size of the descriptors in the table to which the 
descriptor points. It is always the two least signif icant bits of the most sig- 
nificant (or only) long word of a descriptor. 

Invalid descriptors can be used at any level of the translation tree except the 
root. When a table search for a normal translation encounters an invalid 
descriptor, the processor takes a bus error exception. The invalid descriptor 
can be used to identify either a page or branch of the tree that has been 
stored on an external device and is not resident in memory or a portion of 
the translation table that has not yet been defined. In these two cases, the 
except ion routine can either restore the page from disk or add to the trans- 
lation table. 

MOTOROLA MC68030 USER'S MANUAL 9-11 



9 

A B PS 

~XA~PLEAODBESSSDOA0~A0O 10OO000OO~ 0, ol0o0o0OO ~, 01 . . . . . . . . . .  I 
SA S6 x 

ROOT POINTER 

I I 

' DT = 'VALID 4 BYTE" ~-~ 
L OT = 'INVAUO" 

ENTRY S0OA L OT :'VAUB B BYTE' I . ~  ENTRY S006 

I I 

F 
PAGE FRAME 
ADDRESS 

OT = 'VALID 4 BYTE" 

I 
A LEVEL TABLES 

(4K ENTRIES) 1 
( I 
I I 

I 
B LEVEL TABLES 

(4K TABLES MAXIMUM. 1K ENTRIES/TABLE) 

TABLE SO 
B LEVEL 
)SHORT FORMAT 
OESCRIPTORS) 

TABLE SOOA 
B LEVEL 
)LONG FORMAT 
DESCRIPTORS) 

TABLE SFFF 
8 LEVEL 
)SHORT FORMAT 
DESCRIPTORS) 

Figure 9-7. Example Translation Tree Using Different Format Descriptors 

9-12 MC68030 USER'S MANUAL MOTOROLA 



All long-format descriptors and short-format invalid descriptors include one 
or two unused fields. The operating system can use these fields for its own 
purposes. For example, the operating system can encode these fields to 
specify the type of invalid descriptor. Alternately, the external device address 
of a page that is not resident in main memory can be stored in the unused 
field. 

9.2 ADDRESS TRANSLATION 

The function of the MMU is to translate logical addresses to physical ad- 
dresses according to control information stored by the system in the MMU 
registers and in translation table trees resident in memory. 

9.2.1 General Flow for Address Translation 

A CPU space address (FC0-FC2 -- $7) is a special case that is immediately 
used as a physical address wi thout  translation. For other accesses, the trans- 
lation process proceeds as fol lows: 

1. Search the on-chip data and instruction caches for the required instruc- 
t ion word or operand on read accesses. 

2. Compare the logical address and function code to the transparent trans- 
lation parameters in the transparent translation registers, and use the 
logical address as a physical address for the memory access when one 
or both of the registers match. 

3. Compare the logical address and function code to the tag port ions of 
the entries in the ATC and use the corresponding physical address for 
the memory access when a match occurs. 

4. When no on-chip cache hit occurs (on a read) and no -FI-x register matches 
or valid ATC entry matches, initiate a table search operation to obtain 
the corresponding physical address from the corresponding translation 
tree, create a valid ATC entry for the logical address, and repeat step 3. 

Figure 9-8 is a general f lowchart for address translation. The top branch of 
the f lowchart applies to CPU space accesses (FC0-FC2 =$7). The next branch 
applies to read accesses only. When either of the on-chip caches hits (contains 
the required data or instruction), no memory access is necessary. The third 
branch applies to transparent translation. The bottom three branches apply 
to ATC translation as follows. If the requested access misses in the ATC, the 
memory cycle is aborted, and a table search operation proceeds. An ATC 
entry is created after the table search, and the access is retried. If an access 

MOTOROLA MC68030 USER'S MANUAL 9-13 

9 



9 

C. 

( 

ABORT CYCLE [ 

TABLE SEARCH I 
, OPERATION I 

~ ENTRY . ~  

I 
CI TEMPI ~ 0 
CI TEMP2 ~ 0 

FC = $ 7 " ~  

r ~  OTHERWISE 
PA ~ LA I 

C(OUT ~ - -  0 

c ,x,, 
READ ACCESS 1 

WRITE OR RMW ACCESS ~TRUcCATc'O~; --~T"ERW'S'~ 
EXT~ ~ TCHES WITH Tfx 

ATC MISS 

OTHERWISE 

ATC HIT 

J 
/ (B = I) OR 

[(WP = 1) AND / 

s 
(WRITE OR RMW CYCLE)] J 

ABORT CYCLE OTHERWISE 

I 
EXCEPTION 

(M = O) AND 
(WRITE OR RMW CYCLE) OTHERWISE 

PA ~ ATC ENTRY [PA] 
CLOUT ~ ATC ENTRY [CI] 

I 

~ T C H E D  Wl~ 
OTHERWISE CI TEMP1 ~ TTO[CI] 

f 

[A MATCltEO WITR "£FI 

OTHERWISE CI TEMP2 ~ l'[l[CI] 

PA -,91---- LA 
CLOUT ~ Cl TEMP1 V CI TEMP2 

I 
EXIT ,~ 

Figure 9-8. Address Translation General Flowchart 

9-14 MC68030 USER'S MANUAL MOTOROLA 



hits in the ATC but a bus error was detected during the table search that 
created the ATC entry, the memory access is aborted, and a bus error ex- 
ception is taken. 

If an access results in an ATC hit but the access is either a write or read- 
modify-write access and the page is write protected, the memory cycle is 
also aborted, and a bus error exception is taken. For a write or read-modify- 
write access, when the modified bit of the ATC entry is not set, the memory 
cycle is aborted, a table search proceeds to set the modified bit in both the 
page descriptor in memory and in the ATC, and the access is retried. If the 
modified bit of the ATC entry is set and the bus error bit is not, assuming 
that neither TTx register matches and the access is not to CPU space, the 
ATC provides the address translation to the bus control ler under two con- 
dit ions: 1) if a read access does not hit in either on-chip cache and 2) if a 
write or read-modify-write access is not write protected. 

The preceding description of the general f lowchart specifies several condi- 
t ions that cause the memory cycle to be aborted. In these cases, the bus 
cycle is aborted before the assertion of AS. 

9.2.2 Effect of RESET on M M U  

When the MC68030 is reset by the assertion of the RESET signal, the E bits 
of the TC and TTx registers are cleared, disabling address translation. This 
causes logical addresses to be passed through as physical addresses to the 
bus controller, al lowing an operating system to set up the translation tables 
and MMU registers, as required. After it has initialized the translation tables 
and registers, the E bit of the TC register can be set, enabling address trans- 
lation. A reset of the processor does not invalidate any entries in the ATC. 
An MMU instruction (such as PMOVE) that flushes the ATC must be executed 
to flush all exist ing valid entries from the ATC after a reset operation and 
before translation is enabled. 

9.2.3 Effect of MMUDIS  on Address Translation 

The assertion of MMUDIS prevents the MMU from performing searches of 
the ATC and the execution unit from performing table searches. With address 
translation disabled, logical addresses are used as physical addresses. When 
an initial access to a long-word-al igned data operand that is larger than the 
addressed port size is performed, the successive bus cycles for additional 
port ions of the operand always use the same higher order address bits that 
were used for the initial bus cycle (changing A0 and A1 appropriately). Thus, 

MOTOROLA MC68030 USER'S MANUAL 9-15 

9 



9 

if MMUDIS is asserted during this type of operation, the disabling of address 
translation does not become effective until the entire transfer is complete. 
Note that the assertion of MMUDIS does not affect the operation of the 
transparent translation registers. 

9.3 TRANSPARENT TRANSLATION 

Two independent transparent translation registers (TTO and TT1 ) in the MMU 
optionally define two blocks of the logical address space that are directly 
translated to the physical address spaces. The MMU does not explicitly check 
write protection for the addresses in these blocks, but a block can be specified 
as transparent only for read cycles. The blocks of addresses defined by the 
TTx registers include at least 16M bytes of logical address space; the two 
blocks can overlap, or they can be separate. 

The following description of the address comparison assumes that both TTO 
and TT1 are enabled; however, each TTx register can be independently dis- 
abled. A disabled TTx register is completely ignored. 

When the MMU receives an address to be translated, the function code and 
the eight high-order bits of the address are compared to the block of ad- 
dresses defined by TTO and TT1. The address space block for each TTx 
register is defined by the base function code, the function code mask, the 
logical base address, and the logical address mask. When a bit in a mask 
field is set, the corresponding bit of the base function code or logical base 
address is ignored in the function code and address comparison. Setting 
successively higher order bits in the address mask increases the size of the 
transparently translated block. 

The address for the current bus cycle and a TTx register address match when 
the function code bits and address bits (not including masked bits) are equal. 
Each TTx register can specify read accesses or write accesses as transparent. 
In that case, the internal read/write signal must match the R/W bit in the TTx 
register for the match to occur. The selection of the type of access (read or 
write) can also be masked. The read/write mask bit (RWM) must be set for 
transparent translation of addresses used by instructions that execute read- 
modify-write operations. Otherwise, neither the read nor write portions of 
read-modify-write operations are mapped transparently with the TTx regis- 
ters, regardless of the function code and address bits for the individual cycles 
within a read-modify-write operation. 

9-16 MC68030 USER'S MANUAL MOTOROLA 



By appropriately configuring a transparent translation register, f lexible trans- 
parent mapping can be specified. For instance, to transparently translate user 
program space with a TTx register, the RWM bit of the register is set to 1, 
the FC BASE is set to $2, and the FC MASK is set to $0. To transparently 
translate supervisor data read accesses of addresses $00000000-$0FFFFFFF, 
the LOGICAL BASE ADDRESS field is set to $0X, the LOGICAL ADDRESS 
MASK is set to $0F, the R/W bit is set to 1, the RWM bit is set to 0, the FC 
BASE is set to $5, and the FC MASK field is set to $0. Since only read cycles 
are specified by the TTx register for this example, write accesses for this 
address range can be translated with the translation tables and write pro- 
tection can be implemented as required. 

Each TTx register can specify that the contents of logical addresses in its 
block should not be stored in either an internal or external cache. The cache 
inhibit  out signal (CLOUT) is asserted when an address matches the address 
specified by a TTx register and the cache inhibit  bit in that TTx register is 
set. CLOUT is used by the on-chip instruction and data caches to inhibit 
caching of data associated with this address. The signal is available to ex- 
ternal caches for the same purpose. 

For an access, if either of these registers match, the access is transparently 
translated. If both registers match, the CI bits are ORed together to generate 
the CLOUT signal. 

Transparent translation can also be implemented by the translation tables 
of the translation trees if the physical addresses of pages are set equal to 
the logical addresses. 

9.4  A D D R E S S  T R A N S L A T I O N  C A C H E  

The ATC is a 22-entry ful ly associative (content addressable) cache that con- 
tains address translations in a form similar to the corresponding page de- 
scriptors in memory to provide fast address translation of a recently used 
logical address. 

The MC68030 is organized such that the translation t ime of the ATC is always 
completely overlapped by other operations; thus, no performance penalty is 
associated with ATC searches. The address translation occurs in parallel with 
on-chip instruction and data cache accesses before an external bus cycle 
begins. 

MOTOROLA MC68030 USER'S MANUAL 9-17 

9 



If possible, when the ATC stores a new address translation, it replaces an 
entry that is no longer valid. When all entries in the ATC are valid, the ATC 
selects a valid entry to be replaced, using a pseudo least recently used al- 
gorithm. The ATC uses a validity bit and an internal history bit to implement 
this replacement algorithm. ATC hit rates are application dependent, but hit 
rates ranging from 98% to greater than 99% can be expected. 

Each ATC entry consists of a logical address and information from a corre- 
sponding page descriptor that contains the physical address. The 28-bit log- 
ical (or tag) port ion of each entry consists of three fields: 

27 26 24 23 0 
L ~  FC J LOGICAL ADDRESS J 

V -  VALID 
This bit indicates the val idity of the entry. If V is set, this entry is valid. This 
bit is set when the MC68030 loads an entry. A flush operation clears the 
bit. Specifically, any of these operations clear the V bit of an entry: 

• A PMOVE instruction with the FD bit equal to zero that loads a value 
into the CRP, SRP, TC, TT0, or TT1 register. 

• A PFLUSHA instruction. 

• A PFLUSH instruction that selects this entry. 

• A PLOAD instruction for a logical address and FC that matches the tag 
for this entry. The instruction writes a new entry (with the V bit set) 
for the specified logical address. 

• The selection of this entry for replacement by the replacement algo- 
rithm of the ATC. 

F C -  FUNCTION CODE 
This 3-bit field contains the function code bits (FC0-FC2) corresponding to 
the logical address in this entry. 

LOGICAL ADDRESS 
This 24-bit field contains the most signif icant logical address bits for this 
entry, All 24 bits of this field are used in the comparison of this entry to 
an incoming logical address when the page size is 256 bytes. For larger 
page sizes, the appropriate number of least signif icant bits of this field are 
ignored. 

9-18 MC68030 USER'S MANUAL MOTOROLA 



Each logical portion of an entry has a corresponding 28-bit physical (or data) 
portion. The physical portion contains these fields: 

27 26 25 24 23 0 

PHYSICAL ADDRESS I 

- -  BUS ERROR 
This bit is set for an entry if a bus error, an invalid descriptor, a supervisor 
violation, or a limit violation is encountered during the table search cor- 
responding to this entry. When B is set, a subsequent access to the logical 
address causes the MC68030 to take a bus error exception. Since an ATC 
miss causes an immediate retry of the access after the table search op- 
eration, the bus error exception is taken on the retry. The B bit remains 
set until a PFLUSH instruction or a PLOAD instruction for this entry inval- 
idates the entry or until the replacement algorithm for the ATC replaces it. 

CI - -  CACHE INHIBIT 
This bit is set when the cache inhibit bit of the page descriptor correspond- 
ing to this entry is set. When the MC68030 accesses the logical address of 
an entry with the CI bit set, it asserts the cache inhibit out signal (CLOUT) 
during the corresponding bus cycle. This signal inhibits caching in the on- 
chip caches and can also be used for external caches. 

WP - -  WRITE PROTECT 
This bit is set when a WP bit is set in any of the descriptors encountered 
during the table search for this entry. Setting a WP bit in a table descriptor 
write protects all pages accessed with that descriptor. When the WP bit is 
set, a write access or a read-modify-write access to the logical address 
corresponding to this entry causes a bus error exception to be taken im- 
mediately. 

M - -  MODIFIED 
This bit is set when a valid write access to the logical address corresponding 
to the entry occurs. If the M bit is clear and a write access to this logical 
address is attempted, the MC68030 aborts the access and initiates a table 
search, setting the M bit in the page descriptor, invalidating the old ATC 
entry, and creating a new entry with the M bit set. The MMU then allows 
the original write access to be performed. This assures that the first write 
operation to a page sets the M bit in both the ATC and the page descriptor 
in the translation tables even when a previous read operation to the page 
had created an entry for that page in the ATC with the M bit clear. 

MOTOROLA MC68030 USER'S MANUAL 9-19 

9 



9 

PHYSICAL ADDRESS 
This 24-bit field contains the physical address bits (A31-A8) from the page 
descriptor corresponding to the logical address. When the page size is 
larger than 256 bytes, not all bits in the physical address field are used. 
All page index bits of the logical address are transferred to the bus con- 
trol ler wi thout  translation. 

9.5 T R A N S L A T I O N  TABLE DETAILS 

The details of translation tables and their use include detailed descriptions 
of the descriptors, table searching, translation table structure variations, and 
the protection techniques available with the MC68030 MMU. 

9.5.1 Descriptor Details 

The descriptor details include detailed descriptions of the short- and long- 
format descriptors used in the translation trees. The fields that apply to all 
descriptors are described in the first paragraph. 

9.5.1.1 DESCRIPTOR FIELD DEFINITIONS. All descriptor fields are used in more 
than one type of descriptor. This section lists these fields and describes the 
use of each field. 

DT 
This 2-bit field contains the descriptor type; the first two types apply to 
the descriptor itself. The other two types apply to the descriptors in the 
table at the next level of the tree. The values are defined as fol lows: 

$0 INVALID 
This code identifies the current descriptor as an invalid descriptor. 
A table search ends when an invalid descriptor is encountered. 

$1 PAGE DESCRIPTOR 
This code identifies the current descriptor as a page descriptor. 
The page descriptor is a normal page descriptor when it resides 
in a page table (in the bottom level of the translation tree). A page 
descriptor at a higher level is an early terminat ion page descriptor. 
A table search ends when a page descriptor of either type is en- 
countered. 

9-20 MC68030 USER'S MANUAL MOTOROLA 



$2 

$3 

VALID 4 BYTE 
This code specifies that the next table to be accessed contains 
short-format descriptors. The MC68030 mult ipl ies the index for the 
next table by four to access the next descriptor. (Short-format 
descriptors must be long-word aligned.) When used in a page table 
(bottom level of an translation tree), this code identifies an indirect 
descriptor that points to a short-format page descriptor. 

VALID 8 BYTE 
This code specifies that the next table to be accessed contains 
long-format descriptors. The MC68030 mult ipl ies the index for the 
next table by eight to access the next descriptor. (Long-format 
descriptors must be quad-word aligned.) When used in a page 
table (bottom level of an address translation tree), this code iden- 
tifies an indirect descriptor that points to a long-format page de- 
scriptor. 

This bit is automatical ly set by the processor when a descriptor is accessed 
in which the U bit is clear except after a supervisor violat ion is detected. 
In a page descriptor table, this bit is set to indicate that the page corre- 
sponding to the descriptor has been accessed. In a pointer table, this bit 
is set to indicate that the pointer has been accessed by the MC68030 as 
part of a table search. Note that a pointer may be fetched, and its U bit 
set, for an address to which access is denied at another level of the tree. 
Updates of the U bit are performed before the MC68030 allows a page to 
be accessed. The processor never clears this bit. 

WP 
This bit provides write protection. The states of all WP bits encountered 
during a table search are logically ORed, and the result is copied to the 
ATC entry at the end of a table search for a logical address. During a table 
search for a PTEST instruction, the processor copies this result into the 
MMU status register (MMUSR). When WP is set, the MC68030 does not 
al low the logical address space mapped by that descriptor to be written 
by any program (i.e., this protection is absolute). If the WP bit is clear, the 
MC68030 allows write accesses using this descriptor (unless access is re- 
stricted at some other level of the translation tree). 

CI 
This bit is set to inhibit caching of items within this page by the on-chip 
instruction and data caches and, also, to cause the assertion of the CLOUT 
signal by the MC68030 for bus cycles accessing items within this page. 

MOTOROLA MC68030 USER'S MANUAL 9-21 

9 



9 

L/U 
This bit specifies the type of l imit in the LIMIT field. When the L/U bit is 
set, the LIMIT field contains the unsigned lower l imit; the index value for 
the next level of the tree must be greater than or equal to the value in the 
LIMIT field. When the bit is cleared, the l imit is an unsigned upper limit, 
and the index value must be less than or equal to the LIMIT. An out-of- 
bounds access causes the B bit in the ATC entry for the address to be set 
and causes the table search to abort. 

LIMIT 
This 15-bit field contains a l imit to which the index portion of an address 
is compared to detect an out-of-bounds index. The limit check applies to 
the index into the table at the next lower level of the translation tree. If the 
descriptor is an early terminat ion page descriptor, the l imit field is still used 
as a check on the next index field of the logical address. 

M 
This bit identifies a modified page. The MC68030 sets the M bit in the 
corresponding page descriptor before a write operation to a page for which 
the M bit is zero, except after a descriptor with the WP bit set is encountered, 
or after a supervisor violat ion is encountered. An access is considered to 
be a write for updating purposes if either the R/W or RMC signal is low. 
The MC68030 never clears this bit. 

PAGE ADDRESS 
This 24-bit field contains the physical base address of a page in memory. 
The low-order bits of the address are supplied bythe logical address. When 
the page size is larger than 256 bytes, one or more of the least signif icant 
bits of this field are not used. The number of unused bits is equal to the 
PS field value in the TC register minus eight. 

S 
This bit identifies a pointer table or a page as a supervisor only table or 
page. When the S bit is set, only programs operating at the supervisor 
privi lege level are allowed to access the portion of the logical address 
mapped by this descriptor. If this bit is clear, accesses using this descriptor 
are not restricted to supervisor-only unless the access is restricted by some 
other level of the translation tree. 

TABLE ADDRESS 
This 28-bit field contains the physical base address of a table of descriptors. 
The low-order bits of the address are supplied by the logical address. 

9-22 MC68030 USER'S MANUAL MOTOROLA 



DESCRIPTOR ADDRESS 
This 30-bit field; which contains the physical address of a page descriptor, 
is only used in short- and long-format indirect descriptors. 

UNUSED 
The bits in this field are not used by the MC68030 and may be used by the 
system software. 

RESERVED 
Descriptor fields designated by a one or a zero are reserved by Motorola 
for future definition. These bits should be consistently written as either a 
one or a zero as appropriate. In the root pointers, these bits are not alterable. 
In memory-resident descriptors, the values in these fields are neither 
checked nor altered by the MC68030. Use of these bits by system software 
for any purpose may not be supported in future products. 

9,5.1.2 ROOT POINTER DESCRIPTOR. A root pointer descriptor contains the ad- 
dress of the top-level pointer table of a translation tree. This type of descriptor 
is loaded into the CRP and SRP registers with the PMOVE instruction. The 
field descriptions in the preceding section apply to corresponding fields of 
the CRP and SRP with two minor exceptions. A descriptor-type code of $00 
(invalid) is not allowed; an attempt to load zero into the DT field of the CRP 
or SRP register results in an MMU configuration exception. Also, when the 
FCL field of the TC register is set, the L/U and LIMIT fields of the root pointer 
registers are unused. Figure 9-9 shows the root pointer descriptor format. 

63 

L/U 

0 

LIMIT 

o l 0 1 o i o l o  o o o o o oi o ol 
TABLE ADDRESS IPA3;-P~ ~B 

48 

TABLE ADDRESS (PA]5-PA4) UNUSED 

15 ~' 0 

L/U - -  LowER OR UPPER PAGE RANGE 
OT - -  DESCRIPTOR TYPE 
LIMIT - -  LIMIT ON TABLE INDEX FOR THIS TABLE ADDRESS 
TABLE ADDRESS - -  ADDRESS OF'TABLE AT NEXT LEVEL OR P~GE OFFSET IF DT= 1 

Figure 9-9. Root Pointer Descriptor Format 

MOTOROLA MC68030 USER'S MANUAL 9-23 

9 



9 

9.5.1.3 SHORT-FORMATTABLE DESCRIPTOR. Thef ield descriptions in 9.5.1.1 DE- 
SCRIPTOR FIELD DEFINITIONS apply to corresponding fields of this descrip- 
tor. Figure 9-10 shows the format of the short-format table descriptor. 

31 

TABLE ADDRESS 

28 

4 3 0 

I 
3 2 | 0 

Figure 9-10. Short-Format Table Descriptor 

9.5.1.4 LONG-FORMAT TABLE DESCRIPTOR. The field descriptions in 9.5.1.1 DE- 
SCRIPTOR FIELD DEFINITIONS apply to corresponding fields of this descrip- 
tor. During address computations, the MC68030 internally replaces the 
UNUSED field with zeros. Figure 9-11 shows the format of the long-format 
table descriptor. 

31 30 16 15 0 31 4 3 0 

M ,,M,T I STAT0S I TA ,E ADDRES, I uNusED I 

18 I 16 I 32 

I I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I | I I I 1 0 S 0 0 0 0 U WP DT 

Figure 9-11. Long-Format Table Descriptor 

9-24 MC68030 USER'S MANUAL MOTOROLA 



9.5.1.5 SHORT-FORMAT EARLY TERMINATION PAGE DESCRIPTOR. The short- 
format early termination page descriptor contains the page descriptor code 
in the DT field but resides in a pointer table. That is, the table in which an 
early termination page descriptor is located is not at the bottom level of the 
address translation tree. The field descriptions in 9.5.1.1 DESCRIPTOR FIELD 
DEFINITIONS apply to corresponding fields of this descriptor. Figure 9-12 
shows the format of the short-format early termination page descriptor. 

31 

I 

8 7 0 

PAGE ADDRESS STATUS 

8 

I 
7 6 5 4 3 2 ] 0 

Figure 9-12. Short-Format Page Descriptor and 
Short-Format Early Termination Page Descriptor 

9.5.1.6 LONG-FORMAT EARLY TERMINATION PAGE DESCRIPTOR. The long- 
format early termination page descriptor contains the page descriptor code 
in the DT field but resides in a pointer table like the short-format early ter- 
mination page descriptor. The field descriptions in 9.5.1.1 DESCRIPTOR FIELD 
DEFINITIONS apply to corresponding fields of this descriptor. Figure 9-13 
shows the format of the long-format early termination page descriptor. The 
LIMIT field of the long-format descriptor provides a means of limiting the 
number of pages to which the descriptor applie s . 

31 30 ]6 ]5 0 31 8 7 0 

N L,M,T STATUS PAOE 00RESS L 0NOSE0 I 

16 16 32 

I 
15 14 13 12 ]1 ~0 9 8 7 6 5 4 3 2 

I 0 

Figure 9-13. Long-Format Early Termination Page Descriptor 

MOTOROLA MC68030 USER'S MANUAL 9-25 



9.5.1.7 SHORT-FORMAT PAGE DESCRIPTOR. The short-format page descriptor is 
used in the page tables (the bottom level of the address table). The field 
descriptions in 9.5.1.1 DESCRIPTOR FIELD DEFINITIONS apply to the corre- 
sponding fields of this descriptor. The short-format page descriptor is iden- 
tical to of the short-format early terminat ion page descriptor shown in Figure 
9-12. 

9.5.1.8 LONG-FORMAT PAGE DESCRIPTOR. The long-format page descriptor is 
also used in the page tables. The field descriptions in 9.5.1.1 DESCRIPTOR 
FIELD DEFINITIONS apply to the corresponding fields of this descriptor. Fig- 
ure 9-14 shows the format of the long-format page descriptor. 

31 16 15 0 31 8 7 0 

{ UNUSED STATUS PAGE ADDRESS I UNUSED I 

16 16 

I 
I I 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

32 

Figure 9-14. Long-Format Page Descriptor 

9.5.1.9 SHORT-FORMAT INVALID DESCRIPTOR. The short-format invalid descrip- 
tor consists of a DT field that contains zeros, identifying it as an invalid 
descriptor. It can be used at any level of the address translation tree except 
at the root pointer level. The 30-bit unused field is available to the operating 
system to identify unallocated port ions of the table or portions of the table 
that reside on an external device. For example, the disk address of disk- 
resident tables or pages can be stored in this field. Figure 9-15 shows the 
format of a short-format invalid descriptor. 

31 2 10 

I UNUSED IBT I  

Figure 9-15. Short-Format Invalid Descriptor 

9-26 MC68030 USER'S MANUAL MOTOROLA 



9.5.1.10 LONG-FORMAT INVALID DESCRIPTOR. The long-format invalid descrip- 
tor is used in pointer and page tables that contain long-format descriptors. 
It is used in the same way as the short-format invalid descriptor in the pre- 
ceding section. The first long word contains the DT field in the lowest order 
bits. The second long word is an unused field, also available to the operating 
system. Figure 9-16 shows the format of the long-format invalid descriptor. 

31 2 ; 0 3; 0 

L 0NusE0 0N0s,0 J 

Figure 9-16. Long-Format Invalid Descriptor 

9.5.1.11 SHORT-FORMAT INDIRECT DESCRIPTOR. The short-format indirect de- 
scriptor does not have a unique descriptor-type code. Rather, it resides in a 
page table (the bottom level of the address translation tree) that contains 
short-format descriptors and is neither a page descriptor nor an invalid de- 
scriptor. The descriptor-type field contains either the code for a valid 4-byte 
descriptor or for a valid 8-byte descriptor, depending upon the size of the 
referenced page descriptor. The field descriptions in 9.5.1.1 DESCRIPTOR 
FIELD DEFINITIONS apply to the corresponding fields of this descriptor. Fig- 
ure 9-17 shows the format of a short-format indirect descriptor. 

31 21 0 

I DESCRIPTOR ADDRESS 

Figure 9-17. Short-Format Indirect Descriptor 

MOTOROLA MC68030 USER'S MANUAL 9-27 



9 

9.5.1.12 LONG-FORMAT INDIRECT DESCRIPTOR. The long-format indirect de- 
scriptor has all the attributes of the short-format indirect descriptor described 
in the preceding section. The only differences are that it is used in a page 
table that contains long-format descriptors and that it has two unused fields. 
The field descriptions in 9.5.1.1 DESCRIPTOR FIELD DEFINITIONS apply to 
corresponding fields of this descriptor. Figure 9-18 shows the format of a 
long-format indirect descriptor. 

31 2 1 O 31 2 1 0 

I °N0,,0 IoTI 0,sc,,P,0,A00,, s I°NI 

Figure 9-18. Long-Format Indirect Descriptor 

9.5.2 General Table Search 

When the ATC does not contain a descriptor for the logical address of a 
processor access and a translation is required, the MC68030 searches the 
translation tables in memory and obtains the physical address and status 
information for the page corresponding to the logical address. When a table 
search is required, the CPU suspends instruction execution activity and, at 
the end of a successful table search, stores the address mapping in the ATC 
and retries the access. The access then results in a match (it hits) and the 
translated address is transferred to the bus controller (provided no exceptions 
were encountered). 

The table search begins by selecting the translation tree, using function code 
bit FC2 and the SRE bit of the TC register, as shown in Table 9-2. SRE is set 
to enable the supervisor root pointer, and FC2 is set for supervisor-level 
accesses. The translation tree with its root defined by the SRP register is 
selected only when SRE and FC2 are both set. Otherwise, the translation table 
with its root defined by the CRP register is selected. A simplified flowchart 
of the table search procedure is shown in Figure 9-19. 

9-28 MC68030 USER'S MANUAL MOTOROLA 



ENTRY 
I 

I DETERMINE ROOT POINTER TO BE USEO I 
I 

I AND SET x = A 

DT ~ 'PAGE DESCRIPTOR' DT = 'PAGE DESCRIPTOR' 

O T H E R W I S E ~  
/ FCL SET 

F I FETCH DESCRIPTOR AT I 

~ ~ ~ T D T  PAGE DESCRIPTOR' 
DT ='INVALID' OTHERWISE 

2._ NEXT x I 
NO MORE TIx FIELDS MORE TIx FIELDS (x = R, c. D) 
(MUST BE INDIRECT) ~ I 

i 

INDIRECT DESCRIPTOR: 
FETCH DESCRIPTOR POINTED TO 

BY PREVIOUS DESCRIPTOR 

/ O T H E R W I S E ~  

DT = 'PAGE DESCRIPTOR' 

CREATE INVALID I 
ATC ENTRY (B BIT SET) 

EXIT 

CREATE VALID ATC ENTRY 
PAGE FRAME ADDRESS = UNUSED LOGICAL PAGE ADDRESS (]F ANYt 

+ ADDRESS FIELD FROM LAST OESCRIPTOR FETCHEO 
(SIGNED ADDITION) 

"SIZE" IS THE SIZE (IN BYTES) OF THE DESCRIPTOR 
AT THE PARTICULAR TABLE LEVEL 

Figure 9-19. Simplified Table Search Flowchart 

MOTOROLA MC68030 USER'S MANUAL 9-29 

9 



9 

Table 9-2. Translation Tree Selection 

FC2 SRE 

0 0 

0 1 

1 0 

1 1 

Translation Table 
Root Pointer 

CRP 

CRP 

CRP 

SRP 

The table search procedure uses physical addresses to access the translation 
tables. The read-modify-write (RMC) signal is asserted on the first bus cycle 
of the search and remains asserted throughout,  ensuring that the entire table 
search completes wi thout  interruption. 

The first bus cycle of the search uses the table address field of the appropriate 
root pointer as the base address of the first table. The low-order bits of the 
address are supplied by the logical address. The table is indexed by either 
the function code or the set of logical address bits defined by the TIA field 
of the TC register. The FCL field of the TC register determines whether or 
not the function code is used. In either case, the descriptor-type field of the 
root pointer selects the scale factor (or multipl ier) for the index. 

The first access obtains a descriptor. If the descriptor is a table descriptor, 
the MC68030 again accesses memory. The next access uses the table address 
in the descriptor as the base address for the next .table. The low-order bits 
of the address are supplied by the logical address. The table is indexed by 
a set of bits from the logical address using a scale factor determined by the 
descriptor type code in the descriptor. If the first table access used the func- 
t ion code, the second access uses the bits selected by the TIA field of the TC 
register. Otherwise, the second access uses the bits selected by the TIB field. 

Addit ional accesses are performed, using the logical address bits specified 
in TIB, TIC, or TID in order, until an access obtains a page descriptor or an 
invalid descriptor or until a l imit violat ion occurs. At this point, whether or 
not all levels of the address table have been accessed, the table search is 
over. The page descriptor contains the physical address and other infor- 
mation needed for the ATC entry; the MC68030 creates the ATC entry and 
retries the original bus access. 

Figure 9-20 shows a table search using the function code and all four TIx 
fields. 

9-30 MC68030 USER'S MANUAL MOTOROLA 



FC IS A B C D PS 

I-~-;] I . . . . . . . .  IoB° :1 -~ '~ ;I o '  o°1 ~ ooo l  . . . . . . . .  I 
$2 SI $5 S4 S8 

FC LEVEL 
TABLE 

Q 

A LEVEL 
TABLES 

(8 TABLES 
MAXIMUM. 
16 ENTRIES/ 

TABLE) 

o 

B LEVEE C LEVEE 
TABLES TABLES 

(128TABLES !2KTABLES 
MAXIMUM. MAXIMUM, 
i6 ENTRIES/ 1B ENTRIES/ 

TABLE) TABLE) 

PAGE 
ENTRY ~ FRAME 

#8 ~ ADDRESS 

(J LEVEL 
TABLES 

(32K TABLES 
MAXIMUM, 
16 ENTRIES/ 

TABLE) 

Figure 9-20. Five-Level Table Search 

MOTOROLA MC68030 USER'S MANUAL 9-31 

9 



9 

The MC68030 enforces a limit on the index value for the next level of a table 
search when long-format descriptors are used. 

The root pointer includes a limit field that applies when the function code 
lookup is not used (the FCL bit of the TC register is zero). The index used to 
access the next level table is compared to the contents of the limit field. The 
limit field effectively reduces the portion of the address space to which a 
descriptor applies and also reduces the size of the translation table. The index 
must reside within the range defined by the limit field. The limit can be a 
lower limit or an upper limit, according to the L/U bit value. When the L/U 
bit is set, the limit is a lower limit, and an index less than the limit is out of 
bounds. When the L/U bit is zero, the limit is an upper limit, and an index 
greater than the limit is out of bounds. The limit field is effectively disabled 
if L/U is set and the limit field contains zero or if L/U is clear and the limit 
field contains $7FFF. 

During a table search for an normal translation or a PLOAD instruction, if a 
limit violation is detected, the ATC is loaded with an entry having the bus 
error (B) bit set. If a limit violation is detected during a table search for a 
PTEST instruction, the invalid (I) and limit (L) bits are set in the MMUSR. 

During a table search, the U bit in each descriptor that is encountered is 
checked and set if it is not already set. Similarly, when the table search is 
for a write access and the M bit of the page descriptor is clear, the processor 
sets the bit if the table search does not encounter a set WP bit or a supervisor 
violation. Since the read-modify-write (RMC) signal is asserted throughout 
the entire table search operation, the read and write operations to update 
the history bits are guaranteed to be uninterrupted. 

A table search terminates successfully when a page descriptor is encoun- 
tered. The occurrence of an invalid descriptor, a limit violation, or a bus error 
also terminates a table search, and the MC68030 takes an exception on the 
retry of the cycle because of these conditions. The exception routine should 
distinguish between anticipated conditions and true error conditions. The 
routine can correct an invalid descriptor that indicates a nonresident page 
or one that identifies a portion of the translation table yet to be allocated. A 
limit violation or a bus error due to a system malfunction may result in an 
error message and termination of the task. 

9-32 MC68030 USER'S MANUAL MOTOROLA 



9.5.3 Variations in Translation Table Structure 

Many aspects of the MMU translation tree structure are software configur- 
able, al lowing the system designer f lexibi l i ty to optimize the performance of 
the MMU for a particular system. The fol lowing paragraphs discuss the var- 
iations of the tree structure from the general structure discussed previously. 

9.5.3.1 EARLY TERMINATION AND CONTIGUOUS MEMORY. The MMU provides 
the abil ity to map a contiguous range of the logical address space (an integral 
number of logical pages) to an equivalent contiguous physical address range 
with a single descriptor. This is done by placing the code for page descriptor 
($1) in the descriptor type (DT) field of a descriptor at a level of the tree that 
would normal ly contain a table pointer, thereby deleting a subtree of the 
table. 

The table search ends when the search encounters a page descriptor, whether 
or not the page descriptor is in a page descriptor table at the lowest  level of 
the translation tree. 

Termination of the table search by a page descriptor in a pointer descriptor 
table (i.e., the MC68030 has not encountered a TIx field of zero) is called an 
early termination. The terminating page descriptor is called an early termi- 
nation page descriptor. 

An early termination page descriptor takes the place of many page descriptors 
in a translation table. It applies to all pages that would exist on the branch 
on which the descriptor has been placed, and on any branches from that 
branch. An early termination page descriptor can be used where contiguous 
pages in physical memory correspond to contiguous logical pages. If an early 
terminat ion page descriptor is a long format, the l imit field is applied to the 
next index  field of the logical address. This allows the number of pages 
mapped cont iguously to be restricted. Refer to 9.1.2 Translation Table De- 
scriptors for addit ional information. 

If n low-order bits of the logical page address are unused when a page 
descriptor encoding is encountered, the single descriptor creates a mapping 
of a contiguous region of the logical address space starting at the logical 
page address (with n unused bits set to zero) to a contiguous region in the 
physical address space starting at the page frame base address with a size 
of 2 PS+n bytes. 

MOTOROLA MC68030 USER'S MANUAL 9-33 



9 

When a search is made for a logical address to which an early terminat ion 
page descriptor applies, the MC68030 creates an entry in the ATC for the 
logical address; the physical address in the ATC entry is the sum of the page 
address field in the descriptor plus an offset. The offset is the logical address 
with the bits used in the search set to zero. 

Al though the early terminat ion page descriptor creates a contiguous logical- 
to-physical mapping wi thout  having to maintain individual descriptors in the 
translation tree for each page that is a member of the contiguous region, the 
ATC contains one entry for each page mapped. These entries are created 
internally each t ime a page boundary (as determined by the page size) is 
crossed in the contiguous region. Figure 9-21 shows an example translation 
table with a portion of the logical address space translated as a contiguous 
block. 

Note that the DT field can be set to page descr!ptor at any level of the 
translation tree including the root pointer level. Setting the DT field of a root 
pointer to page descriptor creates a direct mapping from the logical to the 
physical address space with a constant offset as determined by the value in 
the table address field of the root pointer. 

9.5.3.2 INDIRECTION. The MC68030 provides the abil ity to replace an entry in a 
page table with a pointer to an alternate entry. The indirection capability 
al lows mult iple tasks to share a physical page while maintaining only a single 
set of history information for the page (i.e., the "modi f ied"  indication is 
maintained only in the single descriptor). The indirection capabil ity also al- 
lows the page frame to appear at arbitrari ly different addresses in the logical 
address spaces of each task. 

Using the indirection capability, single entries or entire tables can be shared 
between mult iple tasks. Figure 9-22 shows two tasks sharing a page using 
indirect descriptors. 

When the MC68030 has completed a normal table search (has exhausted all 
index fields of the logical page address), it examines the descriptor-type field 
of the last entry fetched from the translation tables. If the DT field contains 
a "val id long" ($2) or "val id short" ($3) encoding, this indicates that the 
address contained in the highest order 30 bits of the table address field of 
the descriptor is a pointer to the page descriptor that is to be used to map 
the logical address. The processor then fetches the page descriptor of the 

indicated format from this address and uses the page address field of the 
page descriptor as the physical mapping for the logical address. 

9-34 MC68030 USER'S MANUAL MOTOROLA 



ROOT POINTER 

[ 1 

4 
ENTRY $OOA 

A B PS 

EXAMPLEAOORESS$OOAO1ADO I0 O 0 O 0 0 0 0 1 O 1 OlO 0 O O 0 O O | ,  0 1 .......... } 

SA $6 x 

I __ TABLE $0 
B LEVEL 

A 8 PS 

]- I oDooooooooo ol ooooooo,~ Ol'OOOOOOOO 01 $OOOO,AO0 
+ 

1100000000000 I0 O O O 0 0 0 O 00IO 0 O 0 O O O 0 O O 1 $80000000 

= 

I~O00BDODOOOOIoooODOB'~ OI~o000OOO00 I$~BoOo|AoB 

~ _ I j I 

l EARLY TERMINATION OF TABLE SEARCH - PAGE DESCRIPTOR ENCOUNTERED 
I {LOG}CAL ADDRESS RANGE $00400000 TO $OOAFFFFF MAPPED 

I TO PHYSICAL ADDRESS RANGE $80AOOOO0 TO $BOAFFFFF) 
A LEVEL TABLES 

(4K ENTRIES) 

I 1 

I I 
I I 

I 
8 LEVEL TABLES 

(4K TABLES MAXIMUM. 1K ENTRIES/TABLE) 

-- TABLE $FFF 
B LEVEL 

Figure 9-21. Example Translation Tree Using Contiguous Memory 

MOTOROLA MC68030 USER'S MANUAL 9~35 

9 



9 

A G PS 

EXAMPLEADDBESS,ODAO,AOO IO O O O O O O 0 ,  O, 010 OO OO O 0 , ,  O I . . . . . . . . . .  I 
$A $6 x 

ROOT POINTER 

I I 

I I 

EN $OOA ENTRY $06 

I 1 I I i 

I I I I 
I I 

I 
TASK "A' 

A LEVEL TABLES ABSOLUTE PHYSICAL ADDRESS OF 
(¢K ENTRIES) PAGE DESCRIPTOR 

I 

I ] 
I I 

PAGE FRAME ADDRESS 

I I 
I 

TASK 'B' 
A LEVEL TABLES 
(4K ENTRIES) 

Figure 9-22. Example  Translat ion Tree Using Indirect Descriptors 

9-36 M C 6 8 0 3 0  USER'S M A N U A L  M O T O R O L A  



The page descriptor located at the address given by the indirect descriptor 
must not have a DT field with a long or short encoding (it must either be a 
page descriptor or invalid). Otherwise, the descriptor is treated as invalid, 
and the MC68030 creates an ATC entry with an error condit ion signaled (bit 
set). 

9.5.3.3 TABLE SHARING BETWEEN TASKS. A page or pointer table can be shared 
between tasks by placing a pointer to the shared table in the address trans- 
lation tables of more than one task. The upper (nonshared) tables can contain 
different settings of protection bits al lowing different tasks to use the area 
with different permissions. In Figure 9-23 two tasks share the memory trans- 
lated by the table at the B level. Note that task " A "  cannot write to the shaded 
area. Task " B " ,  however, has the WP bit clear in its pointer to the shared 
table; thus, it can read and write the shared area. Also note that the shared 
area appears at different logical addresses for each task. 

9.5.3.4 PAGING OF TABLES. It is not required that the entire address translation 
tree for an active task be resident in main memory at once. In the same way 
that only the working set of pages must reside in main memory, only the 
tables that describe the resident set of pages need be available in main 
memory. This paging of tables is implemented by placing the " inva l id"  code 
($0) in the DT field of the table descriptor that points to the absent table(s). 
When a task attempts to use an address that would be translated by an absent 
table, the MC68030 is unable to locate a translation and takes a bus error 
exception when the execution unit retries the bus cycle that caused the table 
search to be initiated. 

It is the responsibi l i ty of the system software to determine that the invalid 
code in the descriptor corresponds to nonresident tables. This determination 
can be facilitated by using the unused bits in the descriptor to store status 
information concerning the invalid encoding. When the MC68030 encounters 
an invalid descriptor, it makes no interpretation (or modif ication) of any fields 
of this descriptor other than the DT field, al lowing the operating system to 
store system-defined information in the remaining bits. Typical information 
that is stored includes the reason for the invalid encoding (tables paged-out, 
region not allocated . . . . .  etc.) and possibly the disk address for nonresident 
tables. 

Figure 9-24 shows an address translation table in which only a single page 
table (table n) is resident and all other page tables are not resident. 

MOTOROLA MC68030 USER'S MANUAL 9-37 

9 



ROOT POINTER 

A B PS 

EXAMPLE AODRESS~OOAB1AOO 1 0 0 0 0 0 D 0 0 1 0  I °Io o o 0 0 D O  I ,  O I . . . . . . . . . .  I 

I I 
I I 

I 
TASK 'A' 

A LEVEL TABLES 
(4K ENTRIES) 

I I 

I W'cL'A" t-- 

I I 
I I 

I- % 
ENTRY $OOA 

$A $B x 

I I 

I I 

I I 

I 

I I 
I I 

I 
TASK 'A' 

B LEVEL TABLES 
(4K TABLES MAXIMUM, 1K ENTRIES/TABLE) 

PAGE FRAME ADDRESS 
ENTRY $06 (SHARED BY 'A' AND 'B') 

I I (WRITE-PROTECTED FROM TASK 'A') 

I 
TASK 'B' 

A LEVEL TABLES 
(4K ENTRIES) 

I I 
I I 

I 
TASK 'R' 

B LEVEL TABLES 
(4K TABLES MAXIMUM, 1K ENTRIES/TABLE) 

Figure 9-23. Example Translation Tree Using Shared Tables 

9-38 M C 6 8 0 3 0  U S E R ' S  M A N U A L  M O T O R O L A  



ROOT POINTER 

A B PS 

EXAMPLEAOOBESS$OOA~,AO0 I0 O BOO 0 B 0 ,  0 ,  o l o 0  OOO 0 0 1 ,  01 . . . . .  ~ . . . .  I 

SA $6 x 

t I 

I 

DT:',NVAL, D' l-- r - - - ' - ' i  DT='INVALID' l-- II I :" 'J 
ENTRY$OOA J+ :~++~+$~+m"+$+ ~ ENTRY$OO+ l 

I " O+::'i"VAim' I - "  I ' , , , , : IT  
PAGE FRAME 
ADDRESS 

I DT = 'INVAUD' I ~  
OT = 'INVALID' J l 

I 1 
A LEVEL TABLES 

(4K ENTRIES) 

1 I 
I 

B LEVEL TABLES 
(4K TABLES MAXIMUM, 1K ENTRIES/TABLE) 

Figure 9-24• Example Translation Tree with Nonresident Tables 

TABLE #O 
B LEVEL 

- -  (PAGED OUT Off 
NOT ALLOCATED) 

TABLE #n 
B LEVEL 

TABLE #m 
B LEVEL 
(PAGED OUT OR 
NOT ALLOCATED) 

MOTOROLA MC68030 USER'S MANUAL 9-39 

9 



9 

9.5.3.5 DYNAMIC ALLOCATION OF TABLES. Similar to the case of paged tables, 
it is not required that a complete translation tree exist for an active task. The 
translation tree can be dynamically allocated by the operating system based 
on requests for access to particular areas. 

As in the case of demand paging, it is difficult, if not impossible, to predict 
the areas of memory that are used by a task over any extended period of 
time. Instead of attempting to predict the requirements of the task, the op- 
erating system performs no action for a task until a demand is made re- 
questing access to a previously unused area or an area that is no longer 
resident in memory. This same technique can be used to efficiently create a 
translation tree for a task. 

For example, consider an operating system that is preparing the system to 
execute a' previously unexecuted task that has no translation tree. Rather 
than guessing what the memory usage requirements of the task are, the 
operating system creates a translation tree for the task that maps one page 
corresponding to the initial value of the program counter for that task, and 
possibly, one page corresponding to the initial stack pointer of the task. All 
other branches of the translation tree for this task remain unallocated until 
the task requests access to the areas mapped by these branches. This tech- 
nique allows the operating system to construct a minimal translation tree 
for each task, conserving physical memory utilization and minimizing op- 
erating system overhead. 

9.5.4 Detail of Table Search Operations 

The table search operations described in this section are shown in detail in 
Figures 9-25-9-29. 

9-40 MC68030 USER'S MANUAL MOTOROLA 



• C + y  

( ) 
DETERMINE ROOT P'OINTER TO BE USED 

(REFER TO TRUTH TABLE AT RIGHT) 
x ~ 'A' 
y ~ l ~  RP' 

]HECK DESCRIPTOR TYPE OF ROOT POINTER 
DT = 'PAGE DESCRIPTOR' I 

OT = '4 BYTE' OR 'S BYTE' 
I 

TYPE ~ 'EARLY' SIZE ~ 4 DR 8 
I 

LASTSIZE ~ 8 
~ CREATE ATC ENTRY ) 

FCL : " FCL = 0 

EETCH DESCRIPTOR 

DT:' BYTE•OR+DYTE' | 
TYPE ~ 'EARLY' LAST SIZE ~ S(ZE TYPE ~ "ICVALID / 

I SIZ~-",~,--- 4 OR 8 I I 

C CREATE ATC ENTRY ~ 

• ~dl--- 'A 

_..~ERFORM LIMIT CHECK~ 

I 

FETCH DESCRIPTOR 

CK DESCRIPTOR TYPE 

DT 'PAGE DESCRIPTOR DT '4 BYTE' OR '8 BYTE' 
OT : NVALID' 

TYPE ~ '(NVAUD L ~ - , , ~ l ~  SIZ[ 
I 

l SIZE R 8 

C CREATE ATC ENTRY 
• ~ D" - 'O + x='D' x~='O 

ROOT POINTER SELECTION TBUTH TABLE 

FC2 SRE ROOT 

0 0 CRP 
0 1 CRP 
I 0 .CRP 
l 1 SRP 

i 

PERFORM FUNCTION CORE LOOKUP IF REQUIRED 

ENTERING A LEVEL TABLE SEARCF 

(REPEAT SEARCH 

x ..,II.-- NEXT x (x = B. C, D) x ~ NEXT x (x = B. C. 01 
TYPE ~ 'NORMAL 

T(x : 0 " " ' ~  Tlx :~ 0 . . . , , . , . , ~ ' ~  TIx ~" O 

TYPE ~ •NORMAL' TYPE ~ 'EARLY" 

TYPE • 

~ ~ C FETCH DESCRIPTOR 

. , . . .C~ (CHECK DESCRIPTOR TYPE) 
~ OT: 'PAGE DESCRIPTOR" 

• OTHERWISq 'INVALID • CREATE ATC ENTRY 

" ~ "  IS THE ASS[GNMENT OPERATOR 

C CREATE ATC ENTRY .~ 

9 

Figure 9-25. Detailed Flowchart of MMU Table Search Operation 

MOTOROLA MC68030 USER'S MANUAL 9-41 



- INITIALIZE FOR TABLE SEARCH . ~  (INITIALIZE ACCRUED STATUS) 

ACC__STATUS [WP] ~ 0 

ACC_STATUS [S] ~ 0 

RETURN 

Figure 9-26, Table Search Initialization Flowchart 

F 
CREATE ATC ENTRY WfTH 

B BIT SET 

I ~ EXIT TABLE SEARCH .~ 

- CREATE ATC ENTRY 

TYPE = 'INVALID' - - - - " - - - ' - ' ~  
TYPE = "EARLY' TYPE = 'INDIRECT' TYPE = 'NORMAL' 

J DESCRIPTOR FETCHED INDIRECTLY FROM DESCRIPTOR FETCHED AT 
PFA = LPA + TA FIELD OF TREE LEVEL x TREE LEVEL x 
DESCRIPTOR FETCHED AT / 

TREE LEVEL y ~ | 
l 

CREATE ATC ENTRY USING PFA FROM ABOVE 
AND ACCRUED STATUS 

ABBREVIATIONS USED: I 

PFA: = PAGE FRAME ADDRESS C EXIT TABLE SEARCH ) 

LPA: = UNUSED FIELDS OF LOGICAL PAGE ADDRESS 
TA: = TABLE ADDRESS FIELD OF A TABLE DESCRIPTOR 

Figure 9-27. ATC Entry Creation Flowchart 

9-42 MC68030 USER'S MANUAL MOTOROLA 



PERFORM LI;,~iT CHECK~ 

y = 'RP' ~'"E'W,',~SE 

FCL = 1 ~ 
(L]MIT CHECK NOT REQUIRED)f ) O T H E R W I b ~  

RETURN 

LAST_.SIZE = 4 LAST._SIZE = 8 
ILIM,T  .EOK NOT REOUIREOI F 3 IREREORM L,M,T CNECK  

RETURN--  JU=D LJU= x 

LPA[TIx] ~ LIMIT LP LPA[TIx] > LIMIT A[TIx] < LIMIT 

Figure 9-28. Limit Check Procedure Flowchart 

LPA[TIx] ~ LIMIT 
q 

(~ RETURN ) 

9.5.5 Protect ion 

M68000 Family processors provide an indication of the context in which they 
are operating on a cycle-by-cycle basis by means of the function code signals. 
These signals identify accesses to the user program space, the user data 
space, the supervisor program space, and the supervisor data space. The 
function code signals can be used for protection mechanisms by setting the 
function code lookup (FCL) bit in the translation control (TC) register. 

The MC68030 MMU provides the capability for separate translation trees for 
supervisor and user spaces to be used. When the supervisor root pointer 
enable bit (SRE) in the TC register is set, the root pointer register for the 
supervisor space translation tree is selected for supervisor program or data 
accesses. 

The translation table trees contain both mapping and protection information. 
Each table and page descriptor includes a write-protect (WP) bit, which can 
be set to provide write protection at any level. Each long-format table and 
page descriptor also contains a supervisor-only (S) bit, which can limit access 
to programs operating at the supervisor privilege level. 

MOTOROLA MC68030 USER'S MANUAL 9-43 

9 



9 

~U FETCH DESCRIPTOR & ~'~ 
PDATE HISTORY AND STATUS.,/ 

I 
FETCH 4 OR B BYTE DESCRIPTOR AT 

PA = TA + {INDEX*SIZE) 
(INDEX : FC. TIA, TIB, TIC, OR TID) 

OR AT 
PA = DESCRIPTOR ADDRESS 

(INDIRECT DESCRIPTOR] 

OTHERWISE '~  
r , ~ ' ~ o  RMA L TERMINATION OF ALL BUS ACTIVITY 

TYPE "~ ' I "  'INVALID' I 

(RETURN) O ,  ET OOIT LEAR 
M A N D ~  "~I'-WRITE OPERATION ~EAD OPERATIOIk~ ~ I 

E.CYCLE 
- BITS SET - v - M OR U BIT CLEAR U BIT CLEAR U BIT SET 

I EXECUTE WRITE CYCLE J EXECUTE WRITE CYCLE I 
/ I M-~ - -~  I M ~ - - M  

L.. 

OTHERWISE J 
~ J  ["""'~ORMAL TERMINATION OF ALL 8US ACTIVITY 

CREATE ATC ENTRY ) ~ SIZE = 8 

TYPE ~ 'INVALID' J 
ACC_STATUS[WP] V WP 

I ~ ACC_STATUS[WP] " q l ~  I ACC STATUSES] ~ ACC STATUSIS] V S CREATE ATC ENTRY SIZE = 4 SIZE = 8 

ACC_STATUS[WP] ~ ACC_STATUS[WP] V WP 
ACC_STATUS[CI] ~ CI 

( RETURN ~ 
ACC STATUSES] ~ ACC STATUSES] V S 

I ACC S{TUS[WP] ~ ACC_STATUESI[WP] V WP 

( RET°RN ) 
"V"IS THE LOGICAL OR OPERATOR 

Figure 9-29. Detailed Flowchart of Descriptor Fetch Operation 

9-44 MC68030 USER'S MANUAL MOTOROLA 



The protection mechanisms can be used individually or in any combination 
to protect: 

• Supervisor program and data spaces from access by user programs. 

• User program and data spaces from access by other user programs or 
supervisor programs (except with the MOVES instruction). 

• Supervisor and user program spaces from write accesses (except by the 
supervisor using the MOVES instruction). 

• One or more pages of memory from write accesses. 

9.5.5.1 FUNCTION CODE LOOKUP. One way of protecting supervisor and user 
spaces from unauthorized access is to set the FCL bit in the TC register. This 
effectively segments the logical address space into a supervisor program 
space, a supervisor data space, a user program space, and a user data space, 
as shown in Figure 9-30. Each task has an address translation tree with unique 
mappings for the logical addresses in its user spaces. The translation tables 
for mapping the supervisor spaces can be copied into each task's translation 
tree. Figure 9-31 shows a translation tree using function code lookup, and 
Figure 9-32 shows translation trees for two tasks that share common super- 
visor spaces. 

m 

0 
b 

0 
m 

0 0 

232 32 32 32 

SUPERVISOR SUPERVISOR USE~ USER 
PROGRAM DATA PROGP~,~ DATA 

SPACE SPACE SPACE SPACE 

Figure 9-30. Logical Address Map Using Function Code Lookup 

MOTOROLA MC68030 USER'S MANUAL 9-45 

9 



9 

CPU ROOT 
POINTER 

USER DATA SPACE BRANCH 

USER PROGRAM SPACE BRANCH 

SUPERVISOR DATA SPACE BRANCH 

t 

SUPERVISOR PROGRAM SPACE BRANCH 

4 USER DATA SPACE 
8 USER PROGRAM SPACE 

$1o 
$14 SUPERVISOR DATA SPACE 

$18 SUPERVISOR PROGRAM SPACE 
$1C 

I I 
ADDRESS OF FIRST TABLE POINTER = 

CPlt ROOT POINTER + (FUNCTION CODE*SIZE] 

I J 
i 

TABLE INDEX AT THIS LEVEL USES 
LOGICAL ADDRESS FIELD SPECIFIED 

BY TIA FIELD OF TRANSLATION CONTROL 
REGISTER 

Figure 9-31. Example Translation Tree Using Function Code Lookup 

9-46 MC68030 USER'S MANUAL MOTOROLA 



CPU 
ROOT POINTER 
FOR TASK 'A' 

4 
8 

$C 
$10 
$14 
$18 
$1C 

CPU 
ROOT POINTER 
FOR TASK 'B' 

4 
8 

$C 
$10 
$14 
$18 
$1C 

USER DATA SPACE 

USER PROGRAM SPACE 

SUPERVISOR DATA SPACE 
SUPERVISOR PROGRAM SPACE 

I 
ADDRESS OF ELRST TABLE POLNTER : 

CPU ROOT POINTER + (FUNCTION CODE*SIZE) 

USER DATA SPACE BRANCH 

L USER PROGRAM SPACE B R A N C H  

L 
USER DATA SPACE BRANCH 

USER DATA SPACE I - -  
USER PROGRAM SPACE F 

SUPERVISOR DATA SPACE 
SUPERVISOR PROGRAM SPACE Y 

l USER PROGRAM SPACE BRANCH 

m 

SUPERVISOR DATA SPACE BRANCH 

SUPERVISOR PROGRAM SPACE BRANCH 

TRANSLATION TABLE 
FOR TASK 'A' 

TRANSLATIONTABLE 
FOR TASK 'B' 

TRANSLATION TABLE 
- FOR ALL SUPER~SOR 

ACCESSES 

Figure 9-32. Example Translation Tree Structure for Two Tasks 

MOTOROLA MC68030 USER'S MANUAL 9-47 

9 



9 

9.5.5.2 SUPERVISOR TRANSLATION TREE. A second protection mechanism uses 
a supervisor translation tree. A supervisor translation tree protects supervisor 
programs and data from access by user programs and user programs and 
data from access by supervisor programs. Access is granted to the supervisor 
programs which can access any area of memory with the move address 
space (MOVES) instruction. When the SRE bit in the TC register is set, the 
translation tree pointed to by the SRP is selected for all supervisor level 
accesses. This translation tree can be common to all tasks. This technique 
segments the logical address space into user and supervisor areas without 
adding the function code level to the translation trees. 

9.5.5.3 SUPERVISOR ONLY. A third mechanism protects supervisor programs 
and data without segmenting the logical address space into Supervisor and 
user address spaces. The long formats of table descriptors and page de- 
scriptors contain S bits to protect areas of memory from access by user 
programs. When a table search for a user access encounters an S bit set in 
any table or page descriptor, the table search is completed and an ATC 
descriptor corresponding to the logical address is created with the B bit set. 
The subsequent retry of the user access results in a bus error exception being 
taken. The S bit can be used to protect the entire area of memory defined in 
a branch of the translation tree or only one or more pages from user program 
access. 

9.5.5.4 WRITE PROTECT. The MC68030 provides write protection independently 
of the segmented address spaces for programs and data. All table and page 
descriptors contain WP bits to protect areas of memory from write accesses 
of any kind. When a table search encounters a WP bit set in any table or 
page descriptor, the table search is completed and an ATC descriptor cor- 
responding to the logical address is created with the WP bit set. The sub- 
sequent retry of the write access results in a bus error exception being taken. 
The WP bit can be used to protect the entire area of memory defined in a 
branch of the translation tree, or only one or more pages from write accesses. 
Figure 9-33 shows a memory map of the logical address space organized to 
use S and WP bits for protection. Figure 9-34 shows an example translation 
tree for this technique. 

9-48 MC68030 USER'S MANUAL MOTOROLA 



32 
2 

0 

SUPERVISOR 
AND 

USER SPACE 

THIS AREA SUPERVISOR-ONLY, 
READ-ONLY 

THIS AREA SUPERVISOR-ONLY. 
READ/WRITE 

THIS AREA SUPERVISOR OR USER, 
READ-ONLY 

THJS AREA SUPERVISOR OR USER, 
READ/WRITE 

Figure 9-33. Example Logical Address Map with Shared Supervisor 
and User Address Spaces 

MOTOROLA MC68030 USER'S MANUAL 9-49 

9 



9 

CPU ROOT~ ~.~ 
P O I N T E R /  S=l, WP=I 

S=I, WP=B 

I S-O, WP:I 
S=O, WP=O I ' ~  

I I 
I 

TABLE INDEX AT THIS LEVEL USES 
LOGICAL ADDRESS FIELD SPECIFIED 

BY TIA FIELD OF TRANSLATION CONTROL 
REGISTER 

THIS BRANCH SUPERVISOR-ONLY 
READ-ONLY 

THIS BRANCH SUPERVISOR-ONLY 
READ/WRITE 

~I THIS BRANCH SUPERVISOR/USER 
READ-ON~ 

THIS BRANCH SUPERVISOR/USER 
READ/WRITE 

I I 
I 

TABLE INDEX AT THIS LEVEL USES 
LOGICAL ADDRESS FIELD SPECIFIED 

BY TIB FIELD OF TRANSLATION CONTROL 
REGISTER 

Figure 9-34. Example Translation Tree Using S and WP Bits to Set Protection 

9-50 MC68030 USER'S MANUAL MOTOROLA 



9,6 M C 6 8 0 3 0  A N D  MC68851  M M U  DIFFERENCES 

The MC68851 paged memory management unit provides memory manage- 
ment for the MC68020 as a coprocessor. The on-chip MMU of the MC68030 
provides many of the features of the MC68020/MC68851 combination. The 
following functions of the MC68851 are not available in the MC68030 MMU: 

• Access Levels 

• Breakpoint Registers 

• Root Pointer Table 

• Aliases for Tasks 

• Lockable Entries in the ATC 

• ATC Entries Defined as Shared Globally 

In addition, the following features of the MC68030 MMU differ from the 
MC68020/MC68851 pair: 

• 22-Entry ATC 

• Reduced Instruction Set 

• Only Control-Alterable Addressing Modes Supported for MMU Instruc- 
tions 

In general, the MC68030 is program compatible with the MC68020/MC68851 
combination. However, in a program for the MC68030, the following instruc- 
tions must be avoided or emulated in the exception routine for F-line un- 
implemented instructions: PVALID, PFLUSHR, PFLUSHS, PBcc, PDBcc, PScc, 
PTRAPcc, PSAVE, PRESTORE, and PMOVE for unsupported registers (CAL, 
VAL, SCC, BAD, BACx, DRP, and AC). Additionally, the effective addressing 
modes supported on the MC68851 that are not emulated by the MC68030 
must be simulated or avoided. 

MOTOROLA M068030 USER'S MANUAL 9-51 



9 

9.7 REGISTERS 

The registers of the MMU described here are part of the supervisor pro- 
gramming model for the MC68030. 

The six registers that control and provide status information for address 
translation in the MC68030 are the CPU root pointer register (CRP), the su- 
pervisor root pointer register (SRP), the translation control register (TC), two 
independent transparent translation control registers (TT0 and TT1), and the 
MMU status register (MMUSR). These registers can be accessed directly by 
programs that execute only at the supervisor level. 

9.7.1 Root  Pointer  Registers 

The supervisor root pointer (SRP), used for supervisor accesses only, is en- 
abled or disabled in software. The CPU root pointer (CRP) corresponds to 
the current translation table for user space (when the SRP is enabled) or for 
both user and supervisor space (when the SRP is disabled). The CRP is a 
64-bit register that contains the address and related status information of the 
root of the translation table tree for the current task. When a new task begins 
execution, the operating system typically writes a new root pointer descriptor 
to the CRP. A new translation table address implies that the contents of the 
address translation cache (ATC) may no longer be valid. Therefore, the in- 
struction that loads the CRP can optionally flush the ATC. 

The SRP is a 64-bit register that optionally contains the address and related 
status information of the root of the translation table for supervisor area 
accesses. The SRP is used when operating at the supervisor privilege level 
only when the supervisor root pointer enable bit (SRE) of the translation 
control register (TC) is set. The instruction that loads the SRP can optionally 
flush the ATC. The format of the CRP and SRP is shown in Figure 9-35 and 
defines the following fields: 

Lower/Upper (L/U) 
Specifies that the value contained in the limit field is to be used as the 
unsigned lower limit of indexes into the translation tables when this bit is 
set. When this bit is cleared, the limit field is the unsigned upper limit of 
the translation table indexes. 

9-52 MC68030 USER'S MANUAL MOTOROLA 



Limit 
Specifies a maximum or min imum value for the index to be used at the 
next level of table search (the function code level cannot be limited). To 
suppress the l imit function, the L/U bit is cleared and the l imit field is set 
to ones ($7FFF in the word containing both fields), or the L/U bit is set and 
the l imit field is cleared ($8000 in that word). 

Descriptor Type (DT) 
Specifies the type of descriptor contained in either the root pointer or in 
the first level of the translation table identified by the root pointer. The 
values are: 

$0 INVALID 
This value is not allowed at the root pointer level. When a root pointer 
register is loaded with an invalid root pointer descriptor, an MMU 
configuration exception is taken. 

$1 PAGE DESCRIPTOR 
A translation table for this root pointer does not exist. The MC68030 
internally calculates an ATC entry (page descriptor) for accesses using 
this root pointer within the current page by adding (unsigned) the value 
in the table address field to the incoming logical address. This results 
in direct mapping with a constant offset (the table address). For this 
case, the processor performs a l imit check, regardless of the state of 
the FCL bit in the TC register. 

$2 VALID 4 BYTE 
The translation table at the root of the translation tree contains short- 
format descriptors. The MC68030 must scale the table index for this 
level of the table search by 4 bytes to access the next descriptor. 

$3 VALID 8 BYTE 
The translation table at the root of the translation tree contains long- 
format descriptors. The MC68030 must scale the table index for this 
level of the table search by 8 bytes to access the next descriptor. 

Table Address 
Contains the physical base address (in bits 31-4) of the translation table 
at the root pointer level. When the DT field contains $1, the value in the 
table address field is the offset used to calculate the physical address for 
the page descriptor. The table address field can contain zero (for zero 
offset). 

Unused 
Bits 3-0 of the root pointer are not used and are ignored when written. All 
other unused bits must always be zeros. 

MOTOROLA MC68030 USER'S MANUAL 9-53 



9 

63 48 

9.7 .2  

L/U LIMIT 

o ororo lo lo loro lo loro l01o lo  
TABLE ADDRESS (PA3I-PA16) 

OT 

TABLE ADDRESS (PA15-PA4) UNUSED 

]5 4 0 

L /U  - -  LOWER OR UPPER PAGE RANGE 
DT - -  DESCRIPTOR TYPE 
LIMIT - -  LIMIT ON TABLE INDEX FOB THIS TABLE ADDRESS 
TABLE ADDRESS - -  ADDRESS OF TABLE AT NEXT LEVEL OR PAGE OFFSET IF DT = I 

Figure 9-35. Root Pointer Register (CRP, SRP) Format 

T r a n s l a t i o n  C o n t r o l  Reg is te r  

The translation control register (TC) is a 32-bit register that contains the 
control fields for address translation. All unimplemented fields of this register 
are read as zeros and must always be written as zeros. 

Writing to this register optionally causes a flush of the entire ATC. When 
written with the E bit (bit 31) set (translation enabled), a consistency check 
is performed on the values of PS, IS, and TIx as follows. The TIx fields are 
added together until a zero field is reached, and this sum is added to PS and 
IS. The total must be 32, or an M M U  configuration exception (refer to 9.7.5.3 
M M U  CONFIGURATON EXCEPTION) is taken. If an M M U  configuration ex- 
ception occurs, the TC register is updated with the data, and the E bit is 
cleared. The translation control register is shown in Figure 9-36. 

31 25 24 

TIA TIB 

20 16 

PS IS 

TIC TID 

15 12 8 4 0 

E - -  ENABLE 
SRE - -  SUPERVISOR ROOT POINTER ENABLE 
FCL - -  FUNCTION CODE LOOKUP ENABLE 
PS - -  PAGE SIZE 
IS - -  INITIAL SHIFT 
TIA, TIB, TIC, TID - -  TABLE INDICES 

Figure 9-36. Translation Control Register (TC) Format 

9-54 MC68030 USER'S MANUAL MOTOROLA 



The fields of the TC register are: 

Enable (E) 
This bit enables and disables address translation: 

0 - -  Translation disabled 
1 - -  Translation enabled 

A reset operation clears this bit. When translation is disabled, logical ad- 
dresses are used as physical addresses. The MMU instructions (PTEST, 
PLOAD, PMOVE, PFLUSH) can be executed successfully, regardless of the 
state of the E bit. Addit ional ly, even if the E bit is set, the TC register can 
be updated with a value whose E bit is set. The state of the E bit does not 
affect the use of the transparent translation registers. 

Supervisor Root Pointer Enable (SRE) 
This bit controls the use of the supervisor root pointer register (SRP): 

0 - -  SRP disabled 
1 - -  SRP enabled 

When the SRP is disabled, both user and supervisor accesses use the 
translation table defined by the CRP. When the SRP is enabled, user ac- 
cesses use the CRP, and supervisor accesses use the SRP. 

Function Code Lookup (FCL) 
This bit enables the use of function code lookup for searching the address 
translation tables: 

0 - -  Function code lookup disabled 
1 - -  Function code lookup enabled 

When function code lookup is disabled, the first level of pointer tables 
wi th in the translation table structure is indexed by the logical address field 
defined by TIA. When function code lookup is enabled, the first table of 
the translation table structure is indexed by function code. In this case, the 
l imit field of CRP or SRP is ignored. 

MOTOROLA MC68030 USER'S MANUAL 9-55 

9 



9 

Page Size (PS) 
This 4-bit field specifies the system page size: 

1000 - -  256 bytes 
1001 - -  512 bytes 
1010 - -  1K bytes 
1011 - -  2K bytes 
1100 - -  4K bytes 
1101 - -  8K bytes 
1110 - -  16K bytes 
1111 - -  32K bytes 

All other bit combinat ions are reserved by Motorola for future use; an 
attempt to load other values into this field of the TC register causes an 
MMU configuration exception. 

Initial Shift (IS) 
This 4-bit field contains the number of high-order bits of the logical address 
that are ignored during table search operations. The field contains an in- 
teger, 0-15, which sets the effective size of the logical address to 32-17 
bits, respectively. Since all 32 bits of the address are compared during 
address translation, bits ignored due to initial shift cannot have random 
values. They must be specified and be consistent with the translation table 
values in order to ensure that subsequent address translat ions match the 
corresponding entries in the ATC. 

Table Index (TIA, TIB, TIC, and TID) 
These 4-bit fields specify the numbers of logical address bits used as the 
indexes for the four possible levels of the translation tables (not including 
the optional level indexed by the function codes). The index into the highest 
level table (fol lowing the function code, when used) is specified by TIA, 
and the lowest level, by TID. The fields contain integers, 0-15. When a zero 
value in a TIx field is encountered during a table search operation, the 
search is over unless the indexed descriptor is a table (indirect) descriptor. 

9-56 MC68030 USER'S MANUAL MOTOROLA 



9.7.3 Transparent Translation Registers 

The transparent translation registers (TTO and TT1) are 32-bit registers that 
define blocks of logical address space that are transparently translated. Log- 
ical addresses in a transparently translated block are used as physical ad- 
dresses, without modification and without protection checking. The minimum 
size block that can be defined by either TTx register is 16 Mbytes of logical 
address space. The two TTx registers can specify blocks that overlap. The 
TTx registers operate independently of the E bit in the TC register and the 
state of the MMUDIS signal. A transparent translation register is shown in 
Figure 9-37. 

31 24 23 16 

LOGICAL ADDRESS BASE LOGICAL ADDRESS MASK 

,101010101  01 101 
15 8 7 0 

LOGICAL ADDRESS BASE - -  VALUE OF A31-A24 THAT DEFINES TRANSPARENT BLOCK 
LOGICAL ADDRESS MASK - -  BITS A31-A24 TO BE IGNORED 

E - -  ENABLE 
CI - -  CACHE INHIBIT 
R/W - -  READ/WRITE 
RWM - -  READ WRITE MASK 
FC BASE - -  FUNCTION CODE VALUE FOR TRANSPARENT BLOCK 
FC MASK - -  FUNCTION COOE BITS TO BE IGNORED 

Figure 9-37. Transparent Translation Register (TTO and TT1) Format 

The fields of the transparent translation register are: 

Enable (E) 
This bit enables transparent translation of the block defined by this register: 

0 --Transparent translation disabled 
1 - -  Transparent translation enabled 

A reset operation clears this bit. 

MOTOROLA MC68030 USER'S MANUAL 9-57 



Cache Inhibit (Cl) 
This bit inhibits caching for the transparent block: 

0 - -  Caching allowed 
1 - -  Caching inhibited 

When this bit is set, the contents of a matching address are not stored in 
the internal instruction or data cache. Additionally, the cache inhibit out 
signal (CLOUT) is asserted when this bit is set, and a matching address is 
accessed, signaling external caches to inhibit caching for those accesses. 

Read/Write (R/W) 
This bit defines the type of access that is transparently translated (for a 
matching address): 

0 - -  Write accesses transparent 
1 - -  Read accesses transparent 

Read/Write Mask (RWM) 
This bit masks the R/W field: 

0 - -  R/W field used 
1 - -  R/W field ignored 

When RWM is set to one, both read and write accesses of a matching 
address are transparently translated. For transparent translation of read- 
modify-write cycles with matching addresses, RWM must be set to one. If 
the RWM bit equals zero, neither the read nor the write of any read-modify- 
write cycle is transparently translated with the TTx register. 

Function Code Base (FC BASE) 
This 3-bit field defines the base function code for accesses to be trans- 
parently translated with this register. Addresses with function codes that 
match the FC BASE field (and are otherwise eligible) are transparently 
translated. 

Function Code Mask (FC MASK) 
This 3-bit field contains a mask for the FC BASE field. Setting a bit in this 
field causes the corresponding bit of the FC BASE field to be ignored. 

LOGICAL ADDRESS BASE 
This 8-bit field is compared with address bits A31-A24. Addresses that 
match in this comparison (and are otherwise eligible) are transparently 
translated. 

9-58 MC68030 USER'S MANUAL MOTOROLA 



LOGICAL ADDRESS MASK 
This 8-bit field contains a mask for the LOGICAL ADDRESS BASE field. 
Setting a bit in this field causes the corresponding bit of the LOGICAL 
ADDRESS BASE field to be ignored. Blocks of memory larger than 16 
Mbytes can be transparently translated by setting some of the logical ad- 
dress mask bits to ones. Normally, the low-order bits of this field are set 
to define contiguous blocks larger than 16 Mbytes, although this is not 
required. 

9.7.4 M M U  Status Register 

The MMU status register (MMUSR) is a 16-bit register that contains the status 
information returned by execution of the PTEST instruction. The PTEST in- 
struction searches either the ATC (PTEST with level 0) or the translation tables 
(PTEST with levels of 1-7) to determine status information about the trans- 
lation of a specified logical address. The MMUSR is shown in Figure 9-38. 

15 14 13 12 11 10 9 8 7 6 3 0 

B L S 0 W I M 0 0 T 0 0 0 N 

B - -  BUS ERROR I - -  INVALIO 

L --- LIMIT VIOLATION M - -  MODIFIED 

S - -  SUPERVISOR-ONLY T - -  TRANSPARENT ACCESS 

W - -  WRITE.PROTECTED N - -  NUMBER OF LEVELS 

Figure 9-38. MMU Status Register (MNlUSR) Format 

MOTOROLA MC68030 USER'S MANUAL 9-59 



a ,  • 

The bits in the MMUSR have different meanings for the two kinds of PTEST 
instructions, as shown in Table 9-3. 

Table 9-3. MMUSR Bit Definitions 

MMUSR Bit PTEST, Level 0 

Bus Error (B) This bit is set if the bus error bit 
is set in the ATC entry for the 
specified logical address. 

Limit (L) This bit is cleared. 

Superv iso r  V io la t ion This bit is cleared. 
(s) 

Write Protected (W) 

Invalid (I) 

Modif ied (M) 

Transparent (T) 

This bit is set if the WP bit ofl 
the ATC entry is set. It is un- 
defined if the I bit is set. 

This bit  ind icates an inva l id  
translation. The I bit is set if the 
t rans la t ion  fo r  the spec i f ied 
logical address is not resident 
in the ATC or if the B bit of  the 
corresponding ATC entry is set. 

This bit is set if the ATC entry 
corresponding to the specified 
address has the modified bit set. 
It is undefined if the I bit is set. 

This bit is set if a match oc- 
curred in either (or both) of  the 
transparent translat ion regis- 
ters (TT0 or TT1). If the T bit is 
set, all remaining MMUSR bits 
are undefined. 

Number of Levels (N) This 3-bit field is cleared to zero. 

PTEST, Level 1-7 

This bit is set if a bus error is encountered 
during the table search for the PTEST instruc- 
tion. 

This bit is set if an index exceeds a limit during 
the table search. 

This bit is set if the S bit of  a long (S) format 
table descriptor or tong format page descrip- 
tor encountered during the search is set, and 
the FC2 bit of  the function code Specified by 
the PTEST instruction is not equal to one. The 
S bit is undefined if the I bit is set. 

This bit is set, if a descriptor or page descriptor 
is encountered with the WP bit set during the 
table search. The W bit is undefined if the 
bit is set. 

This bit indicates an invalid translation. The 
bit is set if the DT field of a table or a page 
descriptor encountered during the serach is 
set to invalid or if either the B or L bits of  the 
MMUSR are set during the table search. 

This bit is set if the page descriptor for the 
specified address has the modif ied bit set. It 
is undefined if I is set. 

This bit is set to zero. 

This 3-bit field contains the actual number of  
tables accessed during the search. 

9-60 MC68030 USER'S MANUAL MOTOROLA 



9.7.5 Register Programming Considerations 
If the entries in the address translation cache (ATC) are no longer valid when 
a reset operation occurs, an explicit flush operation must be specified by the 
software. The assertion of RESET disables translations by clearing the E bits 
of the TC and TTx registers, but it does not flush the ATC. Flushing of the 
ATC is optional under control of the FD bit of the PMOVE instruction that 
loads a new value into the SRP, CRP, -I-T0, TT1, or TC register. 

The programmer of the MMU must be aware of effects resulting from loading 
certain registers. A subsequent section describes these effects. The MMUSR 
values lend themselves to the use of a case structure for branching to ap- 
propriate routines in a bus error handler. An example of a f lowchart that 
implements this technique is shown in another section. A third section de- 
scribes the condit ions that result in MMU exceptions. 

9.7.5.1 REGISTER SIDE EFFECTS. The PMOVE instruction is used to load or read 
any of the MMU registers (CRP, SRP, TC, MMUSR, TT0, and TT1). Since 
loading the root pointers, the translation control register, or the transparent 
translation registers with new values can cause some or all of the address 
translations to change, it may be desired to flush the ATC of its contents any 
t ime these registers are written. The opcodes of the PMOVE instructions that 
wri te to CRP, SRP, TC, TT0, and TT1 contain a flush disable (FD) bit that 
opt ional ly f lushes the ATC when these instructions are executed. If the FD 
bit equals one, the ATC is not flushed when the instruction is executed. If 
the FD bit equals zero, the ATC is flushed during the execution of the PMOVE 
instruction. 

9.7.5.2 M M U  STATUS REGISTER DECODING. The seven status bits in the MMU 
status register (MMUSR) indicate condit ions to which the operating system 
should respond. In a typical bus error handler routine, the f lows shown in 
Figures 9-39 and 9-40 can be used to determine the cause of an MMU fault. 
The PTEST instructions set the bits in the MMUSR appropriately, and the 
program can branch to the appropriate code segment for the condition. Figure 
9-39 shows the f low for a PTEST instruction for the ATC (level 0), and Figure 
9-40 shows the f low for a PTEST instruction that a c c e s s e s  a n  address trans- 
lation tree (levels 1-7). 

MOTOROLA MC68030 USER'S MANUAL 9-61 

9 



9 

PTEST <fc>, <ea>. 0 

2_ 
T=O rT;' 2 .  

B=O 

I=0 

B=I 

NO AT! ENTRY 

LIMIT VIOLATION J 

VIOLATION C00E 

Figure 9-39. MMU Status Interpretation PTEST Level 0 

(~ NOTMMU ~ 

9.7.5.3 MMU CONFIGURATION EXCEPTION. The exception vector table in the 
MC68030 assigns a vector for an MMU configuration error exception. The 
configuration exception occurs as the result of loading invalid data into the 
TC, SRP, or CRP register. 

When the TC register is loaded with the E bit set, the MMU performs a 
consistency check of the values in all the four bit fields. The values in the TIx 
fields are added until the first zero is encountered. The values in the PS and 
IS fields are added to the sum of the TIx fields. If the sum is not equal to 32, 
the PMOVE instruction causes an MMU configuration exception. The instruc- 
t ion also causes a configuration exception when a reserved value ($0-$7) is 
placed in the PS field of the TC register. 

A PMOVE instruction that loads either the CRP or the SRP causes an MMU 
configuration exception if the new value of the DT field is zero (invalid). In 
this case, the register is loaded with the new value before the exception is 
taken. 

9-62 MC68030 USER'S MANUAL MOTOROLA 



C 

L = I  J 
BRANCH TO LIMIT 

J VIOLATION CODE 

PTEST <fc>, <ea>. 7 

I=1 

L=O ~ 

8=1 = 

7 
WP=I  WP=D 

WRITE OR RMW 
CYCLE INDICATED IN M = ] M = 0 

~ BRANCH TO WRITE MODIFIEO PAGE 

~ - NO/MMU ) 

Figure 9-40. MNlU Status Interpretation PTEST Level 7 

9.8 M M U  INSTRUCTIONS 

The MC68030 instruction set includes four privileged instructions that per- 
form MMU operations. A brief description of each of these instructions fol- 
lows. 

The PMOVE instruction transfers data between a CPU register or memory 
location and any one of the six MMU registers. The operating system uses 
the PMOVE instruction to control and monitor MMU operation by manipu- 
lating and reading these registers. Optionally, a PMOVE instruction flushes 
the ATC when it loads a value into the TC, SRP, CRP, TT0, or TT1 register. 

MOTOROLA MC68030 USER'S MANUAL 9-63 

9 



9 

The PFLUSH instruction flushes (invalidates) address translation descriptors 
in the ATC. PFLUSHA, a version of the PFLUSH instruction, flushes all entries. 
The PFLUSH instruction flushes all entries with a specified function code or 
the entry with a specified function code and logical address. 

The PLOAD instruction performs a table search operation for a specified 
function code and logical address and then loads the translation for the 
address into the ATC. The operating system can use this instruction to ini- 
tialize the ATC to minimize table searching during program execution. Any 
existing entry in the ATC that translates the specified address is flushed. The 
preload can be executed for either read or write attributes. If the write attribute 
is selected (PLOADW), the MC68030 performs the table search and updates 
all history information in the translation tables (used and modified bits) as 
if a write operation to that address had occurred. Similarly, if the read attribute 
is selected (PLOADR), the history information in the translation table (used 
bit) is updated as if a read operation had occurred. The PLOAD instruction 
does not alter the MMUSR. 

The PTEST instruction either searches the ATC or performs a table search 
operation for a specified function code and logical address, and sets the 
appropriate bits in the MMUSR to indicate conditions encountered during 
the search. The physical address of the last descriptor fetched can be returned 
in an address register. The exception routines of the operating system can 
use this instruction to identify MMU faults. The PTEST instruction does not 
alter the ATC. 

This instruction is primarily used in bus error handling routines. For example, 
if a bus error has occurred, the handler can execute an instruction such as: 

PTESTW #1,([A7, offset]),#7,A0 
This instruction requests that the MC68030 search the translation tables for 
an address in user data space (#1) and examine protection information. This 
particular logical address is obtained from the exception stack frame ([A7, 
offset]). The MC68030 is instructed to search to the bottom of the table (#7 
- -  there cannot be more than six levels) and return the physical address of 
the last table entry used in register A0. After executing this instruction, the 
handler can examine the MMUSR for the source of the fault and use A0 to 
access the last descriptor. Note that the PTESTR and PTESTW instructions 
have identical results except for PTEST0 when either TTx register matches 
the logical address and the R/W bit of that register is not masked. 

The MMU instructions use the same opcodes and coprocessor identification 
(CplD) as the corresponding instructions of the MC68851. All F-line instruc- 
tions with CplD=0 (including MC68851 instructions) that the MC68030 does 

9-64 MC68030  USER'S M A N U A L  M O T O R O L A  



not support automatically cause F-line unimplemented instruction exceptions 
when their execution is attempted in the supervise mode. If execution of a 
unimplemented F-line instruction with CplD = 0 is attempted in the user mode, 
the MC68030 takes a privilege violation exception. F-line instructions with a 
CplD other than zero are executed as coprocessor instructions by the MC68030. 

9.9 DEFINING AND USING PAGE TABLES IN AN OPERATING SYSTEM 

Many factors must be considered when determining how to use the MMU 
in an operating system. The MC68030 provides the flexibility required to 
optimize an operating system for many system implementations. The ex- 
ample operating system described in the next section presents one approach 
to operating system design, with many of the tradeoffs discussed. 

9.9.1 Root Pointer Registers 

An operating system can use the CPU root pointer (CRP) register alone or 
both the CRP and the supervisor root pointer (SRP) registers to point to the 
top level address translation table(s). The choice depends on the complexity 
of the memory layout for the system. When only the CRP is used, it must 
point to a translation table that maps all supervisor and user references. 
However, the supervisor and user translation tables can be separate even 
when only the CRP register is used. When the index to the top level translation 
table is the function code value (FCL in TC register is set), supervisor and 
user tables are separate at all lower levels. With proper structuring of the 
address tables, both methods can provide the same functionality, but each 
has its advantages. 

When the translation tables use the CRP and function code lookup, supervisor 
and user accesses are separate, and each task can have different supervisor 
and user mappings. Alternatively, the entries in the function code tables that 
correspond to the supervisor spaces for each task can all point to the same 
tables to provide a common mapping for all supervisor references. 

When the mapping of the supervisor address space is identical for all tasks, 
the SRP can be used in conjunction with the CRP to provide a more simple 
and efficient way to define the mapping. This technique suppresses the use 
of the function code (unless the program and data spaces require distinct 
mappings) and separates supervisor and user accesses at the root pointer 
level of the translation tables. A single translation table maps all supervisor 

MOTOROLA MC68030 USER'S MANUAL 9-65 

9 



9 

accesses without maintaining a large number of supervisor pointers in the 
translation tables for each task, resulting in reduced bus activity for table 
searches. 

9.9.2 Task Memory  Map Definition 

The MC68030 provides several different means by which the supervisor can 
access the user address spaces. The supervisor can access any user address, 
regardless of how the virtual space is partitioned, with the MOVES (move 
space) instruction. Some systems provide a complete 4-Gbyte virtual memory 
map for each task. Indeed, an operating system that runs other operating 
systems in a virtual machine environment must provide a complete map to 
accurately emulate the full addressing range for the subordinate operating 
system. 

With the large address space of the MC68030, each individual user task or 
all user tasks can share the address space with the operating system. One 
method of performing this function is implemented in the example operating 
system in the next section. Sharing the address space provides direct access 
to user data items by the operating system. Another advantage of this map- 
ping method is that tasks can easily share code: Common routines such as 
file I/O handlers and arithmetic conversion packages can be written re-entrantly 
and be restricted to read-only access from all user tasks in the system. 

The simplest example of a shared virtual address space system is one in 
which each user and supervisor process is given a unique virtual address 
range within the single 4-Gbyte virtual address space. In other words, the 
system has only one linear virtual address space; all processes run some- 
where in that space. Only one translation table tree is required for the entire 
system, but each task can have individual tables if desired. With the common 
tree approach, the operating system can access any item of any task without 
modifying the root pointer. Otherwise, only the currently active task is im- 
mediately accessible, which often is adequate. To switch tasks, the operating 
system only has to update the user program and user data pointers in the 
highest level translation table indexed by the function code. This gives each 
task access to its own data only. This scheme has the advantages of simple 
table management and easy sharing of common items by giving them the 
same virtual address for all tasks in the system. This scheme might be ideal 
for real-time systems that do not require more complexity in memory man- 
agement facilities. 

9-66 MC68030 USER'S MANUAL MOTOROLA 



The next logical step toward increased operating system complexity, with 
shared user and supervisor virtual memory maps, is to keep the supervisor 
addresses separate but to give each user task its own use of the remainder 
of the virtual space. For example, each user task could have the virtual mem- 
ory space from zero to 512 Mbytes; the operating system programs and data 
would occupy the remainder of the space, from 512 Mbytes up to 4 Gbytes. 
Each user task has its own set of translation tables. The supervisor root 
pointer may or may not be used, depending on whether the user tables also 
map the supervisor space. As in the preceding method, the user cannot access 
the operating system portion of the address space unless the operating sys- 
tem allows it or wishes to share common routines. The advantages of this 
scheme are that it provides a much larger virtual address space for each user 
task and it avoids virtual memory fragmentation problems. Disadvantages 
of this scheme include the requirement for sl ightly more complex table man- 
agement and the restriction of operating system access to only the current 
user task. 

There are few absolute rules in the use of the MC68030 MMU. In general, 
the statement regarding restricting operating system access to only one user 
task using the scheme described in the preceding paragraph holds true. 
However, by using the entire 4-Gbyte virtual address space and cross map- 
ping the address space, the supervisor can access each user task space as 
a distinct portion of its own supervisor map. If each user task is l imited to a 
16-Mbyte virtual address space and the supervisor only requires a 16-Mbyte 
address space, 256 such address spaces can be mapped simultaneously. The 
supervisor translation tables can include each of these spaces, and the su- 
pervisor can access each task using indexed addressing with a register that 
contains the proper constant for a particular task. This constant provides a 
supervisor-to-user virtual address conversion. A systems programmer can 
implement some very sophisticated functions that exploi t  the f lexibi l i ty of 
the MMU. 

The most complex systems and those that implement virtual machine ca- 
pabil i ty completely separate the virtual address spaces of the supervisor and 
all user tasks, or possibly even those of individual supervisor tasks. Each 
user or supervisor task has its own virtual memory space starting at zero 
and extending to 4 Gbytes. Using the function code, a 4-Gbyte address space 
for the program and another for its data can be provided for each task. Both 
the SRP and the CRP are probab!y used, since nothing is common among 
the various spaces. The operating system uses the MOVES instruction to 
interact with the user space. The advantages of this implementat ion are the 
maximum availabil i ty of the virtual space and a complete logical separation 

MOTOROLA MC68030 USER'S MANUAL 9-67 



of addresses. Virtual machine implementations require maximum availability 
of virtual space. The disadvantages are the more complex table management 
and the more restrictive accesses to other address spaces. 

9.9.3 Impact of M M U  Features on Table Definition 

The features of the MMU that impact table definition are usually considered 
after deciding how to map memory for the tasks. For some systems, these 
features can affect the mapping decision and should be considered when 
making that decision. 

9.9.3.1 NUMBER OF TABLE LEVELS. The MMU supports from zero to five levels 
(six levels with the use of indirection) in the address translation tables. The 
zero-level case is early termination at the root pointer. This provides a limit 
check on the range of physical addresses for the system. It is used primarily 
in systems that require the limit check on physical addresses. 

Systems that support large page sizes or that require only limited amounts 
of virtual memory space can use single-level tables. A single-level translation 
tree with 32K-byte pages may be the best choice for systems that are primarily 
numerically intensive (i.e., the system is involved in arithmetic manipulations 
rather than data movement) where the overhead of virtual page faults and 
paging I/O must be minimized. This type of system can map a 16-Mbyte 
address space with only 2K bytes of page table space. With this much mapped 
address space, table search time becomes insignificant. 

At another extreme is a single-user business system that only needs a 
2-Mbyte virtual address space. A 512-byte page size might be best for this 
system, because the block size formats of many Winchester hard disk file 
systems is 512 bytes. A page table that completely maps the 2-Mbyte space 
requires only 16K bytes of memory, and the ATC entries directly map 11K 
bytes of virtual space at any one time. The page tables for this system and 
the one described in the preceding paragraph are small enough to be per- 
manently allocated in the operating system data area. They incur virtually 
no management or swapping overhead. 

A two-level address translation table provides a lower page level similar to 
the page tables in the two preceding paragraphs and additional direction at 
a higher level. For example, in a system using 32K-byte pages and 512-entry 
page tables, the upper level translation table contains 256 entries of short- 
format descriptors, requiring 1K bytes for the table. Each of the upper table 

9-68 MC68030 USER'S MANUAL MOTOROLA 



entries maps a 16-Mbyte region of the virtual address space. The primary 
advantage of a two-level table for large "number-crunching" system is the 
operating system designer's ability to make a tradeoff between page size 
and table size. The system designer may choose a smaller page size to fit 
the block sizes on available I/O devices, yet keep the tables manageable. 
However, the designer must also consider the performance penalty associ- 
ated with smaller page sizes. Systems with smaller page sizes have a higher 
frequency of page faults requiring more table search time and paging I/O. 
With the flexibility of the MC68030 MMU, the designer has enough choices 
to optimize table structure design and page size. 

Three-level translation tables are useful when the operating system makes 
heavy use of shared memory spaces and/or shared page tables. Sophisticated 
systems often share translation tables or program and data areas defined at 
the page table level. When a table entry can point to a translation table also 
used by a different task, sharing memory areas becomes efficient. The direct 
access to user address space by the supervisor is an example of sharing 
memory. 

Some artificial intelligence systems require very large virtual address spaces 
with only small fragments of memory allocated among these widely differing 
addresses. This fragmentation is due to the complex and recursive actions 

t h e  system performs on lists of data. These actions require the system to 
constantly allocate and free sophisticated pointers and linked lists in the 
memory map, The fragmentation suggests a small page size to utilize mem- 
ory most efficiently. However, small pages in a large virtual memory map 
require relatively large translation tables. For example, to map 4 Gbytes of 
virtual address space with 256-byte pages, the page tables alone require 64 
Mbytes. With a three- or four-level table structure, the number of actual 
translation table entries can be drastically reduced. The designer can use 
invalid descriptors to represent blocks of unused addresses and the limit 
fields in valid descriptors to minimize the sizes of pointer and page tables. 
In addition, paging of the address tables themselves reduces memory re- 
quirements. 

9.9.3.2 INITIAL SHIFT COUNT. The initial shift field (IS) of the translation control 
register (TC) can decrease the size of translation tables. When the required 
virtual address space can be addressed with fewer than 32 bits, the IS field 
reduces the size of the virtual address space by discarding the appropriate 
number of the most significant logical address bits. This technique inhibits 

MOTOROLA MC68030 USER'S MANUAL 9-69 

9 



9 

the system's ability to detect very large illegal (i.e., out-of-bounds) addresses. 
Using the full 32-bit address and reducing the table size with invalid descrip- 
tors and limited pointer and page table sizes prevents this problem. 

9.9.3.3 LIMIT FIELDS Except for a table indexed by function code, every pointer 
and page table can have a defined limit on its size. Defining limits provides 
flexibility in the operating system and saves memory in the translation tables. 
The limit field of a table descriptor limits the size of the table to which it 
points. The limit can be either an upper or a lower limit, using either the 
lower or higher addresses within the range of the table. Since a task seldom 
requires the maximum number of possible virtual pages, this reduction in 
table size is practical. 

For example, when an operating system uses 4K-byte pages and runs nu- 
merous small tasks that average 80K bytes each in size, each task requires 
a 20-entry page table. The system can limit the size of each table to 80 bytes, 
or 800 bytes for ten tasks. Without the limit, an operating system running 
ten of these tasks would require 40K bytes of space for the page tables alone 
(one table per page). 

Memory savings required for translation tables is especially significant for 
artificial intelligence systems these systems tend to require very large mem- 
ory maps. By using limit fields, each table is only as large as the number of 
active entries within it. This limit can change as the table grows. For higher 
level tables, each table only grows as the additional entries require. The use 
of three or four levels of tables facilitates the management of these tables. 

9.9.3.4 EARLY TERMINATION PAGE DESCRIPTORS. A page descriptor residing 
in a pointer table is an early termination page descriptor mapping an entire 
block of pages. That is, it maps a contiguous range of virtual addresses to a 
contiguous range of physical addresses. For example, an operating system 
could reserve a 32K-byte area for special supervisor I/O peripheral devices. 
This area can be mapped with a single early termination descriptor to save 
translation table size and table search overhead. The descriptor can use the 
limit field to reduce the size of the contiguous block when the block size is 
smaller than the virtual address space that the particular descriptor repre- 
sents. The MC68030 creates multiple ATC entries (one for each page) for the 
range of virtual addresses represented by the early termination descriptor 
as the pages are accessed, 

9-70 MC68030 USER'S MANUAL MOTOROLA 



An operating system can use an early termination page descriptor to map a 
contiguous block of memory for each task (both program and data). The tasks 
can be relocated by changing the physical address portion of the descriptor. 
This scheme is useful when the tasks in a system consist of one or a few 
sequential blocks of memory that can be swapped as a group. The operating 
system memory map can treat the entire address space within these blocks 
as a uniform virtual space available for all tasks. The system only requires 
one translation table; by the use of limit fields and early termination page 
descriptors, it maps complete segments of memory. 

9.9.3.5 INDIRECT DESCRIPTORS. An indirect descriptor is a table descriptor re- 
siding in a page table. It points to another page descriptor in the translation 
tree. Using an indirect descriptor for a page makes the page common to 
several tasks. History information for a c o m m o n  page is maintained in only 
one descriptor. Access to the page sets the used (U) bit, and a write operation 
to the page sets the M (modified) bit for that page. When the operating system 
is searching for an available page, it simply checks the page table containing 
the descriptor for the common page to determine its status. With other meth- 
ods of page sharing, the system would have to check page tables for all 
sharing tasks to determine the status of the common page. 

9,9.3.6 USING UNUSED DESCRIPTOR BITS. In general, the bits in the unused 
fields of many types of descriptors are available to the operating system for 
its own purposes. The invalid descriptor, in particular, uses only two bits of 
the 32 (short) or 64 (long) bits available with that format. An operating system 
typically uses these fields for the software flags, indicating whether the virtual 
address space is allocated and whether an image resides on the paging 
device. Also, these fields often contain the physical address of the image. 

The operating system often maintains information in an unused field about 
a page resident in memory. This information may be an aging counter or 
some other indication of the page's frequency of use. This information helps 
the operating system to identify the pages that are least likely to impact 
system performance if they are reallocated. The system should first use 
physical page frames that are not allocated to a virtual page. Next it should 
use pages with the longest time since the most recent access. Pages that do 
not have the M (modified) bit set should be taken first, since they do not 
need to be copied to the paging device (the existing image remains valid). 

MOTOROLA MC68030 USER'S MANUAL 9-71 

9 



9 

An aging counter can be set up in an unused field of a page descriptor. The 
system can periodically check the U (used) bit for the page and increment 
the count when the page has not been used since the previous check. The 
system can identify the least recently used page from the counts in the aging 
counter. When the counter for a page overflows, the system can list the page 
in a queue of least recently used pages from which it chooses the next page 
to be reallocated. 

Many schemes afford the operating system designer a variety in selecting a 
page to be taken. One operating system scans page tables, starting at the 
lowest priority task, looking for aged pages to steal. Another system main- 
tains a system-wide list of all page frames as they are used and scans the 
list, starting at the oldest, to find a page to steal. A sophisticated system 
keeps a working set model of active pages for each individual task. From this 
information, it can swap a complete block of pages in and out with a single 
t/O operation. The method chosen can have a dramatic impact on limiting 
page fault overhead in a heavily used system. 

9.10 AN EXAMPLE OF PAGING IMPLEMENTATION IN AN 
OPERATING SYSTEM 

This section describes an example operating system design that illustrates 
some of the MMU features. The description suggests alternatives to provide 
variations of the design. Memory management algorithms that can be im- 
plemented to derive the actual code are shown. A bus error handler routine 
is shown also. Implementing the algorithms develops the basic code for the 
memory management services of an operating system. 

9.10.1 System Description 

The example system has the ability to map a large virtual memory task space, 
which is required for execution of predominantly numerically intensive pro- 
cessing tasks. Most of these tasks do not need more than 16 Mbytes of 
memory, but the system can supply a larger virtual memory space (as large 
as 496 Mbytes) to the occasional task that requires more. The system uses 
the relatively large page size of 8K bytes to minimize thrashing and translation 
table searches. With a larger page size, fewer descriptors can map a large 
area of virtual memory. Also, in a given period of time, the MC68030 expe- 
riences fewer ATC misses and performs fewer table searches. The larger 
page size requires the paging I/O operations to transfer larger blocks of data, 
and sometimes only a small part of the page is actually used. However, 
preliminary software model simulations show that 8K-byte pages provide 
optimum performance for this type of processing. 

9-72 MC68030 USER'S MANUAL MOTOROLA 



The average task for this system is a compiler or text editor that requires 
only 192K bytes of memory, or 24 8K-byte pages. Using short page descrip- 
tors, the page table occupies 96 bytes. 

Page tables can reside at any 16-byte boundary; the limit fields of the MMU 
can provide the area needed without requiring excess space. This results in 
an address table area small enough to be completely resident in physical 
memory. The operating system does not need to page the table areas. 

The paging hardware of many computer systems requires lower level tables 
to reside at page boundaries, effectively using one or more entire pages. 
This requires 80K bytes for the page tables for 10 tasks (10 tables, one 8K- 
byte page per table). Then, when the memory required for an upper level of 
tables is added, at a minimum of 8K bytes per task, the total comes to over 
160K bytes. Table base addresses in the MC68030 are zero modulo 16 ad- 
dresses. This results in a dramatic savings of memory for address table space; 
instead of using 80K bytes for the page tables for 10 tasks, (10 tables, one 
8K-byte page per table), the MC68030 needs 960 bytes. Instead of 8K bytes 
per task for the upper level of tables, the tables require 2560 bytes in the 
MC68030. The fragmentation that may occur in allocating smaller tables could 
increasethe memory requirement but would still remain less than 160K bytes. 

The translation table tree for the example system consists of two levels. The 
upper level is a fixed table that contains 32 entries, each of which is a long- 
format table descriptor that points to a lower level page table. Each page 
table maps as many as 16 Mbytes of virtual address space. Since the upper 
level table is small (256 bytes), it can easily fit in the main control block of 
the task. When the system dispatches a new task, it loads a pointer to the 
upper level table for the task into the CRP register. Each lower level table 
consists of 0-2048 short-format page descriptors. The limit entry in the table 
descriptor for a page table determines the size of the table. For the average 
192K-byte task, the upper level table usually has one valid entry, and this 
entry points to a lower level table with an average size of 96 bytes. A task 
that requires more than 16 Mbytes uses more than one valid entry in the 
higher level table. 

MOTOROLA MC68030 USER'S MANUAL 9-73 



9 

In a typical computer system, with 64K bytes of boot and diagnostics ROM, 
a 64K I/O area, and 1 Mbyte of RAM, the physical mapping appears as follows: 

LOW MEMORY 

0,i  i 
1M 

2M 

3M 

BOOT AND OlAGNOSTICS ROM 

UNMAPPED 

HARDWAREI/0 

SYSTEM RAM 

The operating system must control memory allocation for physical memory 
(page frames) to hold the pages of virtual memory. All available physical 
memory is divided into page frames, each of which can hold a page of virtual 
memory. A system with 4 Mbytes of actual memory is divided into 512 
8K-byte frames that can theoretically hold 512 pages of active virtual memory 
at any one time. Usually, operating system components (exception handlers, 
the kernel, private memory pool) permanently reside in some of the memory. 
Only the remaining page frames are available for virtual memory pages. 

The operating system maintains a linked list of all unallocated page frames. 
One simple way to do this is for each unallocated frame to contain a pointer 
to the next frame. The operating system takes the first page frame on the 
list when a frame is required. An operating system primitive called GetFrame 
performs this function and returns the physical address of an available frame. 
When all frames are allocated, GetFrame steals a frame from another task. 
GetFrame first looks for an unmodified frame to steal. An unmodified frame 
could be stolen without waiting for the page to be copied back to the external 
storage device that stores virtual page images. (This device is called the 
paging device orthe backing store.) If no unmodified page frame is available, 
GetFrame must wait while the system copies a modified page to the paging 
device, then steals the page frame and returns to the caller with the physical 
address. 

Next, the operating system needs physical memory management routines 
to allocate and free supervisor work memory. The routine must allocate 
pieces of memory on boundaries of at least modulo 16, the requirement for 

9-74 MC68030 USER'S MANUAL MOTOROLA 



address translat ion tables. Typical ly, this type of rout ine allocates pieces of 
certain sizes. GetReal is the al location rout ine; ReturnReal is the return rou- 
tine. They use physical addresses. 

With physical memory  al location provided for, the operat ing system must  
be able to manage virtual memory  for all tasks. To do this, the system must 
be aware of the virtual memory  map. It must know the total amount  of virtual 
memory  space, how much is allocated, and which areas are available to be 
assigned to tasks. The virtual memory  map looks like this: 

LOW MEMORY 

0 

1M 

2M 

3M 

16M 

9 528M 

OS KERNEL 

HARDWARE I/0 

DIRECT MAPPED 
(LOGICAL = PHYSICAL) 

UNUSED 

USER PROGRAM/DATA/STACK 
(496M) 

Virtual addresses for this virtual memory  are subdiv ided:  

31 
I xxxu uuuu oooo oooo IIII IIII IIio 0 0 0 0  

0 

I 
x --  Ignored (3 bits) 
u --  Upper level index (5 bits), maps 32 long-table entries 
(-- Lower level index (11 bitsJ, maps 2048 short-page entries 

MOTOROLA MC68030 USER'S M A N U A L  9-75 



9 

The translation table structure consists of: 
CRP0 upper level table in the task control block, which contains 32 long 

pointers: 
[0] 0 lower level table common to all tasks; maps all operating system 

areas (first 4 Mbytes of virtual space). This common table contains 
512 short-page entries (2K bytes). 
lower level table for first 16 Mbytes of user program/data/stack area. [1] j 

[31]B lower level table for last 16 Mbytes (of 496 total) of user program/ 
data/stack area. 

The user program can only access virtual addresses starting at 16 Mbytes 
and extending upward to the limit of 512 Mbytes. The code, the data, and 
the stacks for user tasks are allocated in this area of virtual memory. Super- 
visor programs can access the entire virtual map; they can access addresses 
that directly access the I/O ports as well as the entire physical memory at 
untranslated addresses. The address tables are set up so that virtual ad- 
dresses are equal to the physical addresses for the supervisor between 1 and 
3 Mbytes. Folding the physical address space into the virtual space greatly 
simplifies operations that use physical addresses. The folding does not nec- 
essarily mean that the virtual addresses are the same as the physical ad- 
dresses. For example, the boot/diagnostic ROM at physical address zero could 
be assigned a virtual address of 3 Mbytes. However, any external bus masters 
or circuitry (such as breakpoint registers) resident on the physical side of the 
bus must have physical addresses. This requires the overhead of operating 
system code to perform address translation. 

This virtual memory map provides supervisor addresses that are unique with 
respect to user addresses; all supervisor routines can directly access any 
user area without being restricted to certain instructions or addressing modes. 
The separate user and supervisor maps suggest that two root pointers should 
be used, one for the supervisor map and one for the user map. However, 
the supervisor must be able to access user translation tables for proper access 
to user data items. With separate root pointers, the supervisor table structure 
must be linked to that of the user. To do this requires an additional level of 
table lookup (function code level) for the supervisor address table. 

This example uses a simpler scheme instead. Only the CPU root pointer is 
used, and, for each task, the first entry of the upper level table (for the 
supervisor portion, the first 16 Mbytes of virtual address space) points to the 
same lower level table. This common lower level table has supervisor pro- 

9-76 MC68030 USER'S MANUAL MOTOROLA 



tection and maps the entire virtual operating system, physical I/0, and phys- 
ical memory areas. This scheme avoids the requirement for extra lookup 
levels or pointer manipulat ions during a task switch to furnish correct access 
across the user/supervisor boundary. All the operating system has to do when 
creating the address table for a new task is to set the first upper level table 
entry to point to the common page table of the supervisor. 

To solve the problem of accounting for virtual memory areas assigned to a 
user task, the operating system uses the existing translation tables to identify 
these areas. When a valid descriptor points to a given virtual address page, 
this 8K-byte page of memory has been allocated. This scheme provides areas 
of memory that are mult iples of the 8K-byte page size. Due to the 8K gran- 
ularity, this scheme would be inadequate for tasks that continual ly request 
and return virtual memory space. As a result, some other technique would 
be used (perhaps auxi l iary tables to show virtual space availability). The tasks 
in this system seldom request additional memory space; any request made 
is for a large area. This scheme suffices. The application programs and util it ies 
that run in the UNIX (r) environment have similar requirements for memory. 

The operating system primit ive GetVirtual allocates virtual memory space 
for tasks. The input parameter is a block size, in bytes; GetVirtual returns the 
virtual address for the new block. GetVirtual first checks that the requested 
size is not too large. Then it scans the translation tables looking for an un- 
allocated virtual memory area large enough to hold the requested block. If 
it does not find enough space, GetVirtual attempts to increase the page table 
size to its maximum. If this does not provide the space, GetVirtual returns 
an error indication. When the routine f inds enough virtual space for the block, 
it sets the page descriptors for the block to virgin status (invalid, but allo- 
cated). When these pages are first used, a page fault is generated. The op- 
erating system allocates a page frame for the page and replaces the descriptor 
with a valid page descriptor. The status (indicated by a software flag in the 
invalid descriptor) tells the operating system that the paging device does not 
have a page image for this page; no read operation from the paging device 
is required. 

When the status of an invalid descriptor indicates that a page image must 
be read in, primit ive SwaplnPage, reads in the image. The input parameter 
for this routine is the invalid descriptor, which contains the disk address of 
the page image. Before returning, SwaplnPage replaces the invalid descriptor 
with a valid page descriptor that contains the page address. The page is now 
ready for use. 

MOTOROLA MC68030 USER'S MANUAL 9-77 

9 



9 

These routines provide many of the functions required for the memory man- 
agement services of an operating system, but a complete memory manage- 
ment system requires a complementary function for each routine. The 
complementary function usually performs the same steps in the reverse 
order. The complement of GetVirtual could be ReturnVirtual; for SwaplnPage, 
the complement might be SwapOutPage. These counterparts can be derived 
to perform similar steps in the reverse order. 

9.10.2 A l locat ion  Rout ines  

This section describes the central routine Vallocate, which user programs 
call to obtain memory. In this section (and the next), a loose high-level lan- 
guage syntax is used for the code. The code takes many liberties to enhance 
readability. For example, the code assigns descriptive strings for return status 
values. These strings typically represent binary values. Also, the code uses 
empty brackets to represent obvious subscripts in loops that scan tables. In 
such a loop, the subscript on the second line is obvious: 

for Upper-Table-Index= 1 to 31 do 
if Upper-Table [Upper-Table-lndex].Status = invalid then ... 

In the code shown here, the second line is: 
if Upper-Table [].Status= invalid then ... 

The code uses flag operations that are assumed to be defined elsewhere in 
the system. They may imply more complex operations than bit manipula- 
tions. For example, page table status of invalid virgin can be implemented 
with an invalid descriptor instead of the page descriptor, and a software flag 
bit in the descriptor that indicates the page is allocated but has never been 
used (the paging device has no page image). 

Vallocate has a single input parameter, the required memory size in bytes. 
It returns status information and the virtual address of the start of the area 
(if the memory is allocated). To simplify the routine, it always returns a 
multiple of the system page size and never allocates a block that crosses a 
16-Mbyte boundary. It could allocate a portion of a page by implementing a 
control structure to subdivide a page, but, if the control structure were within 
the allocated page, the user could corrupt it. The block could cross a 
16-Mbyte boundary if the routine included code to keep track of consecutive 
free blocks when scanning the lower level tables, each of which represents 
16 Mbytes of address space. Once the total area is located, Vallocate allocates 
the consecutive blocks and returns the address of the lowest block. 

The 32 upper level table entries are long pointer types; each represents 16 
Mbytes of virtual address space. Each entry is either invalid (has no lower 
page tables) or allocated (has lower page tables and a limit field that defines 

9-78 MC68030 USER'S MANUAL MOTOROLA 



the table size). By convention, the first entry maps the supervisor address 
space and has supervisor protection. The routine never modifies this first 
entry. The 31 entries after the first are available to be allocated as user address 
space. 

A routine similar to this that linearly extends (grows) a previously allocated 
memory block could be written. A stack is a good example. The operating 
system can allocate the top of the memory (the thirty-second upper level 
table entry) as a stack that grows downward from the highest address. If a 
task needs several large stacks, a 16-Mbyte block can be used for each stack, 
with a software flag set to indicate growth in a downward direction. 

The logic of Vallocate is: 

1. Validate the request and calculate number of pages required. 

2. Scan each upper table entry's lower page tables (where they exist) 
looking for an adequate group of unallocated pages. 

3. If no space is found, see if the lower table is less than its maximum size 
and if the block can be allocated by expanding it at the end. 

4. If still no space is found, use the next free upper table entry and initialize 
its new lower level page table to allocate the block here. 

5. Set allocated page entries to indicate virgin status (allocated, invalid, 
and not swapped out). 

6. Return status. If status is OK, also return virtual address. 

The code for Vallocate is: 

Vallocate (SlzelnBytes, VlrtualAddressReturned, Status); 

/* The following are global to all routines 

/* Symbolicly define the upper level pointer table 

Declare Upper_Table[32] Record of 
Status=(unallocated, allocated), 
Limit_Field=(O to 4k), 
Pointer; 

*/ 

*/ 

/* Symbolicly define the lower level page table 

/* lower table here or not */ 
/* limff for lower page table */ 
/*address of lower page table if allocated */ 

°/ 

Declare Lower_Table[O to Limit_Field] Based Record of 
Status=(invalid_unallocated, /*not allocated to User */ 

invalid_paged ou t ,  /*allocated but paged out */ 
invalid_virgin, /*allocated but not yet used */ 
valid in memory), /*allocated and in memory °/ 

Pointer; /*physical address or disk address of page */ 

MOTOROLA MC68030 USER'S MANUAL 9-79 

9 



9 

Declare Upper_Table Index, Lower Level_Index; 

Declare NumPages; 

Status = "Out of virtual Memory"; 

if SizelnBytes > 16 megabytes then exit Vallocate; 

NumPages = (SizelnBytes+PageSize-1)/PageSize; 

/* Scan User eligible page tables 

/*table indexes */ 

/* number of pages required to hold request */ 

/* default result status to this error */ 

/* Pages needed */ 

*/ 

for Upper_Table_Index = 1 to 31 do 
If Upper_Table[].Status = allocated then call SearchPageTable; 
If Status = "OK" then Exit Val locate; 
end; 

/* Block not found so find upper level entry unallocated and call SearchPageTable that will 'expand' */ 
/* the null table to hold the block. */ 

for Upper_Table_Index = 1 to 31 
]f Upper_Table[].Status = unallocated then call SearchPageTable; 

/* No more virtual space, exit leaving Status = "out of virtual memory" */ 

exit Vallocate; 

Procedure SearchPageTable; 

/* Scan table pointed to by upper level index to see if it can hold the block. If not, see if it can be */ 
/* be expanded. If successful then set flags in the page entries, set status to "OK" and User's */ 
/* virtual address */ 

Declare Maxfound; /* Count of consecutive free blocks found */ 

Maxfound = 0; 
For Lower_Level_Index = 0 to UppeLTable[].Lim]LField 

/* count consecutive free pages until Maxfound met or not */ 
If Lower_Table[].Status = invalid_unallocated then do 

Maxfound = Maxfound+l; 
if Maxfound >= NumPages then do 

9-80 MC68030 USER'S M A N U A L  MOTOROLA 



/* Found! Now llag the page entries, update the MC68030 and */ 
/* return the User's virtual address */ 
while (Maxfound > 0) do 

Lower_Table[].Status = inval idvirgin; 
Lower_Level_Index -- Lower_Level_Index-1 ; 

end; 

Status = "OK"; 
VirtualAddressRetumed = 

Uppe r_Level_lndex*16M eg + 
Lower Levet lndex*8k;  

PLOAD (VirtualAddressRetumed); 
exit SearchPageTables; 
end; 

end; 

/* allocated page hit so start counting from zero again */ 
else Maxfound = 0; 

/* If we get here there was not room. See if we can expand the page table to hold the new block */ 
/* If so grow it and set the new page entries as virgin */ 

If Upper. Table[].Limit + NumPages < 4k then do 
NewLimit = Upper_Table[].Limit + NumPages; 

/* We can grow the page table! First get area for new table */ 
Call GetReal(4*NewLimit, NewPageTable); 

/* Now copy the first part of the old table into the new */ 
for Lower_Table_Index = 0 to Upper_Table[].Limit 

NewPageTable->Lower_Table[] = Lower_Table[] 

/* Return the old table and install the new table pointer */ 
Call ReturnReal(4*Upper_Table[].Limit, Upper_Table[].Pointer); 

Upper. Table[].Pointer = NewPageTable; 

/* Set returned virtual address and load if replacing the old */ 
VirtualAddressReturned = Upper_Level Index*16Meg + Lower_Level_lndex*8k; 
PLOAD (VirtualAddressReturned) /* refresh MC68030 *! 

/* Set all the new entries at the end to virgin status */ 
While (Lower_Table_Index < NewLimit) do 

Lower Table_Index = Lower Table_Index + 1 ; 
Lower Table[].Status = invalid._virgin; 
end; 

/* Set OK status and return with it q 
Status = "OK"; 
exit SearchPageTablee; 
end; 

/* cannot expand the table, return with status unchanged (failed) */ 
end SearchPageTablea; 

MOTOROLA MC68030 USER'S M A N U A L  9-81 

9 



9 

9.10.3 Bus Error Handler Routine 

The routine that processes bus error exceptions is the most critical part of 
the memory management services provided by the example operating sys- 
tem. This routine must determine the val idity of page faults and perform the 
necessary processing. It must identify the condit ions that aborted the exe- 
cuting task. The PTEST instruction can investigate the cause of a bus error 
by performing a table search using the address and type of access that 
produced the error, accumulating status information during the search. 

When the PTEST instruction does not find any error, the bus error was most 
likely a malfunction (for example, a transient memory failure). The operating 
system must respond appropriately. 

The table search performed by the PTEST instruction may end in a bus error 
termination. Either the address translation tables are not correctly built or 
main memory has failed (either a transient or permanent failure). 

A supervisor protection violat ion or a write protection violat ion usually in- 
dicates that the task generating the exception attempted to access an area. 
of the virtual address space that is not part of the task's address space. The 
operating system usually recovers from such an error by terminat ing (abort- 
ing) the task. 

When the PTEST instruction returns the invalid status, the bus error is a page 
fault, and the operating system must identify the specific type of page fault. 
When the l imit violat ion bit returned by the PTEST instruction is set, the task 
that took the exception was trying to access a page that has not been allo- 
cated. The example system aborts the task in this case. In other systems, 
this is an implicit  request for more virtual memory, particularly i f the reference 
is in a stack area. 

When no l imit violat ion occurred, a descriptor is invalid. Typically, the de- 
scriptor contains software flags that provide relevant information. The ex- 
ample operating system checks to see if the invalid descriptor is in an upper 
level or a lower level table. When the descriptor is in the upper level table, 
the task was attempting to access unallocated virtual memory, and the system 
aborts the task. When the descriptor is in a lower level table, the system 
checks software flags to identify the invalid descriptor. 

When the software flags indicate that the descriptor corresponds to an un- 
allocated page, the system aborts the task. When the descriptor refers to a 
virgin page (allocated, but not yet accessed) and the request for the page 

9-82 MC68030 USER'S MANUAL MOTOROLA 



was a read request, the page is actually invalid because the read operation 
reads unknown data. However, the example operating system does not con- 
sider the type of request, but assigns a physical page frame to the page and 
writes the page descriptor to the page table. Some systems clear virgin pages 
to zero. 

When the software flags indicate that the page is allocated and the image 
has been copied to the paging device, the operating system assigns a page 
frame, reads the page image into the frame, and writes the page descriptor 
to the page table. Another possible type of invalid descriptor is one that 
requires special processing, such as one that refers to a virtual I/0 device 
area in a virtual machine. 

Obtaining a page frame for a virtual page may be an obvious operat ion. 
However, when no idle page frame is available, the system must steal one. 
If the page in the stolen frame has been modified in memory, the system 
must save the page image on the paging device. The system must alter the 
translation table of the task that loses the frame to show that the page is 
allocated and swapped out. Typically, the translation table entry shows the 
address of the page image on the paging device. 

The method a system uses to select a page frame to steal varies a great deal 
from system to system. A simple system may just steal a page from the 
lowest priority task. More advanced systems select the page frame that has 
not been accessed for the longest time. This process, called aging, is done 
in several ways. One method uses bits of the page descriptor as an aging 
counter. Periodically, the operating system examines the U (used) bits and 
increments the count for pages that have not been used. The system main- 
tains a list of pages with aging counters that have overflowed. The pages on 
this list are available for stealing. 

Some systems keep a separate list of pages that have not been modified 
since the page image was read from memory. The page frames that contain 
these pages can be stolen without swapping out because the existing page 
image on the paging device remains valid. 

Page stealing software can involve many dynamics of the system. It can 
consider task priority, I/0 activity, working-set determinations, the number 
of executing tasks, a thrashing level, and other factors. 

MOTOROLA MC68030 USER'S MANUAL 9-83 

, 9 



The e x a m p l e  bus er ror  excep t i on  rou t ine  is ca l led BusEr ro rHand le r .  It is m o r e  
g e n e r a l  t h a n  V a l l o c a t e  b e c a u s e  it re l i es  on  s e v e r a l  o p e r a t i n g - s y s t e m -  
d e p e n d e n t  i tems. The va r i ab le  po in te r  V ic t imTask  is assumed  to po in t  to a 
tab le  f r om a task that  is los ing a page  f rame.  This  a s s u m p t i o n  is necessary  
because con t ro l  b lock l ayou t  and the  m e t h o d  o f  search ing  fo r  and f i nd ing  
o the r  tasks in the e x a m p l e  ope ra t i ng  sys tem are no t  de f ined.  The code  is 
fu r the r  s imp l i f i ed  by o m i t t i n g  the func t i on  code va lue  and the read /wr i te  
status, wh i ch  do  not  af fect  the basic log ic  of the p rog ram.  

/* Paging Bus Error Handler for example O.S. 

Procedure BusErrorHandler (BusErrAddress); 

/* Global Variables to all code 

Declare TableEntry; /*Pointer returned by PTEST instruction */ 
/* pointing to the lowest level entry in the */ 
/* translation tables. */ 

/* Use MC68030 PTEST instruction to get fault status and table entry 
case PTEST (BusErrAddress,TableEntry) of 

/* Bus Error - translation table is invalid or memory hardware problems. Terminate the task. 
B: AbortTask("lnvalid table or memory hardware error"); 

r supervisor violation - task tried accessing restricted memory 
S: AbortTask("Attempted access of Supervisor-only memory"); 

*/ 

/* Write Protected - tried writing into read-only memory 
W: AbortTask("Attempted write into read-only memory"); 

*/ 

r Limit Violation - tried accessing Unmapped virtual space. This happens in our example */ 
/* O.S. when accessing within a 16 megabyte segment in User memory past what is */ 
/* currently allocated for the lower page table as determined by the upper level limit field. */ 
L: AbortTask("lnvalid address"); 

/* Invalid - pointer indicates invalid. Must determine status. */ 
I: begin 

/* If upper level entry then that 16 Meg chunk of the virtual space is unallocated */ 
/* and has no page tables. */ 
If TableEntry is upper level then AbortTask("lnvalid address"); 

/* We are at a page table entry. Look at software flags. */ 

/* If this page unallocated to the User then abort task 
If EntryStatus=invalid_unallocated then 

AbortTask("lnvalid Address"); 

*/ 

/* If this page is virgin then assign to it a physical frame */ 
if EntryStatus --- invalid_virgin then do 

GetFrame(TableEntry); /* address returned in entry */ 
PLOAD (BusErrAddress); /* update MC68030 entry */ 
exit BusErrorl-landler; r done so continue task */ 
end do; 

9-84 MC68030 USER'S MANUAL MOTOROLA 



/* If this page is swapped out then read it back in */ 
if EntryStatus = invalid_swapped_out then do 

/* first get a frame to hold the new page */ 
DiskAddress = TableEntry.Pointer; 

GetFrame[TableEntry); 

/* disk location */ 

/* address returned in entry */ 

/* Now read in the virtual page image */ 
call SwapPageln(TableEntry, DiskAddress); 
PLOAD (BusErrAddress); /* update MC68851 entry 
exit BusErrorHandler; /* done so continue task 
end do; 

end begin; 

*/ 
*/ 

/* No MC68030 status bits on. Must be memory malfunction or RMW cycle with no */ 
/* ATC entry */ 
Otherwise: If S tackFrame shows RMW instruction (SSW) then 

/* ATC did not have descriptor loaded and MC68030 cannot */ 
/* search tables to load it. Explicitly load it and allow the task to */ 
/* continue normally */ 

Begin 
PLOAD (BusErrAddress);/* update ATC */ 
exit BueErrorHandler; /* done so re-execute instruction */ 
end Begin 

Else: AbortTask("Memory Malfunction"); 

end case; 

Procedure GetFrame(FrameTableEntry) ;  

r This module returns the address of a physical frame in the passed table entry. It obtains one */ 
/* from the free frame list. If none there it scans a queue pointing to pages that have been */ 
/* recorded as having aged by not being accessed frequently. It first tries to find a read-only */ 
/* page in the queue but if none it returns the first (oldest) entry after swapping the page out */ 
/* to disk and altering the translation tables of the owning task. If nothing in the queue it waits */ 
/* for some other task to free a frame by terminating or dealiocating memory */ 

Restart: 
if Free_Frame_Queue NOT null then 

Dequeue first entry and return its value. 

if Aged__FrameQueue NOT null then begin 

/* First try to find a read-only page 
If scanning finds read-only page then use and dequeue it 

else dequeue the first entry (which is the oldest); 

Find owning task and the frames current page entry; 

/* Invalidate owning task's page 
PFLUSH (User_Space,VictimTask.VirtualAddress]; 

°! 

MOTOROLA MC68030 USER'S M A N U A L  9-85 

9 



9 

r if modified page swap it out. SwapPageOut either gives control to other tasks 
/* during the I/O or copies the page returning immediately. 
If modified then call SwapPageOut(VictimTask.TableEntry); 
/* Disk address now in Victim's page entry 

*/ 
*/ 

*/ 

/* Now set the old task's page status and return the frame 
VictimTask.TableEntry.Status = invalid_swapped out; 
return physical frame value; 
end do; 

*/ 

/* At this point we can use some other stealing method but we just wait until another task frees */ 
/* a frame by terminating or freeing memory. */ 
call wait (FreeFrame); 
go to Restart; 

end GetFrame; 

Procedure SwapPageln (SwaplnTableEntry,DlskAddress); 
/* This procedure takes the disk address and reads the page from the paging external media 
/*. into the physical address residing in the table entry pointer. 
end SwapPageln; 

*/ 
*/ 

Procedure SwapPageOut(SwapoutTableEntry); 
/* This procedure performs output on the external paging device and then replaces the 
r physical page frame address in the page entry pointer field with the disk address of the 
/* block holding the image of the page. 
end SwapPageOut; 

Procedure AbortTask(TerrninatlonMsg); 
/* This procedure terminates the current task and issues a diagnostic message. 
end AbortTask; 

end BusErrorHandler; 

9-86 MC68030 USER'S MANUAL MOTOROLA 



SECTION 10 
COPROCESSOR INTERFACE DESCRIPTION 

The M68000 Family of general-purpose microprocessors provides a level of 
performance that satisfies a wide range of computer applications. Special- 
purpose hardware, however, can often provide a higher level of performance 
for a specific application. Th~ coprocessor concept allows the capabilities 
and performance of a general-purpose processor to be enhanced for a par- 
ticular application without encumbering the main processor architecture. A 
coprocessor can efficiently meet specific capability requirements that must 
typically be implemented in software by a general-purpose processor. With 
a general-purpose main processor and the appropriate coprocessor(s), the 
processing capabilities of a system can be tailored to a specific application. 

The MC68030 supports the M68000 coprocessor interface described in this 
section. The section is intended for designers who are implementing copro- 
cessors to interface with the MC68030. 

The designer of a system that uses one or more Motorola coprocessors (the 
MC68881 or MC68882 floating-point coprocessor, for example) does not re- 
quire a detailed knowledge of the M68000 coprocessor interface. Motorola 
coprocessors conform to the interface described in this section. Typically, 
they implement a subset of the interface, and that subset is described in the 
coprocessor user's manual. These coprocessors execute Motorola defined 
instructions that are described in the user's manual for each coprocessor. 

10.1 INTRODUCTION 

The distinction between standard peripheral hardware and a M68000 copro- 
cessor is important from a perspective of the programming model. The pro- 
gramming model of the main processor consists of the instruction set, register 
set, and memory map available to the programmer. An M68000 coprocessor 
is a device or set of devices that communicates with the main processor 
through the protocol defined as the M68000 coprocessor interface. The pro- 
gramming model for a coprocessor is different than that for a peripheral 
device. A coprocessor adds additional instructions and generally additional 
registers and data types to the programming model that are not directly 
supported by the main processor architecture. The additional instructions 

MOTOROLA MC68030 USER'S MANUAL 10-1 

1C 



IO 

are dedicated coprocessor instructions that utilize the coprocessor capabil- 
ities. The necessary interactions between the main processor and the copro- 
cessor that provide a given service are transparent to the programmer. That 
is, the programmer does not need to know the specific communication pro- 
tocol between the main processor and the coprocessor because this protocol 
is implemented in hardware. Thus, the coprocessor can provide capabilities 
to the user without appearing separate from the main processor. 

In contrast, standard peripheral hardware is generally accessed through in- 
terface registers mapped into the memory space of the main processor. To 
use the services provided by the peripheral, the programmer accesses the 
peripheral registers with standard processor instructions. While a peripheral 
could conceivably provide capabilities equivalent to a coprocessor for many 
applications, the programmer must implement the communication protocol 
between the main processor and the peripheral necessary to use the pe- 
ripheral hardware. 

The communication protocol defined for the M68000 coprocessor interface 
is described in 10.2 COPROCESSOR INSTRUCTION TYPES. The algorithms 
that implement the M68000 coprocessor interface are provided in the micro- 
code of the MC68030 and are completely transparent to the MC68030 pro- 
grammer's model. For example, floating-point operations are not implemented 
in the MC68030 hardware. In a system utilizing both the MC68030 and the 
MC68881 or MC68882 floating-point coprocessor, a programmer can use any 
of the instructions defined for the coprocessor without knowing that the 
actual computation is performed by the MC68881 or MC68882 hardware. 

10.1.1 In ter face  Fea tures  

The M68000 coprocessor interface design incorporates a number of flexible 
capabilities. The physical coprocessor interface uses the main processor ex- 
ternal bus, which simplifies the interface since no special-purpose signals 
are involved. With the MC68030, a coprocessor can use either the asynchron- 
ous or synchronous bus transfer protocol. Since standard bus cycles transfer 
information between the main processor and the coprocessor, the copro- 
cessor can be implemented in whatever technology is available to the co- 
processor designer. A coprocessor can be implemented as a VLSI device, as 
a separate system board, or even as a separate computer system. 

Since the main processor and a M68000 coprocessor can communicate using 
the asynchronous bus, they can operate at different clock frequencies. The 
system designer can choose the speeds of a main processor and coprocessor 

10-2 MC68030 USER'S MANUAL MOTOROLA 



that provide the optimum performance for a given system. If the coprocessor 
uses the synchronous bus interface all coprocessor signals and data must 
be synchronized with the main processor clock. Both the MC68881 and 
MC68882 floating-point coprocessors use the asynchronous bus handshake 
protocol. 

The M68000 coprocessor interface also facilitates the design of coprocessors. 
The coprocessor designer must only conform to the coprocessor interface 
and does not need an extensive knowledge of the architecture of the main 
processor. Also, the main processor can operate with a coprocessor without 
having explicit provisions made in the main processor for the capabilities of 
that coprocessor. This provides a great deal of freedom in the implementation 
of a given coprocessor. 

10.1.2 Concurrent Operation Support  

The programmer's model for the M68000 Family of microprocessors is based 
on sequential, nonconcurrent instruction execution. This implies that the 
instructions in a given sequence must appear to be executed in the order in 
which they occur. To maintain a uniform programmer's model, any copro- 
cessor extensions should also maintain the model of sequential, noncon- 
current instruction execution at the user level. Consequently, the programmer 
can assume that the images of registers and memory affected by a given 
instruction have been updated when the next instruction in the sequence 
accessing these registers or memory locations is executed. 

The M68000 coprocessor interface provides full support of all operations 
necessary for nonconcurrent operation of the main processor and its asso- 
ciated coprocessors. Although the M68000 coprocessor interface allows con- 
currency in coprocessor execution, the coprocessor designer is responsible 
for implementing this concurrency while maintaining a programming model 
based on sequential nonconcurrent instruction execution. 

For example, if the coprocessor determines that instruction "B" does not use 
or alter resources to be altered or used by instruction "A", instruction "B" 
can be executed concurrently (if the execution hardware is also available). 
Thus, the required instruction interdependencies and sequences of the pro- 
gram are always respected. The MC68882 coprocessor offers concurrent in- 
struction execution while the MC68881 coprocessor does not. However, the 
MC68030 can execute instructions concurrently with coprocessor instruction 
execution in the MC68881. 

MOTOROLA MC68030 USER'S MANUAL 10-3 



10.1.3 Coprocessor Instruction Format 

The instruction set for a given coprocessor is defined by the design of that 
coprocessor. When a coprocessor instruction is encountered in the main 
processor instruction stream, the MC68030 hardware initiates communica- 
tion with the coprocessor and coordinates any interaction necessary to ex- 
ecute the instruction with the coprocessor. A programmer needs to know 
only the instruction set and register set defined by the coprocessor in order 
to use the functions provided by the coprocessor hardware. 

The instruction set of an M68000 coprocessor uses a subset of the F-line 
operation words in the M68000 instruction set. The operation word is the 
first word of any M68000 Family instruction. The F-line operation word con- 
tains ones in bits 15-12 ([15:12]=1111; refer to Figure 10-1); the remaining 
bits are coprocessor and instruction dependent. The F-line operation word 
may be followed by as many extension words as are required to provide 
additional information necessary for the execution of the coprocessor in- 
struction, 

15 14 13 12 11 9 8 6 5 0 
0p,0 1 T PE 1 T PEOEPEN0 NT I 

Figure 10-1. F-Line Coprocessor Instruction Operation Word 

10 

As shown in Figure 10-1, bits 9-11 of the F-line operation word encode the 
coprocessor identification code (CplD). The MC68030 uses the coprocessor 
identification field to indicate the coprocessor to which the instruction ap- 
plies. F-line operation words, in which the CplD is zero, are not coprocessor 
instructions for the MC68030. If the CplD (bits 9-11) and the type field (bits 
6-8) contain zeros, the instruction accesses the on-chip memory manage- 
ment unit of the MC68030. Instructions with a CplD of zero and a nonzero 
type field are unimplemented instructions that cause the MC68030 to begin 
exception processing. The MC68030 never generates coprocessor interface 
bus cycles with the CplD equal to zero (except via the MOVES instruction). 

CplD codes of 001-101 are reserved for current and future Motorola copro- 
cessors and CplD codes of 110-111 are reserved for user-defined coproces- 
sors. The Motorola CplD code that is currently defined is 001 for the MC68881 
or MC68882 floating-point coprocessor. By default, Motorola assemblers will 
use CplD code 001 when generating the instruction operation codes for the 
MC68881 or MC68882 coprocessor instructions. 

10-4 MC68030 USER'S MANUAL MOTOROLA 



The encoding of bits 0-8 of the coprocessor instruction operation word is 
dependent on the particular instruction being implemented (see 10.2 CO- 
PROCESSOR INSTRUCTION TYPES). 

10.1.4 Coprocessor System Interface 

The communication protocol between the main processor and coprocessor 
necessary to execute a coprocessor instruction uses a group of interface 
registers, called coprocessor interface registers, resident within the copro- 
cessor. By accessing one of these interface registers, the MC68030 hardware 
initiates coprocessor instructions. The coprocessor uses a set of response 
primitive codes and format codes defined for the M68000 coprocessor in- 
terface to communicate status and service requests to the main processor 
through these registers. The coprocessor interface registers (CIRs) are also 
used to pass operands between the main processor and the coprocessor. 
The CIR set, response primitives, and format codes are discussed in 11).3 
COPROCESSOR INTERFACE REGISTER SET and 10.4 COPROCESSOR RE- 
SPONSE PRIMITIVES. 

10.1.4.1 COPROCESSOR CLASSIFICATION. M68000 coprocessors can be classi- 
fied into two categories depending on their bus interface capabilities. The 
first category, non-DMA coprocessors, consists of coprocessors that always 
operate as bus slaves. The second category, DMA coprocessors, consists of 
coprocessors that operate as bus slaves while communicating with the main 
processor across the coprocessor interface, but also have the ability to op- 
erate as bus masters, directly controlling the system bus. 

If the operation of a coprocessor does not require a large portion of the 
available bus bandwidth or has special requirements not directly satisfied 
by the main processor, that coprocessor can be efficiently implemented as 
a non-DMA coprocessor. Since non-DMA coprocessors always operate as 
bus slaves, all external bus-related functions that the coprocessor requires 
are performed by the main processor. The main processor transfers operands 
from the coprocessor by reading the operand from the appropriate CIR and 
then writing the operand to a specified effective address with the appropriate 
address space specified on the function code lines. Likewise, the main pro- 
cessor transfers operands to the coprocessor by reading the operand from 
a specified effective address (and address space) and then writing that op- 
erand to the appropriate CIR using the coprocessor interface. The bus inter- 
face circuitry of a coprocessor operating as a bus slave is not as complex as 
that of a device operating as a bus master. 

MOTOROLA MC68030 USER'S MANUAL 10-5 

1( 



To improve the efficiency of operand transfers between memory and the 
coprocessor, a coprocessor that requires a relatively high amount of bus 
bandwidth or has special bus requirements can be implemented as a DMA 
coprocessor. DMA coprocessors can operate as bus masters. The coproces- 
sor provides all control, address, and data signals necessary to request and 
obtain the bus and then performs DMA transfers using the bus. DMA copro- 
cessors, however, must still act as bus slaves when they require information 
or services of the main processor using the M68000 coprocessor interface 
protocol. 

10.1.4.2 PROCESSOR-COPROCESSOR INTERFACE. Figure 10-2 is a block diagram 
of the signals involved in an asynchronous non-DMA M68000 coprocessor 
interface. The synchronous interface is similar. Since the CplD on signals 
A13-A15 of the address bus is used with other address signals to select the 
coprocessor, the system designer can use several coprocessors of the same 
type and assign a unique CplD to each one. 

0 
MAIN PROCESSOR 

MC68030 

FCO-FC2 / 

COPROCESSOR 
DECODE 

A19-A13 / = LOGIC* 

R ~  

/ ~ /DS- -~  

A4-A1 ( 

031~D0 
t t / 

COPROCESSOR 

ASYNCHRONOUS 
== BUS 

iNTERFACE 
LOGIC 

FCO-FC2 = 111 ~ CPU SPACE CYCLE 
AIg-A16 = 0010 ~ COPROCESSOR ACCESS IN CPU SPACE 
A15-A13 = xxx ~ COPROCESSOR IDENTIFICATION 
A4-A1 = rrrr ~ COPROCESSOR INTERFACE REGISTER SELECTOR 

*Chip select logic may be integrated into the coprocessor 
Address lines not specified above are "0" during coprocessor access 

Figure 10-2. Asynchronous Non-DMA M68000 Coprocessor 
Interface Signal Usage 

10-6 MC68030 USER'S MANUAL MOTOROLA 



The MC68030 accesses the registers in the CIR set using standard asynchron- 
ous or synchronous bus cycles. Thus, the bus interface implemented by a 
coprocessor for its interface register set must satisfy the MC68030 address, 
data, and control signal timing. The MC68030 timing information for read 
and write cycles is illustrated in Figures 13-5-13-8 on foldout pages in the 
back of this manual. The MC68030 never requests a burst operation during 
a coprocessor (CPU space) bus cycle, nor does it internally cache data read 
or written during coprocessor (CPU space) bus cycles. The MC68030 bus 
operation is described in detail in SECTION 7 BUS OPERATION. 

During coprocessor instruction execution, the MC68030 executes CPU space 
bus cycles to access the CIR set. The MC68030 drives the three function code 
outputs high (FC2:FC0= 111)identifying a CPU space bus cycle. The CIR set 
is mapped into CPU space in the same manner that a peripheral interface 
register set is generally mapped into data space. The information encoded 
on the function code lines and address bus of the MC68030 during a copro- 
cessor access is used to generate the chip select signal for the coprocessor 
being accessed. Other address lines select a register within the interface set. 
The information encoded on the function code and address lines of the 
MC68030 during a coprocessor access is illustrated in Figure 10-3. 

FUNCTION 
CODE 

2 0 

J 0 0 0 0 0 0 0 O 0 0 

ADDRESS BUS 
19 15 12 4 0 

00100,01 c0,0 i0 0 0 0 0 D 0 01C'"RE0'S'ER I 

[ _ _ 1  
T 

CPU SPACE 
TYPE FIELD 

Figure 10-3. MC68030 CPU Space Address Encodings 

Address signals A16-A19 specify the CPU space cycle type for a CPU space 
bus cycle. The types of CPU space cycles currently defined for the MC68030 
are interrupt acknowledge, breakpoint acknowledge, and coprocessor access 
cycles. CPU space type $2 (A19:A16=0010) specifies a coprocessor access 
cycle. 

Signals A13-A15 of the MC68030 address bus specify the coprocessor iden- 
tification code CplD for the coprocessor being accessed. This code is trans- 
ferred from bits 9-11 of the coprocessor instruction operation word (refer to 
Figure 10-1) to the address bus during each coprocessor access. Thus, de- 

MOTOROLA MC68030 USER'S MANUAL 10-7 

1( 



coding the MC68030 function code signals and bits A13-A19 of the address 
bus provides a unique chip select signal for a given coprocessor. The function 
code signals and A16-A19 indicate a coprocessor access; A13-A15 indicate 
which of the possible seven coprocessors (001-111) is being accessed. Bits 
A20-A31 and A5-A12 of the MC68030 address bus are always zero during 
a coprocessor access. 

The MC68010 can emulate coprocessor access cycles in CPU space using the 
MOVES instruction. 

10.1.4.3 COPROCESSOR INTERFACE REGISTER SELECTION. Figure 10-4 shows 
that the value on the MC68030 address bus during a coprocessor access 
addresses a unique region of the main processor's CPU address space, Sig- 
nals AO-A4 of the MC68030 address bus select the ClR being accessed. The 
register map for the M68000 coprocessor interface is shown in Figure 10-5. 
The individual registers are described in detail in 10.3 COPROCESSOR IN- 
TERFACE REGISTER SET. 

0 

CPU SPACE ADDRESS 

20000 

2D01F 

22000 

2201F 

24000 

2E000 

2ED1F 

INTERFACE REGISTER SET 

RESERVED 

INTERFACE REGISTER SET 

RESERVED 

INTERFACE REGISTER SET 

RESERVED 

ADDRESS SPACE FOR 
MEMORY 

I MANAGEMENT 
• UNIT 

ADDRESS SPACE FOR 

l - -  COPROCESSOR WITH 

Cp-ID = I 

ADDRESS SPACE FOR 
~ -  COPROCESSOR WITH 
. Cp-ID = 7 

Figure 10-4, Coprocessor Address Map in MC68030 CPU Space 

10-8 MC68030 USER'S MANUAL MOTOROLA 



15 

00 

04 

08 

OC 

10 

14 

18 

1C 

RESPONSE* CONTROL* 

SAVE* RESTORE* 

OPERATION WORD COMMAND* 

IRESERVEO} CONOmON* 

OPERA,D" 

REGISTER SELECT (RESERVED) 

INSTRUCT]O~ ADDRESS 

OPERAND ADDRESS 

Figure 10-5. Coprocessor Interface Register Set Map 

10.2 COPROCESSOR INSTRUCTION TYPES 

The M68000 coprocessor interface supports four categories of coprocessor 
instructions: general, conditional, context save, and context restore. The cat- 
egory name indicates the type of operations provided by the coprocessor 
instructions in the category. The instruction category also determines the 
CIR accessed by the MC68030 to initiate instruction and communication pro- 
tocols between the main processor and the coprocessor necessary for in- 
struction execution. 

During the execution of instructions in the general or conditional categories, 
the coprocessor uses the set of coprocessor response primitive codes defined 
for the MC68000 coprocessor interface to request services from and indicate 
status to the main processor. During the execution of the instructions in the 
context save and context restore categories, the coprocessor uses the set of 
coprocessor format codes defined for the M68000 coprocessor interface to 
indicate its status to the main processor. 

10.2.1 Coprocessor General Instructions 

The general coprocessor instruction category contains data processing in- 
structions and other general-purpose instructions for a given coprocessor. 

MOTOROLA MC68030 USEWS MANUAL 10-9 

10 



10.2.1.1 FORMAT. Figure 10-6 shows the format of a general type instruction. 

15 14 13 12 11 9 8 7 6 5 
I 1 I I I cp,0 I 0 I 0 I ° I EFFECT,VEA00RESS 

COPROCESSOR COMMAND 
OPTIONAL EFFECTIVE ADDRESS OR COPROCESSOR-DEFINED EXTENSION WORDS 

Figure 10-6. Coprocessor General Instruction Format (cpGEN) 

The mnemonic cpGEN is a generic mnemonic used in this discussion for all 
general instructions. The mnemonic of a specific general instruction usually 
suggests the type of operation it performs and the coprocessor to which it 
applies. The actual mnemonic and syntax used to represent a coprocessor 
instruction is determined by the syntax of the assembler or compiler that 
generates the object code. 

A coprocessor general type instruction consists of at least two words. The 
first word of the instruction is an F-line operation code (bits [15:12] = 1111 ). 
The CplD field of the F-line operation code is used during the coprocessor 
access to indicate which of the coprocessors in the system executes the 
instruction. During accesses to the coprocessor interface registers (refer to 
10.1.4.2 PROCESSOR-COPROCESSOR INTERFACE), the processor places the 
CplD on address lines A13-A15. 

Bits [8:6] =000 indicate that the instruction is in the general instruction cat- 
egory. Bits 0-5 of the F-line operation code sometimes encodes a standard 
M68000 effective address specifier (refer to 2.5 EFFECTIVE ADDRESS EN- 
CODING SUMMARY). During the execution of a cpGEN instruction, the co- 
processor can use a coprocessor response primit ive to request that the 
MC68030 perform an effective address calculation necessary for that instruc- 
tion. Using the effective address specifier field of the F-line operation code, 
the processor then determines the effective addressing mode. If a coproces- 
sor never requests effective address calculation, bits 0-5 can have any value 
(don't cares). 

The second word of the general-type instruction is the coprocessor command 
word. The main processor writes this command word to the command CIR 
to initiate execution of the instruction by the coprocessor. 

10-10 MC68030 USER'S MANUAL MOTOROLA 



An instruction in the coprocessor general instruction category optionally 
includes a number of extension words following the coprocessor command 
word. These words can provide additional information required for the co- 
processor instruction. For example, if the coprocessor requests that the 
MC68030 calculate an effective address during coprocessor instruction ex- 
ecution, information required for the calculation must be included in the 
instruction format as effective address extension words. 

10.2,1.2 PROTOCOL. The execution of a cpGEN instruction follows the protocol 
shown in Figure 10-7. The main processor initiates communication with the 
coprocessor by writing the instruction command word to the command CIR. 
The coprocessor decodes the command word to begin processing the cpGEN 
instruction. Coprocessor design determines the interpretation of the copro- 
cessor command word; the MC68030 does not attempt to decode it, 

MAIh PROCESSOR 

M1 RECOGNIZE COPROCESSOR INSTRUCTION F-LINE 
OPERATION WORD 

M2 WRITE COPROCESSOR COMMAND WORD TO 
COMMAND CIR 

M3 

M4 

COPROCESSOR 

C1 DECODE COMMAND WORD AND INITIATE 
COMMAND EXECUTION 

C2 

READ COPROCESSOR RESPONSE PRIMITIVE 
CODE FROM RESPONSE CIR 
1) PERFORM SERVICE REDUESTED BY RESPONSE 

PRIMITIVE 
2~ IF ~COPROCESSOR RESPONSE PRIMITIVE C3 

INDICATES "COME AGAIN' GO TO M3 
ISEE NOTE 1) C4 

C5 

PROCEED WITH EXECUTION OF NEXT INSTRUCTION 
(SEE NOTE 2) 

WHILE ,MAIN PROCESSOR SERVICE IS REQUIRED~ 
DO STEPS l/AND 21 BELOW 
1~ REQUEST SERVICE BY PLACING APPROPRIATE 

RESPONSE PRIMITIVE CODE IN RESPONSE CIR 
2) RECEIVE SERVICE FROM MA~N PROCESSOR 

REFLECT "NO COME AGAIN" IN RESPONSE CIR 

COMPLETE COMMAND EXECUTION 

REFLECT "PROCESSING FINISHED" STATUS IN 
RESPONSE CIR 

NOTES: 1. "Come Again" indicates that further service of the main ;)rocessor is being requested 
by the coprocessor 

2 The next instruction should be the operation word pointed to by the ScanPC at this ~o;nt. 
The operation of the MC68030 ScanPC is discussed in 10.4.1 ScanPC 

Figure 10-7. Coprocessor Interface Protocol for 
General Category Instructions 

MOTOROLA MC68030 USER'S MANUAL 10-11 

1( 



While the coprocessor is executing an instruction, it requests any required 
services from and communicates status to the main processor by placing 
coprocessor response primitive codes in the response CIR. After writing to 
the command CIR, the main processor reads the response CIR and responds 
appropriately. When the coprocessor has completed the execution of an 
instruction or no longer needs the services of the main processor to execute 
the instruction, it provides a response to release the processor. The main 
processor can then execute the next instruction in the instruction stream. 
However, if a trace exception is pending, the MC68030 does not terminate 
communication with the coprocessor until the coprocessor indicates that it 
has completed all processing associated with the cpGEN instruction (refer 
to 10.5,2.5 TRACE EXCEPTIONS). 

The coprocessor interface protocol shown in Figure 10-7 allows the copro- 
cessor to define the operation of each general category instruction. That is, 
the main processor initiates the instruction execution by writing the instruc- 
tion command word to the command CIR and by reading the response CIR 
to determine its next action. The execution of the coprocessor instruction is 
then defined by the internal operation of the coprocessor and by its use of 
response primitives to request services from the main processor. This in- 
struction protocol allows a wide range of operations to be implemented in 
the general instruction category. 

to 

10.2.2 Coprocessor  Condi t iona l  Instruct ions 

The conditional instruction category provides program control based on the 
operations of the coprocessor. The coprocessor evaluates a condition and 
returns a true/false indicator to the main processor. The main processor 
completes the execution of the instruction based on this true/false condition 
indicator. 

The implementation of instructions in the conditional category promotes 
efficient use of both the main processor's and the coprocessor's hardware. 
The condition specified for the instruction is related to the coprocessor op- 
eration and is, therefore, evaluated by the coprocessor. The instruction com- 
pletion following the condition evaluation is, however, directly related to the 
operation of the main processor. The main processor performs the change 
of flow, the setting of a byte, or the TRAP operation, since its architecture 
explicitly implements these operations for its instruction set. 

10-12 MC68030 USER'S MANUAL MOTOROLA 



Figure 10-8 shows the protocol for a conditional category coprocessor in- 
struction. The main processor initiates execution of an instruction in this 
category by writing a condition selector to the condition CIR. The coprocessor 
decodes the condition selector to determine the condition to evaluate. The 
coprocessor can use response primitives to request that the main processor 
provide services required for the condition evaluation. After evaluating the 
condition, the coprocessor returns a true false indicator to the main processor 
by placing a null primitive (refer to 10.4.4 Null Primitive) in the response CIR. 
The main processor completes the coprocessor instruction execution when 
it receives the condition indicator from the coprocessor. 

MAIN PROCESSOR 

M1 RECOGNIZE COPROCESSOR INSTRUCT/ON F-LINE 
OPERATION WORD 

M2 WRITE COPROCESSOR CONDITION SELECTOR TO 
CONDITION CIR 

M3 READ COPROCESSOR RESPONSE PRIMITIVE CODE 
FROM RESPONSE CIR 
1) PERFORM SERVICE REQUESTED BY RESPONSE 

PRIMITIVE 
2) IF (COPROCESSOR RESPONSE PRIMITIVE 

INDICATES "COME AGAIN") GO TO M3 
(SEE NOTE 1) 

C1 

C2 

C3 

C4 

COPROCESSOR 

DECODE CONDITION SELECTOR AND INITIATE 
CONOIllON EVALUATION 

WHILE (MAIN PROCESSOR SERVICE IS REQUIRED 
O0 STEPS I) AND 2) BELOW 

1) REQUEST SERVICE BY PLACING APPROPRIATE 
RESPONSE PRIMmVE COBE IN RESPONSE CIR 

2) RECEIVE SERVICE FROM MAIN PROCESSOR 

COMPLETE CONDITION EVALUATION 

REFLECT "'NO COME AGAIN" STATUS WITH TRUE/FALSE 
CONOIIION iNDICATOR IN RESPONSE CIR 

M4 COMPLETE EXECUTION OF INSTRUCTION BASED ON 
THE TRUE/FALSE CONDITION INDICATOR 
RETURNED IN THE RESPONSE CIR 

NOTES: 1. All coprocessor response primitives, except the NuD primitive, that allow the "Come Again" 
primitive attribute must indicate "'Come Again" when used during the execution of a 
conditional category instruction. If a "Come Again" attribute is not indicated in one of these 
pri m•ti•es• the main pr••ess•r wiR initiate pr•t•c•[ v;o•ati•n ex•epti•n pr•ces•ing •see1•.6•2•1 
PROTOCOL VIOLATIONS) 

Figure 10-8. Coprocessor Interface Protocol for Conditional 
Category Instructions 

10.2.2.1 BRANCH ON COPROCESSOR CONDITION INSTRUCTION. The condi- 
tional instruction category includes two formats of the M68000 Family branch 
instruction. These instructions branch on conditions related to the copro- 
cessor operation. They execute similarly to the conditional branch instruc- 
tions provided in the M68000 Family instruct/on set. 

MOTOROLA MC68030 USER'S MANUAL 10-13 

10 



10.2.2.1.1 Format. Figure 10-9 shows the format of the branch on coprocessor 
condit ion instruction that provides a word-length displacement. Figure 
10-10 shows the format of the instruction that includes a long-word displace- 
ment. 

15 14 13 12 11 9 8 7 B 5 
1 I 1 I I I 1 I CplO I 0 I 1 I 0 I CONDITION SELECTOR 

OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS 
DISPLACEMENT 

Figure 10-9. Branch on Coprocessor Condition Instruction (cpBcc.W) 

15 14 13 12 11 9 8 7 6 5 
' I '  I1 I '  I cp,0 I 0 I I '  I CONO,T, ON SE'ECTO, 

OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS 
DISPLACEMENT -- HIGH 
DISPLACEMENT -- LOW 

Figure 10-10. Branch On Coprocessor Condition Instruction (cpBcc.L) 

10 

The first word of the branch on coprocessor condit ion instruction is the 
F-line operation word. Bits [15:12]=1111 and bits [11:9] contain the identi- 
f ication code of the coprocessor that is to evaluate the condit ion. The value 
in bits [8:6] identifies either the word or the long-word displacement format 
of the branch instruction, which is specified by the cpBcc.W or cpBcc.L mne- 
monic, respectively. 

Bits [0-5] of the F-line operation word contain the coprocessor condit ion 
selector field. The MC68030 writes the entire operation word to the condit ion 
CIR to initiate execution of the branch instruction by the coprocessor. The 
coprocessor uses bits [0-5] to determine which condit ion to evaluate. 

If the coprocessor requires additional information to evaluate the condit ion, 
the branch instruction format can include this information in extension words. 
Fol lowing the F-line operation word, the number of extension words is de- 
termined by the coprocessor design. The final word(s) of the cpBcc instruction 
format contains the displacement used by the main processor to calculate 
the destination address when the branch is taken. 

10-14 MC68030 USER'S MANUAL MOTOROLA 



10.2.2.1.2 Protocol. Figure 10-8 shows the protocol for the cpBcc.L and cpBcc.W 
instructions. The main processor initiates the instruction by writ ing the 
F-line operation word to the condition CIR to transfer the condition selector 
to the coprocessor. The main processor then reads the response CIR to de- 
termine its next action. The coprocessor can return a response primitive to 
request services necessary to evaluate the condition. If the coprocessor re- 
turns the false condition indicator, the main processor executes the next 
instruction in the instruction stream. If the coprocessor returns the true con- 
dition indicator, the processor adds the displacement to the MC68030 scanPC 
(refer to 10.4.1 ScanPC) to determine the address of the next instruction for 
the main processor to execute. The scanPC must be pointing to the location 
of the first word of the displacement in the instruction stream when the 
address is calculated. The displacement is a twos-complement integer that 
can be either a 16-bit word or a 32-bit long word. The processor sign-extends 
the 16-bit displacement to a long-word value for the destination address 

calcu lat ion.  

10.2.2.2 SET ON COPROCESSOR CONDITION INSTRUCTION. The set on copro- 
cessor condition instructions set or reset a flag (a data alterable byte) ac- 
cording to a condition evaluated by the coprocessor. The operation of this 
instruction is similar to the operation of the Scc instruction in the M68000 
Family instruction set. Although the Scc instruction and the cpScc instruction 
do not explicitly cause a change of program flow, they are often used to set 
flags that control program flow. 

10.2.2.2.1 Format. Figure 10-11 shows the format of the set on coprocessor con- 
dition instruction, denoted by the cpScc mnemonic. 

15 14 13 12 11 9 8 7 6 5 0 
EFFECTIVE ADDRESS 

CONDITION SELECTOR 

OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS 

OPTIONAL EFFECTIVE ADDRESS EXTENSION WORDS (0-5 WORDS) 

Figure 10-11. Set On Coprocessor Condit ion (cpScc) 

MOTOROLA MC68030 USER'S MANUAL 10-15 

1C 



The first word of the cpScc instruction is the F-line operation word. This word 
contains the CplD field in bits [9-11] and 001 in bits [8:6] to identify the cpScc 
instruction. The lower six bits of the F-line operation word are used to encode 
an M68000 Family effective addressing mode (refer to 2.5 EFFECTIVE AD- 
DRESS ENCODING SUMMARY).  

The second word of the cpScc instruction format contains the coprocessor 
condition selector in bits [0-5]. Bits [6-15] of this word are reserved by 
Motorola and should be zero to ensure compatibility with future M68000 
products. This word is written to the condition CIR to initiate the cpScc in- 
struction. 

If the coprocessor requires additional information to evaluate the condition, 
the instruction can include extension words to provide this information. The 
number of these extension words, which follow the word containing the 
coprocessor condition selector field, is determined by the coprocessor de- 
sign. 

The final portion of the cpScc instruction format contains zero to five effective 
address extension words. These words contain any additional information 
required to calculate the effective address specified by bits [0-5] of the 
F-line operation word. 

O 

10.2.2.2.2 Protocol. Figure i0-8 shows the protocol for the cpScc instruction. The 
MC68030 transfers the condition selector to the coprocessor by writing the 
word following the F-line operation word to the condition CIR. The main 
processor then reads the response CIR to determine its next action. The 

• coprocessor can return a response primitive to request services necessary 
to evaluate the condition. The operation of the cpScc instruction depends on 
the condition evaluation indicator returned to the main processor by the 
coprocessor. When the coprocessor returns the false condition indicator, the 
main processor evaluates the effective address specified by bits [0-5] of the 
F-line operation word and sets the byte at that effective address to FALSE 
(all bits cleared). When the coprocessor returns the true condition indicator, 
the main processor sets the byte at the effective address to TRUE (all bits 
set to one). 

10-16 MC68030 USER'S MANUAL MOTOROLA 



10.2.2.3 TEST COPROCESSOR CONDITION, DECREMENT AND BRANCH INSTRUC- 
TION. The operation of the test coprocessor condition, decrement and branch 
instruction is similar to that of the DBcc instruction provided in the M68000 
Family instruction set. This operation uses a coprocessor evaluated condition 
and a loop counter in the main processor. It is useful for implementing DO- 
UNTIL constructs used in many high-level languages. 

10.2.2.3.1 Format. Figure 10-12 shows the format of the test coprocessor condi- 
tion, decrement and branch instruction, denoted by the cpDBcc mnemonic. 

15 14 13 12 
 1'1'1'1 

11 
CplO 

(RESERVED) 
OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS 

DISPLACEMENT 

9 8 7 6 5 4 3 2 0 
I 0 I 0 I '  0 I 0 I I I EFFEcT,VEA00RESs 

CONO T ON SELECTOR 

Figure 10-12. Test Coprocessor Condition, Decrement and Branch 
Instruction Format (cpDBcc) 

The first word of the cpDBcc instruction is the F-line operation word. This 
word contains the CplD field in bits [9-11] and 001001 in bits [8:3] to identify 
the cpDBcc instruction. Bits [0:2] of this operation word specify the main 
processor data register used as the loop counter during the execution of the 
instruction. 

The second word of the cpDBcc instruction format contains the coprocessor 
condition selector in bits [0-5] and should contain zeros in bits [6-15] to 
maintain compatibility with future M68000 products, This word is written to 
the condition ClR to initiate execution of the cpDBcc instruction by the co- 
processor. 

If the coprocessor requires additional information to evaluate the condition, 
the cpDBcc instruction can include this information in extension words. These 
extension words follow the word containing the coprocessor condition se- 
lector field in the cpDBcc instruction format. 

The last word of the instruction contains the displacement for the cpDBcc 
instruction. This displacement is a twos-complement 16-bit value that is sign- 
extended to long-word size when it is used in a destination address calcu- 
lation. 

MOTOROLA MC68030 USER'S MANUAL 10-17 

10 



10 

10.2.2.3.2 Protocol. Figure 10-8 shows the protocol for the cpDBcc instructions. 
The MC68030 transfers the condition selector to the coprocessor by writing 
the word following the operation word to the condition CIR. The main pro- 
cessor then reads the response CIR to determine its next action. The copro- 
cessor can use a response primitive to request any services necessary to 
evaluate the condition. If the coprocessor returns the true condition indicator, 
the main processor executes the next instruction in the instruction stream. 
If the coprocessor returns the false condition indicator, the main processor 
decrements the low-order word of the register specified by bits [0-2] of the 
F-line operation word. If this register contains minus one ( - 1 )  after being 
decremented, the main processor executes the next instruction in the in- 
struction stream. If the register does not contain minus one ( - 1 )  after being 
decremented, the main processor branches to the destination address to 
continue instruction execution. 

The MC68030 adds the displacement to the scanPC (refer to 10.4.1 ScanPC) 
to determine the address of the next instruction. The scanPC must point to 
the 16-bit displacement in the instruction stream when the destination ad- 
dress is calculated. 

10.2.2.4 TRAP ON COPROCESSOR CONDITION. The trap on coprocessor condi- 
tion instruction allows the programmer to initiate exception processing based 
on conditions related to the coprocessor operation. 

10.2.2.4.1 Format. Figure 10-13 shows the format of the trap on coprocessor con- 
dition instruction, denoted by the cpTRAPcc mnemonic. 

15 14 13 12 11 9 8 7 6 5 4 3 2 0 
I ] ~ 1 CplO 0 0 I I I I OPMODE 

I {RESERVED) I CONDITION SELECTOR 
l OPTIONAL C O ~ E F I N E D  EXTENSION WORDS 

Figure 10-13. Trap On Coprocessor Condition (cpTRAPcc) 

10-18 MC68030 USER'S MANUAL MOTOROLA 



The F-line operation word contains the CplD field in bits [ 9 - i l ]  and 001111 
in bits [8:3] t ° identify the cpTRAPcc instruction. Bits [0-2] of the cpTRAPcc 
F-line operation word specify the number of optional operand words in the 
instruction format. The instruction format can include zero, one, or two op- 
erand words. 

The second word of the cpTRAPcc instruction format contains the coproces- 
sor condition selector in bits [0-5] and should contain zeros in bits [6-15] to 
maintain compatibility with future M68000 products. This word is written to 
the condition CIR of the coprocessor to initiate execution of the cpTRAPcc 
instruction by the coprocessor. 

If the coprocessor requires additional information to evaluate a condition, 
the instruction can include this information in extension words. These ex- 
tension words follow the word containing the coprocessor condition selector 
field in the cpTRAPcc instruction format. 

The operand words of the cpTRAPcc F-line operation word follow the 
coprocessor-defined extension words. These operand words are not explicitly 
used by the MC68030, but can be used to contain information referenced by 
the cpTRAPcc exception handling routines. The valid encodings for bits [0-2] 
of the F-line operation word and the corresponding numbers of operand 
words are listed in Table 10-1. Other encodings of these bits are invalid for 
the cpTRAPcc instruction. 

Table 10-1. cpTRAPcc Opmode 
Encodings 

Optional Words in 
Opmode Instruction Format 

010 One 

011 Two 

100 Zero 

10.2.2.4.2 Protocol. Figure 10-8 shows the protocol for the cpTRAPcc instructions. 
The MC68030 transfers the condition selector to the coprocessor by writing 
the word following the operation word to the condition CIR. The main pro- 
cessor then reads the response CIR to determine its next action. The copro- 
cessor can, using a response primitive, request any services necessary to 
evaluate the condition. If the coprocessor returns the true condition indicator, 
the main processor initiates exception processing for the cpTRAPcc exception 

MOTOROLA MC68030 USER'S MANUAL 10-19 

10 



10 

(refer to 10.5.2.4 cpTRAPcc INSTRUCTION TRAPS). If the coprocessor returns 
the false condition indicator, the main processor executes the next instruction 
in the instruction stream. 

10.2.3 Coprocessor Save and Restore Instructions 

The coprocessor context save and context restore instruction categories in 
the M68000 coprocessor interface support multitasking programming envi- 
ronments. In a multitasking environment, the context of a coprocessor may 
need to be changed asynchronously with respect to the operation of that 
coprocessor. That is, the coprocessor may be interrupted at any point in the 
execution of an instruction in the general or conditional category to begin 
context change operations. 

In contrast to the general and conditional instruction categories, the context 
save and context restore instruction categories do not use the coprocessor 
response primitives. A set of format codes defined by the M68000 copro- 
cessor interface communicates status information to the main processor 
during the execution of these instructions. These coprocessor format codes 
are discussed in detail in 10.2.3.2 COPROCESSOR FORMAT WORDS. 

10.2.3.1 COPROCESSOR INTERNAL STATE FRAMES. The context save (cpSAVE) 
and context restore (cpRESTORE) instructions transfer an internal coproces- 
sor state frame between memory and a coprocessor. This internal copro- 
cessor state frame represents the state of coprocessor operations. Using the 
cpSAVE and cpRESTORE instructions, it is possible to interrupt coprocessor 
operation, save the context associated with the current operation, and initiate 
coprocessor operations with a new context. 

A cpSAVE instruction stores a coprocessor's internal state frame as a se- 
quence of long-word entries in memory. Figure 10-14 shows the format of a 
coprocessor state frame. During execution of the cpSAVE instruction, the 
MC68030 calculates the state frame effective address from information in the 
operation word of the instruction and stores a format word at this effective 
address. The processor writes the long words that form the coprocessor state 
frame to descending memory addresses, beginning with the address spec- 
ified by the sum of the effective address and the format word-length field 
multiplied by four. During execution of the cpRESTORE instruction, the 
MC68030 reads the format word and long words in the state frame from 
ascending addresses, beginning with the effective address specified in the 
instruction operation word. 

10-20 MC68030 USER'S MANUAL MOTOROLA 



SAVE 
ORDER 

0 

n 

n-] 

n-2 

RESTORE 
ORDER 

0 

1 

2 

3 

31 23 15 0 

FORMAT 1 LENGTH 1 (UNUSED, RESERVED) 

COPROCESSOR.DEPENDENT INFORMATION 

Figure 10-14. Coprocessor State Frame Format in Memory 

The processor stores the coprocessor format word at the lowest address of 
the state frame in memory, and this word is the first word transferred for 
both the cpSAVE and the cpRESTORE instructions. The word following the 
format word does not contain information relevant to the coprocessor state 
frame, but serves to keep the information in the state frame a multiple of 
four bytes in size. The number of entries following the format word (at higher 
addresses) is determined. 

The information in a coprocessor state frame describes a context of operation 
for that coprocessor. This description of a coprocessor context includes the 
program invisible state information and, optionally, the program visible state 
information. The program invisible state information consists of any internal 
registers or status information that cannot be accessed by the program but 
is necessary for the coprocessor to continue its operation at the point of 
suspension. Program visible state information includes the contents of all 
registers that appear in the coprocessor programming model and that can 
be directly accessed using the coprocessor instruction set. The information 
saved by the cpSAVE instruction must include the program invisible state 
information. If cpGEN instructions are provided to save the program visible 
state of the coprocessor, the cpSAVE and cpRESTORE instructions should 
only transfer the program invisible state information to minimize interrupt 
latency during a save or restore operation. 

MOTOROLA MC68030 USER'S MANUAL 10-21 

10 



10.2.3.2 COPROCESSOR FORMAT WORDS. The coprocessor communicates sta- 
tus information to the main processor during the execution of cpSAVE and 
cpRESTORE instructions using coprocessor format words. The format words 
defined for the M68000 coprocessor interface are listed in Table 10-2. 

Table 10-2. Coprocessor Format Word Encodings 

Format Code Length Meaning 

O0 xx Empty/Reset 

01 xx Not Ready, Come Again 

02 xx Invalid Format 

03-OF xx Undefined, Reserved 

IO-FF Length Valid Format, Coprocessor Defined 

The upper byte of the coprocessor format word contains the code used to 
communicate coprocessor status information to the main processor. The 
MC68030 recognizes four types of format words: empty/reset, not ready, 
invalid format, and valid format. The MC68030 interprets the reserved format 
codes ($03-$0F) as invalid format words. The lower byte of the coprocessor 
format word specifies the size in bytes (which must be a multiple of four) of 
the coprocessor state frame. This value is only relevant when the code byte 
contains the valid format code (refer to 10.2.3.2.4 Valid Format Word). 

lo 

10.2.3.2.1 Empty/Reset Format Word. The coprocessor returns the empty/reset 
format code during a cpSAVE instruction to indicate that the coprocessor 
contains no user-specific information. That is, no coprocessor instructions 
have been executed since either a previous cpRESTORE of an empty/reset 
format code or the previous hardware reset. If the main processor reads the 
empty/reset format word from the save CIR during the initiation of a cpSAVE 
instruction, it stores the format word at the effective address specified in the 
cpSAVE instruction and executes the next instruction. 

When the main processor reads the empty/reset format word from memory 
during the execution of the cpRESTORE instruction, it writes the format word 
to the restore CIR. The main processor then reads the restore CIR and, if the 
coprocessor returns the empty/reset format word, executes the next instruc- 
tion. The main processor can initialize the coprocessor by writ ing the empty/ 
reset format code to the restore CIR. When the coprocessor receives the 
empty/reset format code, it terminates any current operations and waits for 
the main processor to initiate the next coprocessor instruction. In particular, 
after the cpRESTORE of the empty/reset format word, the execution of a 

10-22 MC68030 USER'S MANUAL MOTOROLA 



cpSAVE should cause the empty/reset format word to be returned when a 
cpSAVE instruction is executed before any other coprocessor instructions. 
Thus, an empty/reset state frame consists only of the format word and the 
following reserved word in memory (refer to Figure 10-14). 

10.2.3.2.2 Not Ready Format Word. When the main processor initiates a cpSAVE 
instruction by reading the save CIR the coprocessor can delay the save op- 
eration by returning a not ready format word. The main processor then 
services any pending interrupts and reads the save CIR again. The not ready 
format word delays the save operation until the coprocessor is ready to save 
its internal state, The cpSAVE instruction can suspend execution of a general 
or conditional coprocessor instruction; the coprocessor can resume execu- 
tion of the suspended instruction when the appropriate state is restored with 
a cpRESTORE. If no further main processor services are required to complete 
coprocessor instruction execution, it may be more efficient to complete the 
instruction and thus reduce the size of the saved state. The coprocessor 
designer should consider the efficiency of completing the instruction or of 
suspending and later resuming the instruction when the main processor 
executes a cpSAVE instruction. 

When the main processor initiates a cpRESTORE instruction by writing a 
format word to the restore CIR, the coprocessor should usually terminate 
any current operations and restore the state frame supplied by the main 
processor. Thus, the not ready format word should usually not be returned 
by the coprocessor during the execution of a cpRESTORE instruction. If the 
coprocessor must delay the cpRESTORE operation for any reason, it can 
return the not ready format word when the main processor reads the restore 
CIR. If the main processor reads the not ready format word from the restore 
CIR during the cpRESTORE instruction, it reads the restore CIR again without 
servicing any pending interrupts. 

10.2.3.2.3 Invalid Format Word. When the format word placed in the restore CIR 
to initiate a cpRESTORE instruction does not describe a valid coprocessor 
state frame, the coprocessor returns the invalid format word in the restore 
CIR. When the main processor reads this format word during the cpRESTORE 
instruction, it writes the abort mask to the control CIR and initiates format 
error exception processing. The two least significant bits of the abort mask 
are 01; the fourteen most significant bits are undefined. 

MOTOROLA MC68030 USER'S MANUAL 10-23 

10 



10 

A coprocessor should usually not place an invalid format word in the save 
CIR when the main processor initiates a cpSAVE instruction. A coprocessor, 
however, may not be able to support the initiation of a cpSAVE instruction 
while it is executing a previously initiated cpSAVE or cpRESTORE instruction. 
In this situation, the coprocessor can return the invalid format word when 
the main processor reads the save CIR to initiate the cpSAVE instruction 
while either another cpSAVE or cpRESTORE instruction is executing. If the 
main processor reads an invalid format word from the save CIR, it writes the 
abort mask to the control CIR and initiates format error exception processing 
(refer to 10.5,1.5 FORMAT ERRORS). 

10.2.3.2.4 Valid Format Word. When the main processor reads a valid format 
word from the save CIR during the cpSAVE instruction, it uses the length 
field to determine the size of the coprocessor state frame to save. The length 
field in the lower eight bits of a format word is relevant only in a valid format 
word. During the cpRESTORE instruction, the main processor uses the length 
field in the format word read from the effective address in the instruction to 
determine the size of the coprocessor state frame to restore. 

The length field of a valid format word, representing the size of the copro- 
cessor state frame, must contain a multiple of four. If the main processor 
detects a value that is not a multiple of four in a length field during the 
execution of a cpSAVE or cpRESTORE instruction, the main processor writes 
the abort mask (refer to 10.2.3.2.3 Invalid Format Word to the control CIR 
and initiates format error exception processing. 

10.2.3.3 COPROCESSOR CONTEXT SAVE INSTRUCTION. The M68000 coproces- 
sor context save instruction category consists of one instruction. The copro- 
cessor context save instruction, denoted by the cpSAVE mnemonic, saves 
the context of a coprocessor dynamically without relation to the execution 
of coprocessor instructions in the general or conditional instruction cate- 
gories. During the execution of a cpSAVE instruction, the coprocessor com- 
municates status information to the main processor by using the coprocessor 
format codes. 

10.2.3.3.1 Format. Figure 10-15 shows the format of the cpSAVE instruction. The 
first word of the instruction is the F-line operation word, which contains the 
coprocessor identification code in bits [9-11] and an M68000 effective address 

10-24 MC68030 USER'S MANUAL MOTOROLA 



code in bits [0-5]. The effective address encoded in the cpSAVE instruction 
is the address at which the state frame associated with the current context 
of the coprocessor is saved in memory. 

15 14 13 12 11 9 8 7 6 5 

1 i 1  i 1  i 1  I cpio I 1 I o I o I EFFECTIVE A00 ESS 
EFFECTIVE ADDRESS EXTENSION WORDS (0-5 WORDS) 

Figure 10-15. Coprocessor Context Save Instruction Format (cpSAVE) 

The control alterable and predecrement addressing modes are valid for the 
cpSAVE instruction. Other addressing modes cause the MC68030 tO initiate 
F-line emulator exception processing as described in 10.5.2.2 F-LINE EMU- 
LATOR EXCEPTIONS. 

The instruction can include as many as five effective address extension words 
following the cpSAVE instruction operation word. These words contain any 
additional information required to calculate the effective address specified 
by bits [0-5] of the operation word. 

10.2.3.3.2 Protocol. Figurej10-16 shows the protocol for the coprocessor context 
save instruction. The main processor initiates execution of the cpSAVE in- 
struction by reading the save CIR. Thus, the cpSAVE instruction is the only 
coprocessor instruction that begins by reading from a CIR. (All other copro- 
cessor instructions write to a CIR to initiate execution of the instruction by 
the coprocessor.) The coprocessor communicates status information asso- 
ciated with the context save operation to the main processor by placing 
coprocessor format codes in the save CIR. 

If the coprocessor is not ready to suspend its current operation when the 
main processor reads the save CIR, it returns a "not ready" format code. The 
main processor services any pending interrupts and then reads the save CIR 
again. After placing the not ready format code in the save CIR, the coprocessor 
should either suspend or complete the instruction it is currently executing. 

Once the coprocessor has suspended or completed the instruction it is ex- 
ecuting, it places a format code representing the internalcoprocessor state 
in the save CIR. When the main processor reads the save CIR, it transfers the 
format word to the effective address specified in the cpSAVE instruction. The 
lower byte of the coprocessor format word specifies the number of bytes of 
state information, not including the format word and associated null word, 

MOTOROLA MC68030 USER'S MANUAL 10-25 

10 



10 

MAIN PROCESSOR 

M1 RECOGNIZE COPROCESSOR INSTRUCTION F-LINE 
OPERATION WORD 

M2 READ SAVE CIR TO INITIATE THE cpSAVE INSTRUCTION 

M3 IF (FORMAT = NOT READY) DO STEPS 1) AND 2) BELOW 
1) SERVICE PENDING INTERRUPTS 
2) GO TO M2 

M3 

M4 

EVALUATE EFFECTIVE ADDRESS SPECIFIED IN F-LINE 
OPWORO AND STORE FORMAT WORD AT 
EFFECTIVE ADDRESS 

IF (FORMAT = EMPTY) 60 TO M5 
ELSE, TRANSFER NUMBER OF BYTES INDICATED 
IN FORMAT WORO FROM OPERAND ClR TO 
EFFECTIVE ADDRESS 

M5 PROCEED WITH EXECUTION OF NEXT INSTRUCTION 

COPROCESSOR 

C1 IF (NOT READY TO BEGIN CONTEXT SAVE OPERATION) 
O0 STEPS 1) AND 2) BELOW 

1) PLACE NOT READY FORMAT CODE IN SAVE CIR 
2) SUSPEND OR COMPLETE CURRENT OPERATIONS 

62 PLACE APPROPRIATE FORMAT WORD IN SAVE CIR 

C3 TRANSFER NUMBER OF BYTES INDICATED IN 
FORMAT WORD THROUGH OPERAND CIR 

Figure 10-16. Coprocessor Context Save Instruction Protocol 

to be transferred from the coprocessor to the effective address specified. If 
the state information is not a mult iple of four bytes in size, the MC68030 
initiates format error exception processing (refer to 10.5.1.5 FORMAT ER- 
RORS). The coprocessor and main processor coordinate the transfer of the 
internal state of the coprocessor using the operand CIR. The MC68030 com- 
pletes the coprocessor context save by repeatedly reading the operand CIR 
and wri t ing the information obtained into memory until all the bytes specified 
in the coprocessor format word have been transferred. Following a cpSAVE 
instruction, the coprocessor should be in an idle state - - t h a t  is, not executing 
any coprocessor instructions. 

The cpSAVE instruction is a privileged instruction. When the main processor 
identifies a cpSAVE instruction, it checks the supervisor bit in the status 
register to determine whether it is operating at the supervisor privi lege level. 
If the MC68030 attempts to execute a cpSAVE instruction whi le at the user 
privilege level (status register bit [13]=0), it initiates privilege violat ion ex- 
ception processing wi thout  accessing any of the coprocessor interface reg- 
isters (refer to 10.5.2.3 PRIVILEGE VIOLATIONS). 

The MC68030 initiates format error exception processing if it reads an invalid 
format word (or a valid format word whose length field is not a mult iple of 
four bytes) from the save CIR during the execution of a cpSAVE instruction 
(refer to 10.2.3.2.3 Invalid Format Word). The MC68030 writes an abort mask 
(refer to 10.2.3.2.3 Invalid Format Word) to the control CIR to abort the co- 
processor instruction prior to beginning exception processing. Figure 10-16 

10-26 MC68030 USER'S MANUAL MOTOROLA 



does not include this case since a coprocessor usually returns either a not 
ready or a valid format code in the context of the cpSAVE instruction. The 
coprocessor can return the invalid format word, however, if a cpSAVE is 
initiated while the coprocessor is executing a cpSAVE or cpRESTORE instruc- 
tion and the coprocessor is unable to support the suspension of these two 
instructions. 

10.2.3.4 COPROCESSOR CONTEXT RESTORE INSTRUCTION. The M68000 copro- 
cessor context restore instruction category includes one instruction. The co- 
processor context restore instruction, denoted by the cpRESTORE mnemonic, 
forces a coprocessor to terminate any current operations and to restore a 
former state. During the execution of a cpRESTORE instruction, the copro- 
cessor can communicate status information to the main processor by placing 
format codes in the restore CIR. 

10.2.3.4.1 Format. Figure 10-17 shows the format of the cpRESTORE instruction. 

15 14 13 12 11 9 8 7 6 5 0 
1 1 1 1 CpID 1 O 1 EFFECTIVE ADDRESS 

I EFFECTIVE ADDRESS EXTENSION WORDS (0-5 WORDS) 

Figure 10-17. Coprocessor Context  Restore Instruction Format (cpRESTORE) 

The first word of the instruction is the F-line operation word, which contains 
the coprocessor identification code in bits [9-11] and an M68000 effective 
addressing code in bits [0-5]. The effective address encoded in the cp- 
RESTORE instruction is the starting address in memory where the copro- 
cessor context is stored. The effective address is that of the coprocessor 
format word that applies to the context to be restored to the coprocessor. 

The instruction can include as many as five effective address extension words 
following the first word in the cpRESTORE instruction format. These words 
contain any additional information required to calculate the effective address 
specified by bits [0-5] of the operation word. 

All memory addressing modes except the predecrement addressing mode 
are valid. Invalid effective address encodings cause the MC68030 to initiate 
F-line emulator exception processing (refer to 10.5.2.2 F-LINE EMULATOR 
EXCEPTIONS).  

MOTOROLA MC68030 USER'S MANUAL 10-27 

1 0  



10 

10.2.3.4.2 Protocol. Figure 10-18 shows the protocol for the coprocessor context 
restore instruction. When the main processor executes a cpRESTORE instruc- 
tion, it first reads the coprocessor format word from the effective address in 
the instruction. This format word contains a format code and a length field. 
During cpRESTORE operation, the main processor retains a copy of the length 
field to determine the number of bytes to be transferred to the coprocessor 
during the cpRESTORE operation and writes the format word to the restore 
CIR to initiate the coprocessor context restore. 

MAIN PROCESSOR 

MI RECOGNIZE COPROCESSOR INSTRUCTION F-LINE 
OPERATION WORD 

M2 REAO COPROCESSOR FORMAT CODE FROM EFFECTIVE 
ADDRESS SPECIFIED IN OPERATION WORD 

M3 WRITE COPROCESSOR FORMAT WORD TO RESTORE CIR 

M4 READ RESTORE CIR 

M5 IF (FORMAT = INVALID FORMAT) WRITE $0001 
ABORT CODE TO CONTROL CIR AND INITIATE FORMAT 
ERROR EXCEPTION PROCESSING (SEE NOTE 1) 

M6 IF (FORMAT = EMPTY/RESET} GO TO M7 
ELSE, TRANSFER NUMBER OF BYTES SPECIFIED BY 
FORMAT WORD TO DPERAND CIR (SEE NOTE 2) 

M7 PROCEED WITH EXECUTION OF NEXT INSTRUCTION 

COPROCESSOR 

C1 TERMINATE CURRENT OPERATIONS ANO EVALUATE 
FORMAT WORD 

C2 IF (INVALID FORMAT) PLACE INVALID FORMAT CODE 
IN THE RESTORE CIR 

C3 IF (VALID FORMAT) RECEIVE NUMBER OF BYTES 
INDICATED IN FORMAT WORD THROUGH OPERAND CIR 

NOTES: 1. See 10.6.1.5 FORMAT ERROR 
2. The MC68030 uses the length field in the format word read during M2to determine the number 

of bytes to read from memory and write to the operand CIR 

Figure 10-18. Coprocessor Context Restore Instruction Protocol 

When the coprocessor receives the format word in the restore CIR, it must 
terminate any current operations and evaluate the format word. If the format 
word represents a valid coprocessor context as determined by the copro- 
cessor design, the coprocessor returns the format word to the main processor 
through the restore CIR and prepares to receive the number of bytes specified 
in the format word through its operand CIR. 

After writing the format word to the restore CIR the main processor continues 
the cpRESTORE dialog by reading that same register. If the coprocessor 
returns a valid format word, the main processor transfers the number of 
bytes specified by the format word at the effective address to the operand 
CIR. 

10-28 M C 6 8 0 3 0  USER 'S  M A N U A L  M O T O R O L A  



If the format word written to the restore CIR does not represent a valid 
coprocessor state frame, the coprocessor places an invalid format word in 
the restore CIR and terminates any current operations. The main processor 
receives the invalid format code, writes an abort mask (refer to 10.2.3.2.3 
Invalid Format Word) to the control CIR, and initiates format error exception 
processing (refer to 10.5.1.5 FORMAT ERRORS). 

The cpRESTORE instruction is a privileged instruction. When the main pro- 
cessor accesses a cpRESTORE instruction, it checks the supervisor bit in the 
status register. If the MC68030 attempts to execute a cpRESTORE instruction 
while at the user privilege level (status register bit [13] = 0), it initiates privilege 
violation exception processing without accessing any of the coprocessor 
interface registers (refer to 10.5.2.3 PRIVILEGE VIOLATIONS). 

10.3 COPROCESSOR INTERFACE REGISTER SET 

The instructions of the M68000 coprocessor interface use registers of the CIR 
set to communicate with the coprocessor. These CIRs are not directly related 
to the coprocessor's programming model. 

Figure 10-4 is a memory map ofthe CIR set. The registers denoted by asterisks 
(*) must be included in a coprocessor interface that implements coprocessor 
instructions in all four categories. The complete register model must be 
implemented if the system uses all of the coprocessor response primitives 
defined for the M68000 coprocessor interface. 

The following paragraphs contain detailed descriptions of the registers. 

10.3.1 Response CIR 

The coprocessor uses the 16-bit response CIR to communicate all service 
requests (coprocessor response primitives) to the main processor. The main 
processor reads the response CIR to receive the coprocessor response pri- 
mitives during the execution of instructions in the general and conditional 
instruction categories. The offset from the base address of the CIR set for 
the response CIR is $00. Refer to 10.4 COPROCESSOR RESPONSE PRIMI- 
TIVES. 

MOTOROLA MC68030 USER'S MANUAL 10-29 

10 



10.3.2 Control CIR 

The main processor writes to the 2-bit control CIR to acknowledge copro- 
cessor-requested exception processing or to abort the execution of a copro- 
cessor instruction. The offset from the base address of the CIR set for the 
control CIR is $02. The control CIR occupies the two least significant bits of 
the word at that offset. The 14 most significant bits of the word are undefined. 
Figure 10-19 shows the format of this register. 

15 2 

(UNDEFINED, RESERVED) 

Figure 10-19. Control CIR Format 

1 0 

10 

When the MC68030 receives one of the three take exception coprocessor 
response primitives, it acknowledges the primitive by writing the exception 
acknowledge mask (102) to the control CIR, which sets the exception ac- 
knowledge (XA) bit. The MC68030 writes the abort mask (012), which sets 
the abort (AB) bit, to the control CIR to abort any coprocessor instruction in 
progress. (The most significant 14 bits of both masks are undefined.) The 
MC68030 aborts a coprocessor instruction when it detects one of the follow- 
ing exception conditions: 

• An F-line emulator exception condition after reading a response primitive 

• A privilege violation exception as it performs a supervisor check in re- 
sponse to a supervisor check primitive 

• A format error exception when it receives an invalid format word or a 
valid format word that contains an invalid length 

10.3.3 Save CIR 

The coprocessor uses the 16-bit save CIR to communicate status and state 
frame format information to the main processor while executing a cpSAVE 
instruction. The main processor reads the save CIR to initiate execution of 
the cpSAVE instruction by the coprocessor. The offset from the base address 
of the CIR set for the save CIR is $04. Refer to 10.2.3.2 COPROCESSOR FOR- 
MAT WORDS. 

10-30 MC68030 USER'S MANUAL MOTOROLA 



10.3.4 Restore CIR 

The main processor initiates the cpRESTORE instruction by writing a copro- 
cessor format word to the 16-bit restore register. During the execution of the 
cpRESTORE instruction, the coprocessor communicates status and state frame 
format information to the main processor through the restore CIR. The offset 
from the base address of the CIR set for the restore CIR is $06. Refer to 
10.2.3.2 COPROCESSOR FORMAT WORDS. 

10.3.5 Operation Word CIR 

The main processor writes the F-line operation word of the instruction in 
progress to the 16-bit operation word CIR in response to a transfer operation 
word coprocessor response primitive (refer to 10.4.6 Transfer Operation Word 
Primitive). The offset from the base address of the CIR set for the operation 
word CIR is $08. 

10.3.6 Command CIR 

The main processor initiates a general category instruction by writing the 
instruction command word, which follows the instruction F-line operation 
word in the instruction stream, to the 16-bit command CIR. The offset from 
the base address of the CIR set for the command CIR is $OA. 

10.3.7 Condition CIR 

The main processor initiates a conditional category instruction by writing the 
condition selector to the 16-bit condition CIR. The offset from the base address 
of the CIR set for the condition CIR is $0E. Figure 10-20 shows the format of 
the condition CIR. 

15 6 5 0 
I (UNDEFINED, RESERVED) ] CONDITION SELECTOR I 

Figure 10-20. Condition CIR Format 

MOTOROLA MC68030 USER'S MANUAL 10-31 

1C 



I0 

10.3.80perand CIR 

When the coprocessor requests the transfer of an operand, the main pro- 
cessor performs the transfer by reading from or writing to the 32-bit operand 
CIR. The offset from the base address of the CIR set for the operand CIR is 
$10. 

The MC68030 aligns all operands transferred to and from the operand CIR 
to the most significant byte of this CIR. The processor performs a sequence 
of long-word transfers to read or write any operand larger than four bytes. 
If the operand size is not a multiple of four bytes, the portion remaining after 
the initial long-word transfers is aligned to the most significant byte of the 
operand CIR. Figure 10-21 shows the operand alignment used by the MC68030 
when accessing the operand CIR. 

31 23 15 7 0 

J BYTE OPERAND J NO TRANSFER J 

J WORD OPERAND J NO TRANSFER .J 

J THREE BYTE OPERAND J NO TRANSFER J 

J LONG WORD OPERAND J 

BYTE - 

OPERAND J NO TRANSFER 

Figure 10-21. Operand Alignment for Operand ClR Accesses 

10.3.9 Register Select ClR 

When the coprocessor requests the transfer of one or more main processor 
registers or a group of coprocessor registers, the main processor reads the 
16-bit register select CIR to identify the number or type of registers to be 
transferred. The offset from the base address of the CIR set for the register 
select CIR is $14. The format of this register depends on the primitive that 
is currently using it. Refer to 10.4 COPROCESSOR RESPONSE PRIMITIVES. 

10-32 MC68030 USER'S MANUAL MOTOROLA 



10.3.10 Instruction Address CIR 

When the coprocessor requests the address of the instruction it is currently 
executing, the main processor transfers this address to the 32-bit instruction 
address CIR. Any transfer of the scanPC is also performed through the in- 
struction address CIR (refer to 10.4.17 Transfer Status Register and ScanPC 
Primitive). The offset from the base address of the CIR set for the instruction 
address CIR is $18. 

10.3.11 Operand Address CIR 

When a coprocessor requests an operand address transfer between the main 
processor and the coprocessor, the address is transferred through the 32-bit 
operand address CIR. The offset from the base address of the CIR set for the 
operand address CIR is $1C. 

10.4 COPROCESSOR RESPONSE PRIMITIVES 

The response primitives are primitive instructions that the coprocessor issues 
to the main processor during the execution of a coprocessor instruction. The 
coprocessor uses response primitives to communicate status information 
and service requests to the main processor. In response to an instruction 
command word written to the command CIR or a condition selector in the 
condition CIR, the coprocessor returns a response primitive in the response 
CIR. Within the general and conditional instruction categories, individual 
instructions are distinguished by the operation of the coprocessor hardware 
and also by services specified by coprocessor response primitives provided 
by the main processor. 

Subsequent paragraphs, beginning with 10.4.2 Coprocessor Response Pri- 
mitive General Format, consist of detailed descriptions of the M68000 co- 
processor response primitives supported by the MC68030. Any response 
primitive that the MC68030 does not recognize causes it to initiate protocol 
violation exception processing (refer to 10.5.2.1 PROTOCOL VIOLATIONS). 
This processing of undefined primitives supports emulation of extensions to 
the M68000 coprocessor response primitive set by the protocol violation 
exception handler. Exception processing related to the coprocessor interface 
is discussed in 10.5 EXCEPTIONS. 

MOTOROLA MC68030 USER'S MANUAL 10-33 

10 



10 

10.4.1 ScanPC 

Several of the response primitives involve the scanPC, and many of them 
require the main processor to use it while performing services requested. 
These paragraphs describe the scanPC and tell how it operates. 

During the execution of a coprocessor instruction, the program counter in 
the MC68030 contains the address of the F-line operation word of that in- 
struction. A second register, called the scanPC, sequentially addresses the 
remaining words of the instruction. 

If the main processor requires extension words to calculate an effective ad- 
dress or destination address of a branch operation, it uses the scanPC to 
address these extension words in the instruction stream. Also, if a copro- 
cessor requests the transfer of extension words, the scanPC addresses the 
extension words during the transfer. As the processor references each word, 
it increments the scanPC to point to the next word in the instruction stream. 
When an instruction is completed, the processor transfers the value in the 
scanPC to the program counter to address the operation word of the next 
instruction. 

The value in the scanPC when the main processor reads the first response 
primitive after beginning to execute an instruction depends on the instruction 
being executed. For a cpGEN instruction, the scanPC points to the word 
following the coprocessor command word. For the cpBcc instructions, the 
scanPC points to the word following the instruction F-line operation word. 
For the cpScc, cpTRAPcc, and cpDBcc instructions, the scanPC points to the 
word following the coprocessor condition specifier word. 

If a coprocessor implementation uses optional instruction extension words 
with a general or conditional instruction, the coprocessor must use these 
words consistently so that the scanPC is updated accordingly during the 
instruction execution. Specifically, during the execution of general category 
instructions, when the coprocessor terminates the instruction protocol, the 
MC68030 assumes that the scanPC is pointing to the operation word of the 
next instruction to be executed. During the execution of conditional category 
instructions, when the coprocessor terminates the instruction protocol, the 
MC68030 assumes that the scanPC is pointing to the word following the last 
of any coprocessor-defined extension words in the instruction format. 

10-34 MC68030 USER'S MANUAL MOTOROLA 



10.4.2 Coprocessor Response Primitive General Format 

The M68000 coprocessor response primitives are encoded in a 16-bit word 
that is transferred to the main processor through the response CIR. Figure 
10-22 shows the format of the coprocessor response primitives. 

15 14 13 12 8 7 0 

I cA I Pc I 0R I FoNcT,0N I PARAMETE, 

Figure 10-22. Coprocessor Response Primitive Format 

The encoding of bits [0-12] of a coprocessor response primitive depends on 
the individual primitive. Bits [13-15], however, specify optional additional 
operations that apply to most of the primitives defined for the M68000 co- 
processor interface. 

Bit [15], the CA bit, specifies the "come again" operation of the main pro- 
cessor. When the main processor reads a response primitive from the re- 
sponse CIR with the come again bit set to one, it performs the service indicated 
by the primitive and then reads the response CIR again. Using the CA bit, a 
coprocessor can transfer several response primitives to the main processor 
during the execution of a single coprocessor instruction. 

Bit [4], the PC bit, specifies the pass program counter operation. When the 
main processor reads a primitive with the PC bit set from the response CIR, 
the main processor immediately passes the current value in its program 
counter to the instruction address CIR as the first operation in servicing the 
primitive request. The value in the program counter is the address of the 
F-line operation word of the coprocessor instruction currently executing. The 
PC bit is implemented in all of the coprocessor response primitives currently 
defined for the M68000 coprocessor interface. 

When an undefined primitive or a primitive that requests an illegal operation 
is passed to the main processor, the main processor initiates exception pro- 
cessing for either an F-line emulator or a protocol violation exception (refer 
to 10.5.2 Main-Processor-Detected Exceptions). If the PC bit is set in one of 
these response primitives, however, the main processor passes the program 
counter to the instruction address CIR before it initiates exception processing. 

When the main processor initiates a cpGEN instruction that can be executed 
concurrently with main processor instructions, the PC bit is usually set in the 
first primitive returned by the coprocessor. Since the main processor pro- 

MOTOROLA MC68030 USER'S MANUAL 10-35 

1( 



IO 

ceeds with instruction stream execution once the coprocessor releases it, the 
coprocessor must record the instruction address to support any possible 
exception processing related to the instruction. Exception processing related 
to concurrent coprocessor instruction execution is discussed in 10.5.1 Co- 
processsor-Detected Exceptions. 

Bit [13], the DR bit, is the direction bit. It applies to operand transfers between 
the main processor and the coprocessor. If DR=0, the direction of transfer 
is from the main processor to the coprocessor (main processor write). If 
DR = 1, the direction of transfer is from the coprocessor to the main processor 
(main processor read). If the operation indicated by a given response pri- 
mit ive does not involve an explicit operand transfer, the value of this bit 
depends on the particular primit ive encoding. 

10.4.3 Busy Primitive 
The busy response primit ive causes the main processor to reinitiate a co- 
processor instruction. This primit ive applies to instructions in the general 
and condit ional categories. Figure 10-23 shows the format of the busy pri- 
mitive. 

15 14 

I '  IPcl 
13 12 11 10 9 8 7 6 5 4 3 2 1 0 

 10101,101010101010101010101 
Figure 10-23. Busy Primitive Format 

This primit ive uses the PC bit as previously described. 

Coprocessors that can operate concurrently with the main processor but 
cannot buffer wri te operations to their command or condit ion CIR use the 
busy primitive. A coprocessor may execute a cpGEN instruction concurrently 
with an instruction in the main processor. If the main processor attempts to 
initiate an instruction in the general or condit ional instruction category whi le 
the coprocessor is concurrently executing a cpGEN instruction, the copro- 
cessor can place the busy primit ive in the response CIR. When the main 
processor reads this primitive, it services pending interrupts (using a pre- 
instruction exception stack frame, refer to Figure 10-41). The processor then 
restarts the general or condit ional coprocessor instruction that it had at- 
tempted to initiate earlier. 

10-36 M068030 USER'S MANUAL MOTOROLA 



The busy primitive should only be used in response to a write to the command 
or condition CIR. It should be the first primitive returned after the main 
processor attempts to initiate a general or conditional category instruction. 
In particular, the busy primitive should not be issued after program-visible 
resources have been altered by the instruction. (Program-visible resources 
include coprocessor and main processor program-visible registers and op- 
erands in memory, but not the scanPC.) The restart of an instruction after it 
has altered program-visible resources causes those resources to have in- 
consistent values when the processor reinitiates the instruction. 

The MC68030 responds to the busy primitive differently in a special case that 
can occur during a breakpoint operation (refer to 8.1.12 Multiple Exceptions). 
This special case occurs when a breakpoint acknowledge cycle initiates a 
coprocessor F-line instruction, the coprocessor returns the busy primitive in 
response to the instruction initiation, and an interrupt is pending. When these 
three conditions are met, the processor re-executes the breakpoint acknowl- 
edge cycle after the interrupt exception processing has been completed. A 
design that uses a breakpoint to monitor the number of passes through a 
loop by incrementing or decrementing a counter may not work correctly 
under these conditions. This special case may cause several breakpoint ac- 
knowledge cycles to be executed during a single pass through a loop. 

10:4.4 Null Primitive 

The null coprocessor response primitive communicates coprocessor status 
information to the main processor. This primitive applies to instructions in 
the general and conditional categories. Figure 10-24 shows the format of the 
null primitive. 

T5 14 13 12 

I cAI P° I ° I ° I 
11 10 9 8 7 6 5 4 3 2 1 0 

, I o I o I , A I o  I o I o I o I o I o I PFI TF I 
Figure 10-24. Null Primitive Format 

This primitive uses the CA and PC bits as previously described. 

Bit [8], the IA bit, specifies the interrupts allowed optional operation. This bit 
determines whether the MC68030 services pending interrupts prior to re- 
reading the response ClR after receiving a null primitive. Interrupts are al- 
lowed when the IA bit is set. 

MOTOROLA MC68030 USER'S MANUAL 10-37 

1( 



IO 

Bit [1], the PF bit, shows the "processing finished" status of the coprocessor. 
That is, PF= 1 indicates that the coprocessor has completed all processing 
associated with an instruction. 

Bit [0], the TF bit, indicates the true/false condition during the execution of 
a conditional category instruction. TF = 1 is the true condition specifier, and 
TF=0 is the false condition specifier. The TF bit is only relevant for null 
primitives with CA=0 that are used by the coprocessor during the execution 
of a conditional instruction. 

The MC68030 processes a null primitive with CA=I  in the same manner 
whether executing a general or conditional category coprocessor instruction. 
If the coprocessor sets CA and IA to one in the null primitive, the main 
processor services pending interrupts (using a mid-instruction stack frame, 
refer to Figure 10-43) and reads the response CIR again. If the coprocessor 
sets CA to one and IA to zero in the null primitive, the main processor reads 
the response CIR again without servicing any pending interrupts. 

A null, CA=0 primitive provides a condition evaluation indicator to the main 
processor during the execution of a conditional instruction and ends the 
dialogue between the main processor and coprocessor for that instruction. 
The main processor completes the execution of a conditional category co- 
processor instruction when it receives the primitive. The PF bit is not relevant 
during conditional instruction execution since the primitive itself implies 
completion of processing. 

Usually, when the main processor reads any primitive that does not have 
CA= 1 while executing a general category instruction, it terminates the dia- 
logue between the main processor and coprocessor. If a trace exception is 
pending, however, the main processor does not terminate the instruction 
dialogue until it reads a null, CA=0, PF=I primitive from the response CIR 
(refer to 10.5.2.5 TRACE EXCEPTIONS). Thus, the main processor continues 
to read the response CIR until it receives a null, CA=0, PF= 1 primitive, and 
then performs trace exception processing. When IA = 1, the main processor 
services pending interrupts before reading the response CIR again. 

10-38 MC68030 USER'S MANUAL MOTOROLA 



A cop rocesso r  can be des igned  to execute  a cpGEN ins t ruc t ion  concu r ren t l y  
w i t h  the  execu t i on  o f  ma in  p rocessor  ins t ruc t ions  and, also, buf fer  one  wr i te  

ope ra t i on  to e i ther  its c o m m a n d  or  cond i t i on  CIR. This  t ype  of  cop rocessor  
issues a nul l  p r im i t i ve  w i th  CA = 1 w h e n  it is concu r ren t l y  execu t i ng  a cpGEN 
ins t ruc t ion ,  and the ma in  p rocessor  in i t ia tes ano the r  genera l  or  cond i t i ona l  
cop rocesso r  ins t ruct ion.  This  p r im i t i ve  ind icates that  the cop rocesso r  is busy  
and the ma in  p rocessor  shou ld  read the response CIR aga in  w i t h o u t  reini-  
t ia t ing  the  ins t ruct ion.  The IA bit  of  th is nul l  p r im i t i ve  usua l l y  shou ld  be set 
to  m i n i m i z e  in te r rup t  la tency w h i l e  the ma in  p rocessor  is w a i t i n g  for  the 
cop rocesso r  to c o m p l e t e  the genera l  ca tego ry  ins t ruct ion.  

Tab le  10-3 summar i zes  the encod ings  of  the nul l  p r im i t i ve .  

Table  10-3. Nul l  Coprocessor  Response Pr imi t ive  Encodings 

CA PC IA PF TF 

x 1 x x x 

1 0 0 x x 

1 0 1 x x 

0 0 0 0 c 

0 0 1 0 c 

General Instructions Conditional Instructions 

Pass Program Counter to Instruc- Same as General Category 
tion Address CIR, Clear PC Bit, and 
Proceed with Operation Specified 
by CA, IA, PF, and TF Bits 

Reread Response CIR, Do Not Same as GeneraI Category 
Service Pending Interrupts 

Service Pending Interrupts and Same as General Category 
Reread the Response CIR 

If (Trace Pending) Reread Re- Main Processor Completes In- 
sponse CIR; Else, Execute Next In- struction Execution Based on TF = c 
struction 

If(Trace Pending) Service Pending Main Processor Completes In- 
Interrupts and Reread Response struction Execution Based on TF= c 
CIR; Else, Execute Next Instruction 

Coprocessor Instruction Corn- Main Processor Completes In- 
31eted; Service Pending Excep- struction Execution Based on 
tions or Execute Next lnstruction TF=c. 

0 0 x 1 c 

x= Don't Care 
c= 1 or 0 Depending on Coprocessor Condition Evaluation 

MOTOROLA MC68030 USER'S MANUAL 10-39 

1( 



IO 

10.4.5 Supervisor Check Primitive 

The supervisor check primitive verifies that the main processor is operating 
in the supervisor state while executing a coprocessor instruction. This pri- 
mitive applies to instructions in the general and conditional coprocessor 
instruction categories. Figure 10-25 shows the format of the supervisor check 
primitive. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
I11Pcl010101 101010101010101010101 

Figure 10-25. Supervisor Check Primitive Format 

This primitive uses the PC bit as previously described. Bit [15] is shown as 
one, but during execution of a general category instruction, this primitive 
performs the same operations regardless of the value of bit [15]. If this pri- 
mitive is issued with bit [15]=0 during a conditional category instruction, 
however, the main processor initiates protocol violation exception process- 
ing. 

When the main processor reads the supervisor check primitive from the 
response CIR, it checks the value of the S bit in the status register. If S=0  
(main processor operating at user privilege level), the main processor aborts 
the coprocessor instruction by writ ing an abort mask (refer to 10.3.2 Control 
CIR) to the control CIR. The main processor then initiates privilege violation 
exception processing (refer to 10.5.2.3 PRIVILEGE VIOLATIONS). If the main 
processor is at the supervisor privilege level when it receives this primitive, 
it reads the response CIR again. 

The supervisor check primitive allows privileged instructions to be defined 
in the coprocessor general and conditional instruction categories. This pri- 
mitive should be the first one issued by the coprocessor during the dialog 
for an instruction that is implemented as privileged. 

10,4.6 Transfer Operation Word Primitive 

The transfer operation word primitive requests a copy of the coprocessor 
instruction operation word for the coprocessor. This primitive applies to 
general and conditional category instructions. Figure 10-26 shows the format 
of the transfer operation word primitive. 

10-40 MC68030 USER'S MANUAL MOTOROLA 



15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I cA I  Pcl 0 I 0 I 0 I '  I 1 I '  I 0 I o I 0 I o I o I ° I ° 1  ° I 

Figure 10-26. Transfer Operation Word Primitive Format 

This primit ive uses the CA and PC bits as previously described. If this primit ive 
is issued with CA=O during a condit ional category instruction, the main 
processor initiates protocol violat ion exception processing. 

When the main processor reads this primit ive from the response CIR, it 
transfers the F-line operation word of the currently executing coprocessor 
instruction to the operation word CIR. The value of the scanPC is not affected 
by this primitive. 

10.4.7 Transfer from Instruction Stream Primitive 

The transfer from instruction stream primit ive initiates transfers of operands 
from the instruction stream to the coprocessor. This primit ive applies to 
general and condit ional category instructions. Figure 10-27 shows the format 
of the transfer from instruction stream primitive. 

15 14 13 12 11 10 9 8 7 
CA PC 0 0 1 I 1 1 LENGTH ] 

Figure 10-27. Transfer from Instruction Stream Primitive Format 

This primit ive uses the CA and PC bits as previously described. If this primit ive 
is issued with CA=0  during a condit ional category instruction, the main 
processor initiates protocol violat ion exception processing. 

Bits [0-7] of the primit ive format specify the length, in bytes, of the operand 
to be transferred from the instruction stream to the coprocessor. The length 
must be an even number of bytes. If an odd length is specified, the main 
processor initiates protocol violation exception processing (refer to 10.5.2.1 
PROTOCOL VIOLATIONS). 

This primit ive transfers coprocessor-defined extension words to the copro- 
cessor. When the main processor reads this primit ive from the response CIR, 
it copies the number of bytes indicated by the length field from the instruction 
stream to the operand CIR. The first word or long word transferred is at the 

MOTOROLA MC68030 USER'S MANUAL 10-41 

10 



IO 

location pointed to by the scanPC when the primitive is read by the main 
processor, and the scanPC is incremented after each word or long word is 
transferred. When execution of the primitive has completed, the scanPC has 
been incremented by the total number of bytes transferred and points to the 
word following the last word transferred. The main processor transfers the 
operands from the instruction stream using a sequence of long-word writes 
to the operand CIR. If the length field is not an even multiple of four bytes, 
the fast two bytes from the instruction stream are transferred using a word 
write to the operand CIR. 

1 0 . 4 . 8  E v a l u a t e  a n d  T r a n s f e r  E f f e c t i v e  A d d r e s s  P r i m i t i v e  

The evaluate and transfer effective address primitive evaluates the effective 
address specified in the coprocessor instruction operation word and transfers 
the result to the coprocessor. This primitive applies to general category in- 
structions. If this primitive is issued by the coprocessor during the execution 
of a conditional category instruction, the main processor initiates protocol 
violation exception processing. Figure 10-28 shows the format of the evaluate 
and transfer effective address primitive. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
CA PC 0 0 1 0 1 0 0 0 0 0 0 0 0 0 

Figure 10-28. Evaluate and Transfer Effective Address Primit ive Format  

This primitive uses the CA and PC bits as previously described. 

When the main processor reads this primitive while executing a general 
category instruction, it evaluates the effective address specified in the in- 
struction. At this point, the scanPC contains the address of the first of any 
required effective address extension words. The main processor increments 
the scanPC by two after it references each of these extension words. After 
the effective address is calculated, the resulting 32-bit value is written to the 
operand address CIR. 

The MC68030 only calculates effective addresses for control alterable ad- 
dressing modes in response to this primitive. If the addressing mode in the 
operation word is not a control alterable mode, the main processor aborts 
the instruction by writing a $0001 to the control CIR and initiates F-line em- 
ulation exception processing (refer to 10.5.2.2 F-LINE E M U L A T O R  EXCEP- 
TIONS).  

10-42 MC68030 USER'S MANUAL MOTOROLA 



10.4.9 Evaluate  Effective Address  and Transfer  Data Pr imi t ive  

The evaluate effective address and transfer data primit ive transfers an op- 
erand between the coprocessor and the effective address specified in the 
ceprocessor instruction operation word. This primit ive applies to general 
category instructions. If the coprocessor issues this primitive during the ex- 
ecution of a condit ional category instruction, the main processor initiates 
protocol violat ion exception processing. Figure 10-29 shows the format of 
the evaluate effective address and transfer data primitive. 

15 14 13 12 11 10 8 7 0 

I cA I Pc i °" I ' I 0 I vA,10E~ I ,ENOT, I 

Figure 10-29. Evaluate Effective Address and Transfer Data Primitive Format 

This primit ive uses the CA, PC, and DR bits as previously described. 

The valid effective address field (bits [8-10]) of the primit ive format specifies 
the valid effective address categories for this primitive. If the effective address 
specified in the instruction operation word is not a member of the class 
specified by bits E8-10], the main processor aborts the coprocessor instruc- 
t ion by wri t ing an abort mask (refer to 10.3.2 Control CIR) to the control CIR 
and by init iating F-line emulat ion exception processing. Table 10-4 lists the 
valid effective address field encodings. 

Table 10-4. Valid Effective 
Address Codes 

Field Category 
Control Alterable 000 

001 Data Alterable 

010 Memory Alterable 

Alterable 011 

100 Control 

101 Data 

Memory 110 

111 Any Effective Address 
(No Restriction) 

MOTOROLA MC68030 USER'S MANUAL 10-43 

l o  



IO 

Even when the valid effective address fields specified in the primitive and in 
the instruction operation word match, the MC68030 initiates protocol viola- 
tion exception processing if the primitive requests a write to a nonalterable 
effective address. 

The length in bytes of the operand to be transferred is specified by bits [0-7] 
of the primitive format. Several restrictions apply to operand lengths for 
certain effective addressing modes. If the effective address is a main pro- 
cessor register (register direct mode), only operand lengths of one, two, or 
four bytes are valid; all other lengths (zero, for example) cause the main 
processor to initiate protocol violation exception processing. Operand lengths 
of 0-255 bytes are valid for the memory addressing modes. 

The length of 0-255 bytes does not apply to an immediate operand. The 
length of an immediate operand must be one byte or an even number of 
bytes (less than 256), and the direction of transfer must be to the coprocessor; 
otherwise, the main processor initiates protocol violation exception pro- 
cessing. 

When the main processor receives this primitive during the execution of a 
general category instruction, it verifies that the effective address encoded in 
the instruction operation word is in the category specified by the primitive. 
If so, the processor calculates the effective address using the appropriate 
effective address extension words at the current scanPC address and incre- 
ments the scanPC by two for each word referenced. The main processor then 
transfers the number of bytes specified in the primitive between the operand 
CIR and the effective address using long-word transfers whenever possible. 
Refer to 10.3.80perand CIR for information concerning operand alignment 
for transfers involving the operand CIR. 

The DR bit specifies the direction of the operand transfer. DR=0 requests a 
transfer from the effective address to the operand CIR, and DR = 1 specifies 
a transfer from the operand CIR to the effective address. 

10-44 MC68030 USER'S MANUAL MOTOROLA 



If the effective addressing mode specifies the predecrement mode, the ad- 
dress register used is decremented by the size of the operand before the 
transfer. The bytes within the operand are then transferred to or from as- 
cending addresses beginning with the location specified by the decremented 
address registerl In this mode, if A7 is used as the address register and the 
operand length is one byte, A7 is decremented by two to maintain a word- 
aligned stack. 

For the postincrement effective addressing mode, the address register used 
is incremented by the size of the operand after the transfer. The bytes within 
the operand are transferred to or from ascending addresses beginning with 
the location specified by the address register. In this mode, if A7 is used as 
the address register and the operand length is one byte, A7 is incremented 
by two after the transfer to maintain a word aligned stack. Transferring odd 
length operands longer than one byte using the - (A7) or (A7) + addressing 
modes can result in a stack pointer that is not word aligned. 

The processor repeats the effective address calculation each time this pri- 
mitive is issued during the execution of a given instruction. The calculation 
uses the current contents of any required address and data registers. The 
instruction must include a set of effective address extension words for each 

repetition of a calculation that requires them. The processor locates these 
words at the current scanPC location and increments the scanPC by two for 
each word referenced in the instruction stream. 

The MC68030 sign-extends a byte or word-sized operand to a long-word 
value when it is transferred to an address register (A0-A7) using this primitive 
with the register direct effective addressing mode. A byte or word-sized 
operand transferred to a data register (D0-D7) only overwrites the lower byte 
or word of the data register. 

MOTOROLA MC68030 USER'S MANUAL 10-45 

10 



10.4.10 Write to Previously Evaluated Effective Address Primitive 

The write to previously evaluated effective address primitive transfers an 
operand from the coprocessor to a previously evaluated effective address. 
This primitive applies to general category instructions, If the coprocessor 
uses this primitive during the execution of a conditional category instruction, 
the main processor initiates protocol violation exception processing. Figure 
10-30 shows the format of the write to previously evaluated effective address 
primitive. 

15 14 13 12 11 10 9 8 7 0 

I cA I Pc I I 0 I 0 I 0 I 0 I 0 I 'ENGT, I 

Figure 10-30. Write to Previously Evaluated Effective 
Address Primitive Format 

IO 

This primitive uses the CA and PC bits as previously described. 

Bits [0-7] of the primitive format specify the length of the operand in bytes. 
The MC68030 transfers operands between zero and 255 bytes in length. 

When the main processor receives this primitive during the execution of a 
general category instruction, it transfers an operand from the operand CIR 
to an effective address specified by a temporary register within the MC68030. 
When a previous primitive for the current instruction has evaluated the ef- 
fective address, this temporary register contains the evaluated effective ad- 
dress. Primitives that store an evaluated effective address in a temporary 
register of the main processor are the evaluate and transfer effective address, 
evaluate effective address and transfer data, and transfer multiple coproces- 
sor registers primitive. If this primitive is used during an instruction in which 
the effective address specified in the instruction operation word has not been 
calculated, the effective address used for the write is undefined. Also, if the 
previously evaluated effective address was register direct, the address written 
to in response to this primitive is undefined. 

The function code value during the write operation indicates either supervisor 
or user data space, depending on the value of the S bit in the MC68030 status 
register when the processor reads this primitive. While a coprocessor should 

10-46 MC68030 USER'S MANUAL MOTOROLA 



request writes to only alterable effective addressing modes, the MC68030 
does not check the type of effective address used with this primitive. For 
example, if the previously evaluated effective address was program counter 
relative and the MC68030 is atthe user privilege level (S=0 in status register), 
the MC68030 writes to user data space at the previously calculated program 
relative address (the 32-bit value in the temporary internal register of the 
processor). 

Operands longer than four bytes are transferred in increments of four bytes 
(operand parts) when possible. The main processor reads a long-word op- 
erand part from the operand CIR and transfers this part to the current effective 
address. The transfers continue in this manner using ascending memory 
locations until all of the long-word operand parts are transferred, and any 
remaining operand part is then transferred using a one-, two-, or three-byte 
transfer as required. The operand parts are stored in memory using ascending 
addresses beginning with the address in the MC68030 temporary register. 

The execution of this primitive does not modify any of the registers in the 
MC68030 programmer's model, even if the previously evaluated effective 
address mode is the predecrement or postincrement mode. If the previously 
evaluated effective addressing mode used any of the MC68030 internal ad- 
dress or data registers, the effective address value used is the final value 
from the preceding primitive. That is, this primitive uses the value from an 
evaluate and transfer effective address, evaluate effective address and trans- 
fer data, or transfer multiple coprocessor registers primitive without modi- 
fication. 

The take address and transfer data primitive described in the next section 
does not replace the effective address value that has been calculated by the 
MC68030. The address that the main processor obtains in response to the 
take address and transfer data primitive is not available to the write to pre- 
viously evaluated effective address primitive. 

A coprocessor can issue an evaluate effective address and transfer data 
primitive followed by this primitive to perform a read-modify-write operation 
that is not indivisible. The bus cycles for this operation are normal bus cycles 
that can be interrupted, and the bus can be arbitrated between the cycles. 

MOTOROLA MC68030 USER'S MANUAL 10-47 

10 



10 

10.4.11 Take Address and Transfer Data Primitive 

The take address and transfer data primitive transfers an operand between 
the coprocessor and an address supplied by the coprocessor. This primitive 
applies to general and conditional category instructions. Figure 10-31 shows 
the format of the take address and transfer data primitive. 

15 14 13 12 11 10 9 8 7 0 

Figure 10-31. Take Address and Transfer Data Primitive Format 

This primitive uses the CA, PC, and DR bits as previously described. If the 
coprocessor issues this primitive with CA=0 during a conditional category 
instruction, the main processor initiates protocol violation exception pro- 
cessing. 

Bits [0-7] of the primitive format specify the operand length, which can be 
from 0-255 bytes. 

The main processor reads a 32-bit address from the operand address CIR. 
Using a series of long-word transfers, the processor transfers the operand 
between this address and the operand CIR. The DR bit determines the di- 
rection of the transfer. The processor reads or writes the operand parts to 
ascending addresses, starting at the address from the operand address CIR. 
If the operand length is not a multiple of four bytes, the final operand part 
is transferred using a one-, two-, or three-byte transfer as required. 

The function code used with the address read from the operand address CIR 
indicates either supervisor or user data space according to the value of the 
S bit in the MC68030 status register. 

10-48 MC68030 USER'S MANUAL MOTOROLA 



10.4.12 Transfer to/from Top of Stack Primitive 

The transfer to/from top of stack primitive transfers an operand between the 
coprocessor and the top of the currently active main processor stack (refer 
to 2.8.1 System Stack). This primitive applies to general and conditional 
category instructions. Figure 10-32 shows the format of the transfer to/from 
top of stack primitive. 

15 14 13 12 11 10 9 8 7 0 

LcAI Pc I 0" I 0 I 1 I 1 I I 0 I LE.GT. I 

Figure 10-32. Transfer To/From Top of Stack Primitive Format 

This primitive uses the CA, PC, and DR bits as previously described. If the 
coprocessor issues this primitive with CA=0 during a conditional category 
instruction, the main processor initiates protocol violation exception pro- 
cessing. 

Bits [0-7] of the primitive format specify the length in bytes of the operand 
to be transferred. The operand may be one, two, or four bytes in length; 
other length values cause the main processor to initiate protocol violation 
exception processing. 

If DR =0, the main processor transfers the operand from the currently active 
system stack to the operand CIR. The implied effective address mode used 
for the transfer is the (A7)+ addressing mode. A one-byte operand causes 
the stack pointer to be incremented by two after the transfer to maintain 
word alignment of the stack. 

If DR = 1, the main processor transfers the operand from the operand CIR to 
the currently active stack. The implied effective address mode used for the 
transfer is the - (A7) addressing mode. A one-byte operand causes the stack 
pointer to be decremented by two before the transfer to maintain word align- 
ment of the stack. 

MOTOROLA MC68030 USER'S MANUAL 10-49 

10 



10.4.13 Transfer Single Main Processor Register Primitive 

The transfer single main processor register primit ive transfers an operand 
between one of the main processor's data or address registers and the co- 
processor. This primit ive applies to general and condit ional category instruc- 
tions. Figure 10-33 shows the format of the transfer single main processor 
register primitive. 

15 14 13 i2 11 10 9 8 7 6 5 4 3 2 0 
CA PC DR 0 1 1 0 0 0 0 0 0 D/A REGISTER / J 

Figure 10-33. Transfer Single Main Processor Register Primitive Format 

10 

This primit ive uses the CA, PC, and DR bits as previously described. If the 
coprocessor issues this primit ive with CA=O during a condit ional category 
instruction, the main processor initiates protocol violat ion exception pro- 
cessing. 

Bit [3], the D/A bit, specifies whether the primit ive transfers an address or 
data register. D/A=O indicates a data register, and D/A= 1 indicates an ad- 
dress register. Bits [2-0] contain the register number. 

If DR=O, the main processor writes the long-word operand in the specified 
register to the operand CIR. If DR = 1, the main processor reads a long-word 
operand from the operand CIR and transfers it to the specified data or address 
register. 

10.4.14 Transfer Main Processor Control Register Primitive 

The transfer main processor control register primit ive transfers a long-word 
operand between one of its control registers and the coprocessor. This pri- 
mit ive applies to general and condit ional category instructions. Figure 10-34 
shows the format of the transfer main processor control register primitive. 
This primit ive uses the CA, PC, and DR bits as previously described. If the 
coprocessor issues this primit ive with CA=0 during a condit ional category 
instruction, the main processor initiates protocol violat ion exception pro- 
cessing. 

10-50 MC68030 USER'S MANUAL MOTOROLA 



15 14 13 t2 11 10 9 8 7 6 5 4 3 2 1 0 

[ c A I P c I ° R I  ° I 1 I I I 0 I '  I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 

Figure 10-34. Transfer Main Processor Control Register Primitive Format 

When the main processor receives this pr imit ive,  it reads a control register 
select code f rom the register select CIR. This code determines which main 
processor control register is transferred. Table 10-5 lists the val id control 
register select codes. If the control register select code is not valid, the MC68030 
init iates protocol v io lat ion exception processing (refer to 10.5.2.1 PROTOCOL 
VIOLATIONS). 

Table 10-5. Main Processor Control 
Register Selector Codes 

Hex Control Register 
x000 Source Function Code (SFC) Register 

x001 Destination Function Code (DFC) Register 

xO02 Cache Control Register (CACR) 

x800 User Stack Pointer (USP) 

x801 Vector Base Register (VBR) 

x802 Cache Address Register (CAAR) 

x803 Master Stack Pointer (MSP) 

x804 Interrupt Stack Pointer (ISP) 
i 

All other codes cause a protocol violation exception 

1 0  After reading a val id code f rom the register select CIR, if DR=0,  the main 
processor wr i tes the long-word operand f rom the specif ied control register 
to the operand CJR. If DR = 1, the main processor reads a long-word operand 
f rom the operand CIR and places it in the specified control register. 

MOTOROLA MC68030 USER'S MANUAL 10-51 



10 

10.4.15 Transfer Multiple Main Processor Registers Primitive 

The transfer multiple main processor registers primitive transfers long-word 
operands between one or more of its data or address registers and the 
coprocessor, This primitive applies to general and conditional category in- 
structions. Figure 10-35 shows the format of the transfer multiple main pro- 
cessor registers primitive. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I c A I  P c l ° R I  ° I ° I 1 I 1 I ° I ° I ° I ° I ° I ° I ° I ° I ° I 

Figure 10-35. Transfer Multiple Main Processor Registers Primitive Format 

This primitive uses the CA, PC, and DR bits as previously described. If the 
coprocessor issues this primitive with CA=0 during a conditional category 
instruction, the main processor initiates protocol violation exception pro- 
cessing. 

When the main processor receives this primitive, it reads a 16-bit register 
select mask from the register select CIR. The format of the register select 
mask is shown in Figure 10-36. A register is transferred if the bit correspond- 
ing to the register in the register select mask is set to one. The selected 
registers are transferred in the order D0-D7 and then A0-A7. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 DO 

Figure 10-36. Register Select Mask Format 

If DR=0, the main processor writes the contents of each register indicated 
in the register select mask to the operand CIR using a sequence of long-word 
transfers. If DR = 1, the main processor reads a long-word operand from the 
operand CIR into each register indicated in the register select mask. The 
registers are transferred in the same order, regardless of the direction of 
transfer indicated by the DR bit. 

10.4.16 Transfer Multiple Coprocessor Registers Primitive 

The transfer multiple coprocessor registers primitive transfers from 0-16 
operands between the effective address specified in the coprocessor instruc- 
tion and the coprocessor. This primitive applies to general category instruc- 

10-52 MC68030 USER'S MANUAL MOTOROLA 



tions. If the coprocessor issues this primitive during the execution of a 
conditional category instruction, the main processor initiates protocol vio- 
lation exception processing. Figure 10-37 shows the format of the transfer 
multiple coprocessor registers primitive. 

15 14 13 12 11 10 9 8 7 0 

I cA I Pc I °" I o I 0 I 0 I 0 I t ,E 0T. 

Figure 10-37. Transfer Multiple Coprocessor Registers Primitive Format 

This primitive uses the CA, PC, and DR bits as previously described. 

Bits [7-0] of the primitive format indicate the length in bytes of each operand 
transferred. The operand length must be an even number of bytes; odd length 
operands cause the MC68030 to initiate protocol violation exception pro- 
cessing (refer to 10.5.2.1 PROTOCOL VIOLATIONS). 

When the main processor reads this primitive, it calculates the effective ad- 
dress specified in the coprocessor instruction. The scanPC should be pointing 
to the first of any necessary effective address extension words when this 
primitive is read from the response CIR; the scanPC is incremented by two 
for each extension word referenced during the effective address calculation. 
For transfers from the effective address to the coprocessor (DR=0), the con- 
trol addressing modes and the postincrement addressing mode are valid. 
For transfers from the coprocessor to the effective address (DR = 1 ), the con- 
trol alterable and predecrement addressing modes are valid. Invalid address- 
ing modes cause the MC68030 to abort the instruction by writing an abort 
mask (refer to 10.3.2 Control CIR) to the control CIR and to initiate F-line 
emulator exception processing (refer to 10.5.2.2 F-LINE EMULATOR EXCEP- 
TIONS). 

After performing the effective address calculation, the MC68030 reads a 
16-bit register select mask from the register select CIR. The coprocessor uses 
the register select mask to specify the number of operands to transfer; the 
MC68030 counts the number of ones in the register select mask to determine 
the number of operands. The order of the ones in the register select mask 
is not relevant to the operation of the main processor. As many as 16 op- 
erands can be transferred by the main processor in response to this primitive. 
The total number of bytes transferred is the product of the number of op- 
erands transferred and the length of each operand specified in bits [0-7] of 
the primitive format. 

MOTOROLA MC68030 USER'S MANUAL 10-53 

1 0  



10 

if DR = 1, the main processor reads the number of operands specified in the 
register select mask from the operand CIR and writes these operands to the 
effective address specified in the instruction using long-word transfers when- 
ever possible. If DR=0, the main processor reads the number of operands 
specified in the register select mask from the effective address and writes 
them to the operand CIR. 

For the control addressing modes, the operands are transferred to or from 
memory using ascending addresses. For the postincrement addressing mode, 
the operands are read from memory with ascending addresses also, and the 
address register used is incremented by the size of an operand after each 
operand is transferred. The address register used with the (An) + addressing 
mode is incremented by the total number of bytes transferred during the 
primitive execution. 

For the predecrement addressing mode, the operands are written to memory 
with descending addresses, but the bytes within each operand are written 
to memory with ascending addresses. As an example, Figure 10-38 shows 
the format in long-word-oriented memory for two 12-byte operands trans- 
ferred from the coprocessor to the effective address using the - (An)  ad- 
dressing mode: The processor decrements the address register by the size 
of an operand before the operand is transferred. It writes the bytes of the 
operand to ascending memory addresses. When the transfer is complete, 
the address register has been decremented by the total number of bytes 
transferred. The MC68030 transfers the data using long-word transfers when- 
ever possible. 

31 23 15 7 0 

An - 2 *LENGTH = FINAL An 

An - LENGTH-~I=~ 

INITIAL An 

OP1. BYTE (0) 

OP1, BYTE (L-l) 

0P0. BYTE (0) 

OPO, BYTE (L-l) 

NOTE: oPo, Byte (0) is the first byte written to memory 
OPO, Byte (L-1) is the last byte of the first operand written to memory 
OP1, Byte (0) is the first byte of the second operand written to memory 
OP1, Byte (L-l) is the last byte written to memory 

Figure 10-38. Operand Format in Memory for TranSfer to - (An)  

10-54 MC68030 USER'S MANUAL MOTOROLA 



10.4.17 Transfer Status Register and ScanPC Primitive 

Both the transfer status register and the scanPC primit ive transfers values 
between the coprocessor and the main processor status register. On an op- 
t ional basis, the scanPC also makes transfers. This primit ive applies to general 
category instructions. If the coprocessor issues this primit ive during the ex- 
ecution of a condit ional category instruction, the main processor initiates 
protocol violat ion exception processing. Figure 10-39 shows the format of 
the transfer status register and scanPC primitive. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
CA PC DR 0 0 0 1 SP 0 0 0 0 0 0 0 0 

Figure 10-39. Transfer  S ta tus  Register  and ScanPC Pr imi t ive  Format  

This primit ive uses the CA, PC, and DR bits as previously described. 

Bit [8], the SP bit, selects the scanPC option. If SP = 1, the primit ive transfers 
both the scanPC and status register. If SP=O, only the status register is 
transferred. 

If SP = 0 and DR = O, the main processor writes the 16-bit status register value 
to the operand CIR. If SP=O and D R = l ,  the main processor reads a 16-bit 
value from the operand CIR into the main processor status register. 

If S P = I  and DR=O, the main processor writes the long-word value in the 
scanPC to the instruction address CIR and then writes the status register 
value to the operand CIR. If SP= 1 and DR= 1, the main processor reads a 
16-bit value from the operand CIR into the status register and then reads a 
long-word value from the instruction address CIR into the scanPC. 

With this primitive, a general category instruction can change the main pro- 
cessor program f low by placing a new value in the status register, in the 
scanPC, or new values in both the status register and the scanPC. By ac- 
cessing the status register, the coprocessor can determine and manipulate 
the main processor condit ion codes, supervisor status, trace modes, selection 
of the active stack, and interrupt mask level. 

MOTOROLA MC68030 USER'S MANUAL 10-55 

10 



The MC68030 discards any instruction words that have been prefetched be- 
yond the current scanPC location when this primitive is issued with DR=I 
(transfer to main processor). The MC68030 then refills the instruction pipe 
from the scanPC address in the address space indicated bythe status register 
S bit. 

If the MC68030 is operating in the trace on change of flow mode (TI:T0 in 
the status register contains 01) when the coprocessor instruction begins to 
execute and if this primitive is issued with DR = 1 (from coprocessor to main 
processor), the MC68030 prepares to take a trace exception. The trace ex- 
ception occurs when the coprocessor signals that it has completed all pro- 
cessing associated with the instruction. Changes in the trace modes due to 
the transfer of the status register to main processor take effect on execution 
of the next instruction. 

10 

10.4.18 Take Pre-lnstruction Exception Primitive 
The take pre-instruction exception primitive initiates exception processing 
using a coprocessor-supplied exception vector number and the pre-instruc- 
tion exception stack frame format. This primitive applies to general and con- 
ditional category instructions. Figure 10-40 shows the format of the take pre- 
instruction exception primitive. 

15 14 13 12 11 10 9 8 7 0 

I ° I Pc I ° I 1 I 1 I 1 I ° I ° I VEOTORNUMBE, I 

Figure 10-40. Take Pre-lnstruction Exception Primitive Format 

The primitive uses the PC bit as previously described. Bits [0-7] contain the 
exception vector number used by the main processor to initiate exception 
processing. 

When the main processor receives this primitive, it acknowledges the co- 
processor exception request by writing an exception acknowledge mask (re- 
fer to 10.3.2 Control ClR) to the control CIR. The MC68030 then proceeds with 
exception processing as described in 8.1 EXCEPTION PROCESSING SE- 
QUENCE. The vector number for the exception is taken from bits [0-7] of the 
primitive, and the MC68030 uses the four-word stack frame format shown in 
Figure 10-41. 

10-56 MC68030 USER'S MANUAL MOTOROLA 



15 14 13 12 l l  10 9 8 7 6 5 4 3 2 l 0 

STATUS REGISTER SP 

+02 

+06 

.~=~ ~ C, ~ ',~ COUNTER 

0 0 0 0 I VECTOR NUMBER 

Figure 10-41. MC68030 Pre-lnstruction Stack Frame 

The value of the program counter saved in this stack frame is the F-line 
operation word address of the coprocessor instruction during which the pri- 
mitive was received. Thus, if the exception handler routine does not modify 
the stack frame, an RTE instruction causes the MC68030 to return and rein- 
itiate execution of the coprocessor instruction. 

The take pre-instruction exception primitive can be used when the copro- 
cessor does not recognize a value written to either its command CIR or 
condition CIR to initiate a coprocessor instruction. This primitive can also be 
used if an exception occurs in the coprocessor instruction before any pro- 
gram-visible resources are modified by the instruction operation. This pri- 
mitive should not be used during a coprocessor instruction if program-visible 
resources have been modified by that instruction. Otherwise, since the 
MC68030 reinitiates the instruction when it returns from exception process- 
ing, the restarted instruction receives the previously modified resources in 
an inconsistent state. 

One of the most important uses of the take pre-instruction exception primitive 
is to signal an exception condition in a cpGEN instruction that was executing 
concurrently with the main processor's instruction execution. If the copro- 
cessor no longer requires the services of the main processor to complete a 
cpGEN instruction and the concurrent instruction completion is transparent 
to the programmer's model, the coprocessor can release the main processor 
by issuing a primitive with CA=O. The main processor usually executes the 
next instruction in the instruction stream, and the coprocessor completes its 
operations concurrently with the main processor operation. If an exception 
occurs while the coprocessor is executing an instruction concurrently, the 
exception is not processed until the main processor attempts to initiate the 
next general or conditional instruction. After the main processor writes to 
the command or condition CIR to initiate a general or conditional instruction, 
it then reads the response CIR. At this time, the coprocessor can return the 

MOTOROLA MC68030 USER'S MANUAL 10-57 

10 



10 

take pre-instruction exception primitive. This protocol allows the main pro- 
cessor to proceed with exception processing related to the previous con- 
currently executing coprocessor instruction and then return and reinitiate the 
coprocessor instruction during which the exception was signaled. The co- 
processor should record the addresses of all general category instructions 
that can be executed concurrently with the main processor and that support 
exception recovery. Since the exception is not reported until the next copro- 
cessor instruction is initiated, the processor usually requires the instruction 
address to determine which instruction the coprocessor was executing when 
the exception occurred. A coprocessor can record the instruction address by 
setting PC = 1 in one of the primit ives it uses before releasing the main pro- 
cessor. 

10.4.19 Take Mid-Instruction Exception Primitive 
The take mid-instruction exception primit ive initiates exception processing 
using a coprocessor-supplied exception vector number and the mid-instruc- 
t ion exception stack frame format. This primit ive applies to general and con- 
dit ional category instructions. Figure 10-42 shows the format of the take mid- 
instruction exception primitive. 

15 14 13 12 11 10 9 8 7 
0 PC 0 1 1 1 0 1 VECTOR NUMBER 

Figure 10-42. Take Mid-Instruction Exception Primitive Format 

0 

J 

This primit ive uses the PC bit as previously described. Bits [7-0] contain the 
exception vector number used by the main processor to initiate exception 
processing. 

When the main processor receives this primit ive, it acknowledges the co- 
processor exception request by wri t ing an exception acknowledge mask (re- 
fer to 10.3.2 Control CIR) to the control CIR. The MC68030 then performs 
exception processing as described in 8.1 EXCEPTION PROCESSING SE- 
QUENCE. The vector number for the exception is taken from bits [0-7] of the 
primit ive and the MC68030 uses the 10-word stack frame format shown in 
Figure 10-43. 

10-58 MC68030 USER'S MANUAL MOTOROLA 



SP 

+02 

+06 

+08 

+OC 

+OE 

+10 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

STATUS REGISTER 

0 0 ,  1 

SCAN PC 

VECTOR NUMBER 

PROGRAM COUNTER 

INTERNAL REGISTER 

OPERATION WORD 

EFFECTIVE ADDRESS 

Figure 10-43. MC68030 Mid-Instruction Stack Frame 

The program counter value saved in this stack frame is the operation word 
address of the coprocessor instruction during which the primitive is received. 
The scanPC field contains the value of the MC68030 scanPC when the pri- 
mitive is received. If the current instruction does not evaluate an effective 
address prior to the exception request primitive, the value of the effective 
address field in the stack frame is undefined. 

The coprocessor uses this primitive to request exception processing for an 
exception during the instruction dialog with the main processor. If the ex- 
ception handler does not modify the stack frame, the MC68030 returns from 
the exception handler and reads the response CIR. Thus, the main processor 
attempts to continue executing the suspended instruction by reading the 
response CIR and processing the primitive it receives. 

MOTOROLA MC68030 USER'S MANUAL 10-59 

10 



10 

10.4.20 Take Post-Instruction Exception Primitive 

The take post-instruction exception primitive initiates exception processing 
using a coprocessor-supplied exception vector number and the post-instruc- 
tion exception stack frame format. This primitive applies to general and con- 
ditional category instructions. Figure 10-44 shows the format of the take post- 
instruction exception primitive. 

15 14 13 12 11 10 9 8 7 

I 0 IPcl 0 I 1 1 '  I ' I 101 VECTOR NUMBER 

Figure 10-44. Take Post,Instruction Exception Primitive Format 

This primitive uses the PC bit as previously described. Bits [0-7] contain the 
exception vector number used by the main processor to initiate exception 
processing. 

When the main processor receives this primitive, it acknowledges the co- 
processor exception request by writing an exception acknowledge mask (re- 
fer to 10.3.2 Control CIR) to the control CIR. The MC68030 then performs 
exception processing as described in 8.1 EXCEPTION PROCESSING SE- 
QUENCE. The vector number for the exception is taken from bits [0-7] of the 
primitive, and the MC68030 uses the six-word stack frame format shown in 
Figure 10-45. 

The value in the main processor scanPC at the time this primitive is received 
is saved in the scanPC field of the post-instruction exception stack frame. 
The value of the program counter saved is the F-line operation word address 
of the coprocessor instruction during which the primitive is received. 

SP 

+02 

+06 

+08 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

STATUS REGISTER 

SCAN PC 

0 0 1 0 J VECTOR NUMBER 

PROGRAM COUNTER 

Figure 10-45. MC68030 Post-Instruction Stack Frame 

10-60 MC68030 USER'S MANUAL MOTOROLA 



10.5 

When the MC68030 receives the take post-instruction exception primitive, it 
assumes that the coprocessor either completed or aborted the instruction 
with an exception. If the exception handler does not modify the stack frame, 
the MC68030 returns from the exception handler to begin execution at the 
location specified by the scanPC field of the stackframe. This location should 
be the address of the next instruction to be executed. 

The coprocessor uses this primitive to request exception processing when 
it completes or aborts an instruction while the main processor is awaiting a 
normal response. For a general category instruction, the response is a re- 
lease; for a conditional category instruction, it is an evaluated true/false 
condition indicator. Thus, the operation of the MC68030 in response to this 
primitive is compatible with standard M68000 Family instruction related ex- 
ception processing (for example, the divide-by-zero exception). 

EXCEPTIONS 

Various exception conditions related to the execution of coprocessor instruc- 
tions may occur. Whether an exception is detected by the main processor 
or by the coprocessor, the main processor coordinates and performs excep- 
tion processing. Servicing these coprocessor-related exceptions is an exten- 
sion of the protocol used to service standard M68000 Family exceptions. That 
is, when either the main processor detects an exception or is signaled by the 
coprocessor that an exception condition has occurred, the main processor 
proceeds with exception processing as described in 8.1 EXCEPTION PRO- 
CESSING SEQUENCE. 

10.5.1 Coprocessor-Detected Exceptions 

Exceptions that the coprocessor detects, also those that the main processor 
detects, are usually classified as coprocessor-detected exceptions. These ex- 
ceptions can occur during M68000 coprocessor interface operations, internal 
operations, or other system-related operations of the coprocessor. 

Most coprocessor-detected exceptions are signaled to the main processor 
through the use of one of the three take exception primitives defined for the 
M68000 coprocessor interface. The main processor responds to these pri- 
mitives as previously described. However, not all coprocessor-detected ex- 
ceptions are signaled by response primitives. Coprocessor-detected format 
errors during the cpSAVE or cpRESTORE instruction are signaled to the main 
processor using the invalid format word described in 10.2.3.4.3 Invalid Format 
Words. 

MOTOROLA MC68030 USER'S MANUAL 10-61 

1(: 



IO 

10.5.1 .1 COPROCESSOR-DETECTED PROTOCOL VIOLATIONS. Protocol violation 
exceptions are communication failures between the main processor and co- 
processor across the M68000 coprocessor interface. Coprocessor-detected 
protocol violations occur when the main processor accesses entries in the 
coprocessor interface register set in an unexpected sequence. The sequence 
of operations that the main processor performs for a given coprocessor 
instruction or coprocessor response primitive has been described previously 
in this section. 

A coprocessor can detect protocol violations in various ways. According to 
the M68000 coprocessor interface protocol, the main processor always ac- 
cesses the operation word, operand, register select, instruction address, or 
operand address CIRs synchronously with respect to the operation of the 
coprocessor. That is, the main processor accesses these five registers in a 
certain sequence, and the coprocessor expects them to be accessed in that 
sequence. As a minimum, all M68000 coprocessors should detect a protocol 
violation if the main processor accesses any of these five registers when the 
coprocessor is expecting an access to either the command or condition CIR. 
Likewise, if the coprocessor is expecting an access to the command or con- 
dition CIR and the main processor accesses one of these five registers, the 
coprocessor should detect and signal a protocol violation. 

According to the M68000 coprocessor interface protocol, the main processor 
can perform a read of either the save or response CIRs or a write of either 
the restore or control CIRs asynchronously with respect to the operation of 
the coprocessor. That is, an access to one of these registers without the 
coprocessor explicitly expecting that access at that point can be a valid access. 
Although the coprocessor can anticipate certain accesses to the restore, re- 
sponse, and control coprocessor interface registers, these registers can be 
accessed at other times also. 

The coprocessor cannot signal a protocol violation to the main processor 
during the execution of cpSAVE or cpRESTORE instructions. If a coprocessor 
detects a protocol violation during the cpSAVE or cpRESTORE instruction, it 
should signal the exception to the main processor when the next coprocessor 
instruction is initiated. 

The main philosophy of the coprocessor-detected protocol violation is that 
the coprocessor should always acknowledge an access to one of its interface 
registers. If the coprocessor determines that the access is not valid, it should 
assert DSACKx, to the main processor and signal a protocol violation when 
the main processor next reads the response CIR. If the coprocessor fails to 

10-62 MC68030 USER'S MANUAL MOTOROLA 



assert DSACKx, the main processor waits for the assertion of that signal (or 
some other bus termination signal) indefinitely. The protocol previously de- 
scribed ensures that the coprocessor cannot halt the main processor. 

The coprocessor can signal a protocol violation to the main processor with 
the take mid-instruction exception primitive. To maintain consistency, the 
vector number should be 13, as it is for a protocol violation detected by the 
main processor. When the main processor reads this primitive, it proceeds 
as described in 10.4.19 Take Mid-Instruction Exception Primitive. If the ex- 
ception handler does not modify the stack frame, the MC68030 returns from 
the exception handler and reads the response CIR. 

10.5.1.2 COPROCESSOR-DETECTED ILLEGAL COMMAND OR CONDITION 
WORDS. Illegal coprocessor command or condition words are values writ- 
ten to the command CIR or condition CIR that the coprocessor does not 
recognize. If a value written to either of these registers is not valid, the 
coprocessor should return the take pre-instruction exception primitive in the 
response CIR. When it receives this primitive, the main processor takes a pre- 
instruction exception as described in 10.4.18 Take Pre-lnstruction Exception 
Primitive. If the exception handler does not modify the main processor stack 
frame, an RTE instruction causes the MC68030 to reinitiate the instruction 
that took the exception. The coprocessor designer should ensure that the 
state of the coprocessor is not irrecoverably altered by an illegal command 
or condition exception if the system supports emulation of the unrecognized 
command or condition word. 

All Motorola M68000 coprocessors signal illegal command and condition 
words by returning the take pre-instruction exception primitive with the 
F-line emulator exception vector number 11. 

10.5.1.3 COPROCESSOR DATA-PROCESSING EXCEPTIONS. Exceptions related 
to the internal operation of a coprocessor are classified as data-processing- 
related exceptions. These exceptions are analogous to the divide-by-zero 
exception defined by M68000 microprocessors and should be signaled to the 
main processor using one of the three take exception primitives containing 
an appropriate exception vector number. Which of these three primitives is 
used to signal the exception is usually determined by the point in the in- 
struction operation where the main processor should continue the program 
flow after exception processing. Refer to 10.4.18 Take Pre-lnstruction Excep- 
tion Primitives, 10.4.19 Take Mid-Instruction Exception Primitive, and 10.4.20 
Take Post-Instruction Exception Primitive. 

MOTOROLA MC68030 USER'S MANUAL 10-63 

1( 



IO 

10.5.1.4 COPROCESSOR SYSTEM-RELATED EXCEPTIONS. System-related ex- 
ceptions detected by a DMA coprocessor include those associated with bus 
activity and any other exceptions (interrupts, for example) occurring external 
to the coprocessor. The actions taken by the coprocessor and the main pro- 
cessor depend on the type of exception that occurs. 

When an address or bus error is detected by a DMA coprocessor, the co- 
processor should store any information necessary for the main processor 
exception handling routines in system-accessible registers. The coprocessor 
should place one of the three take exception primitives encoded with an 
appropriate exception vector number in the response CIR. Which of the three 
primitives is used depends upon the point in the coprocessor instruction at 
which the exception was detected and the point in the instruction execution 
at which the main processor should continue after exception processing. 

10.5.1.5 FORMAT ERRORS. Format errors are the only coprocessor-detected ex- 
ceptions that are not signaled to the main processor with a response pri- 
mitive. When the main processor writes a format word to the restore CIR 
during the execution of a cpRESTORE instruction, the coprocessor decodes 
this word to determine if it is valid (refer to 10.2.3.3 COPROCESSOR CONTEXT 
SAVE INSTRUCTION). If the format word is not valid, the coprocessor places 
the invalid format code in the restore CIR. When the main processor reads 
the invalid format code, it aborts the coprocessor instruction by writing an 
abort mask (refer to 10.3.2 Control CIR) to the control CIR. The main processor 
then performs exception processing using a four-word pre-instruction stack 
frame and the format error exception vector number 14. Thus, if the exception 
handler does not modify the stack frame, the MC68030 restarts the 
cpRESTORE instruction when the RTE instruction in the handler is executed. 
If the coprocessor returns the invalid format code when the main processor 
reads the save CIR to initiate a cpSAVE instruction, the main processor per- 
forms format error exception processing as outlined for the cpRESTORE 
instruction. 

10-64 MC68030 USER'S MANUAL MOTOROLA 



10.5.2 Main-Processor-Detected Exceptions 
A number of exceptions related to coprocessor instruction execution are 
detected by the main processor instead of the coprocessor (they are still 
serviced by the main processor). These exceptions can be related to the 
execution of coprocessor response primitives, communicat ion across the 
M68000 coprocessor interface, or the completion of condit ional coprocessor 
instructions by the main processor. 

10.5.2.1 PROTOCOL VIOLATIONS. The main processor detects a protocol violat ion 
when it reads a primit ive from the response CIR that is not a valid primitive. 
The protocol violat ions that can occur in response to the primit ives defined 
for the M68000 coprocessor interface are summarized in Table 10-6. 

MOTOROLA MC68030 USER'S MANUAL 10-65 

10 



10 

Table 10-6. Exceptions Related to Primitive Processing (Sheet 1 of 2) 

Primitive Protocoli F-Line Other 

Busy 

NULL 

Supervisory Check* X 
Other: Privilege Violation if "'S'" Bit=0 

Transfer Operation Word* 

Transfer from Instruction Stream* X 
Protocol: if Length Field is Odd (Zero Length Legal) 

Evaluate and Transfer Effective Address 
Protocol: If Used with Conditional Instruction X 
F-Line: If EA in Op-Word is NOT Control Alterable X 

Evaluate Effective Address and Transfer Data 
Protocol: X 

1. If Used with Conditional Instructions 
2. Length is Not 1, 2, or 4 and EA= Register Direct 
3. If EA=lmmediate and Length Odd and Greater Than 1 
4. Attempt to Write to Nonalterable Address Even if Address De- 

clared Legal in Primitive 
F-Line: Valid EA Field Does Not Match EA in Op-Word X 

Write to Previously Evaluated Effective Address 
Protocol: If Used with Conditional Instruction X 

Busy 

Take Address and Transfer Data* 

Transfer To/From Top of Stack* 
Protocol: Length Field Other Than 1, 2, or 4 X 

Transfer To/From Main Processor Register* 

Transfer To/From Main Processor Control Register 
Protocol: Invalid Control Register Select Code X 

Transfer Multiple Main Processor Registers* 

Transfer Multiple Coprocessor Registers X 
Protocol: 

1. If Used with Conditional Instructions X 
2. Odd Length Value 

F-Line: 
1. EA Not Control Alterable or (An)+ for CP to Memory Transfer 
2. EA Not Control Alterable or (An) for Memory to CP Transfer 

10-66 MC68030 USER'S MANUAL MOTOROLA 



Table 10-6. Exceptions Related to Primitive Processing (Sheet 2 of 2) 

Primitive Protocol F-Line Other 
, ,  I 

Transfer Status and/or ScanPC X 
Protocol: If Used with Conditional Instruction 
Other: X 

1, Trace - -  Trace Made Pending if MC68020 in "Trace on Change 
of Flow" Mode and DR = 1 

2. Address Error - -  If Odd value Written to ScanPC 

Take Pre-lnstruction, Mid-Instruction, or Post-Instruction Exception X X X 
Exception Depends on Vector Supplies in Primitive 

*Use of this primitive with CA = 0 will cause protocol violat ion on conditional instructions. 

Abbreviations: 
EA= Effective Address 
CP = Coprocessor 

When the MC68030 detects a protocol violation, it does not automatically 
notify the coprocessor of the resulting exception by writing to the control 
CIR. The exception handling routine may, however, use the MOVES instruc- 
tion to read the response CIR and thus determine the primitive that caused 
the MC68030 to initiate protocol violation exception processing. The main 
processor initiates exception processing using the mid-instruction stack frame 
(refer to Figure 10-43) and the coprocessor protocol violation exception vector 
number 13. If the exception handler does not modify the stack frame, the 
main processor reads the response CIR again following the execution of an 
RTE instruction to return from the exception handler. This protocol allows 
extensions to the M68000 coprocessor interface to be emulated in software 
by a main processor that does not provide hardware support for these ex- 
tensions. Thus, the protocol violation is transparent to the coprocessor if the 
primitive execution can be emulated in software by the main processor. 

M O T O R O L A  MC68030 USER'S M A N U A L  10-67 



0 

10.5.2.2 F-LINE EMULATOR EXCEPTIONS. The F-line emulator exceptions de- 
tected by the MC68030 are either explicit ly or impl ici t ly related to the en- 
codings of F-line operation words in the instruction stream. If the main 
processor determines that an F-line operation word is not valid, it initiates 
F-line emulator exception processing. Any F-line operation word with bits 
[8:6] = 110 or 111 causes the MC68030 to initiate exception processing with- 
out init iating any communication with the coprocessor for that instruction. 
Also, an operation word with bits [8:6] =000-101 that does not map to one 
of the valid coprocessor instructions in the instruction set causes the MC68030 
to initiate F-line emulator exception processing. If the F-line emulator excep- 
t ion is either of these two situations, the main processor does not write to 
the control CIR prior to init iating exception processing. 

F-line exceptions can also occur if the operations requested by a coprocessor 
response primit ive are not compatible with the effective address type in bits 
[0-5] of the coprocessor instruction operation word. The F-line emulator 
exceptions that can result from the use of the M68000 coprocessor response 
primit ives are summarized in Table 10-6. If the exception is caused by re- 
ceiving an invalid primitive, the main processor aborts the coprocessor in- 
struction in progress by wri t ing an abort mask (refer to 10.3.2 Control CIR) 
to the control CIR prior to F-line emulator exception processing. 

Another type of F-line emulator exception occurs when a bus error occurs 
during the coprocessor interface register access that initiates a coprocessor 
instruction. The main processor assumes that the coprocessor is not present 
and takes the exception. 

When the main processor initiates F-line emulator exception processing, it 
uses the four-word pre-instruction exception stack frame (refer to Figure 
10-41) and the F-line emulator exception vector number 11. Thus, if the ex- 
ception handler does not modify the stack frame, the main processor attempts 
to restart the instruction that caused the exception after it executes an RTE 
instruction to return from the exception handler. 

If the cause of the F-line exception can be emulated in software, the handler 
stores the results of the emulation in the appropriate registers of the pro- 
grammer's model and in the status register field of the saved stack frame. 
The exception handler adjusts the program counter field of the saved stack 
frame to point to the next instruction operation word and executes the RTE 
instruction. The MC68030 then executes the instruction fol lowing the instruc- 
t ion that was emulated. 

10-68 MC68030 USER'S MANUAL MOTOROLA 



The exception handler should also check the copy of the status register on 
the stack to determine whether tracing is on. If tracing is on, the trace ex- 
ception processing should also be emulated. Refer to 8.1.7 Trace Exception 
for additional information. 

10.5.2.3 PRIVILEGE VIOLATIONS. Privilege violations can result from the cpSAVE 
and cpRESTORE instructions and, also, from the supervisor check coproces- 
sor response primitive. The main processor initiates privilege violation ex- 
ception processing if it attempts to execute either the cpSAVE or cpRESTORE 
instruction when it is in the user state (S=0 in status register). The main 
processor initiates this exception processing prior to any communication with 
the coprocessor associated with the cpSAVE or cpRESTORE instructions. 

If the main processor is executing a coprocessor instruction in the user state 
when it reads the supervisor check primitive, it aborts the coprocessor in- 
struction in progress by writing an abort mask (refer to 10.3.2 Control CIR) 
to the control CIR. The main processor then performs privilege violation 
exception processing. 

If a privilege violation occurs, the main processor initiates exception pro- 
cessing using the four-word pre-instruction stack frame (refer to Figure 
10-41) and the privilege violation exception vector number 8. Thus, if the 
exception handler does not modify the stack frame, the main processor at- 
tempts to restart the instruction during which the exception occurred after 
i t  executes an RTE to return from the handier. 

10.5.2.4 cpTRAPcc INSTRUCTION TRAPS. If, during the execution of a cpTRAPcc 
instruction, the coprocessor returns the TRUE condition indicator to the main 
processor with a null primitive, the main processor initiates trap exception 
processing. The main processor uses the six-word post-instruction exception 
stack frame (refer to Figure 10-45) and the trap exception vector number 7. 

: The scanPC field of this stack frame contains the address of the instruction 
fol lowing the cpTRAPcc instruction. The processing associated with the 
cpTRAPcc instruction can then proceed, and the exception handler can locate 
any immediate operand words encoded in the cpTRAPcc instruction using 
the information contained in the six-word stack frame. If the exception han- 
dler does not modify the stack frame, the main processor executes the in- 
struct ion fo l lowing the cpTRAPcc instruct ion after it executes an RTE 
instruction to exit from the handler. 

1 i 

MOTOROLA MC68030 USER'S MANUAL 10-69 



0 

11).5.2.5 TRACE EXCEPTIONS. The MC68030 supports two modes of instruction 
tracing, discussed in 8.1.7 Trace Exception. In the trace on instruction exe- 
cution mode, the MC68030 takes a trace exception after completing each 
instruction. In the trace on change of flow mode, the MC68030 takes a trace 
exception after each instruction that alters the status register or places an 
address other than the address of the next instruction in program counter. 

The protocol used to execute coprocessor cpSAVE, cpRESTORE, or condi- 
tional category instructions does not change when a trace exception is pend- 
ing in the main processor. The main processor performs a pending trace on 
instruction execution exception after completing the execution of that in- 
struction. If the main processor is in the trace on change of flow mode and 
an instruction places an address other than that of the next instruction in the 
program counter, the processor takes a trace exception after it executes the 
instruction. 

If a trace exception is not pending during a general category instruction, the 
main processor terminates communication with the coprocessor after read- 
ing any primitive with CA=0. Thus, the coprocessor can complete a cpGEN 
instruction concurrently with the execution of instructions by the main pro- 
cessor. When a trace exception is pending, however, the main processor 
must ensure that all processing associated with a cpGEN instruction has 
been completed before it takes the trace exception. In this case, the main 
processor continues to read the response CIR and to service the primitives 
until it receives either a null, CA=0, PF= 1 primitive, or until exception pro- 
cessing caused by a take post-instruction exception primitive has completed. 
The coprocessor should return the null, CA=0 primitive with PF=0, while it 
is completing the execution of the cpGEN instruction. The main processor 
may service pending interrupts between reads of the response CIR if IA = 1 
in these primitives (refer to Table 10-3). This protocol ensures that a trace 
exception is not taken until all processing associated with a cpGEN instruction 
has completed. 

If T1 :T0=01 in the MC68030 status register (trace on change of flow) when 
a general category instruction is initiated, a trace exception is taken for the 
instruction only when the coprocessor issues a transfer status register and 
scanPC primitive with DR = 1 during the execution of that instruction. In this 
case, it is possible that the coprocessor is still executing the cpGEN instruction 
concurrently when the main processor begins execution of the trace excep- 
tion handler. A cpSAVE instruction executed during the trace on change of 
flow exception handler could thus suspend the execution of a concurrently 
operating cpGEN instruction. 

10-70 MC68030 USER'S MANUAL MOTOROLA 



10.5.2.6 INTERRUPTS. Interrupt processing, discussed in 8.1.9 Interrupt Excep- 
t ions, can occur at any instruction boundary. Interrupts are also serviced 
during the execution of a general or condit ional category instruction under 
either of two conditions. If the main processor reads a null primit ive with 
C A = I  and I A = I ,  it services any pending interrupts prior to reading the 
response CIR. Similarly, if a trace exception is pending during cpGEN in- 
struction execution and the main processor reads a null primit ive with CA=0, 
IA= 1, and PF=0 (refer to 10.5.2.5 TRACE EXCEPTIONS), the main processor 
services pending interrupts prior to reading the response CIR again. 

The MC68030 uses the ten-word mid-instruction stack frame when it services 
interrupts during the execution of a general or condit ional category copro- 
cessor instruction. Since it uses this stack frame, the main processor can 
perform all necessary processing and then return to read the response CIR. 
Thus, it can continue the coprocessor instruction during which the interrupt 
exception was taken. 

The MC68030 also services interrupts if it reads the not ready format word 
from the save CIR during a cpSAVE instruction. The MC68030 uses the normal 
four word pre-instruction stack frame when it services interrupts after reading 
the not ready format word. Thus, the processor can service any pending 
interrupts and execute an RTE to return and re-initiate the cpSAVE instruction 
by reading the save CIR. 

10.5.2.7 FORMAT ERRORS. The MC68030 can detect a format error whi le exe- 
cuting a cpSAVE or cpRESTORE instruction if the length field of a valid format 
word is not a mult iple of four bytes in length. If the MC68030 reads a format 
word with an invalid length field from the save CIR during the cpSAVE in- 
struction, it aborts the coprocessor instruction by wri t ing an abort mask (refer 
to 10.3.2 Control CIR) to the control CIR and initiates format error exception 
processing. If the MC68030 reads a format word with an invalid length field 
from the effective address specified in the cpRESTORE instruction, the 
MC68030 writes that format word to the restore CIR and then reads the 
coprocessor response from the restore CIR. The MC68030 then aborts the 
cpRESTORE instruction by wri t ing an abort mask (refer to 10.3.2 Control CIR) 
to the control CIR and initiates format error exception processing. 

The MC68030 uses the four-word pre-instruction stack frame and the format 
error vector number 14 when it initiates format error exception processing. 
Thus, if the exception handler does not modify the stack frame, the main 
processor attempts to restart the instruction during which the exception oc- 
curred after it executes an RTE to return from the handler. 

MOTOROLA MC68030 USER'S MANUAL 10-71 

1( 



10.5.2.8 ADDRESS AND BUS ERRORS. Coprocessor-instruction-related bus faults 
can occur during main processor bus cycles to CPU space to communicate 
with a coprocessor or during memory cycles run as part of the coprocessor 
instruction execution. If a bus error occurs during the coprocessor interface 
register access that is used to initiate a coprocessor instruction, the main 
processor assumes that the coprocessor is not present and takes an F-line 
emulator exception as described in 10.5.2.2 F-LINE EMULATOR EXCEPTIONS. 
That is, the processor takes an F-line emulator exception when a bus error 
occurs during the initial access to a CIR by a coprocessor instruction. If a bus 
error occurs on any other coprocessor access or on a memory access made 
during the execution of a coprocessor instruction, the main processor per- 
forms bus error exception processing as described in 8.1.2 Bus Error Excep- 
tions. After the exception handler has corrected the cause of the bus error, 
the main processor can return to the point in the coprocessor instruction at 
which the fault occurred. 

An address error occurs if the MC68030 attempts to prefetch an instruction 
from an odd address. This can occur if the calculated destination address of 
a cpBcc or cpDBcc instruction is odd or if an odd value is transferred to the 
scanPC with the transfer status register and the scanPC response primitive. 
If an address error occurs, the MC68030 performs exception processing for 
a bus fault as described in 8.1.3 Address Error Exception. 

0 

10.5.3 Coprocessor  Reset 

Either an external reset signal or a RESET instruction can reset the external 
devices of a system. The system designer can design a coprocessor to be 
reset and initialized by both reset types or by external reset signals only. To 
be consistent with the MC68030 design, the coprocessor should be affected 
by external reset signals only and not by RESET instructions, because the 
coprocessor is an extension to the main processor programming model and 
to the internal state of the MC68030. 

10.6 C O P R O C E S S O R  S U M M A R Y  

Coprocessor instruction formats are presented for reference. Refer to the 
M68000PM/AD, M68000 Programmer's Reference Manual, for detailed infor- 
mation on coprocessor instructions. 

10-72 MC68030 USER'S MANUAL MOTOROLA 



T h e  M 6 8 0 0 0  c o p r o c e s s o r  r e s p o n s e  p r i m i t i v e  f o r m a t s  a re  s h o w n  in t h i s  sec-  

t i o n .  A n y  r e s p o n s e  p r i m i t i v e  w i t h  b i ts  [13 :8 ]  = $ 0 0  o r  $3F c a u s e s  a p r o t o c o l  

v i o l a t i o n  e x c e p t i o n .  R e s p o n s e  p r i m i t i v e s  w i t h  b i t s  [13 :8 ]  =SOB,  $ 1 8 - $ 1  B, $1F, 

$ 2 8 - $ 2 B ,  a n d  $ 3 8 - 3 B  c u r r e n t l y  cause  p r o t o c o l  v i o l a t i o n  e x c e p t i o n s ;  t h e y  a re  

u n d e f i n e d  a n d  r e s e r v e d  f o r  f u t u r e  use by  M o t o r o l a .  

BUSY 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 PC 1 0 0 1 0 0 0 0 0 0 0 0 0 0 

T R A N S F E R  M U L T I P L E  C O P R O C E S S O R  REGISTERS 

15 14 13 12 11 10 9 8 7 

CA PC DR 0 0 0 0 I LENGTH 
0 

I 

T R A N S F E R  S T A T U S  REGISTER A N D  S C A N P C  

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

CA PC DR 0 0 0 1 SP 0 0 0 0 0 0 0 0 

S U P E R V I S O R  CHECK 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 PC 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

T A K E  A D D R E S S  A N D  T R A N S F E R  D A T A  

15 14 13 12 11 10 9 8 7 
CA PC DR 0 0 1 0 1 LENGTH J 

T R A N S F E R  M U L T I P L E  M A I N  PROCESSOR REGISTERS 

15 14 13 12 1i 10 9 8 7 6 5 4 3 2 1 0 

I c A I  P c l ° " l  ° i ° I 1 I 1 I ° I ° I ° I 0 I 0 I 0 t 0 I 0 I 0 I 

T R A N S F E R  O P E R A T I O N  W O R D  

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I c A I P c l 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 o l 0 1 0 1 0 1 0 1 0 1  

MOTOROLA MC68030 USER'S MANUAL 10,73 

10 



IO 

NULL 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

CA PC 0 0 1 0 0 IA 0 0 0 0 0 0 PF TF 

EVALUATE AND TRANSFER EFFECTIVE ADDRESS 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

CA PC 0 0 I 0 I 0 0 0 0 0 0 0 0 0 

TRANSFER SINGLE MAIN PROCESSOR REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

CA PC DR 0 1 1 0 0 0 0 0 0 D/A REGISTER 

TRANSFER MAIN PROCESSOR CONTROL REGISTER 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

CA PC DR 0 1 1 0 1 0 0 0 0 0 0 0 0 

TRANSFER TO/FROM TOP OF STACK 

15 14 13 12 11 10 9 8 7 

CA PC DR 0 1 1 1 0 LENGTH 

TRANSFER FROM INSTRUCTION STREAM 

15 14 13 12 11 10 9 8 7 

CA PC 0 0 1 1 1 I LENGTH 

EVALUATE EFFECTIVE ADDRESS AND TRANSFER DATA 

15 14 13 12 11 10 9 8 

VALID EA I 

TAKE PRE-INSTRUCTION EXCEPTION 

15 14 13 12 11 10 9 8 

0 

I 

0 

] 

7 0 

LENGTH J 

7 0 

VECTOR NUMBER ] 

10-74 MC68030 USER'S M A N U A L  MOTOROLA 



T A K E  M I D - I N S T R U C T I O N  EXCEPTION 

15 14 13 12 11 10 9 8 7 0 

VECTOR NUMBER 

0 

TAKE  P O S T - I N S T R U C T I O N  EXCEPTION 

15 14 13 12 11 10 9 8 7 

I ° I PC I ° I 1 I 1 I 1 I 1 I o I VECTOR NUMBER 

WRITE TO P R E V I O U S L Y  E V A L U A T E D  EFFECTIVE A D D R E S S  

15 14 13 12 11 10 9 8 7 

I CA I PC I 1 I ° I ° I ° I ° I °  I LENOT, 

MOTOROLA MC68030 USER'S MANUAL 10-75 

1( 



0 



SECTION 11 
INSTRUCTION EXECUTION TIMING 

This section describes the instruction execution and operations (table 
searches, etc.) of the MC68030 in terms of external clock cycles. It provides 
accurate execution and operation timing guidelines but not exact timings for 
every possible circumstance. This approach is used since exact execution 
time for an instruction or operation is highly dependent on memory speeds 
and other variables. The timing numbers presented in this section allow the 
assembly language programmer or compiler writer to predict actual cache- 
case and average no-cache-case timings needed to evaluate the performance 
of the MC68030. Additionally, the timings for exception processing, context 
switching, and interrupt processing are included so that designers of multi- 
tasking or real-time systems can predict task switch overhead, maximum 
interrupt latency, and similar timing parameters. 

In this section, instruction and operation times are shown in clock cycles to 
eliminate clock frequency dependencies. 

11.1 P E R F O R M A N C E  T R A D E O F F S  

The MC68030 maximizes average performance at the expense of worst case 
performance. The time spent executing one instruction can vary from zero 
to over 100 clocks. Factors affecting the execution time are the preceding 
and following instructions, the instruction stream alignment, residency of 
operands and instruction words in the caches, residency of address trans- 
lations in the address translation cache, and operand alignment. 

To increase the average performance of the MC68030, certain tradeoffs were 
made to increase best case performance and to decrease the occurrence of 
worst case behavior. For ex&mple, burst filling increases performance by 
prefetching data for later accesses, but it commits the external bus controller 
and a cache for a longer period. 

The MC68030 can overlap data writes with instruction cache reads, data cache 
reads, and/or microsequencer execution. Instruction cache reads can be over- 
lapped with data cache fills and/or microsequencer activity. Similarly, data 
cache reads can be overlapped with instruction cache fills and/or micro- 

MOTOROLA MC68030 USER'S MANUAL 11-1 

11 



sequencer activity. The execution of an instruction that only accesses on- 
chip registers can be overlapped entirely with a concurrent data write gen- 
erated by a previous instruction, if prefetches generated by that instruction 
are resident in the instruction cache. 

11.2 RESOURCE SCHEDULING 

Some of the variability in instruction execution timings results from the over- 
lap of resource utilization. The processor can be viewed as consisting of eight 
independently scheduled resources. Since very little of the scheduling is 
directly related to instruction boundaries, it is impossible to make accurate 
estimates of the time required to execute a particular instruction without 
knowing the complete context within which the instruction is executing. The 
position of these resources within the MC68030 is shown in Figure 11-1. 

11.2.1 Microsequencer 

The microsequencer is either executing microinstructions or awaiting com- 
pletion of accesses that are necessary to continue executing microcode. The 
bus controller is responsible for all bus activity. The microsequencer controls 
the bus controller, instruction execution, and internal processor operations 
such as calculation of effective addresses and setting of condition codes. The 
microsequencer initiates instruction word prefetches and controls the vali- 
dation of instruction words in the instruction pipe. 

11 

11.2.2 Instruction Pipe 

The MC68030 contains a three-word instruction pipe where instruction op- 
codes are decoded. As shown in Figure 11-1, instruction words (instruction 
operation words and all extension words) enter the pipe at stage B and 
proceed to stages C and D. An instruction word is completely decoded when 
it reaches stage D of the pipe. Each of the pipe stages has a status bit that 
reflects whether the word in the stage was loaded with data from a bus cycle 
that was terminated abnormally. Stages of the pipe are only filled in response 
to specific prefetch requests issued by the microsequencer. 

Words are loaded into the instruction pipe from the cache holding register. 
While the individual stages of the pipe are only 16 bits wide, the cache holding 
register is 32 bits wide and contains the entire long word. This long word is 
obtained from the instruction cache or the external bus in response to a 
prefetch request from the microsequencer. When the microsequencer re- 

11-2 MC68030 USER'S MANUAL MOTOROLA 



® 

0 

@ 

<= 

~ =  

o 

n'- 

c 

"o 
c 

"o 
m 

._~ 

I 
E 

o 
II] 

i 

M O T O R O L A  MC68030 USER'S M A N U A L  11-3 

11 



1 

quests an even-word (long-word aligned) prefetch, the entire long word is 
accessed from the instruction cache or the external bus and loaded into the 
cache holding register, and the high-order word is also loaded into stage B 
of the pipe. The instruction word for the next sequential prefetch can then 
be accessed directly from the cache holding register, and no external bus 
cycle or instruction cache access is required. The cache holding register 
provides instruction words to the pipe, regardless of whether the instruction 
cache is enabled or disabled. 

Prefetch requests are simultaneously submitted to the cache holding register, 
the instruction cache, and the bus controller. Thus, even if the instruction 
cache is disabled, an instruction prefetch may hit in the cache holding register 
and cause an external bus cycle to be aborted. 

11.2.3 Instruction Cache 

The instruction cache services the instruction prefetch portion of the micro- 
sequencer. The prefetch of an instruction that hits in the on-chip instruction 
cache causes no delay in instruction execution since no external bus activity 
is required for the prefetch. The instruction cache also interacts with the 
external bus during instruction cache fills following instruction cache misses. 

11.2.4 Data Cache 

The data cache services data reads and is updated on data writes. Data 
operands required by the execution unit that are accessed from the data 
cache cause no delay in instruction execution due to external bus activity for 
the data fetch. The data cache also interacts with the external bus during 
data cache fills following data cache misses. 

11.2.5 Bus Controller Resources 

Prefetches that miss in the instruction cache cause an external memory cycle 
to be performed. Similarly, when data reads miss in the on-chip data cache, 
an external memory cycle is required. The time required for either of these 
bus cycles may be overlapped with other internal activity. 

The bus controller and microsequencer can operate on an instruction con- 
currently. The bus controller can perform a read or write while the micro- 
sequencer controls an effective address calculation or sets the condition 

11-4 MC68030 USER'S MANUAL MOTOROLA 



codes. The microsequencer may also request a bus cycle that the bus con- 
troller cannot perform immediately. In this case, the bus cycle is queued and 
the bus controller runs the cycle when the current cycle is complete. 

The bus controller consists of the micro bus controller, the instruction fetch 
pending buffer, and the write pending buffer. These three resources carry 
out all writes and reads that miss in the on-chip caches. 

11.2.5.1 INSTRUCTION FETCH PENDING BUFFER. The instruction prefetch mech- 
anism includes a single long-word instruction fetch pending buffer. Interlocks 
are provided to prevent this buffer from being overwritten by an instruction 
prefetch request before a previously requested prefetch is completed. 

11.2.5.2 WRITE PENDING BUFFER. The MC68030 incorporates a single write 
pending buffer, allowing the microsequencer to continue execution after the 
request for a write cycle proceeds to the bus controller. Interlocks prevent 
the microsequencer from overwriting this buffer. 

11.2.5.3 MICRO BUS CONTROLLER. The micro bus controller performs the bus 
cycles issued to the bus controller by the rest of the processor. It implements 
any dynamic bus sizing required and also controls burst operations. 

When prefetching instructions from external memory, the micro bus con- 
troller utilizes long-word read cycles. The processor reads two words, which 
may load two instructions at once or two words of a multi-word instruction 
into the cache holding register (and the instruction cache if it is enabled and 
not frozen). A special case occurs when prefetch, that. corresponds to an 
instruction word at an odd-word boundary, is not found in the cache holding 
register (e.g., due to a branch to an odd-word location) with an instruction 
cache miss. From a 32-bit memory, the MC68030 reads both the even and 
odd words associated with the long-word base address in one bus cycle. 
From an 8- or 16-bit memory, the processor reads the even word before the 
odd word. Both the even and odd word are loaded into the cache holding 
register (and the instruction cache if it is enabled and not frozen). 

MOTOROLA MC68030 USER'S MANUAL 11-5 

11 



11.2.6 Memory Management Unit 

The MC68030 includes a memory management unit (MMU) that translates 
logical addresses to physical addresses for external accesses when required. 
The MMU uses an address translation cache (ATC) to store recently used 
translations. When the physical address corresponding to a logical address 
resides in the ATC, the address translation time is completely overlapped 
with on-chip cache accesses and has no effect on instruction timing. 

When the ATC does not contain the translation for a logical address, the 
processor performs a table search operation to external memory. The amount 
of time required for a table search depends on the structure of the address 
translation tree and whether a nonresident portion of the translation tree is 
required. 

The MMU supports demand-paged virtual memory. When a table search 
terminates with an exception, indicating that therequested instruction or 
data is not resident, additional time to bring the appropriate page into mem- 
ory is required. The time required is dependent on the handling routine for 
the exception. 

11.3 INSTRUCTION EXECUTION TIMING CALCULATIONS 

The instruction-cache-case timing, overlap, average no-cache-case timing, 
and actual instruction-cache-case execution time calculations are discussed 
in the following paragraphs. 

11 
11.3. 1 Instruction-Cache Case 

The instruction-cache-case (CC) time for an instruction is the total number 
of clock periods required to execute the instruction, provided all the corre- 
sponding instruction prefetches are resident in the on-chip instruction cache. 
All bus cycles are assumed to take two clock periods. The instruction-cache- 
case time does not assume any overlap with other instructions nor does it 
take into account hits in the on-chip data cache. The overall instruction-cache- 
case time for some instructions is divided into the instruction-cache-case 
time for the required effective address calculation (CCea) and the instruction- 
cache-case time for the remainder of the operation (CCop). The instruction- 
cache-case times for all instructions and addressing modes are listed in the 
tables of 11.6 INSTRUCTION T IM ING TABLES. 

11-6 MC68030 USER'S MANUAL MOTOROLA 



11.3.2 Overlap and Best Case 

Overlap is the time, measured in clock periods, that an instruction executes 
concurrently with the previous instruction. In Figure 11-2, a portion of in- 
structions A and B execute simultaneously. The overlap time decreases the 
overall execution time for the two instructions. Similarly, an overlap period 
between instructions B and C reduces the overall execution time of these 
two instructions. 

F . . . .  INSTRUCTION A I 
F . . . .  

] 
OVERLAP 

INSTRUCTION B I 

t INSTRUCTION C I 

l _ _ J  
T 

OVERLAP 

Figure 11-2. Simultaneous Instruction Execution 

Each instruction contributes to the total overlap time. As shown in Figure 
11-2, a portion of time at the beginning of the execution of instruction B can 
overlap the end of the execution time of instruction A. This time period is 
called the head of instruction B. The portion of time at the end of instruction 
A that can overlap the beginning of instruction B is called the tail of instruction 
A. The total overlap time between instructions A and B consists of the lesser 
of the tail of instruction A or the head of instruction B. Refer to the instruction 
timing tables in 11.6 INSTRUCTION TIMING TABLES for head and tail times. 

Figure 11-3 shows the timing relationship of the factors that comprise the 
instruction-cache case time for either an effective address calculation (CCea) 
or for an operation (CCop). In Figure 11-12, the best case execution time for 
instruction B occurs when the instruction-cache-case times for instruction B 
and instruction A overlap so that the head of instruction B is completely 
overlapped with the tail of instruction A. 

11 

MOTOROLA MC68030 USER'S MANUAL 11-7 



i CACHE CASE 

HEAD 
I 

I READ/WRITE BUS 
t TIME OR SYNC 

BEST CASE 

I I WRITE BUS TIME t 

i /zC0DE TIME I 

i TAIL I 

Figure 11-3. Derivation of Instruction Overlap Time 

The nature of the instruction overlap and the fact that the heads of some 
instructions equal the total instruction-cache-case time for those instructions 
makes a zero net execution time possible. The execution time of an instruction 
is completely absorbed by overlap with the previous instruction. 

I1 

11.3.3 Average No-Cache Case 
The average no-cache-case (NCC) time for an instruction takes into account 
the time required for the microcode to execute plus the time required for all 
external bus activity. This time is calculated assuming both caches miss and 
the associated instruction prefetches require one external bus cycle per two 
instruction prefetches. Refer to 11.2.2 Instruction Pipe. The average no-cache- 
case time also assumes no overlap..All bus cycles are assumed to take two 
clock periods. Average no-cache-case times for instructions and effective 
address calculations are listed in 11.6 INSTRUCTION TIMING TABLES. Be- 
cause the no-cache-case times assume no overlap, the head and tail values 
listed in these tables do not apply to the no-cache-case values. 

Since the actual no-cache-case time depends on the alignment of prefetches 
associated with an instruction, both alignment cases were considered, and 
the value shown in the table is the average of the odd-word-aligned case 
and the even-word-aligned case (rounded up to an integral number of clocks). 
Similarly, the number of prefetch bus cycles is the average of these two cases 
rounded up to an integral number of bus cycles. 

11-8 MC68030 USER'S MANUAL MOTOROLA 



The effect of instruction alignment on timing is illustrated bythe following 
example. The assumptions referred to in 11.6 INSTRUCTION TIMING TABLES 
apply. Both the data cache and instruction cache miss on all accesses. 

Instruction 
1. MOVE.L (d16,An,Dn),Dn 
2. CMPI.W #(data/.W,(d16,An) 

The instruction stream is positioned with even alignment in 32-bit memory 
as: 

Address 13 

n+4 

n+8 

n+12 

MOVE EA Ext 

d16 CMPI 

#(data.W) d 16 

Figure 11-4 shows processor activity for even alignment of the given instruc- 
tion stream. It shows the activity of the external bus, the bus controller, and 
the sequencer. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

CLK 

BUS 
ACTIVITY 

BUS 
CONTROLLER 

CALCULATE AND FETCH 
SEQUENCER SOURCE EA MOVE 

FOR MOVE ; 

~NSTRUOT~ON 
EXECUTION MovEi d B An Dn Dn 

TIME 

CLK ~ ~ I 
COUNT 8 

LEGEND: 
MOVE.L (d16,An,Dn),Dn ~ 

#(data)'W,(d16,An) 

IDLE I READ FROM PREFETCH 
(d]6,An) n + 16 

I 
CALCULATE AND FETCH 

SOURCE EA IDLE 
FOR CMPI 

CMPI.W #(data).W,(d16,An) 

IDLE 

PERFORM 
CMPI 

8 

Figure 11-4. Processor Activi ty - -  Even Al ignment  

MOTOROLA MC68030 USER'S MANUAL 11-9 

11 



Figure 11-5 shows processor activity for odd alignment. The instruction stream 
is positioned in 32-bit memory as: 

Address n 

n + 4  

n + 8  

n + 1 2  

• . .  M OV E 

EA Ext d16 

CMPI #(data .W)  

d16 • • • 

11 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

CLK 

BUS 
ACTIVITY 

8US 
CONTROLLER 

SEQUENCER 

INSTRUCTION 
EXECUTION 

TIME 

PREFETCH READ FROM PREFETCH 
n + 12 (d16,An) n + 16 

CALCULATE AND FETCH PERFORM 
SOURCE EA CMPI 
FOR CMPI 

CMPI.W #(data).W,(d16,An) 

CLK 
COUNT 

LEGEND: 
MOVE.L (d16,An.Dn),Dn 

#(data).W,(d16,An} F-q  

Figure 11-5. Processor Activity - -  Odd Alignment 

Comparing the two alignments, the execution time of the MOVE instruction 
is eight clocks for even alignment and 10 clocks for odd alignment, an average 
of nine clocks. Referring to the table in 11.6.6 MOVE Instruction and the table 
in 11.6.1 Fetch Effective Address (fea), the average no-cache-case time is 
2 + 7 = 9  clocks. A similar calculation can be made of the CMPI instruction, 
which has an average no-cache-case time of seven clocks. 

The average no-cache-case t iming rather than the maximum no-cache-case 
timing gives a closer approximation of the actual t iming of an instruction 
stream in many cases. The total execution time of the two instructions in the 
previous example is 16 clocks for both even and odd alignment. Adding the 

11-10 MC68030 USER'S MANUAL MOTOROLA 



average no-cache-case t iming of the given instructions also gives 16 clocks 
( 9 + 7 =  16 clocks). It should be noted again that the no-cache-case t ime as- 
sumes no overlap. Therefore, the actual execution t ime of an instruction 
stream may be less than that given by adding the no-cache-case times. To 
factor in the effect of wait states for the no-cache case, refer to 11.5 EFFECT 
OF WAIT STATES. 

11.3.4 Actua l  Instruct ion-Cache-Case Execut ion T i m e  Calculat ions 

The overall execution t ime for an instruction may depend on the overlap 
with the previous and fol lowing instructions. Therefore, to calculate instruc- 
t ion execution t ime estimations, the entire code sequence to be evaluated 
must be analyzed as a whole. To derive the actual instruction-cache-case 
execution t imes for an instruction sequence (under the assumptions listed 
in 11.6 INSTRUCTION TIMING TABLES), the instruction-cache-case times 
listed in the tables must be used, and the proper overlap must be subtracted 
for the entire sequence. The formula for this calculation is: 

CC 1 + [CC 2 -  min(H2,T 1 )] + [(CC 3 - min(H3,T2)] + . . .  (11-1 ) 

where: 
CC n is the instruction-cache-case t ime for an instruction, 
T n is the tail t ime for an instruction, 
H n is the head t ime for an instruction, and 
min(a,b) is the min imum of parameters a and b. 

The instruction-cache-case t ime for most instructions is composed of the 
instruction-cache-case t ime for the effective address calculation (CCea) over- 
lapped with the instruction-cache-case t ime for the operation (CCop). The 
more specific formula is: 

CCeal + [CCopl - min(HoPl,Tea 1 )] + [CCea2 - min(Hea2,Top 1 )] + 
[CCoP2 - min(Hop2,Tea2)] + [CCea 3 - min(Hea3,Top2)] + . . .  (11-2) 

where: 
CCean is the effective address t ime for the instruction-cache case, 
CCopn is the instruction-cache-case t ime for the operation portion of an 

instruction, 
Tea n is the tail t ime for the effective address of an instruction, 
HoPn is the head t ime for the operation portion of an instruction, 
Top n is the tail t ime for the operation portion of an instruction, 
Hea n is the head t ime for the effective address of an instruction, and 
min(a,b) is the min imum of parameters a and b. 

MOTOROLA MC68030 USER'S MANUAL 11-11 



The instructions that require the instruction-cache case, head, and tail of an 
effective address (CCea, Hea, and Tea) to be overlapped with CCop, Hop, and 
Top are footnoted in 11.6 INSTRUCTION TIMING TABLES. 

The actual instruction-cache-case execution time for a stream of instructions 
can be computed using Equation (11-1) or the general Equation (11-2). Equa- 
tion (11-1) is used unless the instruction-cache case, head, and tail of an 
effective address are required. 

An example using a series of instructions that require Equation (11-1) to 
calculate the instruction-cache-case execution time follows. The assumptions 
referred to in 11.6 INSTRUCTION TIMING TABLES apply. 

Instruction 
1. ADD.L A1,D1 
2. SUBA.L D1,A2 

Referring to the timing table in 11.6.8 Arithmetic/Logical Instructions, the 
head, tail, and instruction-cache-case (CC) times for ADD.L A1,D1 and SUBA.L 
D1,A2 are found. There is no footnote directing the user to add an effective 
address time for either instruction. Since both of the instructions use register 
operands only, there is no need to add effective address calculation times. 
Therefore, the general Equation (11-1) can be used for both. 

Head Tail CC 

1. ADD.L A1,D1 2 0 2 

2. SUBA.L D1,A2 4 0 4 

NOTE 

The underlined numbers show the typical pattern for the comparison 
of head and tail in the following equation. 

The following computations use Equation (11-1): 

Execution Time = CC1 + [CC2- min(H2,T1)] 
= 2+ [4- rain(4,0)] 
=2+I4-01 
= 6 clocks 

Instructions that require the addition of an effective address calculation time 
from an appropriate table use the general Equation (11-2) to calculate the 
actual CC time. The CCea, Hea, and Tea values must be extracted from the 
appropriate effective address table (either fetch effective address, fetch im- 

11-12 MC68030 USER'S MANUAL MOTOROLA 



med ia te  ef fect ive address,  ca lcu la te  ef fect ive address,  ca lcu la te  immed ia te  
e f fec t ive  address,  or  j u m p  ef fec t ive  address)  as ind ica ted  and inc luded  in 
Equa t ion  (11-2). A l l  of  the f o l l o w i n g  i ns t ruc t i ons  (except  the last) requ i re  
genera l  Equa t ion  (11-2). The last i ns t ruc t i on  uses Equa t ion  (11-1). 

Instruction 
1. ADD.L -(A1),D1 
2. AND.L DI,([A2]) 
3. MOVE.L (A6),(8,A1) 
4. TAS (A3) + 
5. NEG D3 

Us ing  the  app rop r ia te  opera t ion  and ef fec t ive  address tab les  f r om 11.6 IN- 
STRUCTION T I M I N G  TABLES: 

Head Tail CC 

1. ADD.L - (A1),D1 
Fetch Effective Address (fea) - (An)  2 2 4 

ADD EA, Dn 0 0 2 

2. AND.L DI,([A2]) 
fea ([B]) 4 0 10 

AND Dn,EA 0 1 3 

3. MOVE.L (A6),(8,A1) 
fea (An) 1 1 3 

MOVE Source,(d 16,An) 2 0 4 

4. TAS (A3) + 
Calculate Effective Address (cea) (An) + 0 0 2 

TAS Mem 3 0 12 

5. NEG D3 2 0 2 

The  f o l l o w i n g  ca lcu la t ions  use Equa t ions  (11-1) and (11-2): 

Execution Time = CCea l+ [CCopl  -min(HoPl,Teal) ]- [CCea2-min(Hea2,TOPl)]+ 
[CCoP2- min(HoP2,Tea2) ] + [CCea 3 - min(Hea3,ToP2)] + 
[CCoP3- min(HoP3,Tea3) ] -, [CCea 4 -  min(HoP4,ToP3)] + 
[CCoP4- min(HoP4,ToP3)] - [CCoP5 - min(HoP5,ToP4)] 

= 4 + [2 - min(0,2)] + [10 - min(4,0)] - [3 - rain(0,0)] + [3 - min(1,1 )] + 
[ 4 -  min(2,1 )] + [2 - min(0,0)] + [12 - min(3,0)] + [2 - min(2,0)] 

= 4 + 2 + 1 0 + 3 + 2 + 3 + 2 + 1 2 + 2  

= 40 clock periods 

MOTOROLA M068030 USER'S MANUAL 11-13 

11 



11 

Notice that the last instruction did not require the general Equation (11-2) 
since there were no effective address (ea) additions. Therefore, Equation 
(11-1) is used: 

CCoP5- min(HoP5,ToP4 ) 

When using the fetch immediate effective address (flea) or the calculate 
immediate effective address (ciea) tables, the size of the data is significant 
in the timing calculations. For each effective address, a line is listed for word 
data, #<data>.W, and for long data, #<data>.L. 

The total head of some effective address types extends through the effective 
address calculation and includes the head of the operation. These effective 
address calculations are marked in the head column as follows: 

X + op head 

where: 
X is the head of the effective address alone. 

An example using the flea table and the X + op head notation is: 

Instruction 
1. EORI.W #$400,- (A1) 
2. ADDI.L #$6000FF,D1 

Head Tail CC 

1. EORI.W #$400,- (A1) 
flea # < d a t a > . W ,  - (An) 2 2 4 

EORI #<data>,Mem 0 1 3 

2. ADDI.L #$6000FF, D1 
flea #<data>.L, D1 4+op head 0 4 

6 0 4 

ADDI #<data>,Dn 2(op head) 0 2 

The following calculations use the general Equation (11-2): 

Execution Time =CCea 1 +[CCop 1 -min(HoPl,Teal]+[CCea2-min(Hea2,TOPl)]+ 
[CCoP2 - min(HoP2,Tea2) ] 

= 4 + [3- min(0,2)] + [4- min(6,1)] + [2- min(2,0)] 

=4+3+3+2 

= 12 clock periods 

11-14 MC68030 USER'S MANUAL MOTOROLA 



Note that for the head of flea #<data>.L,D1, 4+op  head, the resulting head 
of 6 is larger than the instruction-cache-case time of the fetch. A negative 
number for the execution t ime of that port ion could result (e.g., 
4 -  min(6,6) = - 2). This result would produce the correct execution time since 
the fetch was completely overlapped and the operation was partially over- 
lapped by the same tail. No changes in the calculation for the operation 
execution time are required. 

Many two-word instructions (e.g., MULU.L, DIV.L, BFSET, etc.) include the 
fetch immediate effective address (flea) time or the calculate immediate ef- 
fective address (ciea) time in the execution time calculation. The timing for 
immediate data of word length (#<data>.W) is used for these calculations. 
If the instruction has a source and a destination, the source EA is used for 
the table lookup. If the instruction is single operand, the effective address of 
that operand is used. 

The following example includes multi-word instructions that refer to the fetch 
immediate effective address and calculate immediate effective address tables 
in 11.6 INSTRUCTION T I M I N G  TABLES, 

Instruction 
1. MULU.L (D7),DI:D2 
2. BFCLR $6000{0:8} 
3. DIVS.L #$10000,D3:D4 

1. MULU.L (D7),DI:D2 
flea #<data>.W,Dn 

MUL.L EA, Dn 

2. BFCLR $6000{0:8} 
flea #<data>.W,$XXX.W 

BFCLR Mem(<5 bytes) 

3. DIVS.L #$10000,D3:D4 
flea #<data>.W,#<data>.L 

DIVS.L EA,Dn 

Head 

2 + op head 
4 

2(op head) 

4 

6 

6 - op head 
6 

0(op head) 

Tail 

0 
0 

0 

2 

0 

0 
0 

0 

CC 

2 
2 

44 

6 

14 

6 
6 

90 

MOTOROLA MC68030 USER'S MANUAL 11-15 

11 



Use the general Equation (11-2) to compute:  

Execution Time = CCeal + [CCoPl - min(HoPl ,Teal )] + [CCea2 - min(Hea2,TOPl )] + 
[CCoP2- min(HoP2,Tea2) ] + [CCea 3 -  min(Hea3,ToP2)] + 
[CCoP3 - min(HoP3,Tea3) ] 

= 2 + [44- min(2,0)] + [6-  min(4,0)] + [14- min(6,2)] + [6-- min(6,0)] + 
[90 - rain(0,0)] 

= 2+44+6+12+6+90 

= 160 clock periods 

NOTE 

This CC t ime is a max imum since the t imes given for the MULU.L 
and DIVS.L are max imums.  

11.4 EFFECT OF DATA CACHE 

When the data accesses required by an instruction are in the data cache, 
reading these operands requires no bus cycles, and the execut ion t ime for 
the instruction may be minimized. Write accesses, however ,  always require 
bus cycles because the data cache is a wr i te th rough cache. 

The effect of the data cache on operand read accesses can be factored into 
the actual instruct ion execut ion t ime as fol lows. 

When a data cache hit occurs for the data fetch corresponding to either the 
fetch effective address table or the fetch immediate effective address table 
in 11.6 INSTRUCTION TIMING TABLES, the fo l lowing rules apply: 

la. if Ta i l t=0 :  

lb .  if Ta i l t=  1: 

lc.  if Ta i l t > l :  

where:  

. 

No change in t iming. 

Tail = T a i l t -  1 
CC = CCt - 1 

Tail = T a i l t -  (Tailt - 1 ) = 1 
CC = C C t -  (Ta i l t -  1) 

Tailt and CCt are the values listed in the tables. 

If the EA mode is memory  indirect (two data reads), the tail and CC 
t ime are calculated as for one data read. 

11-16 MC68030 USER'S MANUAL MOTOROLA 



NOTE 

Data cache hits cannot easi ly be accounted for in instruction and 
operation t imings that include an operand fetch in the CCop (e.g., 
BFFFO and CHK2). The effect of a data cache hit on such CCop's has 
been ignored for computat ional  purposes. 

RMC cycles (e.g., TAS and CAS) are forced to miss on data cache 
reads. Therefore, a data cache hit has no effect on these instructions. 

The fo l lowing example assumes data cache hits. The lines that are corrected 
for data cache hits are printed in boldface type. These lines are used to 
calculate the instruction-cache-case execution t ime. References are to the 
preceding rules. 

Instruction 
1. A D D . L  -(A1),D1 
2. A N D . L  DI,([A2]) 
3. MOVE.L (A6),(8,A1) 
4. TAS (A3) 

Head 

1. ADD.L -(A1),D1 
Fetch Effective Address 
fea - (An) 2 

"1c 2 

*ADD EA,Dn 0 

2 AND.L DI,([A2]) 
* la & 2 fea ([B]) 4 

*AND Dn,EA 0 

3. MOVE.L (A6),(8,A1) 
fea (An) 1 

* lb  1 

*MOVE Source, (d16,An) 2 

4. TAS (A3) + 
*Cea (An) + 0 

*TAS Mem 0 

Tail CC 

2-  1 4 -  1(1/0/0) 

1 3(1/0/0) 

0 2(0/0/1) 

0 10(2/0/0) 

1 3(0/0/1) 

1 - 1 3 -  1(1/00) 

0 2(1/0/0) 

0 4(0/0/1) 

0 2(0/0/0) 

0 12(1/0/1) 

*Corrected for data cache hits. 

N O T E  

It is helpful to include the number of operand reads and wri tes along 
with the number of instruct ion accesses in the CC column for com- 
puting the effect of data cache hits on execution t ime. 

I I  

MOTOROLA MC68030 USER'S MANUAL 11-17 



11 

The fol lowing computations use the general Equation (1 1-2): 

Execution Time = CCea 1 + [CCop 1 - min(HoPl,Tea 1 )] + [CCea 2 - min(Hea2,TOPl )] + 
[CCoP2- min(HoP2,Tea2) ] + [CCea 3 -  min(Hea3,ToP2)] + 
[CCoP3 - min(HoP3,Tea3) ] + [CCea 4 - min(Hea4,ToP3)] + 
[CCoP4- min(H o P4,Tea4) ] 

= 3 + [2- min(0,1)] + [10- min(4,0)] + [3 - min(0,0)] + [2- min(1,1)] + 
[4- min(2,0)] + [2- min(0,0)] + [12- min(0,0)] 

=3+2+10+3+1+4+2+12 

= 37 clock periods 

11.5 EFFECT OF W A I T  STATES 

The constraints of a system design may require the insertion of wait states 
in memory cycles. When the bus or the memory device requires many wait 
states, instruction execution time is increased. However, one or two wait 
states may have little effect on instruction timing. Often the only effect of 
one or more wait states is to reduce bus idle time. 

The effect of wait states on data accesses may be accounted for in the 
instruction-cache-case timings. 

To add the effect of wait states on data accesses: 

la. For nonmemory indirect effective address t imings that include an 
operand read, add the number of wait states (in clocks) to the tail 
and instruction-cache-case (CC) times. The head is not affected. 

lb.  For memory indirect effective address t imings that use the calculate 
<ea>  tables and have only one data read (for the address fetch), 
add the number of wait states to the CC time only. The head and 
tail are not affected. 

lc. For memory indirect effective address t imings (fetch <ea>)  that have 
two data reads (for the address fetch), add the number of wait states 
for two reads to the CC time. Add the number of wait states for one 
data read to the tail. The head is not affected. 

11-18 MC68030 USER'S MANUAL MOTOROLA 



2a. For operation timings that include a data read (e.g., BFFF0 and TAS), 
add the number of wait states to the CC time only. Neither the head 
nor the tail are affected. 

NOTE 

The CC timing and tail of the MOVEM instruction are special 
cases for both data reads and writes. Equations for both the CC 
timing and the tail as a function of wait states are footnoted in 
the table in 11.6.7 Special-Purpose MOVE Instruct ion.  

2b. If the operation has more than one data read, add the total amount 
of wait states for all reads to the CC time. Neither the head nor the 
tail are affected. Refer to preceding note. 

3a. For operation timings that include a data write, the number of wait 
states is added to the tail and the CC time. The head is not affected. 
Refer to preceding note. 

3b. If there is more than one write in the operation, the tail is only 
increased by the wait states for one write. The CC timing is increased 
by the total amount of wait states for all writes. Refer to preceding 
note. 

The following example calculates the instruction-cache-case execution time 
for the specified instruction stream with two wait states (four-clock reads and 
writes). The lines that are corrected for wait states are printed in boldface 
type and are used to calculate the instruction execution time. References are 
to the preceding rules. 

Instruction 
1. MOVE.L ($800,A2,D3),(A5,D2) 
2. ADD.L D1 ,([$30,A4]) 
3. BFCLR ($20,A5){1:5/- (<5 bytes) 
4. BFTST ($10,A3,D3){31:31}- (5 bytes) 
5. MOVEM ([A1,D1]),A1-A4 --  4 registers 

MOTOROLA MC68030 USER'S MANUAL 11-19 

11 



Wai t  States = 2 

Head Tail CC 

1. MOVE.L ($800,A2,D3),(A5,D2) 
fea (d16,An,Xn) 4 0+2 6+2(1/0/0) 
* la  4 2 8(1/0/0) 

MOVE Source,(B) 4 0 + 2 8 + 2(0/0/1 ) 
*3a 4 2 10(0/0/1) 

2. ADD.L D1,([$30,A4]) 
fea ([dl 6,B]) 4 0 + 2 12 + 4(2/0/0) 
"1c 4 2 16(2/0/0) 

ADD Dn,EA 0 1 + 2 3 + 2(0/0/1 ) 
*3a 0 3 5(0/0/1) 

3. BFCLR ($20,A6){1:6} 
*ciea #<data>.W,(d16,An) 10 0 4(0/0/0) 
Single EA Format 

BFCLR Mem (< 5 bytes) 6 0+2 14+4(1/0/1) 
*2a & 3a 6 2 18(1/0/1) 

4. BFTST ($10,A3,D3){31:31} 
*ciea (d16,An,Xn) 14 0 8(0/0/0) 

BFTST Mem (6 bytes) 6 0 14 + 4(2/0/0) 
*2b 6 0 18(2/0/0) 

MOVEM ([A1,D1]),A1-A4 
ciea ([B]) 6 0 12 + 2(1/0/0) 
* lb  6 0 14(1/0/0) 

MOVEM EA,RL 2 0 24+ 0(4/0/0) 
*2a & 2b 2 0 24(4/0/0) 

*Corrected for wait states. 

N O T E  

It is he lp fu l  to i nc lude  the  n u m b e r  o f  ope rand  read and w r i t es  a long  
w i t h  the n u m b e r  of  i ns t ruc t i on  accesses in the CC c o l u m n  fo r  com-  
pu t i ng  the ef fect  o f  w a i t  states on execu t i on  t ime.  

11-20 MC68030 USER'S MANUAL MOTOROLA 



Using the general Equation (11-2), calculate as follows: 

Execut ion T ime = CCea 1 + [CC°Pl  - m in (H°P l  ,Teal  )] + [CCea2 - min(Hea2,T°P 1 )] + 
[CCoP2 - min(HoP2,Tea2) ] - [CCea 3 - min(Hea3,ToP2)] + 
[CCoP3 - min(HoP3,Tea3) ] - !CCea 4 -  min(Hea4,ToP3)] + 
[CCop 4 -  min(HoP4,Tea4)] - !CCea 5 - min(Hea5,ToP4)] + 
[CCoP5 - min(HoP5,Tea5) ] 

= 8 +  [ 1 0 -  min(4,2)] - [ 1 6 -  rain(4,2)] + 
[5 - min(0,2)] + [4 - min(lO,3)] + [18 - min(6,0)] + [8 - rain(14,2)] + 
[ 1 8 -  min(6,0)] -~ [14 - rain(6,0)] + 
[ 2 4 -  min(2,0)] 

8 + 8 + 1 4 + 5 + 1  - 1 8 - - 6 + 1 8 + 1 4 + 2 4  

116 clock per iods 

The next example is the data cache hit example from 11.4 EFFECT OF DATA 
CACHE with two wait states per cycle (four-clock read/write). Hits in the data 
cache and instruction cache are assumed. Three lines are shown for each 
timing. The first is the timing from the appropriate table. The second is the 
timing adjusted for a data cache hit. The third adds wait states only to write 
operat/ons, since the read operations hit in the cache and cause no delay. 
T h e  t h i r d  l i n e  f o r  e a c h  t i m i n g  is u s e d  t o  c a l c u l a t e  t h e  i n s t r u c t i o n  c a c h e  e x -  

e c u t i o n  t i m e ;  i t  is s h o w n  in b o l d f a c e  t y p e .  

Instruction 
1, ADD.L - (A1) ,D1 

2. AND.L DI,( [A2]) 
3. MOVE.L (A6),(8,A1) 
4. TAS (A3) + 

MOTOROLA MC68030 USER'S MANUAL 11-21 

11 



I1 

1. ADD.L - (A1),D1 
fea - (An) 

ADD.L EA,Dn 

2. AND.L DI,([A1]) 
fea ([B]) 

AND Dn,EA 
se 

3. MOVE.L (A6),(8,A1) 
fea (An) 

"X ' *  

MOVE Sou rce,(d 16, An) 
$$ 

4. TAS (A3) + 
Cea (An) 

TAS Mem 
$6 

Head 

NOTES: 
*Corrected for data cache hits. 

**Corrected for wait states also (only on data writes). 
* * *No data cache hit assumed for address fetch. 

Tail CC 

4(1/0/0) 
3(1/0/0) 
3(I/0/0) 

2(0/1/0) 
2(0/1/0) 
2(0/1/0) 

10(1/0/0) 
10(1/0/0) 
12(1/0/0) 

3(0/0/1) 
3(0/0/1) 
5(0/0/1) 

3(1/0/0) 
2(1/0/0) 
2(1/0/0) 

4(0/0/1) 
4(0/0/1) 
6(0/0/1) 

2(0/O/0) 
2(0/0/0) 
2(0/0/0) 

12(1/0/1) 
12(1/0/1) 
14(1/0/1) 

11-22 MC68030 USER'S MANUAL MOTOROLA 



Using the general Equation (11-2), calculate as follows: 

Execution Time = CCeal + [CCoPl - min(Heal,TOPl )] + [CCea2 - min(Hea2;TOPl l] + 
[CCoP2- min(HoP2,Tea2) ] + [CCea 3- min(Hea3,ToP2)] + 
[CCoP3 - min(HoP3,Tea3) ] + [CCea 4- min(Hea4,ToP3)] + 
[CCoP4- min(HoP4,Tea4) ] 

= 3 + [2 ~ min(0,1 )]m + [12 - min(4,0)] + 
[5- min(O,O)] + [2 - rain(I,3)] ~- 
[6- min(2,0)] + [2 - min(O,2)] ~- 
[14- min(3,0) 

3+2+12+5+1+6+2+14 

= 45 clock periods 

A similar analysis can be constructed for the average no-cache case. Since 
the average no-cache-case time assumes two clock periods per bus cycle 
(i.e., no wait states), the timing given in the tables does not apply directly to 
systems with wait states. To approximate the average no-cache-case time 
for an instruction or effective address with W wait states, use the following 
formula: 

NCC = NCCt+ (# of data reads and writes)oW+ 
(max. # of instruction accesses)oW 

where: 

NCCt is the no-cache-case timing value from the appropriate table. 

The number of data reads, data writes, and maximum instruction accesses 
are found in the appropriate table. 

The average no-cache-case timing obtained from this formula is equal to or 
greater than the actual no-cache-case timing since the number of instruction 
accesses used is a maximum (the values in the tables are always rounded 
up) and no overlap is assumed. 

MOTOROLA MC68030 USER'S MANUAL 11-23 



1 

11.6 I N S T R U C T I O N  T I M I N G  T A B L E S  

All the following assumptions apply to the times shown in the tables in this 
section: 

• All memory accesses occur with two-clock bus cycles and no wait states. 

• All operands in memory, including the system stack, are long-word 
aligned. 

• A 32-bit bus is used for communications between the MC68030 and 
system memory. 

• The data cache is not enabled. 

• No exceptions occur (except as specified). 

• Required address translations for all external bus cycles are resident in 
the address translation cache. 

Four 

1. 

2. 

3. 

. 

values are listed for each instruction and effective address: 

Head, 

Tail, 

Instruction-cache case (CC) when the instruction is in the cache but has 
no overlap, and 

Average no-cache case (NCC) when the instruction is not in the cache 
or the cache is disabled and there is no instruction overlap. 

The only instances for which the size of the operand has any effect are the 
instructions with immediate operands and the ADDA and SUBA instructions. 
Unless specified otherwise, immediate byte and word operands have iden- 
tical execution times. 

11-24 MC68030 USER'S MANUAL MOTOROLA 



The instruction-cache-case and average no-cache-case columns of the in- 
struction timing tables contain four sets of numbers, three of which are 
enclosed in parentheses. The outer number is the total number of clocks for 
the given cache case and instruction. The first number inside the parentheses 
is the number of operand read cycles performed by the instruction. The 
second value inside the parentheses is the maximum number of instruction 
bus cycles performed by the instruction, including all prefetches to keep the 
instruction pipe filled. Because the second value is the average of the odd- 
word-aligned case and the even-word-aligned case (rounded up toan integral 
number of bus cycles), it is always greater than or equal to the actual number 
of bus cycles (one bus cycle per two instruction prefetches). The third value 
within the parentheses is the number of write cycles performed by the in- 
struction. One example from the instruction timing table is: 

Total Number of Clocks 

Number of Read Cycles 

Maximum Number of Instructio~ Access Cycles 

Number of Writes Cycles 

21 (2 / 3 / O) 

The total numbers of bus-activity clocks and internal clocks (not overlapped 
by bus activity) of the instruction in this example are derived as follows: 

(2 Readso2 Clocks/Read)+ (3 Instruction Accesses°2 Clocks/Access)+ 
(0 Writes*2 Clocks/Write)-10 Clocks of Bus Activity 

21 Total Clocks-10 Bus Activity Clocks= 11 Internal Clocks 

The example used here is taken from a no-cache-case 'fetch effective address' 
time. The addressing mode is ([d32,B],l,d32). The same addressing mode 
under the instruction-cache-case execution time entry is 18(2/0/0). For the 
instruction-cache-case execution time, no instruction accesses are required 
because the cache is enabled and the sequencer does not have to access 
external memory for the instruction words. 

The first five timing tables deal exclusively with fetching and calculating 
effective addresses and immediate operands. The remaining tables are in- 
struction and operation timings. Some instructions use addressing modes 
that are not included in the corresponding instruction timings. These cases 
refer to footnotes that indicate the additional table needed for the timing 
calculation. All read and write accesses are assumed to take two clock periods. 

MOTOROLA MC68030 USER'S MANUAL 11-25 

11 



I1 

11.6.1 Fetch Effective Address (fea) 

The fetch effective address table indicates the number of clock periods needed 
for the processor to calculate and fetch the specified effective address. The 
effective addresses are divided by their formats (refer to 2.5 Effective Address 
Encoding Summary). For instruction-cache case and for no-cache case, the 
total number of clock cycles is outside the parentheses. The number of read, 
prefetch, and write cycles is given inside the parentheses as (r/p/w). The read, 
prefetch, and write cycles are included in the total clock cycle number. 

All timing data assumes two-clock reads and writes. 

I Ad,r.a ede I ,ead I Ta, I ,-Cac, eC.e I NoCao.eC.el 

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT 

% Dn - -  - -  

% An - -  - -  

(An) 1 1 

(An) ÷ 0 1 

- (An) 2 2 

(d16,An) or (d16,PC) 2 2 

(xxx).W 2 2 

(xxx).L 1 0 

#(data).B 2 0 

#(data).W 2 0 

#(data).L 4 0 

o(o/o/o) o(O/OlO) 

o(o/o/o) 0(0/0/0) 

3(1/0/0) 3(1/0/0) 

3(1/0/0) 3(1/0/0) 

4(1/0/0) 4(1/0/0) 

4(1/0/0) 4(1/1/0) 

4(1/0/0) 4(1/1/0) 

4(1/0/0) 5(1/1/0) 

2(0/0/0) 2(0/1/0) 

2(0/0/0) 2(0/1/0) 

4(0/0/0) 4(0/1/0) 

BRIEF FORMAT EXTENSION WORD 

I (dS'An'xn) °r  (d8'PC'xn, I 4 ] 2 I 6(1/0/0) ] 6(1/1/0) I 

11-26 MC68030 USER'S MANUAL MOTOROLA 



11.6.1 
I Address Mode 

FULL FORMAT EXTENSION WORD(S) 

(d16,An) or (d16,PC) 

(d16,An,Xn) or (d16,PC,Xn) 

([d16,An]) or ([d16,PC]) 

([d16,An],Xn) or ([d16,PC],Xn) 

([d16,An],d16) or ([d16,PC],d16) 

([d16,An],Xn,d16) or ([d16,PCJ,Xn,d16) 

([d16,An],d32) or ([d16,PC],d32) 

([d16,An],Xn,d32) or ([d16,PC],Xn,d32) 

(B) 

(d16,B) 

(d32,B) 
([B]) 

([B],t) 

([8],d16) 

([B],l,dl 6) 

([B],d32) 

([8],1,d32) 

([d16,B]) 

([d16,B],l) 

([d16,B],d16) 

([d16,B],l,d16) 

([d16,B],d32) 

([d16,B],l,d32) 

([d32,B]) 

([d32,B],l) 

([d32,B],d16) 

([d32,B],l,d16) 

([d32,B],d32) 

([d32,B],l,d32) 

Fetch Effective Address (fee) (Continued.) 
I Head ] Tail I I-Cache Case I No-Cache Casel 

2 0 

4 0 

2 0 

2 0 

2 0 

2 0 

2 0 

2 0 

4 0 

4 0 

4 0 

4 0 

4 0 

4 0 

4 0 

4 0 

4 0 

4 0 

4 0 

4 0 

4 0 

4 0 

4 0 

4 0 

4 0 

4 0 

4 0 

4 0 

4 0 

6(1/0/0) 7(1/1/0) 

6(1/0/0) 7(1/1/0) 

10(2/0/0) 10(2/1/0) 

10(2/0/0) 10(2/1/0) 

12(2/0/0) 13(2/2/0) 

12(2/0/0) 13(2/2/0) 

12(2/0/0) 14(2/2/0) 

12(2/0/0) 14(2/2/0) 

6(1/0/0) 7(1/1/0) 

8(1/0/0) 10(1/1/0) 

12(1/0/0) 13(1/2/0) 

10(2/0/0) 10(2/1/0) 

10(2/0/0) 10(2/1/0) 

12(2/0/0) 13(2/li0) 

12(2/0/0) 13(2/1/0) 

12(2/0/0) 14(2/2/0) 

12(2/0/0) 14(2/2/0) 

12(2/0/0) 13(2/I/0) 

12(2/0/0) 13(2/1/0) 

14(2/0/0) 16(2/2/0) 

14(2/0/0) 16(2/2/0} 

14(2/0/0) 17(2/2/0) 

14(2/0/0) 17(2/2/0) 

16(2/0/0) 17(2/2/0) 

16(2/0/0) 17(2/2/0) 

18(2/0/0) 20(2/2/0) 

18(2/0/0) 20(2/2/0) 

18(2/0/0) 21(2/3/0) 

18(2/0/0) 21(2/3/0) 

B = Base Address; 0, An, PC, Xn, An + Xn, PC + Xn. Form does not affect timing. 
I= Index; 0, Xn 

%= No clock cycles incurred by effective address fetch. 

NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing. 

M O T O R O L A  MC68030  USER'S M A N U A L  11-27 

. 



1 

11.6.2 Fetch I m m e d i a t e  Effective Address  (flea) 

The fetch immediate effective address table indicates the number of clock 
periods needed for the processor to fetch the immediate source operand and 

to  calculate and fetch the specified destination operand. In the case of two- 
word instructions, this table indicates the number of clock periods needed 
for the processor to fetch the second word of the instruction and to calculate 
and fetch the specified source operand or single operand. The effective ad- 
dresses are divided by their formats (refer to 2.5 Effective Address Encoding 
Summary). For instruction-cache case and for no-cache case, the total num- 
ber of clock cycles is outside the parentheses. The number of read, prefetch, 
and write cycles is given inside the parentheses as (r/p/w). The read, prefetch, 
and write cycles are included in the total clock cycle number. 

All timing data assumes two-clock reads and writes. 

I Addre,,Mode I .earl I Ta, I ,-Cao,eCa,e I No-Cao,eCa.I 

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT 

% #(dataXW,Dn 

% #(data~.L,Dn 

#<data).W,(An) 

#(data).L,(An) 

#(data).W,(An) + 

#(data>.L,(An) + 

#<data>.W, - (An) 

#(data).L,- (An) 

#(data).W,(d16, An) 

#(data).L,(d16,An) 
#<data).W,$XXX.W 

#(data).L,$XXX.W 

#(data).W,$XXX.L 

#(data>.L,$XXX.L 

#(data~.W,#<data~.L 

BRIEF FORMAT EXTENSION WORD 

I #(data).W,(d8,An,Xn) or (ds,PC,Xn) 

#(data).L,(d8,An,Xn) or (d8,PC,Xn) 

2+op head 

4+op head 

1 

1 

2 

4 

2 

2 

2 

4 

4 

6 

3 

5 

6+op head 

2(01010) 2(01110) 

4(01010) 4(0/1/0) 

3(11010) 4(11110) 

4(11010) 5(11110) 

5(1/0/0) 5(11110) 

7(1/0/0) 7(1/1/0) 

4(1/0/0) 4(111/0) 

4(1/0/0) 6(11110) 

4(1/0/0) 5(11110) 

6(1/0/0) 8(1/2/0) 

6(11010) 6(11110) 

8(1/0/0) 8(112/0) 

6(1/0/0) 7(11210) 

8(1/0/0) 9(11210) 

6(0/0/0) 6(01210) 

8(11010) I 8(1121o) 
10(1/0/0) 10(1/2/0) 

1 1-28 MC68030 USER'S M A N U A L  MOTOROLA 



11.6.2 Fetch immediate Effective Address (flea) (Continued) 
Address Mode I Head I Tail I ,-Cache Case Iao-Ca0he Casel 

FULL FORMAT EXTENSION WORD(S) 

#{data).W,(d16,An) or (d16,PC) 4 0 8(1/0/0) 9(1/2/0) 

#<data).L,(d16,An) or (d16,PC) 6 0 10(1/0/0) 11(1/2/0) 

#{data).W,(d16,An,Xn) or (d16,PC,Xn) 6 0 8(1/0/0) 9(1/2/0) 

#{data).L,(d16,An,Xn) or (d16,PC,Xn) 8 0 10(1/0/0) 11(1/2/0) 

#(data).W,(ld16,An]) or ([d16,PC]) 4 0 12(2/0/0) 12(2/2/0) 

#(data).L,([d16,An]) or ([d16,PC]) 5 0 14(2/0/0) 14(2/2/0) 

#(data).W,(ld16,An],Xn) or ([d16,PC],Xn) 4 0 12(2/0/0) 12(2/2/0) 

#(data).L,([d16,An],Xn) or ([d16,PC],Xn) 6 0 14(2/0/0) 14(2/2/0) 

#{data).W,([d16,An],d16) or ([d16,PC],d15) 4 0 14(2/0/0) 15(2/2/0) 

#{data).L,([d16,An],d16) or ([d16,PC],d16) 6 0 16(2/0/0) 17(2/3/0) 

#{data).W,([d16,An],Xn,d16) or ([d16,PC],Xn,d16) 4 0 14(2/0/0) 15(2/2/0) 

#(data).L,([d16,An],Xn,d16) or ([d16,PC],Xn,d16) 6 0 16(2/0/0) 17(2/3/0) 

#{data).W,([d16,An],d32) or ([d16,PC],d32) 4 0 14(2/0/0) 16(2/3/0) 

#(data).L,([d 16,An],d32) or ([d16,PC],d32) 6 0 16(2/0/0) 18(2/3/0) 

#(data).W,([d16,An],Xn,d32) or ([d16,PC],Xn,d32) 4 0 14(2/0/0) 16(2/3/0) 

#(data).L,([d16,An],Xn,d32) or ([d16,PC],Xn,d32) 6 0 16(2/0/0) 18(2/3/0) 

#(data).W,(B) 6 0 8(1/0/0) 9(1/1/0) 

#(data).L,(B) 8 0 10(1/0/0) 11(1/2/0) 

#{data).W,(d16,B) 6 0 10(1/0/0) 12(1/2/0) 

#(data).L,(d16,B) 8 0 12(1/0/0) 14(1/2/0) 

#(data).W,(d32,B) 10 0 14(1/0/0) 16(1/2/0) 

#(data).L,(d32,B) 12 0 16(1/0/0) 18(1/3/0) 

#(data).W,([B]) 6 0 12(2/0/0) 12(2/1/0) 

#(data).L,([B]) 8 0 14(2/0/0) 14(2/2/0) 

#{data).W,([B],l) 6 0 12(2/0/0) 12(2 '1 '0) 

#(data).L,([B],l) 8 0 14(2/0/0) 14(2.2 0} 

#(data).W,([BJ,dl 6) 6 0 14(2/0/0) 15(2"2 0) 

#{data).L,([B],d16) 8 0 16(2/0/0) 17(2~2 0} 

#(data).W,([B],l,d 16) 6 0 14(2/0/0) 15(22 0} 

#(data).L,([B],l,dl 6) 8 0 16(2/0/0) 17(2,2 0) 

#(data).W,([B],d32) 6 0 14(2/0/0) 16(2 2 0) 

#(data).L,([B],d32) 8 0 16(2/0/0) 18(2;3 0) 

#(d ata).W,([B],l,d32) 6 0 14(2/0/0) 16(2..2 0) 

#(data).L,([B],l,d32) 8 0 16(2/0/0) 18(2,3 0) 

#(data).W,([d 16, B]) 5 0 14(2/0/0) 15(2 2 0) 

#(data).L,([d16,B]) 8 0 16(2/0/0) 17(22 0) 

#(data).W,([d16,B],l) 6 0 14(2/0/0) 15(2 2 0i 

#{data).L,([d16,B],l) 8 0 16(2/0/0) 17(2 2 0) 

M O T O R O L A  MC68030  USER'S M A N U A L  11-29 

. 



1 

11.6.2 

I 
Fetch I m m e d i a t e  Effective Address  ( f l ea ) (Cont inued)  

Address Mode I Head I Tail I I-Cache Case INo-Cache Case I 

FULL FORMAT EXTENSION WORD(S) (CONTINUED) 

#(data).W,([d16,B], d 16) 6 0 

#(data).L,([d 16'Bj,d16) 8 0 

#(data).W,([d16,B],l,d 16) 6 0 

# ( data).L,([d16,B],l,d16) 8 0 

#(data).W,([d16,B],d32) 6 0 

#(data).L,([d 16,B],d32) 8 0 

#(data).W,(!d16,B],l,d32) 6 0 

#(data).L,([di 6,B],l,d32) 8 0 

#(data).W,([d32,B]) 6 0 

#(data).L,([d32,B]) 8 0 

#(d ata).W,([d32,B],l) 6 0 

#(data).L,([d32,B],l) 8 0 

#(data).W,( [d32,B],d 16) 6 0 

#(data).L,([d32,B],d16) 8 0 

#(data).W,([d32,B],l,d 16) 6 0 

#(data).L,([d32,B],l,d 16) 8 0 

#(data).W,([d32,B],d32) 6 0 

#(data).L,([d32,B],d32) 8 0 

#(data~.W,([d32,B],l,d32) 6 0 

#(data).L,([d32,B],l,d32) 8 0 

16(2/0/0) 18(2/2/0) 

18(2/0/0) 20(2/3/0) 

16(2/0/0) 18(2/2/0) 

18(2/0/0) 20(2/3/0) 

16(2/0/0) 19(2/3/0) 

18(2/0/0) 21(2/3/0) 

16(2/0/0) 19(2/3/0) 

18(2/0/0) 21(2/3/0) 

18(2/0/0) 19(2/2/0) 

20(2/0/0) 21(2/3/0) 

18(2/0/0) 19(2/2/0) 

20(2/0/0) 21(2/3/0) 

20(2/0/0) 22(2/3/0) 

22(2/0/0) 24(2/3/0) 

20(2/0/0) 22(2/3/0) 

22(2/0/0) 24(2/3/0) 

20(2/0/0) 23(2/3/0) 

22(2/0/0) 25(2/4/0) 

20(2/O/O) 23(2/3/0) 

22(2/0/0) 25(2/4/0) 

B= Base Address: 0, Anl PC, Xn, An+Xn, PC+Xn. Form does not affect timing. 
I= Index: 0, Xn 

%= Total head for fetch immediate effective address timing includes the head time for the operation. 
NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing. 

11.6.3 Calculate Effective Address  (cea) 

The calculate effective address table indicates the number of clock periods 
needed for the processor to calculate the specified effective address. Fetch 
time is only included for the first level of indirection on memory indirect 
addressing modes. The effective addresses are divided by their formats (refer 
to 2.5 Effective Address Encoding Summary). For instruction-cache case and 
for no-cache case, the total number of clock cycles is outside the parentheses. 
The number of read, prefetch, and write cycles is given inside the parentheses 
as (r/p/w). The read, prefetch, and write cycles are included in the total clock 
cycle number. 

All timing data assumes two-clock reads and writes. 

11-30 MC68030  USER'S M A N U A L  M O T O R O L A  



11.6.3 

I 
Calculate Effective Address (cea) (Continued) 

Address Mode I Head I Tail I I-Cache Case INo-Cache Casel 

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT 
% Dn - -  - -  

% An - -  -- 

(An) 2+op head 0 

(An) + 0 0 

-(An) 2+op head l 0 

(d16,An) or (d16,PC) 2+op head 0 

(xxx).W 2+op head 0 

(xxx).L 4+op head 0 

BRIEF FORMAT EXTENSION WORD 
I (d8,An,Xn) or (d8,PC,Xn) 

FULL FORMAT EXTENSION WORD(S) 

(d16,An) or (d16,PC) 

Id16,An,Xn) or Id16,PC,Xn) 

([d16,An]) or ([d16,PC]) 

([d16,An],Xn) or ([d16,PC],Xn) 

([d16,An],d16) or ([d16,PC],d16) 

([d16,An],Xn,d16) or ([d16,PCJ,Xn,d16) 

([d16,An],d32) or ([d16,PC],d32) 

([d16,An],Xn,d32) or ([d16,PC],Xn,d32) 

(R) 

(d16,B) 

(d32,B) 

([B]) 

([B],I) 

([B],d16) 

([m],l,dl 6) 

(/HI,d32) 

([B],l,d32) 

([d16,B]) 

([d16,B],l) 

([d16,B],d16) 

([d16,B],l,d16) 

0(0/0/0) 0(0/0/0) 

0(0/0/0) 0(0/0/0) 

2(0/0/0) 2(0/0/0) 

2(0/0/0) 2(0/0/0) 

2(0/0/0) 2(0/0/0) 

2(0/0/0) 2(0/1/0) 

2(0/0/0) i 2(0/1/0) 

4(0/0/0) 4(0/1/0) 

14+ op head I 0 ] 4(0/0/0) I 4(0/1/0) I 

2 0 

6+opheedJ 0 

2 0 

2 0 

2 0 

2 0 

2 0 

2 0 

6+op head 0 

4 0 

4 0 

4 0 

4 0 

4 0 

4 0 

4 0 

4 0 

4 0 

4 0 

4 0 

4 0 

6(0/0/0) 6(0/1/0) 

6101010) 610/1/0) 

10(1/0/0) 10(1/1/0) 

10(1/0/0) 10(1/1/0) 

12(1/0/0) 13(1/2/0) 

12(1/0/0) 13(1/2/0) 

12(1/0/0) 13(1/2/0) 

12(1/0/0) 13(1/2/0) 

6(0/0/0) 6(0/1/0) 

8(01010) 9(0/1/0) 

12(0J0/0) 12(0/2/0) 

10(1/0/0) 10(1/1/0) 

10(1/0/0) 10(1/1/0) 

12(1/0/0) 13(1/1/0) 

12(1/010) 13(1/1/0) 

12(1/0/0) 13(1/z'0) 

12(2/0/0) 13(1/zr0) 

12(1/0/0) 13(1/1;0) 

!2(1/0/0) 13(1/1~0) 

14(1/0/0) 16(1/~0) 

14(1/0/0) 16(1/2/0) 

M O T O R O L A  MC68030  USER'S  M A N U A L  11-31 

=I 



11.6.3 

I 
FULL FORMAT EXENSION WORD(S) (CONTINUED) 

([d16,B],d32) 

([d16,B],l,d32) 

([d32,B]) 

([d32,B],l) 

([d32,B],d16) 

• ([d32,B],l,d16) 

([d32,B],d32) 

([d32,B],l,d32) 

Calculate Effective Address  (cea) (Cont inued)  

Address Mode I Head I Tail I I-Cache Case INo-Cache Casel 

4 0 

4 0 

4 0 

4 0 

4 0 

4 0 

4 0 

4 0 

14(1/0/0) 16(1/2/0) 

14(1/0/0) 16(1/2/0) 

16(1/0/0) 17(1/2/0) 

16(1/0/0) 17(1/2/0) 

18(1/0/0) 20(1/2/0) 

18(1/0/0) 20(1/2/0) 

18(1/0/0) 20(1/3/0) 

18(1/0/0) 20(1/3/0) 

B= Base address: 0. An, PC, Xn, An +Xn, PC+Xn. Form does not affect timing. 
i= Index: 0. Xn 

%= No clock cycles incurred by effective address calculation 

NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing. 

11.6.4 Calculate  I m m e d i a t e  Effective Address  (ciea) 

The calculate immediate effective address table indicates the number of clock 
periods needed for the processor to fetch the immediate source operand and 
calculate the specified destination effective address, In the case of two-word 
instructions, this table indicates the number of clock periods needed for the 
processor to fetch the second word of the instruction and calculate the spec- 
ified source operand or single operand. Fetch time is only included for the 
first level of indirection on memory indirect addressing modes. The effective 
addresses are divided by their formats (refer to 2.5 Effective Address En- 
coding Summary). For instruction-cache case and for no-cache case, the total 
number of clock cycles is outside the parentheses. The number of read, 
prefetch, and write cycles is given inside the parentheses as (r/p/w). The read, 
prefetch, and write cycles are included in the total clock cycle number. 

All timing data assumes two-clock reads and writes. 

11-32 MC68030  USER'S M A N U A L  M O T O R O L A  



11.6.4 Calculate Immediate Effective Address (ciea) (Continued) 
I Address Mode I Head I Tail I I-Cache Case INo-Cache Case 

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT 
~/o #<data>.W,Dn 2+op head 0 

Yo #<data).L,Dn 14+op head 0 

'/~ #(data).W,(An) 2+op head 0 

~/o #(data).L,(An) .4+op head 0 

#<data).W,(An) + 2 0 

#(data).L,(An) + 4 0 

Yo #<data).W, (An) 2+op head 0 

~/o #<data>.L,-(An) 4+op head 0 

.% #(data).W,(d16,An) 4+op head 0 

Yo #<deta).L,(d16,An) 6+op head 0 

Yo #(data).W,$XXX.W 4+op head 0 

% #(data).L,$XXX.W 6+op head 0 

Yo #<data>IW,$XXX.L 6+op head 0 

~/o #<data).L,$XXX.L 8+op head 0 

BRIEF FORMAT EXTENSION WORD 
i~ #<data>.W,(d8,An,Xn) or (d8,PC,Xn) 

#(data).L,(ds,An,Xn) or (d8,PC,Xn) 

FULL FORMAT EXTENSION WORD(S) 
#<data>.W,(d16,An) or (d16,PC) 

#(data).L,(d16,An) or (d16,PC) 

>/<~ #<data).W,(d16,An,Xn) or (d16,PC,Xn) 

>/o #<data>.L,(d16,An,Xn) or (d16,PC,Xn) 

#(deta>.W,([d16,An]) or ([d 16,PC]) 

#(data).L,([d16,An]) or ([d16,PC]) 

#<data>.W,([d16,An],Xn) or ([d16,PC],Xn) 

#(data).L,/{d16,Ani,Xn) or ([d16,PCI,Xn) 

#<data).W,([d16,An],d16) or ([d16,PC],d16) 

#<data).L,([d16,An],d16) or ([d16,PC],d16) 

#(data).W,(!d16,An],Xn,d16) or (Id16,PC],Xn,d16} 

#(data).L,([d16,An],Xn,d16) or ([d16,PC],Xn,d16) 
#<data).W,([d16,An],d32) or ([d16,PC],d32) 

#(data>.L,{[d16,An],d32) or ([d16,PC],d32) 

#<data).W,([d16,An],Xn,d32) or ([d16,PC],Xn,d32) 

#(data).L,([d 16,An],Xn,d32) or ([d 16,PC],Xn,d32) 

Yo #(data).W,(B) 

~/o #(data>.L,(B) 

6+op head 0 

8+op head 0 

4 0 

6 0 

8+op head 0 

10+op head 0 

4 0 

6 0 

4 0 

6 0 

4 0 

6 0 

4 0 

6 0 

4 0 

6 0 

4 0 

6 0 

8+op head 0 

10+op head 0 

2(0/0/0) 2(0/1/0) 

4(0/0/0) 4(0/1/0) 
2(0/0/0) 2(0/1/0) 

4(0/0/0) 4(0/1/0) 

4(0/0/0) 4(0/1/0) 

6(0/0/0) 6(0/1/0) 
2(0/0/0) 2(0/1/0) 

4(0/0/0) 4(0/1/0) 

4(0/0/0) 4(0/1/0) 

6(0/0/0) 7(0/2/0) 

4(0/0/0) 4(0/1/0) 

6(0/0/0) 6(0/2/0) 

6(0/0/0) 6(0/2/0) 

8(0/0/0) 8(0/2/0) 

6(0/0/0) 6(0/2/0) 

8(0/0/0) 8(0/2/0) 

8(0/0/0) 8(0/2/0) 

10(0/0/0) 10(0/2/0) 

8(0/0/0) 8(0/2/0) 

10(0/0/0) 10(0/2;0) 

12(1/0/0) 12(1/2.0) 

14(1/0/0) 14(1/1:0) 

12(1/0/0) 12(1/2/0) 

14(1/0/0} 14(1/1~0) 

14(1/0/0) 15(1/20) 

16(1/0/0) 17(1/3 o) 

14(1/0/0} 15(1/20} 

16(1/0/0) 17(1/30) 

14(1/0/0) 16(1/3 o) 

16(1/0/0) 17(1/3 o) 

14(1/0/0) 15(1/3 o} 

16(1/0/0) 17(1/3 o! 

8(0/0/0) 8(0~1 0 

10(0/0/0) 10(0~20; 

M O T O R O L A  MC68030 USER'S M A N U A L  11-33 

11 



I1 

11.6.4 

I 
Calculate Immediate Effective Address (ciea) (Continued) 

Address Mode I Head t Tail I I-Cache Case I No-Cache Casel 

FULL FORMAT EXTENSION WORD(S) (CONTINUED) 

#<data>.W,(d 16,B) 6 0 

#(data>.L,(d 16,B) 8 0 

#(data).W,(d32,B) 6 0 

#<data>.L,(d32,B) 8 0 

#(data}.W,([B]) 6 0 

#(data>.L,([B]) 8 0 

#(data>.W,([B],l) 6 0 

#(data}.L,([B],l) 8 0 

#(data>.W,([B],d16) 6 0 

#(data).L,([B],dl 6) 8 0 

#(data}.W,([B],l,d 16) 6 0 

#(data>.L,([BJ,l,d 16) 8 0 

#(data>.W,([B],d32) 6 0 

#(data>.L,([B],d32) 8 0 

#(data>.W,([BJ,l,d32) 6 0 

#(data>.L,([B],l,d32) 8 0 

#(data>.W,([d16,B]) 6 0 

#(data>.L,([d16,B]) 8 0 

#(data).W,([d 16,B],1) 6 0 

#(data}.L,([d16,B],J) 8 0 

#(data}.W,([d 16,B],d16) 6 0 

#(data>.L,([d 16,B],d 16) 8 0 

#(data>.W,([d16,B],l,d16) 6 0 

#<data>.L,(Id16,B],l,d16) 8 0 

#(data>.W,([d 16,B],d32) 6 0 

#(data>.L,([dl 6,B],d32) 8 0 

#(data}.W,([d 16,B],l,d32) 6 0 

#(data).L,([d16,B],l,d32) 8 0 

#(data}.W,([d32,B]) 6 0 

#(data>.L,([d32,B]) 8 0 

#(data}.W,([d32,B),l) 6 0 

#(data}.L,([d32,B],l) 8 0 

#(data).W,({d32,B],d 16) 6 0 

#(data>.L,([d32,B],d16) 8 0 

#(data>.W,([d32,B],i,d 16) 6 0 

#(data>.L,([d32,B],l,d 16) 8 0 

lO(O/O/O) 11(o/2/o) 

12(o/o/o) 13(o/2/o) 

14(o/o/o) 15(o/2/o) 

16(o/o/o) 17(o/3/o) 

12(1/o/o) 12(1/1/o) 

14(1/o/o) 14(1/2/o) 

12(1/o/o) 12(1/1/o) 

14(1/o/o) 14(1/2/o) 

14(1/o/o) 15(1/2/o) 

16(1/o/o) 17(1/2/o) 

14(1/o/o) 15(1/2/o) 

16(2/o/o) 17(1/2/o) 

14(1/o/o) 15(1/2/o) 

16(1/o/o) 17(1/3/o) 

14(1/o/o) 15(1/2/o) 

16(1/o/o) 17(1/3/o) 

14(1/o/o) 15(1/2/o) 

16(1/o/o) 17(1/2/o) 

14(1/o/o) 15(1/2/o) 

16(1/o/o) 17(1/2/o) 

15(1/o/o) 18(1/2/o) 

18(1/o/o) 2o(1/3/o) 

16(1/o/o) 18(1/2/o) 

18(1/o/o) 2o(1/3/o) 

16(1/o/o) 18(1/3/o) 

18(1/0/0) 20(I/3/0) 

16(1/0/0) 18(1/3/0) 

18(1/0/0) 20(1/3/0) 

18(1/0/0) 19(1/2/0) 

20(1/0/0) 21(1/3/0) 

18(1/0/0) 19(1/2/0) 

20(1/0/0) 21(1/3/0) 

20(1/0/0) 22(1/3/0) 

22(1/0/0) 24(1/3/0) 

20(1/0/0) 22(1/3/0) 

22(1/0/0) 24(1/3/0) 

11-34 M C 6 8 0 3 0  USER 'S  M A N U A L  M O T O R O L A  



11.6.4 
I Address Mode 

FULL FORMAT EXTENSION WORD(S) (CONTINUED) 

#(data).W,([d32,B],d32) 6 0 

#(data).L,([d32,B],d32) 8 0 

#(data).W,([d32,B],l,d32) 6 0 

#(data}.L,([d32,B],l,d32) 8 0 

B -  Base address; 0, An, PC, Xn, An + Xn, PC + Xn. Form does not affect timing. 
I -  Index; 0, Xn 

% = Total head for address timing includes the head time for the operation. 

NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing. 

Calculate Immediate Effective Address (ciea) (Continued) 
I Head I Tail I I-Cache Case I No-Cache Casel 

20(1/0/0) 22(1/3/0) 

22(1/0/0) 24(1/4/0) 

20(1/0/0) 22(1/3/0) 

22(1/0/0) 24(1/4/0) 

11.6.5 Jump Effective Address 

The jump effective address table indicates the number of clock periods needed 
for the processor to calculate the specified effective address for the JMP or 
JSR instructions. Fetch time is only included for the first level of indirection 
on memory indirect addressing modes. The effective addresses are divided 
by their formats (refer to 2.5 Effective Address Encoding Summary). For 
instruction-cache case and for no-cache case, the total number of clock cycles 
is outside the parentheses. The number of read, prefetch, and write cycles 
is given inside the parentheses as (r/p/w). The read, prefetch, and write cycles 
are included in the total clock cycle number. 

All timing data assumes two-clock reads and writes. 

I Address Mode I Head I Tail I I-Cache Case I No-Cache Casel 

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT 

% (An) 2+op head 0 

% (d16,An) 4+op head 0 

;% (xxx).W 2+op head 0 

'/o (xxx).L 2+op head 0 

2(0/0/0) 2(0/0,0) 

4(0/0/0) 4(0/0/0) 

2(0/0/0) 2(0/0~0) 

2(0/0/0) 2(0/0,0) 

BRIEF FORMAT EXTENSION WORD 

I% (d8,An,Xn) or (d8,PC,Xn) I '÷°pheadl 0 I ,<0/0/01 I ,(0,00  I 

MOTOROLA MC68030 USER'S MANUAL 11-35 

11 



I1 

11.6.5 

I 
FULL FORMAT EXTENSION WORD(S) (CONTINUED) 

(d16,An) or (d16,PC) 2 0 

% (d16,An,Xn) or (d16,PC,Xn) 6+op head 0 

([d16,An]) or ([d16,PC]) 2 0 

([d16,An],Xn) or ([d16,PC],Xn) 2 0 

([d16,An],d16) or ([d16,PC],d16) 2 0 

([d16,An],Xn,d16) or ([d16,PC],Xn,d16) 2 0 

([d16,An],d32) or ([d16,PC],d32) 2 0 

([d16,An],Xn,d32) or ([d16,PC],Xn,d32) 2 0 

% (B) 6+op head 0 

(d16,B) 4 0 

(d32,B) 4 0 

([B]) 4 0 

([B],I) 4 0 

([B],d16) 4 0 

([B],l,d16) 4 0 

([B],d32) 4 0 

([B],d32) 4 0 

([B],l,d32) 4 0 

([d16,B]) 4 0 

([d16,g],l) 4 0 

([d16,B],d16) 4 0 

([d16,B],l,d16) 4 0 

([d16,B],d32) 4 0 

([d16,B],l,d32) 4 0 

• ([d32,B]) 4 0 

([d32,B],l) 4 0 

(Id32,B],d16) 4 0 

([d32,B],l,d16) 4 0 

([d32,B],d32) 4 0 

([d32,B],l,d32) 4 0 

Jump Effective Address (Continued) 
Address Mode I Head I Tail I J-Cache Case I No-Cache Casel 

6(0/0/0) 6(0/0/0) 

6(0/0/0) 6(0/0/0) 

10(1/0/0) 10(1/1/0) 

10(1/0/0) 10(1/1/0) 

12(1/0/0) 12(1/1/0) 

12(1/0/0) 12(1/1/0) 

12(1/0/0) 12(1/1/0) 

12(1/0/0) 12(1/I/0) 

6(0/0/0) 6(0/0/0) 

8(0/0/0) 9(0/1/0) 

12(0/0/0) 13(0/1/0) 

10(1/0/0) 10(1/1/0) 

10(1/0/0) 10(1/1/0) 

12(1/0/0) 12(1/1/0) 

12(1/0/0) 12(1/1/0) 

12(1/0/0) 12(1/1/0) 

12(1/0/0) 12(1/1/0) 

12(1/0/0) 12(1/1/0) 

12(1/0/0) 13(1/1/0) 

12(1/0/0) 13(1/1/0) 

14(1/0/0) 15(1/1/0) 

14(1/0/0) 15(1/1/0) 

14(1/0/0) 15(1/1/0) 

14(1/0/0) 15(1/1/0) 

16(1/0/0) 17(1/2/0) 

16(1/0/0) 17(I/2/0) 

18(1/0/0) 19(I/2/0) 

16(1/0/0) 19(1/2/0) 

18(1/0/0) 19(1/2/0) 

18(1/0/0) 19(1/2/0) 

B= Base address; 0, An, PC, Xn, An +Xn, PC+Xn. Form does not affect timing. 
I= Index; 0, Xn 

%= Total head for effective address timing includes the head time for the operation. 
NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing. 

11-36 MC68030  USER'S M A N U A L  M O T O R O L A  



11.6.6 MOVE Instruction 

The MOVE instruction timing table indicates the number of clock periods 
needed for the processor to calculate the destination effective address and 
perform the MOVE or MOVEA instruction, including the first level of indi- 
rection on memory indirect addressing modes. The fetch effective address 
table is needed on most MOVE operations (source, destination dependent). 
The destination effective addresses are divided by their formats (refer to 2.5 
Effective Address Encoding Summary). For instruction-cache case and for 
no-cache case, the total number of clock cycles is outside the parentheses. 
The number of read, prefetch, and write cycles is given inside the parentheses 
as (r/p/w). The read, prefetch, and write cycles are included in the total clock 
cycle number. 

All timing data assumes two-clock reads and writes. 

I MOVESou,oe,D.,i°atio° I .sad I T., I,-C.o.eCase INo-Cao.eCasel 

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT 

MOVE Rn, Dn 2 0 

MOVE Rn, An 2 0 

* MOVE EA,An 0 0 

* MOVE EA, Dn 0 0 

MOVE Rn,(An) 0 1 

* MOVE SOURCE, (An) 2 0 

MOVE Rn,(An) + 0 1 

* MOVE SOURCE, (An)+ 2 0 

MOVE Rn,-  (An) 0 2 

* MOVE SOURCE, -(An) 2 0 

* MOVE EA, (d16,An) 2 0 

* MOVE EA,XXX.W 2 0 

* MOVE EA,XXX.L 0 0 

2(0/0/0) 2(0/1/0) 

2(0/0/0) 2(0/1/0) 

2(0/0/0) 2(0/1/0) 

2(0/0/0) 2(0/1/0) 

3(0/0/1) 4(0/1/1) 

4(0/0/1) 5(0/1/I) 

3(0/0/1) 4(0/1/1) 

4(0/0/1) 5(0/1/1) 

4(0/0/1) 4(0/1/1) 

4(0/0/1) 5(0/1/1) 

4(0/0/1) i 5(o/1.'1) 
4(0/0/1) 5(0/1.1) 

6(0/0/1) 7(0/2.'1) 

BRIEF FORMAT EXTENSION WORD 

I * MOVE EA, (d8,An,Xn) I 4 I 0 I 6(0/0/1) I 7(0il 1 ) I  

MOTOROLA MC68030 USER'S M A N U A L  11-37 

11 



I1 

11.6.6 MOVE Instruction (Continued) 
MOVE Sou rce,Destination I Head I Tail I I-Cache Case INo-Cache Case I 

FULL FORMAT EXTENSION WORD(S) 

* MOVE EA, (d16,An) or (d16,PC) 2 0 

* MOVE EA, (d16,An,Xn) or (d16,PC,Xn) 2 0 

* MOVE EA, ([d16,An],Xn) or ([d16,PC],Xn) 2 0 

* MOVE EA,([d16,An],d16) or ([d16,PCJ,d16) 2 0 

* MOVE EA,([d16,An],Xn,d16) or ([d16,PC],Xn,d16) 2 0 

* MOVE EA,([d16,An],d32) or ([d16,PC],d32) 2 0 

* MOVE EA,([d16,An],Xn,d32) or ([d16,PC],Xn,d32) 2 0 

* MOVE EA,(B) 4 0 

* MOVE EA,(d16,B) 4 0 

* MOVE EA,(d32,B) 4 0 

* MOVE EA,([B]) 4 0 

* MOVE EA,([B],]) 4 0 

* MOVE EA,([B],d16) 4 0 

* MOVE EA,([B],I,d16) 4 0 

* MOVE EA,([B],d32) 4 0 

* MOVE EA,([B],I,d32) 4 0 

* MOVE EA,([d16,B]) 4 0 

* MOVE EA,([d16,B],I) 4 0 

* MOVE EA,([d16,B],d16) 4 0 

* MOVE EA,([d16,B],I,d16) 4 0 

* MOVE EA,([d16,B],d32) 4 0 

* MOVE EA,([d16,B],I,d32) 4 0 

* MOVE EA,([d32,B]) 4 0 

* MOVE EA,([d32,BJ,I) 4 0 

* MOVE EA,(Id32,B],d16) 4 0 

* MOVE EA,([d32,B],I,d16) 4 0 

* MOVE EA,([d32,8],d32) 4 0 

* MOVE EA,([d32,B],I,d32) 4 0 

* Add Fetch Effective Address Time 
Rn Is a Data or Address Register 

8(0/0/1) 9(0/2/1) 

8(0/0/1) 9(0/2/1) 

10(1/0/1) 11(1/2/1) 

12(1/0/1) 14(1/2/1) 

12(1/0/1) 14(1/2/1) 

14(1/0/1) 16(1/3/1) 

14(1/0/1) 16(1/3/1) 

8(0/0/1) 9(0/1/1) 

10(0/0/1) 12(0/2/1) 

14(0/0/1) 16(0/2/1) 

10(1/0/1) 11(1/1/1) 

10(1/0/1) 11(1/1/1) 
12(1/0/1) 14(1/2/1) 

12(1/0/1) 14(1/2/1) 

14(1/0/1) 16(1/2/1) 

14(1/0/1) 16(1/2/1) 

12(1/0/1) 14(1/2/1) 

12(1/0/1) 14(1/2/1) 

14(1/0/1) 17(1/2/1) 

14(1/0/1) 17(1/2/1) 

16(1/0/1) 19(1/3/1) 

16(1/0/1) 19(1/3/1) 

16(1/0/1) 18(1/2/1) 

16(1/0/1) 18(1/2/1) 

18(1/0/1) 21(1/3/1) 

18(1/0/1) 21(1/3/1) 

20(1/0/1) 23(1/3/1) 

20(1/0/1) 23(1/3/1) 

SOURCE Is Memory or Immediate Data Address Mode 
EA Is any Effective Address 

11-38 MC68030 USER'S MANUAL MOTOROLA 



11.6.7 Special-Purpose MOVE Instruction 

The special-pu rpose MOVE timing table indicates the number of clock periods 
needed for the processor to fetch, calculate, and perform the special-purpose 
MOVE operation on the control registers or specified effective address. Foot- 
n o t e s  i n d i c a t e  w h e n  t o  a c c o u n t  f o r  t h e  a p p r o p r i a t e  e f f e c t i v e  a d d r e s s  t i m e s .  

T h e  t o t a l  n u m b e r  o f  c l o c k  c y c l e s  is o u t s i d e  t h e  p a r e n t h e s e s .  T h e  n u m b e r  o f  

r e a d ,  p r e f e t c h ,  a n d  w r i t e  c y c l e s  i s  g i v e n  i n s i d e  t h e  p a r e n t h e s e s  a s  ( r / p / w ) .  

T h e  r e a d ,  p r e f e t c h ,  a n d  w r i t e  c y c l e s  a r e  i n c l u d e d  in  t h e  t o t a l  c l o c k  c y c l e  

n u m b e r ,  

All timing data assumes two-clock reads and writes. 

I n s t r u c t i o n  Head Tail 

EXG Ry,Rx 4 0 

MOVEC Cr,Rn 6 0 

MOVEC Rn,Cr-A 6 0 

MOVEC Rn,Cr- B 4 0 

MOVE CCR,Dn 2 0 

MOVE CCR,Mem 2 0 

MOVE Dn,CCR 4 0 

"* MOVE EA,CCR 0 0 

MOVE SR,Dn 2 0 

* MOVE SR,Mem 2 0 

i# MOVE EA,SR 0 0 

Yo + MOVEM EA,RL 2 0 

Yo + MOVEM RL,EA 2 0 

MOVEP.W Dn,(d16,An) 4 0 

MOVEP.W (d16,An),Dn 2 0 

MOVEP.L Dn,(d16,An) 4 0 

MOVEP.L (d16,An),Dn 2 0 

Yo MOVES EA, Rn 3 0 

Yo MOVES Rn,EA 2 1 

MOVE USP,An 4 0 

MOVE An,USP 4 0 

SWAP Dn 4 0 

CR -A Control Registers USP, VBR, CAAR, MSP, and ISP 
CR-8 Control Registers SFC, DFC, and CACR 
n Number of Register to Transfer (n>0) 
RL Register List 
* Add Calculate Effective Address Time 
# Add Fetch Effective Address Time 
% Add Calculate Immediate Address Time 

I - C a c h e  c a s e  N o - C a c h e C a s e  

4(0/0/0) 4(0/1/0) 

6(0/0/0) 6(0/1/0) 

6(0/O/O) 6(0/1/0) 

12(0/0/0) 12(0/I/0) 

4(010/0) 4(01110) 

4(01011) 5(01111) 

4(0i0/0) 4(0/1/0) 

4(0/0/0) 4(0/1/0) 

4(0/0/0) 4(0/1/0) 

4(0/0/1) 5(0/1/1) 

8(Q/0/0) 10(0/2/0) 

8 +4n(n/0/0) 8 +4n(n/1/0) 

4 + 2n(0/0/n) 4+ 2n(0/1/n) 

10(0/0/2) 10(0/1/2) 

10(2/0/0) 10(2/1/0) 

14(0/0/4) 14(0/1/4) 

14(4/0/0) 14(4/1/0) 

7(1/0/0) 7(1/1/0) 

5(0/0/1) 6(0/1/11 

4(0/0/0) 4(0/1/0) 

4(0/0/0) 4(0/1/0) 

4(0/0/0) 4(0/1/0) 

+ MOVEM EA,RL - -  For n Registers (n > 0) and w Wait States 
I-Cache Case Timing = w ~< 2: (8+4n) 

w > 2: (8+4n)+(w-2)n 
Tail = 0 for all Wait States 
MOVEM RL,EA - -  For n Registers (n > 0) and w Wait States 

I-Cache Case T~ming - w ~< 2: (4+2n)+(n- 1)w 
w > 2: (4+2n)+(n- 1)w+(w-2) 

Tail = w <- 2: (n-1)w 
w > 2: (n)w+(n)(w-2) 

¸¸¸¸11 

M O T O R O L A  MC68030 USER'S M A N U A L  11-39 



I1 

11.6.8 Ar i thmet ica l /Logica l  Instruct ions 

The arithmetical/logical operation timing table indicates the number of clock 
periods needed for the processor to perform the specified arithmetical/logical 

i instruction using the specified addressing mode. Footnotes indicate when to 
account for the appropriate fetch effective address or fetch immediate effec- 
tive address times. For instruction-cache case and for no-cache case, the total 
number of clock cycles is outside the parentheses. The number of read, 
prefetch, and write cycles is given inside the parentheses as (r/p/w). The read, 
prefetch, and write cycles are included in the total clock cycle number. 

All timing data assumes two-clock reads and writes. 

Instruction Head Tail 

ADD Rn,Dn 2 0 

ADDA.W Rn,An 4 0 

ADDA.L Rn,An 2 0 

* ADD EA,Dn 0 0 

* ADD.W EA,An 0 0 

* ADDA.L EA,An 0 0 

* ADD Dn,EA 0 1 

AND Dn,Dn 2 0 

* AND EA,Dn 0 0 

* AND Dn,EA 0 1 

EOR Dn,Dn 2 0 

* EOR Dn,EA 0 1 

OR Dn,Dn 2 0 

* OR EA,Dn 0 0 

* OR Dn,EA 0 1 

"SUB Rn,Dn 2 0 

* SUB EA,Dn 0 0 

I-CacheCase No-CacheCase 

2(0/0/0) 2(0/1/0) 

4(0/0/0) 4(0/1/0) 

2(0/0/0) 2(0/1/0) 

2(0/0/0) 2(0/1/0) 

4(0/0/0) 4(0/1/0) 

2(0/0/0) 2(0/1/0) 

3(0/0/1) 4(0/1/1) 

2(0/0/0) 2(0/1/0) 

2(0/0/0) 2(0/1/0) 

3(0/0/1) 4(0/1/1) 

2(0/0/0) 2(0/1/0) 

3(0/0/1) 4(0/1/1) 

2(0/0/0) 2(0/1/0) 

2(0/0/0) 2(0/1/0) 

3(0/0/1) 4(0/1/1) 

2(0/0/0) 2(0/1/0) 

2(0/0/0) 2(0/1/0) 

11-40 MC68030  USER 'S  M A N U A L  M O T O R O L A  



11.6.8 Arithmetical/Logical Instructions (Continued) 
lnstructiort Head 

* SUB Dn,EA 0 

SUBA.W Rn,An 4 

SUBA.L Rn,An 2 

* SUBA.W EA,An 0 

* SUBA.L EA,An 0 

CMP Rn,Dn 2 

* CMP EA,Dn 0 

CMPA Rn,An 4 

* CMPA EA,An 0 

** + CMP2 EA,Rn 2 

* + MULS~W EA,Dn 2 

** + MULS:L EA,Dn 2 

* + MULU.W EA,Dn 2 

** + MULU.L EA;Dn 2 

+ DIVS.W Dn,Dn 2 

* + DI,VS.W EA,Dn 0 

** + DIVS.L Dn,Dn 6 

** + DIVS.L EA,Dn 0 

+ DIVU.W Dn,Dn 2 

* + DIVU.W EA,Dn 0 

** + DIVU.L Dn,Dn 6 

** + DIVU.L EA,Dn 0 

*Add Fetch Effective Address Time 
**Add Fetch Immediate Effective Address Time 
+ Indicates Maximum Time (Acutal time is data dependent) 

Tail I-Cache Case No-Cache Case 

1 3(0/0/1) 4(0/1/1) 

0 4(0/0/0) 4(0/1/0) 

0 2(0/0/0) 2(0/1/0) 

0 4(0/0/0) 4(0/1/0) 

0 2(0/0/0) 2(0/1/0) 

0 2(0/0/0) 2(0/1/0) 

0 2(0/0/0) 2(0/1/0) 

0 4(0/0/0) 4(0/1/0) 

0 4(0/0/0) 4(0/1/0) 

0 20(1/0/0) 20(1/1/0) 

0 28(0/0/0) 28(0/1/0) 

0 44(0/0/0) 44(0/1/0) 

0 28(0/0/0) 28(0/1/0) 

0 44(0/0/0) 44(0/1/0) 

0 56(0/0/0) 56(0/1/0) 

0 56(0/0/0) 56(0/1/0) 

0 90(0/0/0) 90(0/1/0) 

0 90(0/0/0) 90(0/1/0) 

0 44(0/0/0) 44(0/1/0) 

0 44(0/0/0) 44(0/1/0) 

0 78(0/0/0) 78(0/1.'0) 

0 78(0/0/0) 78(0/1/0) 

M O T O R O L A  M C 6 8 0 3 0  U S E R ' S  M A N U A L  11-41 

11 



1 1  ¸ 

11.6.9 Immediate Arithmetical/Logical Instructions 
The immediate arithmeticaHogical operation timing table indicates the num- 
ber of clock periods needed for the processor to fetch the source immediate 
data value and to perform the specified arithmetic/logical operation using 
the specified destination addressing mode. Footnotes indicate when to ac- 
count for the appropriate fetch effective or fetch immediate effective address 
times. For instruction-cache case and for no-cache case, the total number of 
clock cycles is outside the parentheses. The number of read, prefetch, and 
write cycles is given inside the parentheses as (r/p/w). The read, prefetch, 
and write cycles are included in the total clock cycle number. 

All timing data assumes two-clock reads and writes. 

Instruction Head Tail 

MOVEQ ' #(data),Dn 2 0 

ADDQ #<data),Rn 2 0 

ADDQ #(data),Mem 0 1 

SUBQ #<data>,Rn 2 0 

SUBQ #<data),Mem 0 1 

~* ADDt #(data),Dn 2 0 

** ADDI #(data),Mem 0 1 

~'*' ANDI #(data),Dn 2 0 

** ANDI #(data~,Mem 0 1 

~*' EORI #(data),Dn 2 0 

~* E O R I  #<data),Mem 0 I 

~* ORI #(data),Dn 2 0 

~* ORI #(data),Mem 0 1 

~*' SUBI #(data),Dn 2 0 

~* SUBI #<data),Mem 0 1 

~* CMPI #(data),On 2 0 

** C M P I  #<data),Mem 0 0 

*Add Fetch Effective Address Time 
**Add Fetch Immediate Effective Address Time 

I-Cache Case No-Cache Case 

2(0/0/0) 2(0/1/0) 

2(0/0/0) 2(0/1/0) 

3(0/0/1) 4(0/1/1) 

2(0/0/0) 2(0/1/0) 

3(0/0/1) 4(0/1/1) 

2(0/0/0) 2(0/1/0) 

3(0/0/1) 4(0/1/1) 

2(0/0/0) 2(0/1/0) 

31o/o/1) 4(o/1/1) 

2(0/0/0) 2(0/1/0) 

3(0/0/1) 4(0/1/1) 

2(0/0/0) 2(0/1/0) 

3(0/0/1) 4(0/1/1) 

2(0/0/0) 2(0/1/0) 

3(0/0/1) 4(0/1/1) 

2(0/0/0) 2(0/1/0) 

2(0/0/0) 2(0/1/0) 

11-42 MC68030 USER'S MANUAL MOTOROLA 



11.6.10 Binary-Coded Decimal and Extended Instructions 

The binary-coded decima! and extended instruction table indicates the number 
of clock periods needed for the processor to perform the specified operation 
using the given addressing modes. No additional tables are needed to calculate 
total effective execution time for these instructions. For instruction-cache case 
and for no-cache case, the total number of clock cycles is outside the 
parentheses. The number of read, prefetch, and write cycles is given inside 
the parentheses as (r/p/w). The read, prefetch, and write cycles are included 
in the total clock cycle number. 

All timing data assumes two-clock reads and writes. 

Instruction Head Tail 

ABCD Dn,Dn 0 0 

ABCD -(An), - (An) 2 1 

SBCD Dn,Dn 0 0 

SBCD - (An),- (An) 2 1 

ADDX Dn,Dn 2 0 

ADDX (An), - (An) 2 1 

SUBX Dn,Dn 2 0 

SUBX - (An),- (An) 2 1 

CMPM (An) + ,(An) + 0 0 

PACK Dn,Dn,#(data) 6 0 

PACK - (An), (An),#(data) 2 1 

UNPK Dn,Dn,#(data) 8 0 

UNPK - (An),- (An),#(data) 2 1 

I-CacheCase No-Cache Case 

4(0/0/0) 4(0/1/0) 

13(2/0/1) 14(2/1/1) 

4(0/0/0) 4(0/1/0) 

13(2/0/1) 14(2/1/1) 

2(0/0/0) 2(0/1/0} 

9(2/0/1) 10(2/1/1) 

2(0/0/0) 2(0/1/0) 

9(2/0/1) 10(2/1/1) 

8(2/0/0) 8(2/1/0) 

6(0/0/0) 6(0/1/0) 

11(1/0/1) 11(1/1/1) 

8(0/0/0) 8(0/1/0) 

11(1/0/1) 11(1/1/1) 

MOTOROLA MC68030 USER'S MANUAL 11-43 

11 



11 

11.6.11 Single Operand Instructions 
The single operand instruction table indicates the number of clock periods 
needed for the processor to perform the specified operation on the given 
addressing mode. Footnotes indicate when it is necessary to account for the 
appropriate effective address time. For instruction-cache case and for no- 
cache case, the total number of clock cycles is outside the parentheses. The 
number of read, prefetch, and write cycles is given inside the parentheses 
as (r/p/w). The read, prefetch, and write cycles are included in the total clock 
cycle number. 

All timing data assumes two-clock reads and writes. 

Instruction Head 

CLR Dn 2 

** CLR Mem 0 

NEG Dn 2 

* NEG Mem 0 

NEGX Dn 2 

* NEGX Mem 0 

NOT Dn 2 

* NOT Mem 0 

EXT Dn 4 

NBCD Dn 0 

Scc Dn 4 

** Scc Mem 0 

TAS Dn 4 

** TAS Mem 3 

TST Dn 0 

* TST Mem 

*Add Fetch Effective Address Time 
**Add Calculate Effective Address Time 

Tail 

0 

1 

0 

1 

0 

1 

0 

1 

0 

0 

0 

1 

0 

0 

0 

0 

I-Cache Case No-CacheCase 

2(0/0/0) 2(0/1/0) 

3(0/0/1) 4(0/1/1) 

2(0/0/0) 2(0/I/0) 

3(0/0/1) 4(0/1/1) 

2(0/0/0) 2(0/1/0) 

3(0/0/1) 4(0/1/1) 

2(0/0/0) 2(0/1/0) 

3(0/0/1) 4(0/1/1) 

4(0/0/0) 4(0/1/0) 

6(0/0/0) 6(0/1/0) 

4(0/0/0) 4(0/1/0) 

5(0/0/1) 5(0/1/1) 

4(0/0/0) 4(0/1/0) 

12(1/0/1) 12(1/1/1) 

2(0/0/0) 2(0/1/0) 

2(0/0/0) 2(0/1/0) 

11-44 MC68030 USER'S MANUAL MOTOROLA 



11.6.12 Shift/Rotate Instructions 

T h e  s h i f t / r o t a t e  i n s t r u c t i o n  t a b l e  i n d i c a t e s  t h e  n u m b e r  o f  c l o c k  p e r i o d s  n e e d e d  

f o r  t h e  p r o c e s s o r  t o  p e r f o r m  t h e  s p e c i f i e d  o p e r a t i o n  on  t h e  g i v e n  a d d r e s s i n g  

m o d e .  F o o t n o t e s  i n d i c a t e  w h e n  it  is n e c e s s a r y  to  a c c o u n t  f o r  t he  a p p r o p r i a t e  

e f f e c t i v e  a d d r e s s  t i m e .  T h e  n u m b e r  o f  b i t s  s h i f t e d  d o e s  n o t  a f fec t  t h e  exe -  

c u t i o n  t i m e ,  u n l e s s  n o t e d .  For  i n s t r u c t i o n - c a c h e  case  a n d  f o r  n o - c a c h e  case,  

t h e  t o t a l  n u m b e r  o f  c l ock  cyc les  is o u t s i d e  t h e  p a r e n t h e s e s .  T h e  n u m b e r  o f  
read ,  p r e f e t c h ,  a n d  w r i t e  cyc les  is g i v e n  i n s i d e  t h e  p a r e n t h e s e s  as ( r / p /w ) .  

T h e  read ,  p r e f e t c h ,  a n d  w r i t e  cyc les  a re  i n c l u d e d  in t h e  t o t a l  c l ock  cyc le  
n u m b e r .  

All timing data assumes two-clock reads and writes. 

Instruction Head Tail 

LSd #<data>,Dy 4 0 

% LSd Dx,Dy 6 0 

+ LSd Dx,Dy 8 0 
* LSd Mem by 1 0 0 

ASL #(data},Dy 2 0 
ASL Dx,Dy 4 0 

* ASL Mem by 1 0 0 
ASR #<data>,Dy 4 0 

% ASR Dx,Dy 6 0 

+ ASR Dx,Dy 10 0 
* ASR Mem by 1 0 0 

ROd #<data>,Dy 4 0 

ROd Dx,Dy 6 0 
* ROd Mem by 1 0 0 

ROXd Dn 10 0 

* ROXd Mere by 1 0 0 

Direction of shift/rotate; L or R 
Add Fetch Effective Address Time 
Indicates shift count is less than or equal to the size of data 
Indicates shift count is greater than size of data 

I-CacheCase No-Cache Case 

4(0/0/0) 4(0/1/0) 

6(0/0/0) 6(0/1/0) 

8(0/0/0) 8(0/1/0) 
4(0/0/1) 4(0/1/1) 

6(0/0/0) 6(0/1/0) 

8(0/0/0) 8(0/1/0) 
6(0/0/1) 6(0/1/1) 
4(0/0/0) 4(0/1/0) 

6(0/0/0) 6(0/1/0) 

10(0/0/0) 10(0/1/0) 

4(0/0/1) 4(0/1/1) 
6(0/0/0) 6(0/1/0) 

8(0/0/0) 8(0/1/0) 
6(0/0/1) 6(0/1/1) 

12(0/0/0) 12(0/1/0) 
4(0/0/0) 4(0/1/0) 

M O T O R O L A  M 0 6 8 0 3 0  USER'S  M A N U A L  11-45 

11 



11.6.13 Bit Manipulation Instructions 

The bit manipulation instruction table indicates the number of clock periods 
needed for the processor to perform the specified bit operation on the given 
addressing mode. Footnotes indicate when it is necessary to account for the 
appropriate effective address time. For instruction-cache case and for no- 
cache case, the total number of clock cycles is outside the parentheses. The 
number of read, prefetch, and write cycles is given inside the parentheses 
as (r/p/w). The read, prefetch, and write cycles are included in the total clock 
cycle number. 

All timing data assumes two-clock reads and writes. 

# 

Instruction 

BTST #(data),Dn 

BTST Dn,Dn 

# B T S T  #(data),Mem 

BTST Dn,Mem 

B C H G  #(data),Dn 

BCHG Dn,Dn 

B C H G  #<data),Mem 

BCHG Dn,Mem 

BCLR #<data>,Do 

BCLR Dn,Dn 

# B C L R  #(data~,Mem 

BCLR Dn,Mem 

BSET #(data),Dn 

BSET Dn,Dn 

# B S E T  #(data),Mem 

BSET Dn,Mem 

*Add Fetch Effective Address Time 
#Add Fetch Immediate Effective Address Time 

Head Tail 

4 0 

4 0 

0 0 

0 0 

6 0 

6 0 

0 0 

0 0 

6 0 

6 0 

0 0 

0 0 

6 0 

6 0 

0 0 

0 0 

I-CacheCase No-Cache Case 

4(0/0/0) 4{0/1/0) 

4(0/0/0) 4(0/1/0) 

4(0/0/0) 4(0/1/0) 

4(0/0/0) 4(0/1/0) 

6(0/0/0) 6(0/1/0) 

6(0/0/0) 6(0/1/0) 

6(0/0/1) 6(0/1/1) 

6(0/0/1) 6(0/1/1) 

6(0/0/0) 6(0/1/0) 

6(0/0/0) 6(0/1/0) 

6(0/0/1) 6(0/~/1) 

6(0/0/1) 6(0/1/1) 

6{0/0/0) 6(0/1/0) 

6(0/0/0) 6(0/1/0) 

6(0/0/1) 6(0/1/1) 

6(0/0/1) 6(0/1/1) 

11-46 MC68030  USER'S M A N U A L  M O T O R O L A  



11,6.14 Bit Field Manipulat ion Instructions 

The bit field manipulation instruction table indicates the number of clock 
periods needed for the processor to perform the specified bit field operation 
using the given addressing mode. Footnotes indicate when it is necessary 
to account for the appropriate effective address time. For instruction-cache 
case and for no-cache case, the total number of clock cycles is outside the 
parentheses. The number of read, prefetch, and write cycles is given inside 
the parentheses as (r/p/w). The read, prefetch, and write cycles are included 
in the total clock cycle number. 

All timing data assumes two-clock reads and writes. 

Instruction Head Tail 

BFTST Dn 8 0 

* BFTST Mem (<5 Bytes) 6 0 

* BFTST Mem (5 Bytes) 6 0 

BFCHG Dn 14 0 

* BFCHG Mem (<5 Bytes) 6 0 

* BFCHG Mem (5 Bytes) 6 0 

BFCLR Dn 14 0 

* BFCLR Mem (<5 Bytes) 6 0 

* BFCLR Mem (5 Bytes) 6 0 

BFSET Dn 14 0 

* BFSET Mem (<5 Bytes) 6 0 

* BFSET Mem (5 Bytes) 6 0 

BFEXTS Dn 10 0 

* BFEXTS Mem (<5 Bytes) 6 0 

* BFEXTS Mem (5 Bytes) 6 0 

BFEXTU Dn 10 0 

* BFEXTU Mem (<5 Bytes) 6 0 

* BFEXTU Mem (5 Bytes) 6 0 

BFINS Dn 12 0 

* BFINS Mem (<5 Bytes) 6 0 

* BFINS Mere (5 Bytes) 6 0 

BFFFO Dn 20 0 

* BFFFO Mem (<5 Bytes) 6 0 

* BFFFO Mem (5 Bytes) 6 0 

*Add Calculate Immediate Effective Address Time 

NOTE: A bit field of 32 bits may span 5 bytes that require two operand 
that require only one operand cycle to access, 

I-CacheCase No-Cache Case 

8(0/0/0) 8(0/1/0) 

10(1/0/0) 10(1/1/0) 

14(2/0/0) 14(2/1/0) 

14(0/0/0) 14(0/1/0) 

14(1/0/1) 14(1/1/1) 

22(2/0/2) 22(2/1/2) 

14(0/0/0) 14(0/1/0) 

14(1/0/1) 14(1/1/1) 

22(2/0/2) 22(2/1/2) 

14(0/0/0) 14(0/1/0) 

14(1/0/1) 14(1/1/1) 

22(2/0/2) 22(2/1/2) 

10(0/0/0) 10(0/1/0) 

12(1/0/0) 12(1/1/0) 

18(2/0/0) 18(2/1/0) 

10(0/0/0) 10(0/1/0) 

12(1/0/0) 12(1/1/0) 

18(2/0/0) 18(2/1/0) 

12(0/0/0) 12(0/1/0) 

12(1/0/1) 12(1/1/1) 

18(2/0/2) 18(2/1/2) 

20(0/0/0) 20(0/1/0) 

22(1/0/0) 22(1/1/0) 

28(2/0/0) 28(2/1/0) 

cycles to access or may span 4 bytes 

MOTOROLA MC68030 USER'S MANUAL 11-47 

11 



11 

11.6.15 Condi t ional  Branch Instruct ions 

The conditional branch instruction table indicates the number of clock periods 
needed for the processor to perform the specified branch on the given branch 
size, with complete execution times given. No additional tables are needed 
to calculate total effective execution time for these instructions. For instruc- 
tion-cache case and for no-cache case, the total number of clock cycles is 
outside the parenthees. The number of read, prefetch, and write cycles is 
given inside the parentheses as (r/p/w). The read, prefetch, and write cycles 
are included in the total clock cycle number. 

All timing data assumes two-clock reads and writes. 

Instruction Head Tail E-CaChe Case 

Bcc (Taken) 6 0 

Bcc.B (Not Taken) 4 0 

Bcc.W (Not Taken) 6 0 

Bcc.L (Not Taken) 6 0 

DBcc (cc= False, Count Not Expired) 6 0 

DBcc (cc= False, Count Expired) 10 0 

DBcc (cc = True) 6 0 

No-Cache Case 

6(0/0/0) 8(0/2/0) 

4(0/0/0) 4(0/1/0) 

6(0/0/0) 6(0/1/0) 

6(0/0/0) 8(0/2/0) 

6(0/0/0) 8(0/2/0) 

10(0/0/0) 13(0/3/0) 

6(0/0/0) 8(0/1/0) 

11-48 MC68030 USER'S M A N U A L  M O T O R O L A  



11.6.16 Control  instruct ions 

The control instruction table indicates the number of clock periods needed 
for  the processor to perform the specified operation. Footnotes indicate when 
it is necessary to account for the appropriate effective address time. For 
instruction-cache case and for no-cache case, the total number of clock cyclces 
is outside the parentheses. The number of read, prefetch, and write cycles 
is given inside the parentheses as (r p w). The read, prefetch, and write cycles 
are included in the total clock cycle number. 

All timing data assumes two-clock reads and writes. 

Instruction Head 

ANDI to SR 4 

EORI to SR 4 

ORI to SR 4 

ANDI to CCR 4 

EORI to CCR 4 

ORI to CCR 4 

BSR 2 

## CAS (Successful Compare) 1 

## CAS (Unsuccessful Compare) 1 

+ CAS2 (Successful Compare) 2 

+ CAS2 (Unsuccessful Compare) 2 

CHK Dn,Dn (No Exception) 8 

+ CHK Dn,Dn (Exception Taken) 4 

* CHK EA,Dn (No Exception) 0 

* + CHK EA,Dn (Exception Taken) 0 

# + CHK2 Mem,Rn (No Exception) 2 

# + CHK2 Mem,Rn (Exception Taken) 2 

% JMP 4 

% JSR 0 

** LEA 2 

LINK.W 0 

LINK.L 2 

NOP 0 

~* PEA 0 

RTD 2 

RTR 1 

RTS 1 

UNLK 0 

+ Indicates Maximum Time 
* Add Fetch Effective Address Time 

** Add Calculate Effective Address Time 
# Add Fetch Immediate Address Time 

# #  Add Calculate Immediate Address Time 
% Add Jump Effective Address Time 

Tail 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

0 

0 

0 

0 

I-Cache Case No-Cache Case 

12(0/0/0) 14(0/2/0) 

12(0/0/0) 14(0/2/0) 

12(0/0/0) 14(0/2/0) 

12{0/0/0) 14(0/210/ 

12(0/0/0) 14(0/2/0) 

12(0/0/0) 14(0/2/0) 

6(0/0/1) 9(0/2/1) 

13(1/0/1) 13(1/1/1) 

11il/0/0) 11(1/1/0) 

24(2/0/2) 26(2/2/2) 

24(2/0/0) 24(2/2/0) 

8(0/0/0) 8(0/1/0) 

28(1/0/4} 30(1/3/4) 

8(0/0/0) 8(0/1i0) 

28(1/0/4) 30(1/3/4) 

18(1/0/0) 18(1/1/0) 

40(2/0/4) 42(23;4) 

4(0/0/0) 6(0 2 0) 

4(0/0/1) 7(0121) 

2(0/0/0) 2(0/10) 

4(0/0/1) 5(0/1 1) 

6(0/0/1) 7(0!2 1) 

2(0/0/0) 2(0 1 0) 

4(0/0/1) 4(0 1 1) 

10(1/0/0) 12(1 2 0) 

12(2/0/0) 14(2 2 0! 

9(1/0/0) 11(1 2 0) 

5(1/0/0) 5(11 0i 

M O T O R O L A  MC68030  USER'S M A N U A L  11-49 

11 



I1 

11.6.17 Exception-Related Instructions and Operations 
The exception-related instruction and operation table indicates the number 
of clock periods needed for the processor to perform the specified exception- 
related action. No additional tables are needed to calculate total effective 
execution time for these operations. For instruction-cache case and for no- 
cache case, the total number of clock cycles is outside the parentheses. The 
number of read, prefetch, and write cycles is given inside the parentheses 
as (r/p/w). The read, prefetch, and write cycles are included in the total clock 
cycle number. 

All timing data assumes two-clock reads and writes. 

Instruction/Operation Head Tail 

BKPT 1 0 

Interrupt (l-Stack) 0 0 

Interrupt (M-Stack) 0 0 

RESET Instruction 0 0 

STOP 0 0 

TRACE 0 0 

TRAP #n 0 0 

Illegal Instruction 0 0 

A-Line Trap 0 0 

F-Line Trap 0 0 

Privilege Violation 0 0 

TRAPcc (Trap) 2 0 

TRAPcc (No Trap) 4 0 

TRAPcc.W (Trap) 5 0 

TRAPcc.W (No Trap) 6 0 

TRAPcc.L (Trap) 6 0 

TRAPcc.L (No Trap) 8 0 

TRAPV (Trap) 2 0 

TRAPV (No Trap) 4 0 

I-Cache Case No-CacheCase 

9(1/0/0) 8(1/0/0i 

23(2/0/4) 24(2/2/4) 

33(2/0/8) 34(2/2/8) 

518(0/0/0) 518(0/1/0) 

8(0/0/0) 8(0/2/0) 

22(1/0/5) 24(1/2/5) 

18(1/0/4) 20(1/2/4) 

18(1/0/4) 20(1/2/4) 

18(1/0/4) 20(1/2/4) 

18(1/0/4) 20(1/2/4) 

18(1/0/4) 20(1/2/4) 

22(1/0/5) 24(1/2/5) 

4(0/0/0) 4(0/1/0) 

24(1/0/5) 26(1/3/5) 

6(0/0/0) 6(0/1/0) 

26(1/0/5) 28(1/3/5) 

8(0/0/0) 8(0/2/0) 

22(1/0/5) 24(1/2/5) 

4(0/0/0) 4(0/I/0) 

11-50 MC68030 USER'S MANUAL MOTOROLA 



11.6.18 Save and Restore Operations 

The save and restore operation table indicates the number of clock periods 
needed for the processor to perform the specified state save or to return 
from exception, with complete execution t imes and stack length given. No 
additional tables are needed to calculate total effective execution t ime for 
these operations. For instruction-cache case and for no-cache case, the total 
number of clock cycles is outside the parentheses. The number of read, 
prefetch, and write cycles is given inside the parentheses as (r/p/w). The read, 
prefetch, and write cycles are included in the total clock cycle number. 

All t iming data ssumes two-clock reads and writes. 

Operation Head Tail 

Bus Cycle Fault (Short) 0 0 

Bus Cycle Fault (Long) 0 0 

RTE (Normal Four Word) 1 0 

RTE (Six Word) 1 0 

RTE (Throwaway) 1 0 

RTE (Coprocessor) 1 0 

RTE (Short Fault) 1 0 

RTE (Long Fault) 1 0 

I-Cache Case No-Cache Case 

36(1/0/10) 38(1/2/10) 

62(1/0/24) 64(1/2/24) 

18(4/0/0) 20(4/2/0) 

18(4/0/0) 20(4/2/0) 

12(4/0/0) 12(4/0/0) 

26(7/0/0) 26(7/2/0) 

36(10/0/0) 26(10/2/0) 

76(25/0/0) 76(25/2/0) 

11.7 Address Translation Tree Search Timing 

The time required for a search of the address translation tree depends on 
the configuration of the tree structure and the descriptors in the tree, the 
states of the used (U) and modified (M) bits in the descriptors, bus cycle 
time, and other factors. The large number of variables involved implies that 
search t ime can best be calculated by a program. To determine the time 
required for the MC68030 to perform the table search for a specific config- 
uration, the fol lowing interactive program can be used. It is a shell script 
suitable for use with sh(1) on either UNIX ~ System V or BSD 4.2. To use the 
program, run the script and answer the questions about the system config- 
uration and current state. The values shown in square brackets at the ends 
of the question lines are the default values that the program uses when 
carriage returns are entered. 

The shell script assumesthat the data bus between the MC68030 and memory 
is 32 bits wide. To calculate the search t ime for a narrower bus, enter the 
appropriate mult iple of the bus cycle t ime in response to the bus cycle time 

UN)X is a registered trademark of AT&T Bell Laboratories. 

MOTOROLA MC68030 USER'S M A N U A L  11-51 

11 



11 

prompt. Use the time required for two bus cycles in the case of a 16-bit data 
bus. Use the time required for four bus cycles in the case of an 8-bit data 
bus. 

The times provided by this program include all phases of the translation tree 
search. With various mask versions of the MC68030, times may differ slightly 
from those calculated by the program. 

#######################################~############################################### 
# 
# This Shell script is suitable for use with sh(1) on either System V or 
# BSD 4.2. When run, it will prompt for several parameters, print a 
# configuration message, and then print the number of clocks and bus 
# cycles required for the table search. Questions may be answered with 
# a carriage return, and the default in square brackets will be selected. 
# 
# The following things should be noted by the user: 
# 
# i. This script gives an approximation for the time taken for a table 
# search and associated overhead for a miss in the ATC. The exact time 
# will vary with the instruction sequence being executed at the time of the 
# miss, and may vary plus or minus 2 clocks (see pre-walk overhead, below). 
# 
# 2. It will give accurate times for normal table walks (due to misses 
# in the ATC) and for PLOAD table walks but not for PTEST table walks. 
# Table walks due to the PTEST instruction will be somewhat longer. 
# 
# 3. It does little error checking. It is possible to describe 
# inconsistent and impossible configurations in the script. 
# 
# 
echo -n "Enter bus cycle time (in clocks) [2]: " 
read bus 
if test ! "$bus"; then 

bus=2 
fi 

echo -n "Enter I if there is a function code lookup, 0 otherwise [0]: " 
read fcl 
if test ! "$fcl"; then 

fcl=0 
fi 

echo -n "Enter number of long descriptors (page and pointer), including FCL ones [i]: " 
read long 
if test ! "$1ong"; then 

long=l 
fi 

echo -n "Enter number of short descriptors (page or pointer), including FCL ones [i]: " 
read short 
if test ! "$short"; then 

short=l 
fi 

11-52 MC68030 USER'S MANUAL MOTOROLA 



echo -n "Enter 1 if there is a long indirect descriptor, 0 otherwise [0]: " 
read iind 
if tes~ ! "$i ind"; then 

1 ind=O 
fi 

echo -n "Enter 1 if there is a short indirect descriptor, 0 otherwise [0]: " 
read s ind 
if test ! "$s ind"; then 

s ind=O 
fi 

echo -n "Enter number of cleared ubits encountered in pointer descriptors [0]: " 
read pointer ubits 
if test ! "$pointer ubits"; then 

pointer ubits=0 
fi' 

echo -n "Enter 1 if the page descriptor ubit and/or mbit is clear, 0 otherwise [0]: " 

read page m ubit 
if test !--"~pagem_ubit"; then 

page__m_ubit=0 
fi 

echo -n "Enter 1 if the page descriptor is encountered unexpectedly, 0 otherwise [0]: " 
read et 
if test ! "Set"; then 

et=0 
fi 

echo -n "Enter 1 if the page descriptor is long (and no rp et) [0]: " 
read long_page 
if test ! "$1ong_page"; then 

long_page=0 
fi 

####################################################################################### 
# 
# Print Configuration message. 
# 

levels=~expr $short + $1ong + $1ind + Ssind ~ 

if test Sfcl -eq i; then 
tmpl=" (one for FCL)" 

else 
tmpl =,,,, 

fi 

outl="Configuration: $1evels levels Stmpl - " 

if test $1ong -ne 0 ; then 
outl="$outl $1ong long descriptor(s) " 
fi 

if test Sshort -ne 0 ; then 
outl="$outl $short short descriptor(s)" 
fi 

if test $i ind -eq 1 ; then 
outl=~$outl long indirection" 

elif test Ss ind -eq 1 ; then 
outl="$o~tl short indirection" 

fi 

MOTOROLA MC68030 USER'S MANUAL 11-53 



1 

if test $pointer_ubits -ne 0 ; 
out2="$out2 Spointer_ubits 

fi 

if test Spagemubit -eq 1 ; then 
out2="$out2 page ubit and/ormbit 

fi 

if test Set -eq 1 ; then 
out2="$out2 early termination, " 

fi 

if test $1ong_page -eq 1 ; then 
out2="$out2 page is long;" 

else 
out2="$out2 page is short;" 

fi 

out3="$bus clock bus cycle time." 

echo 
echo $outl 
echo " " $out2 
echo " " $out3 

then 
pointer ubits clear, " 

clear, " 

####################################################################################### 
# 
# Calculate result. 
# 
# Variables: 
# 
# cough --- the number of clocks from the start of the bus cycle that will miss to 
# the first clock of the first micro-instruction. 
# 
# startup -- microcode startup overhead common to all flows 
# 
# termination -- microcode termination overhead common to all flows 
# 
# bus max 4 bus max 3 the maximum value of the bus cycle time (in clocks) and 
# 4 or 3, respectively. 
# 
# 

bus reads=0 
bus--writes=0 
ind--clocks=0 

# time from BEGINNING of bus cycle which misses to first box 
# this is 6 to 9 clocks depending on i- and d-state at miss-- use 7 as average 

cough=7 

# 4 boxes of startup, when no FCL. 
startup=8 

# 4 boxes of termination. 
t erminat ion=8 

# Bus accesses begin sooner if FCL - no limit check. 
if test $fcl -eq 1 ; then 

startup='expr Sstartup - 2 ~ 
fi 

# calculate max((bus-4) ,0) for overlap 
bus max 4='expr Sbus - 4 • 

if test $bus max 4 -lt 0; then 
bus max 4=0 

fi 

11-54 MC68030 USER'S MANUAL MOTOROLA 



# calculate max((bus-3),0) for overlap 
bus max 3='expr $bus - 3 ~ 

if test Sbus max 3 -it 0; then 
bus--max--3=0 

fi 

overhead=~expr $cough + Sstartup + Stermination' 

# number of clock due to long descriptors 
l_clocks='expr $1ong \* \( 6 + $bus + Sbus max 4 \)' 

#long page is one box less than long pointer 
if test $1ong_page -eq i; then 

l_clocks=~expr $1clocks - 2 ~ 

fi 

bus reads='expr $busreads + \( $1ong \* 2 \)' 

# number of Clock due to short descriptors 
s_clocks='expr $short \* \( 3 + $bus \) ~ 
bus_reads=~expr $bus_reads + $short ~ 

# total clocks due to descriptor fetches 
t_clocks='expr $1clocks + Ss_clocks ~ 

if test St clocks -eq 0 ; then 
if tes[ Set -ne 1 ; then 

echo Error: 0 bus accesses must imply unexpected page encountered. 
fi 
et=0 

fi 

# no w caculate clocks due to setting u bits in pointer descriptor 

u_clocks=~expr Spointer ubits \* \( 4 + Sbus max 3 \)' 
bus_writes=~expr $bus_w~ites + $pointer_ubits + Spage_m_ubit ~ 

# clocks due to setting u/m bits in page descriptor 
page clocks='expr Spage_m_ubit \* \( 2 + Sbus max 3 \)' 
bus~rites=~expr $bus_writes + $pagemubit ~ - -- 

# clocks due to indirect level (long) 
if test $i ind -ne 0; then 

i~d_clocks='expr 2 + \( $bus \* 2 \)' 
bus_reads=~expr $bus_reads + 2 ~ 

fi 

# clocks due to indirect level (short) 
if test Ss ind -he 0; then 

ind_clocks=~expr 3 + $bus ~ 
bus_reads=~expr $bus reads + 1 ~ 

fi 

# early termination penalty 
if test Set -eq I; then 

et_delay=3 
else 

etdelay=0 
fi 

MOTOROLA MC68030 USER'S MANUAL 11-55 

1 



i 

################################################################################# 
# 

# Perfor~the calculation. 
# 

clocks=~expr $overhead \ 
+ $i clocks \ 
+ $s--clocks \ 
+ $u--clocks \ 
+ $page_clocks \ 
+ $ind clocks \ 
+ Set_delay ~ 

out =" 
echo 
echo $out 

write_accesses='expr $pointer_ubits + $page m ubit ~ 

out=" Bus Reads: 
echo $out 

print_total=0 
if test $write accesses -ne 0 ; then 

out =" Bus Writes: 
echo Sout 
print_total=l 

fi 

Clocks required (from beginning of missed bus cycle): $clocks" 

$bus_reads" 

Swriteaecesses" 

bus accesses='expr Sbusreads + Swriteaccesses' 

if test Sprint_total -eq 1 ; then 
out=" Total Bus Cycles: 
echo $out 

fi 

$bus accesses" 

The following table gives some sample times obtained using the shell script. 
Each row of the table indicates a translation table configuration. The identifier 
on each row consists of five positions. Each position may have either an "x", 
meaning that there is no table at the level; an "S", meaning that the table 
at the level is composed of short-format descriptors; or an "L", meaning that 
the table at the level is composed of long-format descriptors. The format of 
the entries is: 

xx/ xx/ xx/ xx/ 

FunctionCodeTable ~ - -  T T i 
Level A Table 
Level B Table 
Level C Table 
Level D Table 

XX 

11-56 MC68030 USER'S MANUAL MOTOROLA 



Each entry in the table consists of three numbers that give the number of 
clock cycles, the number of bus reads, and the number of bus writes required 
for a table search. An RMC cycle to set the U bit is counted as one read and 
one write. The format of the entires is: 

xx/ xx/ xx 

Number of Clock Cycles ~ -~ ] 
Number of Read Bus Cycles 

Number of Write Bus Cycles 

The table is calculated based on the following assumptions: 

1. Bus cycle time is two clock cycles, 

2. There are no indirect descriptors, 

3. There are no page descriptors encountered unexpectedly (no early 
termination), and 

4. The memory port is 32 bits wide. 

Table All U and M Bits Page U and M Bits No U and M Bits 
Format Must be Set Only Must be Set Must be Set 

LLxxx 41/4/2 37/4/1 35/4/0 

LLLxx 53/6/3 45/6/1 43/6/0 

, LLLLx 65/8/4 53./8/1 51/8/0 

LLLLL 77/10/5 61/10/1 59/10/0 

SSxxx 37/2/2 33/2/1 31/2/0 

SSSxx 46/3/3 38/3/1 36/3/0 

SSSSx 55/4/4 43/4/1 41/4/0 

SSSSS 64/5/5 48 5 1 46/5/0 

xSSxx 39/2/2 35 2 1 33/2/0 

xSLxx 40/3/2 36 3 1 34/3/0 

xLSxx 42/3/2 38 3 i 36/3/0 

xLLxx 43/4/2 39 4 1 37/4/0 

xSSSx 48/3/3 40 3 1 38/3/0 

xSSLx 49/4/3 4t 4 1 39/4/0 

xSLSx 51/4/3 43 4 1 41/4/0 

xSLLx 52/5/3 44 5 1 44/5/0 

xLSSx 51/4/3 43 4/1 41/4/0 

xLSLx 52/5/3 44.5/1 42/5/0 

xLLSx 54/5/3 46/5/1 44/5/0 

xLLLx 65/6/3 47/6/1 45/6/0 

M O T O R O L A  M C 6 8 0 3 0  U S E R ' S  M A N U A L  11-57 

. 



1 

11.7.1 MMU Effective Address Calculation 

The calculate effective address table for MMU instructions lists the number 
of clock periods needed for the processor to calculate various effective ad- 
dresses. Fetch time is only included for the first level of indirection on memory 
indirect addressing modes. The total number of clock cycles is outside the 
parentheses. This total includes the number of read, prefetch, and write 
cycles, which are shown inside the 

Address Mode 

(An) 

(d16,An) 

(xxx).W 

(xxx).L 

(ds,An,Xn) 

FULL FORMAT EXTENSION WORD(S) 

(d16,An) 

(d16,An,Xn) 

([d16,An]) 

([d 16,An],Xn) 

((d16,An],d16) 

([d 16,An],Xn,d16) 

([d16,An],d32) 

([d16,An],Xn,d32) 

(B) 

(d16,B) 

(d32,B) 

([B]) 

([B],I) 

([B],d16) 

([BJ,l,d16) 

([B],d32) 

([B],l,d32) 

([d16,B]) 

([d16,B],l) 

([d16,B],d16) 

([d16,B],l,d16) 

([dl 6,B],d32) 

)arentheses as (r/pr/w). 

Head Tail 

4+op head 0 

4+op head 0 

4+op head 0 

6+op head .0 

4+op head 0 

I-Cache Case No-CacheCase 

4(0/0/0) 4(0/1/0) 

4(0/0/0) 4(0/1/0) 

4(0/0/0) 4(0/1/0) 

6(0/0/0) 6(0/2/0) 

4(0/0/0) 4(0/1/0) 

8(0/0/0) 8(0/2/0) 

8(0/0/0) 8(0/2/0) 

12(1/0/0) 12(1/2/0) 

12(1/0/0) 12(1/2/0) 

12(1/0/0) 12(1/2/0) 

12(1/0/0) 12(1/2/0) 

14(1/0/0) 14(1/3/0) 

14(1/0/0) 14(1/3/0) 

8(o/o/o) 8(o/1/o) 

10(0/0/0) 10(0/2/0) 

16(0/0/0) 16(0/2/0) 

12(1/0/0) 12(1/1/0) 

12(1/0/0) 12(1/1/0) 

12(1/0/0) 12(1/2/0) 

12(1/0/0) 12(1/2/0) 

14(1/0/0) 14(1/2/0) 

14(1/0/0) 14(1/2/0) 

14(1/0/0) 14(1/2/0) 

14(1/0/0) 14(1/2/0) 

14(1/0/0) 14(1/2/0) 

14(1/0/0) 14(1/2/0) 

16(1/0/0) 16(1/3/0) 

4 0 

4 0 

4 0 

4 0 

2 0 

4 0 

4 0 

4 0 

8+op head 0 

6 0 

6 0 

6 0 

6 0 

6 0 

6 0 

6 0 

6 0 

6 0 

6 0 

6 0 

6 0 

6 0 

11-58 MC68030 USER'S M A N U A L  MOTOROLA 



11.7.1 

I 
FULL FORMATION EXTENSION WORD(S) (CONTINUED) 

([d32,B]) 

([d32,B],l) 

([d32,B],d16) 

([d32,B],l,d16) 

([d32,B],d32) 

([d32,B],l,d32) 

MMU Effective Address Calculation (Continued) 

Address Mode I Head I Tail I I-Cache Case INo-Cache Casel 

6 0 

6 0 

6 0 

6 0 

6 0 

6 0 

20(1/0/0) 20(1/2/0) 

20(1/0/0) 20(1/2/0) 

20(1/0/0) 20(1/3/0) 

20(1/0/0) 20(1/3/0) 

22(1/0/0) 22(1/3/0) 

22(1/0/0) 22(1/3/0) 

B -  Base address; O, An, Xn, An+Xn.  Form does not affect timing. 
I= Index; O, Xn 

*No separation on effective address and operation in timing. Head and tail are the operation's. 

NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing. 

M O T O R O L A  M C 6 8 0 3 0  U S E R ' S  M A N U A L  11-59 

1 



11.7.2 MMU Instruction Timing 

The MMU instruction timing table lists the numbers of clock periods needed 
for the MMU to perform the MMU instructions. The total number of clock 
cycles is outside the parentheses. It includes the numbers of read, prefetch, 
and write cycles, which are shown inside the parentheses as (r/pr/w). 

Instruction Head 

PMOVE (from CRP, SRP)* 0 

PMOVE (to CRP, SRP, valid)* 0 

PMOVE (to CRP, SRP, invalid) 1. 0 

PMOVE (from TT0, TT1)* 0 

PMOVE (to TT0, TT1)* 0 

PMOVE (from MMUSR)* 2 

PMOVE (to MMUSR)* 0 

PMOVE (from TC)* 2 

PMOVE (to TC, valid) 2. 0 

PMOVE (to TC, invalid) 3. 0 

PMOVE (to TC) 4. 0 

PFLUSHA 0 

PFLUSH <fc),#(mask> (fc is immediate or data register) 0 

PFLUSH <fc),#<mask) (fc is in SFC or DFC register) 0 

PFLUSH <fc>,#<mask>,<ea> (fc is immediate or data register)* 0 

PFLUSH <fc),#(mask>,<ea) (fc is in SFC or DFC register)* 0 

PLOAD[R:W] <fc),<ea> (fc is immediate or data register)** 0 

PLOAD[R:W] <fc>,(ea> (fc is in SFC or DFC register)** 0 

PTEST[R:W] <fc>,<ea),#6 * * * *  0 

PTEST[R:W] <fc>,<ea),#0* 0 

NOTES: 
1. Attempt to load invalid root pointer. 
2. Translation enabled. 

Tail 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

I-CacheCase No-CacheCase 

4(0/0/2) 5(0/1/2) 

12(2/0/0) 14(2/2/0) 

28(3/0/4) 30(3/2/4) 

8(0/0/1) 8(0/1/1) 

12(1/0/0) 14(1/2/0) 

4(0/0/1) 5(0/1/1) 

6(1/0/0) 6(1/1/0) 

4(0/0/1) 5(0/1/1) 

38(1/0/0) 40(1/2/0) 

56(2/0/4) 58(2/2/4) 

14(1/0/0) 16(1/2/0) 

12(0/0/0) 14(0/2/0) 

16(0/0/0) 18(0/2/0) 

20(0/0/0) 22(0/2/0) 

16(0/0/0) 18(0/2/0) 

20(0/0/0) 22(0/2/0) 

8(0/0/0) 10(0/2/0) 

12(0/0/0) 14(0/2/0) 

88(12/0/0) 88(12/1/0) 

22(0/0/0) 22(0/1/0) 

3. Number is maximum, assuming valid page size but TIx fields do not add up to 32. Translation enabled. 
4. Translation disabled. 

*Add the appropriate effective address calculation time. 
**Add the appropriate effective address calculation time and the table search time. 

***Number given is the maximum for a six-level table (FC lookup, a, b, c, and d levels with indirect level, all long 
descriptors). 

11-60 MC68030 USER'S MANUAL M O T O R O L A  



11.8 Interrupt  Latency 

In real-time systems, the response time required for a processor to service 
an interrupt is a very important factor pertaining to overall system perform- 
ance. Processors in the M68000 Family support asynchronous assertion of 
interrupts and begin processing them on subsequent instruction boundaries. 
The average interrupt latency is quite short, but the maximum latency is 
often critical because real-time interrupts cannot require servicing in less 
than the maximum interrupt latency. The maximum interrupt latency for the 
MC68030 alone is approximately 200 clock cycles (for the MOVEM.L 
([d32,An],Xn,d32), D0-D7/A0-A7 instruction where the last data fetch is aborted 
with a bus error), but when the MMU is enabled, some operations can take 
several times longer to execute. 

Interrupt latency in systems using the MMU is affected by the length of the 
main processor instructions, the address translation tree configuration, the 
number of translation tree searches required by the instructions, the access 
time of main memory, and the width of the data bus connecting the MC68030 
to main memory. It is important to note that the address translation tree 
configuration is under software control and can strongly affect the system 
interrupt latency. The maximum interrupt latency for a given system config- 
uration can be computed by adding the length of the longest main processor 
instruction to the time required for the maximum number of translation tree 
searches that the instruction could require. For the MC68030 microprocessor, 
one instruction of particular interest is a memory-to-memory move with 
memory indirect addressing for both the source and destination, with all of 
the code and data items crossing page boundaries. The assembler syntax 
for this instruction is: 

MOVE.L (od,[bd,An,Rm]),(od,[bd,An,Rm]) 

This instruction can cause ten address translation tree searches: two for the 
instruction stream, two for the sou rce indirect address, two for the destination 
indirect address, two for the operand fetch, and two for the destination write. 
System software can reduce the maximum number of translation searches 
by placing additional restrictions on generated code. For example, if the 
language translators in the system only generate long words aligned on long- 
word boundaries, the indirect address and operands can cause only one 
translation search each. This reduces the number of searches for the instruc- 
tion to a maximum of six. 

MOTOROLA MC68030 USER'S MANUAL 11-61 

11 



I1 

11.9 Bus Arbitration Latency 
In a system that uses the MMU, the bus arbitration latency is affected by 
several factors. The MC68030 does not rel inquish the physical bus whi le it 
is performing a read-modify-write operation. Since the address translation 
search is an extended read-modify-write operation, the no-cache-case latency 
is incurred by the longest address translation search required by the system. 

Another bus arbitration delay occurs when a coprocessor or other device 
delays or fails to assert DSACKx or STERM signals to terminate a bus cycle. 
The maximum delay in this case is undefined; it depends on the length of 
the delay in asserting the signals. 

11-62 MC68030 USER'S MANUAL MOTOROLA 



SECTION 12 
APPLICATIONS INFORMATION 

This section provides guidelines for Using the MC68030. First, it discusses 
the requirements for adapting the MC68030 to MC68020 designs. Then, it 
describes the use of the MC68881 and MC68882 coprocessors with the 
MC68030. The byte select ogic is described next, followed by memory inter- 
face information. A description of external caches, the use of the STATUS 
and REFILL signals, and power and ground considerations complete the sec- 
tion. 

12.1 ADAPTING THE MC68030 TO MC68020 DESIGNS 

Perhaps the easiest way to first utilize the MC68030 is in a system designed 
for the MC68020. This is possible due to the complete compatibility of the 
asynchronous buses of the MC68020 and MC68030. This section describes 
how to configure an adapter for the MC68030 to allow insertion into an 
existing MC68020-based system Software and architectural differences be- 
tween the two processors are also discussed. The need for an adapter is 
absolute because the MC68020 and MC68030 are NOT pin compatible. Use 
of the adapter board provides the immediate capability for evaluating the 
programmer's model and instruction set of the MC68030 and for developing 
software to utilize the MC68030's additional enhanced features. This adapter 
board also provides a relatively simple method for increasing the perform- 
ance of an existing MC68020 or MC68020/MC68851 system by insertion of a 
more advanced 32-bit MPU with an on-chip data cache and an on-chip MMU. 
Since the adapter board does not support of the synchronous bus interface 
of the MC68030, performance measurements for the MC68030 used in this 
manner may be misleading when compared to a system designed specifically 
for the MC68030. 

The adapter board plugs into the CPU socket of an MC68020 target system, 
drawing power, ground, and clock signals through the socket and running 
bus cycles in a fashion compatible with the MC68030. The only support 
hardware necessary is a single 1K-ohm pullup resistor and two capacitors 
for decoupling power and ground on the adapter board. 

MOTOROLA MC68030 USER'S MANUAL 12-1 

1; 



12.1.1 Signal  Rout ing 

Figure 12-1 shows the complete schematic for routing the signals of the 
MC68030 to the MC68020 header. All signals common to both processors 
are directly routed to the corresponding signal of the other processor. The 
signals on the MC68030 that do not have a compatible signal on the MC68020 
are either pulled up or left unconnected: 

Pulled Up No Connect 

STERM STATUS 
CBACK . REFILL 
CIIN CBREQ 
MMUDIS CLOUT 

2 

MC68030 

STATUS B'R 
REFILL 8"G 

BGACK 
IPL2 
IPL1 HALT 
IPLO BERR 
IPEND 
AVEC DSACK1 

DSACK0 
CLK 

SEO 
RESET SlZl 

ECS RMC 
OCS DBEN 

R/W 

CLOUT A'S 
CDREQ 
CBACK DO-D31 
MMUDIS 
c,~ FCO-FC2 

STERM AO-A31 

MC68020  HEADER 

8GACK 
IPL2 

HA~ IPL| 
BER--R IPLO 

IPENO 
DSACK1 AVEC 
DSACKO 

CLK 
SIZO 
SIZ1 RESET 

RMC ECS 
DBEN OC-~- 
R/W 

DO-D31 

FCO-FC2 

AO-A31 

m 

m 

Figure 12-1. Signal Routing for Adapting the MC68030 to MC68020 Designs 

12-2 MC68030 USER'S MANUAL MOTOROLA 



12.1.2  H a r d w a r e  D i f fe rences  

Before enabling the on-chip caches of the MC68030, an important system 
feature must be checked. Because of the MC68030 cache organization and 
implementation, cachable read bus cycles are expected to transfer the entire 
port width of data (as indicated by the DSACKx encoding), regardless of how 
many bytes are actually requested by the SIZx pins. The MC68020 did not 
have this requirement, and system memory banks or peripherals may or may 
not supply the amount of data required by the MC68030. If the target system 
does not supply the full port width with valid data for any cachable instruction 
or data access the user should either designate that area of memory as 
noncachable (with the MMU) or not enable the corresponding on-chip cache(s). 
In some systems, modifying the target system hardware may also be an 
option; frequently, the byte select logic is generated by a single PAL, which 
might easily be replaced or reprogrammed to select all bytes during read 
cycles from multibyte ports. 

The HAL] = input-only signal of the MC68030 is slightly different than the 
bidirectional HALT signal of the MC68020. However, this should not cause 
any problems beyond eliminating an indication to the external system (e.g., 
lighting an LED) that the processor has halted due to a double bus fault. 

When used in a system originally designed for both an MC68020 and an 
MC68851, the MC68851 may be left in the system or removed (and replaced 
with a jumpered header). However, if left in the system, the MC68851 is not 
accessible to the programmer with the M68000 coprocessor interface. All 
MMU instructions access the MC68030's on-chip MMU. This is true even if 
the MC68030's MMUDIS signal is asserted. The benefit in removing the 
MC68851 is that the minimum asynchronous bus cycle time to the physical 
bus is reduced from four clock cycles to three. 

If the MC68851 is removed and replaced with a jumpered header, the fol- 
lowing MC68851 signals may need special system-specific consideration: CLI, 
RMC, LBRO, LBG, LBGACK, and LBGI. During translation table searches, the 
MC68851 asserts the cache load inhibit (CLI) signal but not RMC; whereas, 

MOTOROLA MC68030 USER'S MANUAL 12-3 



2 

the MC68030 asserts RMC but not CLOUT. In simple MC68020/MC68851 sys- 
tems without logical bus arbitration or logical caches, the MC68851's jumper 
can have the following signals connected together: 

LAS ~ PAS 
LBRO 0B PBR 
LBGI ~i PBG 
LBGACK ~ PBGACK 
LA(8-31) 40 PA(8-31) 
CLI (1~ no connect or LAS 

CLI has two connection options because some systems may use CLI to qualify 
the occurrence of CPU space cycles since the MC68851's PAS does not assert. 

12.1.3 Software Differences 

The instruction cache control bits in the cache control register (CACR) of the 
MC68030 are in the identical bit positions as the corresponding bits as the 
MC68020's CACR. However, the MC68030 has additional control bits for burst 
enable and data cache control. Because this adapter board does not support 
synchronous bus cycles (and thus burst mode), enabling burst mode through 
the CACR does not affect system operation in any way. Refer to SECTION 6 
ON-CHIP CACHE MEMORIES for more information on the bit positions and 
functions of the CACR bits. 

When used in a system originally designed for an MC68020, a difference a 
programmer must be aware of is that the MC68030 does not support the 
CALLM and RTM instructions of the MC68020. If code is executed on the 
MC68030 using either the CALLM or RTM instructions, an unimplemented 
instruction exception is taken. If no MMU software development capability 
is desired and the cache behavior described under hardware differences is 
understood, the user may ignore the MC68030 MMU. 

When the adapter is used in a system originally designed for the MC68020/ 
MC68851 pair, the software differences described below also apply. The 
MC68030's MMU offers a subset of the MC68851 features. The features not 
supported by the MC68030 MMU are listed below: 

• On-chip breakpoint registers 

• Task aliasing 

• Instructions: PBcc, PDBcc, PRESTORE, PSAVE, PScc, PTRAPcc, PVALID 

12-4 MC68030 USER'S MANUAL MOTOROLA 



Only control-alterable addressing modes are allowed for MMU instructions 
on the MC68030. 

A feature new to the MC68030 MMU (and not on the MC68851) is the trans- 
parent translation of two logical address blocks with the transparent trans- 
lation registers. See SECTION 9 M E M O R Y  M A N A G E M E N T  UNIT. 

12.2 FLOATING-POINT UNITS 

Floating-point support for the MC68030 is provided by the MC68881 floating- 
point coprocessor and the MC68882 enhanced floating-point coprocessor. 
Both devices offer a full implementation of the IEEE Standard for Binary 
Floating-PointArithmetic (754). The MC68882 is a pin and software-compatible 
upgrade of the MC68881, with an optimized MPU interface that provides over 
1.5 times the performance of the MC68881 at the same clock frequency. 

Both coprocessors provide a logical extension to the integer data processing 
capabilities of the main processor. They contain a very high performance 
floating-point arithmetic unit and a set of floating-point data registers that 
are utilized in a manner that is analagous to the use of the integer data 
registers of the processor. The MC68881/MC68882 instruction set is a natural 
extension of all earlier members of the M68000 Family and supports all of 
the addressing modes and data types of the host MC68030. The programmer 
perceives the MC68030/coprocessor execution model as if both devices are 
implemented on one chip. In addition to supporting the full IEEE standard, 
the MC68881 and MC68882 provide a full set of trigonometric and transcen- 
dental functions, on-chip constants, and a full 80-bit extended-precision-real 
data format. 

The interface of the MC68030 to the MC68881 or the MC68882 is easily tailored 
to system cost/performance needs. The MC68030 and the MC68881/MC68882 
communicate via standard asynchronous M68000 bus cycles. All data trans- 
fers are performed by the main processor at the request of the MC68881/ 
MC68882; thus memory management, bus errors, address errors, and bus 
arbitration function as if the MC68881/MC68882 instructions are executed by 
the main processor. The floating-point unit and the processor may operate 
at different clock speeds, and up to seven floating-point coprocessors may 
reside in an MC68030 system simultaneously. 

Figure 12-2 illustrates the coprocessor interface connection of an MC68881/ 
MC68882 to an MC68030 (uses entire 32-bit data bus). The MC68881/MC68882 
is configured to operate with a 32-bit data bus when both the A0 and SIZE 

MOTOROLA MC68030 USER'S MANUAL 12-5 

# 1, 



pins are connected to VCC. Refer to the MC68881UM/AD MC68881/MC68882 
Floating-Point Coprocessor User's Manual for configuring the MC68881/ 
MC68882 for smaller data bus widths. Note that the MC68030 cache inhibit 
input (CIIN) signal is not used for the coprocessor interface because the 
MC68030 does not cache data obtained during CPU space accesses. 

MC6B030 MC68881/rvICO8882 

FCO-FC2 

A20-A31 
AI6-A19 
A13-A15 
A5-A12 
A1-A4 

AO 

AS 

R ~  

D24.D31 
D16-D23 
08-015 
00-07 

DSACK1 

CIIN 

L.~ ~] DECODE I VC C 

- -  VCC 

D 

4 

s3~ 
A1-A4 
AO 

AS 

R/W 

D24-D31 
D16-D23 
138-0T5 
O0-D7 

DSACKO 

MAIN PROCESSOR COPROCESSOR 
CLOCK CLOCK 

Figure 12-2. 32-Bit Data Bus Coprocessor Connection 

2 

The chip select (CS) decode circuitry is asynchronous logic that detects when 
a particular floating-point coprocessor is addressed. The MC68030 signals 
used by the logic include the function code signals (FC0-FC2), and the address 
lines (A13-A19). Refer to SECTION 10 COPROCESSOR INTERFACE DESCRIP- 
TION for more information concerning the encoding of these signals. All or 
just a subset of these lines may be decoded depending on the number of 
coprocessors in the system and the degree of redundant mapping allowed 
in the system. 

12-6 MC68030 USER'S MANUAL MOTOROLA 



The major concern of a system designer is to design a CS interface that meets 
the AC electrical specifications for both the MC68030 (MPU) and the MC68881/ 
MC68882 (FPCP) without adding unnecessary wait states to FPCP accesses. 
The following maximum specifications (relative to CLK low) meet these ob- 
jectives: 

tCL K low to AS Iow~<(MPU Spec 1 -MPU Spec 47A-FPCP Spec 19) (1) 

tCL K low to CS Iow~<(MPU Spec 1 -MPU Spec 47A-FPCP Spec 19) (2) 

Even though requirement (1) is not met under worst__case conditions, if the 
MPU AS is loaded within specifications and the AS input to the FPCP is 
unbuffered, the requirement is met under typical conditions. Designing the 
CS generation circuit to meet requirement (2) provides the highest probability 
that accesses to the FPCP occur without unnecessary wait states. A PAL 16L8 
(see Figure 12-3) with a maximum propagation delay of 10 ns, programmed 
according to the equations in Fig___ure 12-4, can be used to generate CS. For 
a 25-MHz system, tCL K low to CS low is less than or equal to 10 ns when 
this design is used. Should worst case conditions cause tCL K low to AS low 
to exceed requirement (1), one wait state is inserted in the access to the 
FPCP; no other adverse effect occurs. Figure 12-5 shows the bus cycle timing 
for this interface, Refer to MC68881UM/AD, MC68881/MC68882 Floating-Point 
Coprocessor User's Manua/, for FPCP specifications. 

The circuit that generates CS must meet another requirement. When a non- 
floating-point access immediately follows a float__iing-point__ access, CS (for the 
floating-point access) must be negated before AS and DS (for the subsequent 
access) are asserted. The PAL circuit previously described also meets this 
requirement. 

For example, if a system has only one coprocessor, the full decoding of the 
ten signals (FC0-FC2 and A13-A19) provided by the PAL equations in Figure 
12-4 is not absolutely necessary. It may be sufficient to use only FC0-FC1 
and A16-A17, FC0-FC1 indicate when a bus cycle is operating in either CPU 
space ($7) or user-defined space ($3), and A16-A17 encode CPU space type 
as coprocessor space ($2). A13-A15 can be ignored in this case because they 
encode the coprocessor identification code (CplD) used to differentiate be- 
tween multiple coprocessors in a system. Motorola assemblers always de- 
fault to a CplD of $1 for floating-point instructions; this can be controlled 
with assembler directives if a different CplD is desired or if multiple copro- 
cessors exist in the system. 

MOTOROLA MC68030 USER'S MANUAL 12-7 

12 



12 

CLK 

FC2 

FC1 

FCO 

AI9 

A18 

A17 

A16 

6NO 

PAL1GL8 
10 ns 

VCC 

NC 

NC 

NC 

NC 

A13 

A14 

CLKO 

AT5 

Figure 12-3. Chip-Select Generation PAL 

PAL1618 
FPCP CS GENERATION CIRCUITRY FOR 25 MHz OPERATION 
MOTOROLA INC., AUSTIN, TEXAS 
CLK AS FC2 FC1 FC0 A19 A18 A17 
A15 /CS /CLKD A14 A13 NC NC NC 

A16 
NC 

GND 
VCC 

CS = FC2 * FC1 * FC0 
• / A 1 9  * / A 1 8  * A17 
• / A 1 5  * / A 1 4  * A13 
• /CLK  

* / A 1 6  
;cpu space = $7 
;coprocessor access = $2 
; coprocessor id  = $1 
;qual i f ied by MPU clock low 

+ FC2 * FC1 * FC0 
• / A 1 9  * / A 1 8  * A17 
• / A 1 5  * / A 1 4  * A13 
•/AS 

* / A 1 6  
;cpu space = $7 
;coprocessor access = $2 
;coprocessor id  = $1 
;qual i f ied by address strobe low 

+ FC2 * FC1 * FC0 
• / A 1 9  * / A 1 8  * A17 
• / A 1 5  * / A 1 4  * A13 
• /CLKD 

* / A 1 6  ;coprocessor access = $2 
;coprocessor id = $1 
;qual i f ied by CLKD (delayed CLK) 

CLKD = CLK 

Descr ipt ion:  There are three terms to the CS generat ion. The f irst term denotes the earl iest t ime 
CS can be asserted. The second term is used to assert CS until the end o f  the FPCP access. The 
third term is to ensure that no race condi t ion occurs in case of  a late AS. 

Figure 12-4. PAL Equations 

12-8 MC68030 USER'S MANUAL MOTOROLA 



AS 

DSACKO/DSACK] 

START 

\ 

S 
FPCP SPECIFICATION 

/ j  
/ 

/ 
MPU SPECIFICATION 

Figure 12-5. Bus Cycle Timing Diagram 

12.3 BYTE SELECT LOGIC FOR THE MC68030 

The architecture of the MC68030 allows it to support byte, word, and long- 
word operand transfers to any 8-, 16-, or 32-bit data port regardless of align- 
ment. This feature allows the programmer to write code that is not bus-width 
specific. When accessed, the peripheral or memory subsystem reports its 
actual port size to the processor, and the MC68030 then dynamically sizes 
the data transfer accordingly, using multiple bus cycles when necessary. 
Hardware designers also have the flexibility to choose implementations in- 
dependent of software prejudices. The following paragraphs describe the 
generation of byte select control signals that enable the dynamic bus sizing 
mechanism, the transfer of differently sized operands, and the transfer of 
misaligned operands to operate correctly. 

The following signals control the MC68030 operand transfer mechanism' 

• A1, A0 = Address lines. The most significant byte of the operand to be 
transferred is addressed directly. 

• S!Z1, SIZ0 = Transfer size. Output of the MC68030. These indicate the 
number of bytes of an operand remaining to be transferred 
during a given bus cycle. 

• R/W = Read/Write. Output of the MC68030. For byte select generation 
in MC68030 systems, R/W must be included in the logic if the 
data from the device is cachable. 

MOTOROLA MC68030 USER'S MANUAL 12-9 

12 



12 

• DSACK1, DSACK0 = Data transfer and size acknowledge. Driven by an 
asynchronous port to indicate the actual bus width 
of the port. 

• STERM = Synchronous termination. Driven by a 32-bit synchronous 
port only. 

The MC68030 assumes that 16-bit ports are situated on data lines D16-D31, 
and that 8-bit ports are situated on data lines D24-D31. This ensures that the 
following logic works correctly with the MC68030's on-chip internal-to- 
external data bus multiplexer. Refer to SECTION 7 BUS OPERATION for more 
details on the dynamic bus sizing mechanism. 

The need for byte select signals is best illustrated by an example. Consider 
a long-word write cycle to an odd address in word-organized memory. The 
transfer requires three bus cycles to complete. The first bus cycle transfers 
the most significant byte of the long word on D16-D23. The second bus cycle 
transfers a word on D16-D31, and the last bus cycle transfers the least sig- 
nificant byte of the original long word on D24-D31. In order not to overwrite 
those bytes which are not used these transfers, a unique byte data strobe 
must be generated for each byte when using devices with 16- and 32-bit port 
widths. 

For noncachable read cycles and all write cycles, the required active bytes 
of the data bus for any given bus transfer are a function of the size (SIZ0/ 
SlZl) and lower address (A0/A1) outputs and are shown in Table 12-1. In- 
dividual strobes or select signals can be generated by decoding these four 
signals for every bus cycle. Devices residing on 8-bit ports can utilize data 
strobe (DS) alone since there is only one valid byte for any transfer. 

During cachable read cycles, the addressed device must provide valid data 
over its full bus width (as indicated by DSACKx or STERM). While instructions 
are always prefetched as long-word-aligned accesses, data fetches can occur 
with any alignment and size. Because the MC68030 assumes that the entire 
data bus port size contains valid data, cachable data read bus cycles must 
provide as much data as signaled by the port size during a bus cycle. To 
satisfy this requirement, the R/W signal must be included in the byte select 
logic for the MC68030. 

Figure 12-6 shows a block diagram of an MC68030 system with two memory 
banks. The PAL provides memory-mapped byte select signals for an asyn- 
chronous 32-bit port and unmapped byte select signals for other memory 
banks or ports. Figure 12-7 provides sample equations for the PAL. 

12-10 MC68030 USER'S MANUAL MOTOROLA 



Table 12-1. Data Bus Activity for Byte, Word, and Long-Word Ports 

Transfer 
Size 

S l Z l  SlZO 

0 
0 

Byte 0 

0 

1 
1 

W o r d  
1 
1 

1 
1 

Th ree  Byte  1 

1 

0 
0 

L o n g  W o r d  
0 
0 

1 
1 
1 
1 

0 
0 
0 

- 0  

1 
1 
1 
1 

0 
0 
0 
0 

I 
A1 A0 

Data Bus Active Sections 
Byte (B) - Word (W) - Long-Word (L) Ports 

D31-D24 D23-D16 D15-D8 D7-D0 

0 0 B W L  - -  - -  - -  
0 1 B W L  - -  - -  
1 0 B W  - -  L - -  
1 1 B W - -  L 

0 0 B W L  W L  - -  - -  
0 1 B W L  L - -  
1 0 B W  W L L 
1 1 B W - -  L 

0 0 B W L  W L  L - -  
0 1 B W L  L L 
1 0 B W  W L L 
1 1 B W - -  L 

0 0 B W L  W L  L L 
0 1 B W L  L L 
1 0 B W  W L L 
1 1 B W - -  L 

The PAL equations and circuits presented here are not intended to be the 
optimal implementation for every system. Depending on the CPU's clock 
frequency, memory access times, and system architecture, different circuits 
may be required. 

12.4 M E M O R Y  INTERFACE 

The MC68030 is capable of running three types of external bus cycles as 
determined by the cyc!e termination and handshake signals (refer to SECTION 
7 BUS OPERATION). These three types of bus cycles are: 

1. Asynchronous cycles, terminated by the DSACKx signals, have a min- 
imum duration of three processor clock periods in which up to four 
bytes are transferred. 

2. Synchronous cycles, terminated by the STERM signal, have a minimum 
duration of two processor clock periods in which up to four bytes are 
transferred. 

3. Burst operation cycles, terminated by the STERM and CBACK signals, 
have a duration of as little as five processor clock periods in which up 
to four long words (16 bytes) are transferred. 

M O T O R O L A  M C 6 8 0 3 0  U S E R ' S  M A N U A L  12-11 

12 



o 

m 

~g 

z 

O 

0 ~a 
o 

MC68030 

SIZ0 
SIZ1 

A0 
A1 

FC0 
FC1 

A0,A1 

A0-A31AS_ ~ ~ 
R/N - 

00-D3t 

A2-A31 

PAL16L8 

~-.-~ j_ UNMAPPEO BY'rE 
SELECTS FOR OTHER 

I ~ u M o A  I 3281TPORTS 

~ I ~ °  I ~ ° ° ~  
Lto. / BuaST MOOE I 

16-02 O0-D7 08 115 016 123 021 D31 

,,, d I 

Figure 12-6. Example MC68030 Byte Select PAL System Configuration 



PAL16L8 
U1 
MC68030 BYTE DATA SELECT GENERATION FOR 32-91T PORTS, MAPPED AND UNMAPPED. 
MOTOROLA INC., AUSTIN, TEXAS 
A0 A1 SIZ0 SIZ1 RW A18 A19 A20 A21 GND 
/CPU /UUDA /UMDA /LMDA /LLDA /UUDA /UMDB /LMDB /LLDB VCC 

UUDA = RW 
+/A0 */A1 

UMDA = RW 
+ A0 */A1 
+/A1 */SIZ0 
+/A1 * SIZ1 

LMDA = RW 
+/A0 * A1 
+/A1 */SlZ0 */SlZl  
+/A1 * SIZ0 * SlZl 
+/A1 * A0 */SIZ0 

LLDA = RW 
+A0*  A1 
+ A0 * SIZ0 * SlZl 
+/SIZ0 */SIZ1 
+ A1 * SIZ1 

UUDB = RW */CPU * (addressb) 
+/A0 */A1 */CPU * (addressb) 

UMDB = RW*/CPU * (addressb) 
+ A0 */A1 */CPU * (addressb) 
+/A1 */SIZ0 */CPU * (eddressb) 
+/A1 * SIZ1 */CPU * (addressb) 

LMDB = RW */CPU * (addressb) 
+/,6,0 * A1 */CPU * (addressb) 
+/A1 */SIZ0 * /SlZl  */CPU * (addressb) 
+/A1 * SIZ0 * SlZl */CPU * (addressb) 
+/,6,1 * A0 */SIZ0 */CPU * (addressb) 

LLDB = RW */CPU * (addressb) 
+ A0 * A1 */CPU * (addressb) 
+ A0 * SIZ0 * SIZ1 */CPU * (addressb) 
+/SIZ0 */SIZ1 */CPU * (addressb) 
+ A1 * SIZ1 */CPU * (addressb) 

;enable upper byte on read of 32-bit port 
;directly addressed, any size 
;enable upper middle byte on read of 32-bit port 
;directly addressed, any size 
;word aligned, size byte or three byte 
,'word aligned, size is word or long word 
;enable lower middle byte on read of 32-bit port 
;directly addressed, any size 
;word aligned, size is long word 
;word aligned, size is three byte 
;word aligned, size is word or long word 
;enable lower byte on read of 32-bit port 
;directly addressed, any size 
;odd alignment, three byte size 
;size is long word, any address 
;word aligned, word or three byte size 

;enable upper byte on read of 32-bit port 
;directly addressed, any size 
;enable upper middle byte on read of 32-bit port 
;directly addressed, any size 
,'word aligned, size byte or three byte 
,'word aligned, size is word or long word 
;enable lower middle byte on read of 32-bit port 
;directly addressed, any size 
,'word aligned, size is long word 
,'word aligned, size is three byte 
,'word aligned, size is word or long word 
;enable lower byte on read of 32-bit port 
;directly addressed, any size 
;odd alignment, three byte size 
;size is long word, any address 
;word aligned, word or three byte size 

DESCRIPTION: Byte select signals for writing. On reads, all bytes selects are asserted if the respective 
memory block is addressed. The Input signal/CPU prevents byte select assertion during CPU space 
cycles and is derived from NANDing FC0-FC1 or FC0-FC2. The label, (addressb), is a designer-selectable 
combination of address lines used to generate the proper address decode for the system's memory bank. 
With the address lines given here the decode block size is 256K bytes. A similar address might be 
included in the equations for UUDA, UMDA, etc. if the designer wishes them to be memory mapped also. 

F i g u r e  12-7. N IC68030  B y t e  S e l e c t  PAL  E q u a t i o n s  

MOTOROLA MC68030 USER'S MANUAL 12-13 

12 



12 

During read operations, M68000 processors latch data on the last falling clock 
edge of the bus cycle, one-half clock before the bus cycle ends (burst mode 
is a special case). Latching data here, instead of the next rising clock edge, 
helps to avoid data bus contention with the next bus cycle and allows the 
MC68030 to receive the data into its execution unit sooner for a net perform- 
ance increase. 

Write operations also use this data bus timing to allow data hold times from 
the negating strobes and to avoid any bus contention with the following bus 
cycle. This usually allows the system to be designed with a minimum of bus 
buffers and latches. 

One of the benefits of the MC68030's on-chip caches is that the effect of 
external wait states on performance is lessened because the caches are al- 
ways accessed in fewer than "no wait states", regardless of the external 
memory configuration. This feature makes the MC68030 (and MC68020) 
unique among other general-purpose microprocessors. 

12.4.1 Access Time Calculations 

The timing paths that are typically critical in any memory interface are illus- 
trated and defined in Figure 12-8. For burst transfers, the first long word 
transferred also uses these parameters, but the subsequent transfers are 
different and are discussed in 12.4.2 Burst Mode Cycles. 

The type of device that is interfaced to the MC68030 determines exactly which 
of the paths is most critical. The address-to-data paths are typically the critical 
paths for static devices since there is no penalty for initiating a cycle to these 
devices and later validating that access with the appropriate bus control 
signal. Conversely, the address-strobe-to-data-valid path is often most critical 
for dynamic devices since the cycle must be validated before an access can 
be initiated. For devices that signal termination of a bus cycle before data is 
validated (e.g., error detection and correction hardware and some external 
caches) to improve performance, the critical path may be from the address 
or strobes to the assertion of BERR (or BERR and HALT). Finally, the address- 
valid-to-DSACKx-or-STERM-asserted path is most critical for very fast devices 
and external caches, since the time available between when the address is 
valid and when DSACKx or STERM must be asserted to terminate the bus 
cycle is minimal. Table 12-2 provides the equations required to calculate the 
various memory access times assuming a 50-percent duty cycle clock. 

12-14 MC68030 USER'S MANUAL MOTOROLA 



A0-A31 

SO $1 SZ SO 

CLK 

DSACKO/DSACK1 

STERM 

BERR, HALT 

x 
/ 

DO-D31 

~-~ C -*Ira, - -  

I 

g-~ 

h~, 

/ 

/ 

- _ _ /  

NOTE: This diagram illustrates access time calculations only. ~ / ~  and STERM should 
never be asserted together during the same bus cycle. 

Parameter Description 

Address Valid to DSACKx Asserted 
Address Strobe Asserted to DSACKx Asserted 
Address Valid to STERM Asserted 
Address Strobe Asserted to STERM Asserted 
Address Valid to BERn/HALT Asserted 
Address Strobe Asserted to BERR/HALT Asserted 
Address Valid to Data Valid 
Address Strobe Asserted to Data Valid 

System 

tAVDL 
tSADL 
tAVSL 
tSASL 

tAVBHL 
tSABHL 
tAVDV 
tSADV 

Equation 

12-1 
12-2 
12-3 
12-4 
12-5 
12-6 
12-7 
12-8 

Figure 12-8. Access Time Computation Diagram 

During asynchronous bus cycles, DSACK1 and DSACK0 are used to terminate 
the current bus cycle. In true asynchronous operations, such as accesses to 
peripherals operat ing at a dif ferent clock frequency, either or both signals 
may be asserted w i thout  regard to the clock, and then data must be val id a 
certa in amount  of t ime later as defined by specif ication #31. With a 16.67- 
MHz processor, this t ime is 50 ns after DSACKx asserts; with a 20.0-MHz 
processor, this t ime is 43 ns after DSACK asserts (both numbers vary with 
the actual clock frequency). 

MOTOROLA MC68030 USER'S MANUAL 12-15 

12 



12 

T a b l e  12-2 .  M e m o r y  A c c e s s  T i m e  E q u a t i o n s  at  2 0  M H z  

(12-1 ) tAVDL - (N-1).tl - t2 - t6 t47A 
(12-2) tSADL = (N-2)otl - t9- t47A 

(12-3) tAVSL - (N-1)°tl - t6 - t60 
(12-4) tSASL- (N-1)°tl - t 3 - t 9 - t 6 0  

(12-5) tAVBHL = N°tl - t2 - t6 -t27A 
(12-6) tSABHL = (N-1).tl - t9 -t27A 

(12-7) tAVDV = N.tl - t2  - t 6 -  t27 
(12-8) tSADV-(N-1)°t1 t9 t27 

where: 
tX 
t l  
t2 
t3 
t6 
t9 
t27 
t27A 
t47A 
t60 
N 

= Refers to AC Electrical Specification #X 
= The Clock Period 
= The Clock Low Time 
= The Clock High Time 
= The Clock High to Address Valid Time 
= The Clock Low to AS Low Delay 
= The Data-In to Clock Low Setup Time 

N=2 N=3 N=4 N=5 N=6 

- -  46 ns 96 ns 146 ns 196 ns 
- -  26 ns 76 ns 126 ns 176 ns 

21 ns 71 ns 121 ns 171 ns 221 ns 
1 ns 51 ns 101 ns 151 ns 201 ns 

40 ns 90 ns 140 ns 190 ns 240 ns 
20 ns 70 ns 120 ns 170 ns 220 ns 

46 ns 96 ns 146 ns 196 ns 246 ns 
26 ns 76 ns 126 ns 176 ns 226 ns 

= The BERR/HALT to Clock Low Setup Time 
= The Asynchronous Input Setup Time 
= The Synchronous input to CLK High Setup Time 
= The Total Number of Clock Periods in the Bus Cycle (Nonburst) 

(N~>2 for Synchronous Cycles; N~>3 for Asynchronous Cycles) 

H o w e v e r ,  m a n y  local  m e m o r y  s y s t e m s  do  no t  o p e r a t e  in a t r u l y  a s y n c h r o n o u s  

m a n n e r  because  the  m e m o r y  con t ro l  log ic  can e i the r  be re la ted  to  the  
MC68030 's  c lock  or  w o r s t  case p r o p a g a t i o n  de lays  are k n o w n ;  thus ,  asyn-  

c h r o n o u s  se tup  t i m e s  fo r  t he  DSACKx s igna ls  can be g u a r a n t e e d .  The  t i m i n g  

r e q u i r e m e n t s  f o r  th is  p s e u d o - s y n c h r o n o u s  DSACKx g e n e r a t i o n  is g o v e r n e d  

by  the  e q u a t i o n  fo r  tAVDL.  

S y n c h r o n o u s  cyc les use the  STERM s igna l  to  t e r m i n a t e  the  c u r r e n t  bus cycle.  

In bus cyc les o f  equa l  l eng th ,  STERM has m o r e  re laxed  t i m i n g  r e q u i r e m e n t s  

than  DSACKx s ince an a d d i t i o n a l  30 ns is ava i l ab le  w h e n  c o m p a r i n g  tAVSL(Or  

tSASL)  to  tAVDL  (or tSADL) .  The o n l y  a d d i t i o n a l  res t r i c t i on  is t ha t  STERM 
m u s t  m e e t  the  se tup  and ho ld  t i m e s  as de f i ned  by  spec i f i ca t i ons  #60  and 

#61 ,  respec t i ve l y ,  fo r  all r is ing edges  of  the  c lock  d u r i n g  a bus  cycle.  The  

va lue  fo r  tSASL  w h e n  the  to ta l  n u m b e r  o f  c lock  p e r i o d s  (N) equa ls  t w o  in 
Tab le  1.2-2 requ i res  f u r t h e r  e x p l a n a t i o n .  Because the  ca l cu la ted  va lue  o f  th is  

access t i m e  (see Equa t i on  12-4 of  Tab le  12-2) is  zero  u n d e r  cer ta in  c o n d i t i o n s ,  
h a r d w a r e  canno t  a l w a y s  qua l i f y  STERM w i t h  AS at all f r equenc ies .  H o w e v e r ,  

such qua l i f i ca t i on  is no t  a r e q u i r e m e n t  f o r  t he  MC68030.  STERM can be 

g e n e r a t e d  by  the  asser t ion  o f  ECS, the  fa i l i ng  e d g e  of  SO, o r  m o s t  s i m p l y  by  
the  ou tpu t ( s )  of  an a d d r e s s  d e c o d e  o r  c o m p a r a t o r  log ic .  No te  tha t  o t h e r  

12-16 MC68030 USER'S MANUAL MOTOROLA 



devices in the system may require qualification of the access with AS since 
the MC68030 has the capability to initiate bus cycles and then abort them 
before the assertion of AS. 

Another way to optimize the CPU to memory access times in a system is to 
use a clock frequency less than the rated maximum of the specific MC68030 
device. Table 12-3 provides calculated tAVDV (see Equation 12-7 of Table 
12-2) results for an MC68030RC16 and MC68030RC20 operating at various 
clock frequencies. If the system uses other clock frequencies, the above equa- 
tions can be used to calculate the exact access times. 

Table  12-3, Calculated t A V D V  Va lues  for Opera t ion  at Frequencies 
Less Than  or Equal to the  CPU M a x i m u m  Frequency Rating 

Equation 12-7 tAVDV MC68030RC20 MC68030RC25 

Clocks Per Bus Wait Clock at Clock at Clock at Clock at Clock at 
Cycle (N) and Type States 16.67 MHz 20 MHz 16.67 MHz 20 MHz 25 MHz 

38 2 Clock Synchronous 0 61 46 68 53 

3 Clock Synchronous 1 121 96 128 103 78 
3 Clock Asynchronous 0 121 96 128 103 78 

4 Clock Synchronous 2 181 146 188 153 118 
4 Clock Asynchronous 1 181 146 188 153 118 

5 Clock Synchronous 3 241 196 248 203 158 
5 Clock Asynchronous 2 241 196 248 203 158 

6 Clock Synchronous 4 301 246 308 253 198 
6 Clock Asynchronous 3 301 246 308 253 198 

12.4.2 Burst Mode Cycles 

The memory access times for burst mode bus cycles fol low the above equa- 
tions for the first access only. For the subsequent (second, third, and fourth) 
accesses, the memory access t ime calculations depend on the architecture 
of the burst mode memory system. 

Architectural tradeoffs include the width of the burst memory and the type 
of memory used. If the memory is 128 bits wide, the subsequent operand 
accesses do not affect the critical t iming paths. For example, if a 3-1-1-1 burst 
accesses 128-bit-wide memory, the first access is governed by the equations 
in Table 12-2 for N equal to three. The subsequent accesses also use these 
values as a base but have additional clock periods added in. The second 

MOTOROLA MC68030 USER'S MANUAL 12-17 

1 2  



12 

access has one additional clock period, the third access has two additional 
clock periods, and the fourth has three additional clock periods. Thus, the 
access time for the first cycle determines the critical t iming paths. 

Memory that is 64 bits wide presents a compromise between the two con- 
figurations listed above. 

12.5 STATIC RAM MEMORY BANKS 

When the MC68030 is operating at a high clock frequency, a no-wait-state 
external memory system will most likely be composed of static RAMs. The 
following paragraphs discuss three static memory banks, which may be used 
as shown or as a starting point for an external cache design. The designs 
offer different levels of performance, bus utilization, and cost. 

12.5. 1 A Two-Clock Synchronous Memory Bank Using SRAMs 

The MC68030 normally attains its highest performance when the external 
memory system can support a two-clock synchronous bus protocol. This 
section describes a complete memory bank containing 64K bytes that can 
operate with a 20-MHz MC68030 using two-clock accesses. Also discussed 
are several options and minor alterations to reduce cost or power consump- 
tion. 

Figure 12-9 shows the complete memory bank and its connection to the 
MC68030. As drawn, the required parts include: 

(8) 16K×4 SRAMs, 35-ns access time with separate I/O pins 
(4) 74F244 buffers 
(2) 74F32 OR gates 
(1) PAL16L8D (or equivalent) 

The system must also provide any STERM consolidation circuitry as required 
(e.g., by the presence of multiple synchronous memory banks or ports). In 
Figure 12-9, this consolidation circuitry is shown as an AND gate. 

The memory bank can be divided into three sections: 

1. The byte select and address decode section (provided by the PAL), 

2. The actual memory section (SRAMs), and 

3. The buffer section. 

12-18 MC68030 USER'S MANUAL MOTOROLA 



MC68030 

CLK 

DO-D31 

AO-A31 

AS 

SIZ0 
SIZ1 

i R/W 

I 
STERM 

I 

28 MHz 1 CLOCK 
GENERATION 

CLK 

;ZF32 

4F244 

32 { 
/ 

A2-A15 

~ D A S  A30 R~CS 

A18 UUCS 

A16 LMCS - -  A, LLCS  
~ A O  - -  q 

SIZO TERM L -- 
SIZ1 

R/W ~ 

BYTE SELECT AND ADDRESS 
OECODE PAL16LSD 

< 3 -  
SYSTEM STERM 

OONSOLIOATJON CJNCUITNY 

OTHE~ SYSTE,V, 

STE P.~,~ S ~';,~LS 

1 
J 
I 0 

"WO 
iKx~ 
TAM! 

E 

-2 

Q 

W O  

KxZ 
IAMs 

' E 

'-5 

Figure 12-9. Example Two-Clock Read, Three-Clock Write Memory Bank 

O 

W0 
Kx4 
IAMs 

E 

The first section consists of two 74F32 OR gates, a 74F74 D-type flip-flop, 
and a PAL16L8D. Example PAL equations are provided in Figure 12-10. The 
PAL generates six memory-mapped signals; four byte select signals for write 
operations, a buffer control signal, and the cycle termination signal. The byte 
select signals are only asserted during write operations when the processor 
is addressing the 64K bytes contained in the memory bank, and then only 

MOTOROLA MC68030 USER'S MANUAL 12-19 

¸•¸¸12 



when the appropriate byte (or bytes) is being written to as indicated by the 
SIZ0, SIZ1, AO, and A1 signals. The four signals, UUCS, UMCS, LMCS, and 
LLCS, control data bits D24-D31, D16-D23, D8-D15, and D0-D7, respectively. 
AS is used to qualify the byte select signals to avoid spurious writes to 
memory before the address is valid. During read operations, the read chip 
select (RDCS) signal, qualified with AS, controls the data buffers only (since 
the memory is already enabled with its E input grounded). The last signal 
generated by the PAL is the TERM signal. As its equation shows, TERM 
consists of two events: one for read cycles and the other for write cycles. 
For read cycles, TERM is an address decode signal that is asserted whenever 
the address corresponds to the encoded memory-mapped bank of SRAM. 
For write operations, a delayed form of AS (DAS) is used to qualify the same 
address decode, which lengthens write operations to three clock cycles. The 
DAS signal generation is delayed from the clock edge by running the clock 
signal through two 74F32 OR gates before connecting to the 74F74 D-type 
flip-flop. This guarantees that the maximum propagation delay to generate 
the TERM signal does not violate the synchronous input hold time of the 
MC68030. By increasing write operation to three clock cycles, the MC68030 
can easily meet the specified data setup time to the SRAMs before the ne- 
gation of the write strobes (W). TERM is then connected to the system's 
STERM consolidation circuity. The consolidation circuitry should have no 
more than 15 ns of propagation delay. If the system has no other synchronous 
memory or ports, TERM may be connected directly to STERM. 

12 

UUCS=/AO */A1 8/RW */A16*/A17*/A18*A30* 

UMCS =AO */A1 */RW */A16*/A17*/A18*A30* 
+/A1 */SIZ0 */RW */A16*/A17*/A18*A30* 
+/A1 *SIZ1 */RW */A16*/A17*/A18*A30* 

LMCS =/A0 *A1 */RW */A16*/A17*/A18*A30* 
+/A1 */SIZ0 */SIZ1 */RW */A16*/A17*/A18*A3g* 

+/A1 * S]ZO * SIZ1 */RW */A16*/A17*/A18*A30* 
+/A1 * A0 */SIZ0 */RW */A16*/A17*/A18*A30* 

LLCS =A0 * A1/RW */A16*/A17*/A18*A30* 
+A0 * SIZ0 *SIZ1 */RW */A16*/A17*/A18*A30* 
+/SIZ0 */SIZ1 */RW */A16*/A17*/A18*A30* 
+A1 * SIZ1 */RW */A16*/A17*/A18*A30* 

RDCS =/A16*/A17*/A18*A3O*RW 
+/A15 /A17 /A18 A30*/RW*DAS 

;directly addressed, any size 

;directly addressed, any size 
;word aligned, size byte or three byte 
;word aligned, size is word or long word 

;directly addressed, any size 
;word aligned, size is long word 
;word aligned, size is three byte 
;word aligned, size is word or long word 

;directly addressed, any size 
;odd alignment, three byte size 
;size is long word, any address 
;word aligned, word or three byte size 

;immediate STERM with proper address 
;write Cycles take three clocks 

DESCRIPTION: Byte select signals. The byte select signals are asserted only during write operations when the particular byte is 
being written. The synchronous bank of memory is always enabled, and writes are controlled by W on the memory. 
RDCS is for buffer control and only asserts for read operations. TERM is the cycle termination signals to the MC68030. 

Figure 12-10. Example PAL Equations for Two-Clock Memory Bank 

12-20 MC68030 USER'S MANUAL MOTOROLA 



The second section contains the memory devices. Eight devices are used, 
but some designs may wish to increase this to support EDAC or to increase 
density. The most important feature of the memory devices used in this 
design is the separate data-in and data-out pins, which allow the SRAMs to 
be enabled before address decode is complete without causing data bus 
contention. The enable pins on the SRAMs have been grounded for both 
simplicity and .improved memory access timing. If the designer wishes to 
include some type of enable circuitry to take advantage of low bus utilization 
for lower power consumption, the timing in this design will be preserved if 
the memory's E signal is asserted before the falling edge of state SO (at the 
same time as or before the address becomes valid). Two possible enable 
circuits are shown in Figure 12-11. 

VCC vcc  
AS CLK[ 

ECS - -  

74F74 p 

VCC 

TERM 0 

CLK CLK[ 

ECS - -  

74F74 

g 

Figure 12-11. Additional Memory Enable Circuits 

The third section of the memory bank is the data buffers. The data buffers 
are shown as 74F244, but 74AS244s may also be used. The RDCS signal, 
qualified with AS, controls the data buffers during read operations as de- 
scribed above. 

To maximize performance, both read and write operations should be capable 
of completing in two clock cycles. Figure 12-12 shows a two-clock read and 
write memory bank. The required parts include: 

(8) 
(4) 
(2) 
(1) 
(1) 
(2) 
(1) 
(1) 

16K×4 SRAMs, 25-ns access time with separate I/O pins 
74F244 buffers 
74F32 OR gates 
PAL16L8D (or equivalent) 
74F74 D-type flip-flop 
74F373 transparent latches 
74AS21 AND gate 
74F04 inverter 

MOTOROLA MC68030 USER'S MANUAL 12-21 

12 



12 

[ 
MCR8030 

CLK 

DO-D31 

AO-A31 

AS 

SIZO 
SIZ1 
R/W 

STERM 

20 MHz J 
CLOCK 

GENERAgON 
ELK 

A2-A15 

NC 
A30 
A18 
A17 
A16 
AI 
AO 
SfZO 
SIZ1 
R/W 

BYTE SELECT ANO ADDRESS 
DECODE PAL16L8D 

< 3 -  
SYSTEM 

CONSOLIDATION CIRCUITRY 

744:32 

~ 0 ~  74F244 

UU_.~_ ~ - ~  ~ - 3  ~ 7 4 F 3 :  

uMcs / L ~  
LMCS | 

::f;]l 
OTHER SYSTEM 
STERM SIGNALS 

m 

i 

~VO 
;K x 
~AIV 

7 i  

-2 

Figure 12-12. Example Two-Clock Read and Write Memory Bank 

E 
i 

WC NO 
Kx (x, 
A~ AM! 

" -5 
"i. _ _  

12-22 MC68030 USER'S MANUAL MOTOROLA 



The structure of this design is very similiar to the previous design and can 
similarly be divided into three main sections: 

1. The byte select and address decode section (provided by the PAL). 

2. The actual memory section (SRAMs). 

3. The buffer/latch section (address and data). 

The same PAL equations listed in Figure 12-10 are used with the exception 
of the TERM signal. Figure 12-13 shows the equation for TERM, which is 
used by the two clock read and write design. 

TERM = /A16 * /A17 * /A16 * A30 ;immediate TES-TER-Mfor both reads and writes 

Figure 12-13. Example PAL Equation for Two-Clock Read and Write 
Memory Bank 

TERM is simply an address decode signal in this design because both read 
and write operations complete in two clock periods. The other signals gen- 
erated by the PAL have already been discussed in the previous design and 
are not repeated here. A latched version of AS is generated by a 74F74 
D-type flip-flop and used to qualify the individual byte select signals from 
the PAL. The required SRAM data setup time on write cycles is ensured by 
keeping the write strobes (W) active to the SRAMs until the rising edge of 
the clock that completes the MC68030 write operation. 

The memory section in this design uses 25-ns SRAMs rather than the 35-ns 
SRAMs used in the previous design. The faster SRAMs compensate for the 
74F373 transparent latches used on the address lines. Since the memory 
write operations complete after the MC68030 write bus cycle, both address 
and data are latched and held valid to the SRAMs until the write strobes (W) 
negate. During read operations, the transparent latches on the address lines 
remain in the transparent mode, allowing the SRAMs to provide data through 
the 74F244 buffers in time to meet the specified data setup time to the 
MC68030. 

Not all systems require the performance of 20-MHz two-clock bus cycles, nor 
will all systems be able to afford the fast devices. Fortunately, several small 
changes to this design could assist designers with different cost/performance 
ratios. The simplest and most direct method is to reduce the clock frequency 
of the MC68030. For instance, if the clock frequency is below approximately 
18.1 MHz, the same control logic supports two-clock bus cycles with 45-ns 

MOTOROLA MC68030 USER'S MANUAL 12-23 

1 ;  



12 

memory (55 ns if < 15.8 MHz). If 20 MHz is still the frequency of choice, the 
designer may choose to run three-clock bus cycles. This can be accomplished 
with the addit ion of a fl ip-flop to delay the TERM signal by one clock. The 
resulting memory access t ime is over 85 ns with a 20-MHz processor running 
with three-clock bus cycles. 

12.5.2 A 2-1-1-1 Burst Mode Memory Bank Using SRAMs 

The MC68030 normal ly attains its lowest bus util ization when the external 
memory system can support a 2-1-1-1 burst protocol. However, exceptions 
to this can occur. For instance, when a large amount of memory accesses 
are not governed by the locality of reference principles, burst accesses may 
not decrease bus utilization. This section describes a complete 2-1-1-1 mem- 
ory bank with 256K bytes that can operate with a 20-MHz MC68030. Nonburst 
reads and all write cycles execute in two clocks. 

Figure 12-14 shows the complete memory bank and its connection to the 
MC68030. The required parts include: 

(32) 64K x 1 SRAMs 25 ns access t ime (Motorola's MCM6287-25 or equiv- 
alent) 

(2) 74ALS244 buffers 
(4) 74AS373 latches 
(2) 74F32 OR gates 
(4) 74F191 counters 
(1) PAL16L8D (or equivalent) 
(1) 74F04 inverter 

The system must also provide any STERM or CBACK consolidation circuitry 
as required (e.g., due to the presence of mult iple synchronous memory banks 
or ports). In Figure 12-14, this consolidation circuitry is shown as an AND 
gate. 

The memory bank can be divided into four sections: 

1. The byte select and address decode section (provided by the PAL). 

2. The burst address generator (provided by the counters). 

3. The actual memory section (SRAMs). 

4. The buffer section (address and data). 

The first section is completely contained within the PAL16L8D. The PAL equa- 
t ions are the same as those provided in Figure 12-8 for the two-clock read, 
three-clock write memory bank, although sl ightly modified to support the 

12-24 MC68030 USER'S MANUAL MOTOROLA 



20  MHz 74F32 
CLOCK 

GENERATION ~ r . ~ C  74AS373 DLK ] s/ 
MC68030 J ~  

1 i ~ " 4  CL K [ 
CLK 

00-031 3T /  

- -  I I  BURST ADDRESS ] ~ E : ~  J 
CBDEQ GENERATION ~ ' ~3E2-~3~ A2BO 

(SEE BELOW) ; ' S ' "  " 

AO-A31 I / 1 

, - , _  

OAS a ~  - -  

AO 
SIZO 
SIZ1 
R/W - 

CRACK 

A30 
A20 UUCS 
A19 ~ - -  
A1S 

S~ZO T ~  
SIZ1 
R/W 

BYTE SELECT AND ADDRESS 
DECODE PAL16LSD 

SYSTEM STERM/CDACK 
CONSOIIOATION C016UITRY 

74F191 

I A~ 

~K x 
DAN 

i 
I A3B2 

i i 
r " t  

74F32 

OTHEO STERMOR 
CRACK SIGNALS 

74FI91 74~191 74F191 

A2 PO 
A3 P1 

CLK CP 

:;: ol -J 00 01 

k-'~a2 kA2BS 
BURST ADDRESS GENERATOR (ONE DDLN-~ = ;~= E:GHT MEMORY DEVICES). 

I 

A2B3 

IGH 
SK x 
RAN 

A3B3 

7~ 

- -  i 

/ 

I 
1 
b C 

~IGH1 
4K x 
RAM 

~/ E 

A3~ -" ,~ =,53 

A2~ .~;~ 

Figure 12-14. Example 2-1-1-1 Burst Mode Memory Bank at 20 MHz, 256K Bytes 

M O T O R O L A  MC68030  USER'S  M A N U A L  12-25 

1 :  



2 ¸ 

larger block of memory (use A18-A20 instead of A16-A18). The PAL gen- 
erates six memory-mapped signals: four byte select signals for write oper- 
ations, a buffer control signal, and the cycle termination signal. The byte 
select signals are only asserted during write operations when the processor 
is addressing the 256K bytes contained in the memory bank, and then only 
when the appropriate byte or bytes is being written to as indicated by the 
SIZ0, SIZ1, A0, and A1 signals. The four signals, UUCS, UMCS, LMCS, and 
LLCS, control data bits D24-D31, D16-D23, D8-15, and D0-D7 respectively. 
AS is used to qualify the byte select signals to avoid spurious writes to 
memory before the address is valid. During read operations, the read chip 
select (RDCS) signal, qualified with AS, controls the data latches only (since 
the memory is already enabled with its E input grounded). The last signal 
generated by the PAL is the TERM signal. As the equation shows, TERM 
consists of two events: one for read cycles and the other for write cycles. 
For read cycles, TERM is an address decode signal that is asserted whenever 
the address corresponds to the encoded memory-mapped bank of SRAM. 
Write operations use the DAS signal to qualify the address decode, which 
lengthens write cycles to three clock periods. If a two-clock write cycle is 
required, this design can be modified to incorporate the address and data 
latches used in Figure 12-12. TERM is connected to the system's STERM and 
CBACK consolidation circuitry such that both are asserted when TERM is 
asserted. The consolidation circuitry should have a maximum propagation 
delay of 15 ns or less. If the system has no other synchronous memory or 
ports, TERM can be connected directly to STERM, and CBACI( may be 
grounded. 

The second section is the burst address generator which contains the four 
counters and the inverter. The counters serve to both buffer the MC68030's 
address lines (A2 and A3) and to provide the next long-word address during 
a burst operation. The 74F191s are asynchronously preset at the beginning 
of every bus cycle when AS is negated. When AS asserts, the counting is 
dependent on the CBREQ signal and the CLK signal. During writes, CBREQ 
is always negated, and the counters serve only as address buffers. During 
reads, if CBREQ asserts, the current value of counter bits QI:Q0 are incre- 
mented on every falling clock edge of the MC68030's clock after AS asserts. 
Four counters are used to provide enough drive capability to avoid an ad- 
ditional buffer propagation delay. Each counter drives eight memory devices. 

The third section contains the memory devices. The most important feature 
of the memory devices used in this design is the separate data-in and data- 
out pins, which allow the SRAMs to be constantly enabled before address 
decode is complete without causing data bus contention. If the designer 

12-26 MC68030 USER'S MANUAL MOTOROLA 



wishes to include some type of enable circuitry to take advantage of low bus 
utilization, the timing in this design will be preserved if the memory's E signal 
is asserted within 13 ns after the falling edge of state SO. 

The fourth and last section of the memory bank is the address and data 
buffers. The address buffers are shown as 74ALS244s, but 74AS244s and 
74F244s are also acceptable. Two inputs to the address buffers remain unused 
allowing the possibility for expansion up to 1 Mbyte without any additional 
devices when SRAMs of suitable density become available. The RDCS signal, 
qualified with AS, controls the data buffers during read operations. The ad- 
dress buffers are always enabled. 

Some modifications to this design can improve performance. Specifically, 
circuitry to control CBACK and thus prevent or discontinue a burst cycle is 
a simple addition. The circuitry should have two functions: to prevent wrap- 
around and to prevent bursting when a data operand crosses a long-word 
boundary. 

Not all systems require the performance of 20-MHz 2-1-1-1 burst cycles, nor 
will all systems be able to afford the fast devices of this design. If the clock 
frequency is below approximately 17.5 MHz, the same support logic supports 
2-1-1-1 burst cycles with 35-ns memory. If 20 MHz is still the frequency of 
choice, the designer may choose to run 3-1-1-1 burst cycles. 

12,5.3 A 3-1-1-1 Burst Mode Memory Bank Using SRAMs 

Figure 12-15 shows the complete 3-1-1-1 memory bank with 256K bytes that 
can operate with a 20-MHz MC68030. The required parts include: 

(32) 64K × 1 SRAMs 35-ns access time (Motorola's MCM6287-35 or equiv- 
alent) 

(4) 74ALS244 buffers 
(4) 74F374 latches 
(2) 74F32 OR gates 
(4) 74F191 counters 
(1) PAL16L8D (or equivalent) 
(2) inverters 
(1) flip-flop 

MOTOROLA MC68030 USER'S MANUAL 12-27 

1: 



2 

20 MH 
CLOCK 

GENERATION i 
CLK I 

MC6R03O 

CLK 

00-031 I 

q 

AO-A31 

s~zo I 
slz; I 
R/wl 

s+-r~ I 

cB-~t 

74F32 

74AS374 

JL2 
/ 

!BO.A2B3 
A380-A383 • A280 ~-  

er 
i, _..2.1 

74F32 

BURST ADDRESS I 
GENERATION 
(SEE BELOW) I 

A4-A15 l~l 

NC R-~  
A30 

A19 UMCS - -  i ~ A18 LMCS 
A1 
AO 
SIZO 
SIZ1 
R/W 

BYTE SELECT AND ADDRESS I | DECODE PAL16LRD 

\ 

A282 

ilGH IGH 
CKx ~Kx 
RA~ RAt~ 

A3B2 
r - -  

r-2 ~ 
-2 -2 

/ 

D 
0 [ 

A2B3 

A383 

i 
I 

/ 

!IGHT 
~K x 
RAM! 

E 

< 3 - -  OTHER STERM OR 1 
0 ~ _ _  CBACK SIGNALS 

SYSTEM STERM/CB-BACK 
CONSOUOATION CIRCUITRY 

I 74FI91 74F]91 74F19l 74F191 

A2 PG - -e-  PO 
A3 P1 - -e-  P1 

CLK CP - -o-  CP 
"~/D 

1 3 A380-A3R3 
~ = A 2 B 2  83 A2BO-A2B3 

8URST ADDRESS GENERATOR (ONE COUNTER PER EIGHT MEMORY DEVICES) 

Figure 12-15. Example 3-1-1-1 Pipelined Burst Mode Memory Bank at 
20  M H z ,  2 5 6 K  B y t e s  

12-28 MC68030 USER'S MANUAL MOTOROLA 



The structure of this memory bank is very similiar to the 2-1-1-1 memory 
bank described in 12,5.2 A 2-1-1-1 Burst Mode Memory Bank Using SRAMs. 
In fact, the PAL and address buffers are exactly the same. The PAL equations 

are provided in Figure 12-10. The most important differences occur in the 
data latches, which are now flip-flops. Also, the D-type flip-flop has been 
moved from the input side of the PAL to the TERM output. 

The data flip-flops allow the long words out of the memory to be pipelined 
such that setup and hold times are easier to satisfy. The memory devices 
are generating the next long word of data even before the MC68030 has 
latched the "current" long word. This alteration eases access timing require- 
ments such that 35-ns memory can be used with a clock frequency of 20 
MHz. If the clock frequency is less than 17 MHz, 45-ns memory can be used. 
Another benefit of the slower cycle is a relaxed timing requirement for the 
enable inputs of the SRAMs. Although Figure 12-15 has all the SRAM chip 
enables grounded, the timing in this design will be preserved if the memory's 

signal is asserted within 10 ns after the rising edge of state $2. Figure 12- 
16 shows four possible enable circuits. 

VCC 

VCC 

ECS - -  

74F74 

Q ~" (BUFFERED)- -~"  TERM D 

"Q CLK CLK 
TERM 

c ( B U F F E R E D ) - - ~  T 

m 

ECS - -  

VCC 

74F74 

~ g 

Figure 12-16. Additional Memory Enable Circuits 

The flip-flop connected to the TERM signal serves two purposes: first, the 
TERM signal is delayed at the beginning of the cycle to insert the wait state 
for the first long word, and second, the burst address generator is also pre- 
vented from incrementing the long word base address until the first long- 
word has been latched by the 74F374s. 

The performance enhancing modifications described for the 2-1-1-1 design 
also apply to this design. Specifically, circuitry can be added to control CBACK 
and thus prevent or discontinue a burst cycle. The circuitry should have two 
functions: first, to prevent wraparound and second, to prevent bursting when 

MOTOROLA MC68030 USER'S MANUAL 12-29 

1; 



a data operand crosses a long-word boundary. Another enhancement might 
be to alter the TERM control circuitry with the addition of a write latch mech- 
anism to run two-clock writes. 

The critical path for the 3-1-1-1 memory bank is not the first long-word access 
as in the 2-1-1-1 memory bank, but rather the subsequent long words during 
burst cycles. No alternative architecture can correct the critical path for the 
2-1-1-1 burst cycle. However, for 3-1-1-1 burst cycles, the designer might 
consider memory banks which are 64 or 128 bits wide. In this manner, the 
access time for the subsequent long words can be hidden underneath the 
access of the previous long word(s). 

21 

12.6 E X T E R N A L  C A C H E S  

To provide lower average access times to memory, some systems implement 
caches local to the main processor that store recently used instructions and/ 
or data. For the MC68030, several architectural options are available to the 
cache designer. The primary decisions are whether to configure the cache 
as an asynchronous or synchronous device and whether the cache accesses 
are terminated early (before the cache lookup is complete) or only after 
validation. 

The MC68030 late BERR/HALT facility allows an external device to signal 
completion of a bus cycle by asserting DSACKx or STERM and later (ap- 
proximately one clock period or one-half clock, respectively) aborting or re- 
trying that cycle if an error condition is detected. Since one critical access 
path in many memory structures is the assertion of DSACKx/STERM to avoid 
additional wait states, the late abort capability allows the memory controller 
to terminate a bus cycle before data is valid on the processor data bus. If the 
data validation fails, the memory controller can then abort (BERR) or retry 
(BERR/HALT) the cycle. This technique is useful in memory error detection 
schemes where the cycle can be terminated as soon as data becomes avail- 
able and the error checking can occur during the period between the signaling 
of termination of the cycle and the latching of data by the processor with a 
late retry or abort signaled upon error indication. Likewise, this technique 
can be used in cache implementations in which the cache tag validation 
cannot be completed before termination of the cycle must be signaled but 
the validation is completed before late abort or retry must be indicated. 

The major consideration in choosing whether or not to utilize late retry for 
an external cache miss is the overhead involved in retrying a bus cycle after 
a miss in the cache. The minimum penalty is the four clock periods required 

12-30 MC68030 USER'S MANUAL MOTOROLA 



to retry the cycle (two clocks during which the miss is detected and two 
clocks idle bus time), assuming that the bus control strobes (BERR and HALT) 
are negated soon enough after the completion of the aborted cycle that the 
next cycle can begin immediately. In evaluating this overhead, the projected 
cache miss rate determines the percentage of cycles that must be retried. 
Additionally, the degree of parallelism in the system should be considered. 
If, after a cache miss, it is possible to continue the bus cycle to main memory 
while the processor is retrying the cycle, it is possible to avoid some, or all, 
of the performance penalty associated with late retry (although the control 
circuitry required may be more complex). 

For a two-clock bus or burst capability, use of the synchronous bus is man- 
dated, but for a three or more clock, nonburst cache, the choice of synchron- 
ous versus asynchronous operation must be made. If the bus cycle is 
terminated only after validation, use of the synchronous bus is recommended 
since the address-valid-to-STERM-asserted timing requirement is longer than 
the address-valid-to-DSACK-asserted timing for bus cycles of the same length. 
If the cache implements late retry, the choice of which bus control mode to 
use is less important and depends on system-specific features and control 
structures. Some external caches might use both synchronous and asyn- 
chronous transfers: synchronous for hits and asynchronous for misses or 
vice versa. The following discussion assumes that the external cache uses 
the synchronous two-clock protocol, but most statements also apply to the 
asynchronous protocol. 

If the MC68030 MMU is disabled, all bus cycles use logical addresses. If the 
MMU is enabled, the external address bus uses physical addresses (including 
directly mapped logical-to-physical addresses from the transparent transla- 
tion (TTx) registers). These two modes of operation, logical and physical, 
affect the maintenance of external caches. For example, when the external 
cache uses physical addresses, the cache need not be flushed on each context 
switch. Since each task in a system may have its own unique mapping of 
the logical address space, a logical cache must be flushed of all entries any 
time the logical-to-physical mapping of the system changes (as occurs during 
a context switch). Since there is only a single physical address space, this 
problem does not occur with a physical cache because all references to a 
particular operand must utilize the same physical address. 

The intended cache size should be evaluated when considering the utility of 
allowing multiple tasks to maintain cache entries. If the cache is relatively 
small and the time between context switches is large, each task will tend to 
fill the cache and remove all entries created during the execution of previous 

MOTOROLA MC68030 USER'S MANUAL 12-31 

12 



12 

tasks. Conversely, if the cache size is relatively large and the period between 
context switches is relatively small, the cache may provide an efficient sharing 
of entries. 

12.6.1 Cache Implementation 
An example organization of an external cache is shown in Figure 12-15. With 
this organization, the cache timing controller does not terminate a bus cycle 
until the cache has had sufficient time to validate the access as a "h i t "  or a 
"miss". When a hit decision is made, the cache controller asserts the STERM 
signal and also blocks propagation of AS (A) to the external system. If the 
cache decision cannot be completed before AS would normally be asserted 
by the MC68030, some provision must be made to delay the propagation of 
AS until the decision is valid. Otherwise, spurious assertions of the AS signal 
are likely to occur. 

The cache control circuit (B) contains all logic required to clear or create 
cache entries. Also contained in (B) is the decision logic required to determine 
whether a hit or miss has occurred and the timing logic that is required to 
prevent propagation of the "hit" signal until the lookup and compare circuitry 
has had sufficient time to generate a valid decision. The critical path in the 
design of this cache is from the output of valid address by the MC68030 to 
the assertion of STERM by the cache controller (see Equation 12-3 of Table 
12-2). After a cache hit decision has been made, the hit signal directly drives 
the STERM signal. Qualifying STERM with AS is not necessary assuming the 
appropriate setup and hold times are respected when AS is asserted. Op- 
erating at 20 MHz with no wait states, 21 ns are available from the presen- 
tation of valid address by the MC68030 to the assertion of STERM by the 
cache controller while 46 ns are available from valid address to data valid at 
the processor. 

If the access times cannot be met due to the particular cache architecture, 
size, cost, or other consideration, the system designer may choose to utilize 
an early termination approach, as discussed above, that increases the de- 
cision time available to the cache controller by meeting the critical path from 
address valid to BERR/HALT asserted (see Equation 12-5 of Table 12-2). The 
only required changes to the cache structure shown in Figure 12-17 is the 
generation of STERM. Figure 12-18 shows an example circuit that could be 
positioned between the MC68030 and the external cache to provide the early 
termination or late retry function. 

12-32 MC68030 USER'S MANUAL MOTOROLA 



Q ~ 

~ O U T  

rviC68030 

FCO-FC2 
SIZO-SIZ1 

AO-A31 
CBREQ 
CBACK 

a M  
RMC 

CLOUT 
E~ 

STERM 
8ERR 
NAN 

RESET 
CLK 

DO-D31 

BGACK 

CIIN 

CAIHEHT  TVLOW I 
i 
I 

t STERM i 

• i 
b 

TAG STORE, 
COMPARE, 

AND 
CONTROL 

j ; 

! 

I 

I) 

I '  
II 

OUTPUT 

! , 

1 
I 

# 

1 

I/0 DEVICES. 
CONTROl-, 

AND 
BUFFERING 

Figure 12-17. Example MC68030 Hardware Configuration with 
External Physical Cache 

Normally, as soon as AS is asserted, circuit (C) immediately asserts the 
STERM signal to terminate the bus cycle, assuming that the cache will pro- 
duce a valid hit later in the cycle. Circuit (C) also prevents the early termination 
from occurring from those cycles that access operands that are noncachable 
or had missed in the cache on the previous cycle (and have not already been 
retried). In this example, (C) prevents early termination of all CPU space 
accesses, all write cycles (assuming a writethrough cache is implemented), 

MOTOROLA MC68030 USER'S MANUAL 12-33 



12 

FC2 

FC1 

ECO - -  

CLOUT 

R/W 

CACHE HIT 
(ACTIVE HIGH) 

CACHE HIT 
IACTIVE HIGH) 

7 

~ )0 CPUSPACE 

- -  I 

I 

AS 

I STERM 

, l 
i I 
I H-EC 

I 
I 

I 

I I 
, ® j  I 
L 

Figure 12-18. Example Early Termination Control Circuit 

cycles with CIOU-I = asserted, and all cycles that missed in the cache on the 
previous cycle and were not accesses to noncachable locations. The flip-flop 
in (C) latches the termination condition of the current bus cycle at the rising 
edge of AS, and this status is used during the next cycle. Other conditions 
to suppress early termination may be included as required by a particular 
system, but propagation delays must be carefully considered in order that 
the output of (C) be valid before the rising edge of state $1 (see Equation 
12-3 of Table 12-2). 

The late termination circuit is formed by the gates (D) and (E). If the current 
cycle is accessing a cachable location, as determined by the output of (C), 
and a cache hit has not occurred (D), then the BERR and HALT signals are 
driven low (E). 

Note that the logic depicted in Figure 12-18 is designed to support a cache 
operating with no wait states. A provision for generating wait states may be 
included by placing additional timing stages between (C) and the MC68030 
to delay propagation of this output by the required number of clock periods. 

12-34 MC68030 USER'S MANUAL MOTOROLA 



To minimize the potential for delays in retrying a bus cycle, the negation path 
of the bus error and halt signals should be carefully controlled. Light capa- 
citive loading of these signals lines as well as the use of a properly sized 
pullup resistor for any open collector drivers, or some equivalent method, 
is recommended. 

The available cache tag lookup, compare, and logic delay (D) and (E) time 
for this implementation is given by Equation 12-5 of Table 12-2 (40 ns at 20.0 
MHz with no wait states). 

A further design consideration is the response of the main memory controller 
to accesses that miss in the cache and are retried. During a retry operation 
and in the absence of arbitration for the logical bus, the MC68030 continu- 
ously drives the address bus with the address that caused the retry to be 
signaled. This presents the designer with the opportunity to utilize this in- 
formation to continue (or initiate) the access in the main memory (by latching 
the state of the AS signal during the initial bus cycle and holding it asserted 
for the duration of the retry), thus decreasing the overhead associated with 
retrying the cycle. 

12.6.2 Instruction-Only External Cache Implementations 

In some cases, particularly in multiprocessing systems where cache coher- 
ence is a concern, it is desirable to store only instruction operands since they 
are not consideredto be alterable and, hence, cannot generate stale data. In 
general, this is feasible with the MC68000 architecture as long as PC relative 
addressing modes are not used. This restriction allows program and data 
accesses to be distinguished externally by decoding the function code sig- 
nals. 

12.7 DEBUGGING AIDS 

The MC68030 supports the monitoring of internal microsequencer activity 
with the STATUS and REFILL signals. The use of these signals is described 
in the following paragraph. A useful device to aid programming debugging 
is described in 12.7.2 Real-Time Instruction Trace. 

MOTOROLA MC68030 USER'S MANUAL 12-35 

1: 



12.7.1 STATUS and REFILL 

The MC68030 provides the STATUS and REFILL signals to identify internal 
microsequencer activity associated with the processing of data in the pipe- 
line. Since bus cycles are independently controlled and scheduled by the bus 
controller, information concerning the processing state of the microsequen- 
cer is not available by monitoring bus signals by themselves. The internal 
activity identified by the STATUS and REFILL signals include instruction 
boundaries, some exception conditions, when the microsequencer has halted, 
and instruction pipeline refills. STATUS and REFILL track only the internal 
microsequencer activity and are not directly related to bus activity. 

As shown in Table 12-4, the number of consecutive clocks during which 
STATUS is asserted indicates an instruction boundary, an exception to be 
processed, or that the processor has halted. Note that the processor halted 
condition is an internal error state in which the microsequencer has shut 
itself down due to a double bus fault and is not related to the external 
assertion of the HALT input signal. The HALT signal only affects bus oper- 
ation, not the microsequencer. 

Table  12-4. M ic rosequencer  S T A T U S  Indicat ions 

Asserted for Indicates 

1 Clock Sequencer at instruction boundary will begin execution of next instruction 

2 Clocks Sequencer at instruction boundary but will not begin next instruction immediately 
due to: 

• pending trace exception 
OR 

• pending interrupt exception 

3 Clocks 

2 

MMU address translation cache miss -- processor to begin table search 
OR 

Exception processing to begin for: 
• reset OR 
• bus error OR 
• address error OR 
• spurious interrupt OR 
• autovectored interrupt OR 
• F-line instruction (no coprocessor responded) 

.Continuously Processor halted due to double bus fault 

The REFILL signal identifies when the microsequencer requests an instruction 
pipeline refill. Refill requests are a result of having to break sequential in- 
struction execution to handle nonsequential events. Both exceptions and 
instructions can cause the assertion of REFILL. Instructions that cause refills 
include branches, jumps, instruction traps, returns, coprocessor general in- 

12-36 MC68030 USER'S MANUAL MOTOROLA 



structions that modify the program counter flow, and status register manip- 
ulations. Logical and arithmetic operations affecting the condition codes of 
the status register do not result in a refill request. However, operations like 
the MOVE <ea>,SR instruction, which updates the status register, cause a 
refill request since this can change the program space as defined by the 
function codes. When the program space changes, the processor must fetch 
data from the new space to replace data already prefetched from the old 
program space. Similarly, operations which affect the address translation 
mechanism of the memory management unit (MMU) cause a refill request. 
An instruction like the PMOVE <ea>,TC, which changes the translation con- 
trol register, requires the processor to fetch data from the new address trans- 
lation base. The Test Condition, Decrement, and Branch (DBcc) instruction 
causes two refill requests when the condition being tested is false. To opti- 
mize branching performance, the DBcc instruction requests a refill before the 
condition is tested. If the condition is false, another refill is requested to 
continue with the next sequential instruction. 

Figure 12-19 illustrates the relation between the CLK signal and normal in- 
struction boundaries as identified by the STATUS signal. STATUS asserting 
for one clock cycle identifies normal instruction boundaries. Note that the 
assertion of REFILL does not necessarily correspond to the assertion of 
STATUS. Both STATUS and REFILL assert and negate from the falling edge 
of the CLK signal. 

INSTRUCTION 
80UNDARIES ~ 1 

CLK 

R EFIL'~'C ~ , . ~ /  

STATUS J 

Figure 12-19. Normal Instruction Boundaries 

Figure 12-20 shows a normal instruction boundary followed by a trace or 
interrupt exception boundary. STATUS asserting for two clock cycles iden- 
tifies a trace or interrupt exception. Instruction boundary information is still 
present since both trace and interrupt exceptions are processed only at in- 
struction boundaries. Before the exception handler instructions are pre- 
fetched, the REFILL signal asserts (not shown) to identify a change in program 
flow. 

MOTOROLA MC68030 USER'S MANUAL 12-37 

12 



INSTRUCTION PENDIN6 TRACE OR 
BOUNDARIES 1 ~ INTERRUPTpRoCESSINDEXCEPTION 

CLK 

REFILL 

STATUS / 

Figure 12-20. Trace or Interrupt Exception 

Figure 12-21 illustrates the assertion of the STATUS signal for other exception 
conditions, which include MMU address translation cache miss, reset, bus 
error, address error, spurious interrupt, autovectored interrupt, and F-line 
instruction when no coprocessor responds. Exception processing causes 
STATUS to assert for three clock cycles to indicate that normal instruction 
processing has stopped. Instruction boundaries cannot be determined in this 
case since these exceptions are processed immediately, not just at instruction 
boundaries. 

CLK 

REFILL 

STATUS \ / 

Figure 12-21. Other Exceptions 

12 
Figure 12-22 shows the assertion of STATUS, indicating that the processor 
has halted due to a double bus fault. Once a bus error has occurred, any 
additional bus error exception occurring before the execution of the first 
instruction of the bus error handler routine constitutes a double bus fault. 
The processor also halts if it receives a bus error or address error during the 
vector table read operations or the prefetch for the first instruction after an 
external reset. STATUS remains asserted until the processor is reset. 

12-38 M068030 USER'S MANUAL MOTOROLA 



CLK 

REFILL 

STATtJS \ 

Figure 12-22. Processor Halted 

12.7.2 Real-Time Instruction Trace 

Microprocessor-based systems used for real-time applications typically lack 
development aids for program debug. The real-time environment does not 
allow program instruction execution to arbitrarily stop to handle debugging 
events. These systems include control applications where mechanical events 
cannot halt, such as robotics, automotive, and industrial control and emulator 
systems which may need to keep the target system executing in real time. 

To solve the problems inherent with real-time systems, the MC68030 incor- 
porates extra hardware-based features to enhance program debug. Real-time 
systems cannot take advantage of the trace exception mechanism built into 
all M68000 Family processors since this takes processing time away from 
real-time events. Additional output pins have been incorporated into the 
MC68030 to gain real-time visibility into the processor. Tracing capability can 
be added by decoding MC68030 control signals to detect which cycles are 
important for tracking. Post analysis of collected data allows for program 
debug. 

Several problems exist with an external trace mechanism. These problems 
include determining which cycles are important for tracking program flow, 
detecting if instructions obtained in prefetch operations are discarded by the 
execution unit, and the inability of external trace circuitry to capture accesses 
to on-chip cache memories. 

External trace hardware used for program debug must be synchronized to 
the MC68030 bus activity. Since all clock cycles are not traced in a program 
debug environment, the trace hardware requires a sampling signal. For ex- 
ternal read and write operations, trace sampling occurs when the data bus 
contains valid data. Two modes of external bus operation are possible: the 
synchronous mode in which the system returns the STERM signal and the 
asynchronous mode in which the system responds with the DSACK1 and or 
the DSACK0 signals. Both modes of bus operation need to generate a sam- 

MOTOROLA MC68030 USER'S MANUAL 12-39 

12 



12 

piing signal when valid data is present on the bus. This allows for tracing 
data flow in and out of the processor, which is the basis for tracking program 
execution. 

The pipelined architecture of the MC68030 prefetches instructions and op- 
erands to keep the three stages of the instruction pipe full. The pipeline allows 
concurrent operations to occur for up to three words of a single instruction 
or for up to three consecutive instructions. While sequential instruction ex- 
ecution is the norm, it is possible that prefetched data is not used by the 
execution unit due to a nonsequential event. The STATUS signal allows trace 
hardware to mark the progress of the execution unit as it processes program 
memory operands and allows marking of some exceptions. Nonsequential 
events, where the entire pipeline needs to reload before continuing execution, 
are marked by the REFILL signal. 

External hardware typically has no visibility into on-chip cache memory op- 
erations. However, the MC68030 provides a local address reference to in- 
crease visibility. Write operations are totally visible since the MC68030 
implements a writethrough policy allowing external hardware to capture 
data. For read operations from on-chip cache memories, the least significant 
byte of the address bus provides a local address reference. 

The MC68030 begins an external cycle by driving the address bus and as- 
serting the external cycle start (ECS) signal. Address strobe (AS) asserts later 
in the cycle to validate the address. If a hit occurs in the cache or the cache 
holding register, then the external cycle is aborted and AS is not asserted. 
In addition, the low-order address bits (A0-A7) are not involved in the address 
translation process performed by the on-chip MMU, creating a local address 
reference which can be used by trace functions. All read cycles from the on- 
chip cache memories cannot be captured externally since the cache access 
does not depend on the availability of the external bus. 

Figure 12-23 shows a trace interface circuit which can be used with a logic 
analyzer for program debug. The nine input signals (DSACK1, DSACK0, CLK, 
AS, RESET, STATUS, REFILL, STERM, and ECS) are connected to the MC68030 
processor in the system under development. Six output signals are generated 
to aid in capturing and analyzing data. In addition to connecting the logic 
analyzer to the address bus, the data bus, and the bus control signals, the 
trace interface signals (SAMPLE, PHALT, FILL, EP, IE, and ECSC) should also 
be connected. The external clock probe of the logic analyzer connects to the 
system CLK signal for synchronization. Setting up the logic analyzer for data 
capture requires that samples be taken on the falling edge of the CLK signal 
when the SAMPLE signal is high. Table 12-5 lists the parts required to im- 
plement this circuit. 

12-40 MC68030 USER'S MANUAL MOTOROLA 



0 
0 DO 
0 

0 
r -  

m 

Z 
C 
r- 

OSACKO I VCC 

l ,.--Z 4F°° 

CLK 

Z~Vcc 

4174 OSOO 

- l 6 4 ~ 7 4 F ~  OSACK 

DSOl 5 c L ~  

1 1 1 3  

RESET 

74Fl14 

3 J1 
K1 __ ._~.~. ~ Q2 

i ~ L  m J2 

STATUS 
REFILL 

~ Vcc 

! 

STERM 

_ m  

y 

2 O E 

VCC Z 

74F74 ] 2 ~ D  ~ 

, VCC 

10 74F74 

13 

L VCC PAL16R6D 

VCC 
DSACK 2 
CLK 3 

I 
4 

RESET 5 
STATUSQ 6 
REFILLQ 7 
ECSQ 8 

____._~1 > CP 
~,__! gg 

~ Vss 

I 4 74F00 
ECSQ 5 ~ - ~ . ~ 0  6 

18 PHALT 
17 FILL 
16 EP 
15 IE 

Figure 12-23. Trace Interface Circuit 

14 
13 SECS 

19 SAMPLE 
12 CLKOUT 

ECSC 

. . . =  



12 

Table 12-5. List of Parts 

Quantity Part Part Description 

1 74F00 Quad 2 Input NAND Gate 

1 74F114 Dual JK Negative Edge-Triggered Flip-Flop 

2 74F74 Dual D-Type Positive Edge-Triggered Flip-Flop 

1 PAL16R6D Programmable Logic Array, Ultra High Speed 

The sample signal (SAMPLE) is an active-high signal which qualifies the next 
falling edge of the CLK signal as the sampling point. Five types of conditions 
cause SAMPLE to assert: 

1. An external bus cycle 

2. An internal cache hit, including a hit in the cache holding register 

3. An instruction boundary 

4. Exception processing as marked by the EP signal discussed below 

5. The processor halting 

The remaining five output signals are used to qualify the information col- 
lected. 

The processor halt (PHALT) signal indicates that the MC68030 has received 
a double bus fault and needs a reset operation to continue processing. PHALT 
asserts after the assertion of STATUS for greater than three clock cycles and 
generates a SAMPLE signal. 

The FILL signal indicates a break in sequential instruction execution. FILL is 
a latched version of the REFILL signal and remains asserted until a sample 
is collected as indicated by the assertion of SAMPLE. The assertion of FILL 
does not generate a SAMPLE signal. 

The exception pending (EP) signal indicates that the MC68030 is beginning 
exception processing for either a reset, bus error, address error, spurious 
interrupt, autovectored interrupt, F-line instruction, MMU address translation 
cache miss, trace exception, or interrupt exception. The EP signal asserts 
after STATUS negates from a two- or three-clock cycle assertion. The asser- 
tion of EP does generate a SAMPLE signal. 

12-42 MC68030 USER'S MANUAL MOTOROLA 



The instruction executed (IE) signal indicates the execution unit has just 
finished processing an instruction. The IE signal asserts after STATUS ne- 
gates from a one-clock cycle assertion. The assertion of IE also generates a 
SAMPLE signal. 

The external cycle start condition (ECSC) signal is used in conjunction with 
the AS signal to determine if the address bus and data bus are valid in the 
current trace sample. Table 12-6 lists the possible combinations of AS and 
ECSC and shows what parts of the traced address and data bus are valid. 
The assertion of ECSC does not generate a SAMPLE signal. 

m 

Table 12-6. AS and ECSC Indications 

AS ECSC 

0 0 

0 1 

1 0 

1 1 

Indicates 

Both Address and Data Bus Are Valid 

Both Address and Data Bus Are Valid 

Address Bits (A0-AT) are Valid 
Address Bits (A8-A31) Are Invalid 
Data Bus Is Invalid 

Both Address and Data Bus Are Invalid 

Figure 12-24 shows the pin definitions for the PAL16R6 package used in the 
trace circuit. These definitions are used by the PAL equations listed in Figure 
12-25. 

12.8 POWER AND GROUND CONSIDERATIONS 

The MC68030 is fabricated in Motorola's advanced HCMOS process, contains 
approximately 275,000 total transistor sites, and is capable of operating at 
clock frequencies of up to 33.33 MHz. While the use of CMOS for a device 
containing such a large number of transistors allows significantly reduced 
power consumption in comparison to an equivalent NMOS circuit, the high 
clock speed makes the characteristics of power supplied to the device very 
important. The power supply must be able to supply large amounts of in- 
stantaneous current when the MC68030 performs certain operations, and it 
must remain within the rated specification at all times. To meet these re- 
quirements, more detailed attention must be given to the power supply con- 
nection to the MC68030 than is required for NMOS devices that operate at 
slower clock rates. 

12 

MOTOROLA MC68030 USER'S MANUAL 12-43 



/* This device generates a sampling signal for tracing processor activity on 
/* an instruction level basis for the MC68030. In the pin definitions and 
/* equations listed below the fol lowing symbols are used: 
/* Symbol Definition 
/* ! Logical NOT 
/* # Logical OR 
/* & Logical AND 
/* In addition, the '.d' extension on signal names refers to the 'D' input of 
/* the internal PAL flip flop. 

/* Al lowable Target Device Types : PAL16R6D High Speed PAL 

/**  Inputs **/  
PIN 1 = clk /* same as p in3CLK 
PIN 2 = DSACK /* Data Strobe Acknowledge 
PIN 3 = CLK /* MPU Clock Signal 
PIN 4 = !AS /* Address Strobe 
PIN 5 = !RESET /* System Reset Signal 
PIN 6 = [STATUSQ /* Latched STATUS Signal 
PIN 7 = !REFILLQ /* Latched REFILL Signal 
PIN 8 = !ECSQ /* Latched ECS Signal 
PIN 9 = ISTERMQ /* Latched STERM Signal 

/ **  Outputs ** /  
PIN 19 = SAMPLE 
PIN 18 = PHALT 
PIN 17 = FILL 
PIN 16 = EP 
PIN 15 = IE 
PIN 14 = sc 
PIN 13 = secs 
PIN 12 = CLKOUT 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

/* Sample Signal */ 
/* Processor Halted */ 
/* REFILL received */ 
/* Exception Pending */ 
/* Instruction Executed */ 
/* status complete */ 
/* sampled ECS signal */ 
/* Delayed CLK Signal */ 

Figure 12-24. PAL Pin Definitions 

12 
To supply a solid power supply interface, 10 Vcc pins and 14 GND pins are 
provided. This allows two VCC and four GND pins to supply power for the 
address bus and two VCC and four GND pins to supply the data bus; the 
remaining VCC and GND pins are used by the internal logic and clock gen- 
eration circuitry. Table 12-7 lists the VCC and GND pin assignments. 

To reduce the amount of noise in the power supplied to the MC68030 and 
to provide for instantaneous current requirements, common capacitive de- 
coupling techniques should be observed. While there is no recommended 
layout for this capacitive decoupling, it is essential that the inductance be- 
tween these devices and the MC68030 be minimized to provide sufficiently 
fas t  r e s p o n s e  t i m e  t o  sa t i s f y  m o m e n t a r y  c u r r e n t  d e m a n d s  a n d  to  m a i n t a i n  

12-44 MC68030 USER'S MANUAL MOTOROLA 



/ * *  Intermediate Equations * * /  /* State = PHALT SC EP IE */ 
SO = !PHALT & !SC & !EP & !IE; /* 0 = 0 0 0 0 */ 
$1 = !PHALT & !SC & !EP & IE; /* 1 = 0 0 0 1 */ 
$2 = !PHALT & !SC & EP & IE; /* 2 = 0 0 1 1 */ 
$3 = !PHALT & !SC & EP & !IE; ,* 3 = 0 0 1 0 */ 
$4 = PHALT & SC & EP & IE; /* 4 = 1 1 1 1 */ 
$5 = !PHALT & SC & !EP & IE; /* 5 = 0 1 0 1 */ 
$6 = !PHALT & SC & EP & IE; /* 6 = 0 1 1 1 */ 
$7 = !PHALT & SC & EP & liE; /* 7 = 0 1 1 0 */  

/ * *  Logic Equations * * /  
!SAMPLE = !SC & !AS & !SECS # 

!SC & !DSACK & !STERMQ & !SECS # 
!SC & AS & !DSACK & !STERMQ & SECS; 

!PHALT.d =!STATUSQ # !EP # IE # RESET; 

!SC.d = RESET # 
S0 # 
$1 & STATUSQ # 
$2 & STATUSQ # 
$4 & !STATUSQ # 
SC & !PHALT; 

!EP.d = RESET # 
S0 # 
$1 & !STATUSQ # 
$4 & !STATUSQ # 
SC & !PHALT; 

[IE.d = RESET # 
SO & !STATUSQ # 
$2 & STATUSQ # 
S3 & !STATUSQ # 
SC & !STATUSQ; 

!SECS.d = !ECSQ; 

!CLKOUT = !CLK; 

!FILL.d =!REFILLQ & SAMPLE # 
!FILL & !REFILLQ # 
RESET; 

Figure 12-25. Logic Equat ions  

MOTOROLA MC68030 USER'S MANUAL 12-45 

12 



12 

Table 12-7. VCC and GND Pin Assignments 

Pin Group VCC GND 

Address Bus C6, D10 C5, C7, C9, Ell 

Data Bus L6, K10 Jll, L9, L7, L5 

K4 J3 ECS, SIZx, DS, AT, DBE~, CBREQ, R W 

FC0-FC2, RMC, OCS, CLOUT, BG 

! Internal Logic, RESET, STATUS, REFILL, Misc. 

D4 

H3, F2, Fll, Hll 

E3 

L8, G3, F3, Gll 

a constant supply voltage. It is suggested that a combination of low, middle, 
and high frequency, high-quality capacitors be placed as close to the MC68030 
as possible (e.g., a set of 10 FF, 0,1 FF, and 330 pF capacitors in parallel 
provides filtering for most frequencies prevalent in a digital system). Similar 
decoupling techniques should also be observed for other VLSI devices in the 
system. 

In addition to the capacitive decoupling of the power supply, care must be 
taken to ensure a low-impedance connection between all MC68030 VCC and 
GND pins and the system power supply planes. Failure to provide connec- 
tions of sufficient quality between the MC68030 power supply pins and the 
system supplies will result in increased assertion delays for external signals, 
decreased voltage noise margins, and potential errors in internal logic. 

12-46 MC68030 USER'S MANUAL MOTOROLA 



SECTION 13 
ELECTRICAL CHARACTERISTICS 

The following paragraphs provide information on the maximum rating and 
thermal characteristics for the MC68030. Detailed information on timing spec- 
ifications for power considerations, DC electrical characteristics, and AC tim- 
ing specifications can be found in the MC68030EC/D, MC68030 Electrica/ 
Specifications. 

13.1 M A X I M U M  RATINGS 

Rating Symbol Value Unit 

Supply Voltage* VCC -0.3 to +7.0 V 

Input Voltage Vin -0.5 to +7.0 V 

Operating Temperature Range T A 0 to 70 °C 

Storage Temperature Range Tstg -55 to 150 :C 

*A continuous clock must be supplied to the MC68030 when it is powered 
up. 

13.2 THERMAL CHARACTERISTICS - -  PGA PACKAGE 

Characteristic Symbol Value Rating 

Thermal Resistance - -  Ceramic :C W 
Junction to Ambient ejA 30* 
Junction to Case eJC 15" 

*Estimated 

MOTOROLA MC68030 USER'S MANUAL 13-1 

13 



13 



SECTION 14 
ORDERING INFORMATION AND 
MECHANICAL DATA 

This section contains the pin assignments and package dimensions of the 
MC68030. In addition, detailed information is provided to be used as a guide 
when ordering. 

14.1 STANDARD MC68030 ORDERING INFORMATION 

Frequency 
Package Type 

Pin Grid Array 
RC Suffix 

Ceramic Surface Mount 
FE Suffix 

(MHz) Temperature Order Number 

20.0 O°C to 70°C MC68030RC20 
25.0 O°C to 70°C MC68030RC25 
33.33 O°C to 70°C MC68030RC33 

20.0 O°C to 70°C MC68030FE20 
25.0 O°C to 70°C MC68030FE25 
33.33 O°C to 70°C MC68030FE33 

• 1 4  

MOTOROLA MC68030 USER'S MANUAL 14-1 



14.2 PIN A S S I G N M E N T S  - -  PIN GRID ARRAY (RC SUFFIX) 

The Vcc  and GND pins are separated into three groups to prov ide indiv idual  
power  supply connect ions for the address bus buffers, data bus buffers, and 
all other output  buffers and internal logic. 

Pin Group VCC GND 

Address Bus C6, D10 C5, C7, C9, El l  

Data Bus L6, K10 Jl l ,  L9, L7, L5 

K4 J3 ECS, SIZx, DS, AS, DBEN, CBREQ, RAN 

FC0-FC2, RMC, OCS, CLOUT, BG D4 E3 

Internal Logic, RESET, STATUS, REFILL, Misc H3, F2, F11, H11 L8, G3, F3, G11 

/ N 
N 

M 

L 

K 

J 

H 

G 

F 

E 

D 

C 

B 

A 

O O O 0 O 
o31 D28 D26 D25 D23 

0 0 0 0 0 
DBEN ECS D29 D27 D24 

0 0 0 0 0 
Cll~ SIZ0 R/W D30 6NO 

0 0 0 0 0 
CBREQ DS SIZ1 VCC NC* 

O O O 
CBACK AS GND 

O O O 
BERR HALT VCC 

O O O 
STERM DSACK1 OND 

0 0 0 0 
OSACK0 Vcc ONO NC* 

0 0 0 
CLK AVEC GND 

0 0 0 0 0 
FC2 FC0 o~CS. • "Vcc NC* 

0 0 O" 
FC1 CLOUT 'BGACK 

o .o" o 
~ " "  B-G A31 

O O O 
BR A0 A30 \ 

1 2 3 4 

*NC - -  Do not connect to this pin. 

0 0 0 0 
D21 D19 D18 O16 

0 0 0 0 
D22 D20 D]7 D14 

0 0 0 0 
VCC 6NO 6NO 8NO 

BOTTOM 
VIEW 

0 0 0 0 0 0 
A1 GND VCC GND A18 GND 

0 0 0 0 0 0 
A29 A27 A25 A22 A20 A16 

0 0 0 0 0 0 
A28 A26 A24 A23 A2f A19 

5 6 7 8 9 

0 0 0 0 
D15 D13 Dll D8 

0 0 0 0 
D12 D9 D6 D3 

0 0 0 0 
D1O 07 D4 D2 

0 0 0 0 
VCC D5 01 DO 

O O O 
GND STATUS REFILL 

O O O 
VCC CDIS IPL0 

O O O 
6ND IPL2 IPL1 

0 0 0 ; , 0  
NC* VCC R E S E T ' ~  

O O O 
GND NC* IPEND 

0 0 0 0 
VCC A6 A3 A2 

0 0 0 0 
All A9 A5 A4 

0 0 0 0 
A14 A12 A8 A7 

0 0 0 0 
A~7 AT5 Af3 Af0 

/ 
l0 11 12 13 

1 4 2  M C 6 8 0 3 0  USER'S  M A N U A L  M O T O R O L A  



14.3 PIN A S S I G N M E N T S  - -  C E R A M I C  S U R F A C E  M O U N T  (FE SUFFIX)  

VCC F-- 
GND F-  

~ r - -  

A0 r -  

A1 r-- 

A31 r -  
A30 r-- 

GND r-- 
A29 F-- 

A28 F-- 
A27 F-  

A26 F -  

Vcc f-'- 
A25 f--  
A24 I'--" 

A23 f--  

A22 E~ 

GND I '~ 
A21 r-- 

A20 

A19 EZ 
A18 r--- 
A17 r-- 

A16 I ~  
A15 r ~  

A14 I ~  

GND I'-'- 

A13 EC 
AI2 f-- 

All f - -  
A10 f'-- 

VCC I - -  
NC F-- 

~r~l~ ~1 ~ ~ - ~ ~1~1~ > ~ ~ ~ -  z _ ~  z~ ~ r ' l  ~ ~1=~ 8 # - s s  ~ > " ~  = £-~ S= < 
0 PIF]O 0 0 0 El0 OFt0 OF,-- ~ 0 0 PIFlO FIO 0 OH 0 O0 0 0 0 
17 10 5 ~ )  125 117 

25 

110 

30 

105 

35 

TOP VIEW 100 

95 

45 
90 

50 55 60 65 70 75 80 83 

UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU 

* N C - -  Do not connect to this pin. 

"--1 V0c 

ZZ3 VCC 
ZZ~ D31 

ZZ~ D30 
D29 

--1 D28 

GND 

D27 
Z~  D26 

D25 

ZZZ] D24 

VCC 
D23 

D22 
ZZ] D21 

'--q D20 
'--"l GND 

D/9 
"-3 D18 

:Z] D17 

:Z3 D16 

"---I GND 
- 'q  D15 

"--q D14 
--q DI3 

"-'q D12 
"--1 6ND 

Z Dll 
D10 

D9 
ZZ3 D8 

VCC 
"-7 NC 

MOTOROLA MC68030 USER'S M A N U A L  14-3 

14 



4 

MC68030 
RC Suffix Package 

Case 789C-01 

~ SEATING 
PLANE 

K 

I 

14.4 PACKAGE DIMENSIONS 

® ® ® ® ® ® ® ® ® ® ~ ' ~  
®®®®®®®®®®(~B~----r 
®®®®®®®®®®®®® T ®®®®® ®®®® 
®®® ®®® 
®®® ®®® 
®®® ®®® 
®®®® ®®®® 
®®® ®®® 
®®®®® ®®®® 
®@®®®®®®®®®®® 
®®®®®®®®®®®®® 
~®®®®®®®®®®®~ 

2 3 4 5 6 7 8 9 10 11 12 13 

[÷l ~o.~3(o.oo51 ®l TIA®I 8®1 
128 PL 

NOTES: 
1. A AND B ARE DATUMS AND T IS A DATUM 

SURFACE. 
2. DIMENSIONING AND TOLERANCING PER Y14.5M, 

1982. 
3. CONTROLLING DIMENSION: INCH. 

MILLIMETERS 
DIM MIN MAX 
A 34.04 35.05 
B 34.04 35.05 
C 2.54 3.81 
D 0.44 0.55 
G 2.54 BSC 
K 4.32 J 4.95 

INCHES 
MIN MAX 
1.340 1.380 
1.340 1.380 
0.100 0.150 
0.017 0.022 

0.100 BSC 
0.170 I 0.195 

14-4 MC68030 USER'S MANUAL MOTOROLA 



I~ S ~1 

1¢-1o.2o{o.oo8~ ITIx@-¥@Iz@ I 
i t "  ~' "1 J 
F~-I 0.51 (0,020)® ITIx@-¥@Iz@ I 

MC68030 
FE Suffix Package 

Case 831-01 

V B ~ l- 

PIN 1 

L 

[--14~1 o.61{o.o2o1® }TIX@-Y@IZG I 
--1÷1o2o{oooB~® iTIx@--¥@Iz@ I 

K 
1~o~o41 ¢/ 

-T~- SEATING PLANE " ~ - M  ~ " ~  D 132 PI. 

1~1o=o~ooo8~® iT ix@ -Y@ Iz@ I 

MILLIMETERS INCHES 
DIM MIN MAX MIN MAX 
A 21.85 22,86 0,860 0,900 
B 21.85 22.86 0.860 0.900 
C 3.94 4.31 0.155 0,170 
D 0.204 0,292 0.0080 0.0115 
G 0.64 BSC 0.025 RSC 
H 0.64 0.88 0.025 0.035 
J 0.13 0.20 0.005 0.008 
K 0,51 0,76 0,020 0.030 
L 20.32 REF 0.800 REF 
M 0 ° 8 ° 0 ° 8 ° 
R 0.64 --  0.025 --  
S 27.31 27.55 1.075 1.085 
V 27.31 27.55 1.075 1.085 

NOTES: 
1. DIMENSIONING AND TOLERANCING 

PER ANSI Y14.5M, 1982. 
2. CONTROLLING DIMENSION: INCH. 
3. DIM A AND B DEFINE MAXIMUM CERAMIC BODY 

DIMENSIONS INCLUDING GLASS PROTRUSION 
AND MISMATCH OF CERAMIC BODY TOP AND 
BOTTOM. 

4, DATUM PLANE -',','- IS LOCATED AT THE 
UNDERSIDE OF _EADS WHERE LEADS EXIT 
PACKAGE 803 v 

5, DATUMS X -v -~\D Z "O BE DETERMINED 
WHERE CENTER ._=ADS EXIT PACKAGE BODY AT 
DATUM -W- 

6. DIM S AND % -C ~E CETERMINED AT SEATING 
PLANE, DA-~',' --- 

7. DIM A AN~ B -$ BE DETERMINED AT DATUM 
PLANE -Y.- 

MOTOROLA MC68030 USER'S MANUAL 14-5 

lZl 





APPENDIX A 
M68000 FAMILY SUMMARY 

This Appendix summarizes the characteristics of the microprocessors in the 
M68000 Family. Refer to M68000 PM AD, M68000 Programmer's Reference 
Manua/, for more detailed information about MC68000 and MC68010 differ- 
ences. 

NIC68000 MC68008 MC68010 MC68020 MC68030 

Data Bus Size (Bits) 16 8 16 8,16,32 8,16,32 
Address Bus Size 

(Bits) 24 20 24 32 32 
Instruction Cache 

(in words) u _ 31 128 128 
Data Cache (in words) . . . .  128 

Note 1. The MC68010 supports a three-word cache for the loop mode. 

Virtual Memory/Machine 
MC68010, 
MC68020, and Provide Bus Error Detection, Fault Recovery 
MC68030 

MC68030 On-Chip MMU 

Coprocessor Interface 
MC68000, 
MC68008, and 
M C68010 

MC68020 and 
MC68030 

Emulated in Software 

In Microcode 

MOTOROLA MC68030 USER'S MANUAL A-1 

A 



Word/Long-Word Data Alignment 
MC68000, 
MC68008, and Word/Long Data, Instructions, and Stack Must be 
MC68010 Word Aligned 
MC68020 and Only Instructions Must be Word Aligned 
MC68030 (Data Alignment Improves Performance) 

Control Registers 
MC68000 and 
MC68008 

MC68010 

MC68020 

MC68030 

None 

SFC, DFC, VBR 

SFC, DFC, VBR, CACR, CAAR 

SFC, DFC, VBR, CACR, CAAR, CRP, SRP, TC, TT0, 
TTI, PSR 

Stack Pointers 
MC68000, 
MC68008, and 
MC68010 

MC68020 and 
MC68030 

USP, SSP 

USP, SSP (MSP, ISP) 

Status Register Bits 
MC68000, 
MC68008, and 
MC68010 
MC68020 and 
MC68030 

T, S, 10/11/12, X/N/Z/V/C 

T0/T1, S, M, 10/11/12, X/N/Z/V/C 

A-2 MC68030 USER'S MANUAL MOTOROLA 



Function Code/Address Space 
MC68000 and 
MC68008 FC0-FC2 =7 is Interrupt Acknowledge Only 
MC68010, 
MC68020, and FC0-FC2=7 is CPU Space 
MC68030 

Indivisible Bus Cycles 
MC68000, 
MC68008, and 
MC68010 
MC68020 and 
MC68030 

Use AS Signal 

Use RMC Signal 

Stack Frames 
MC68000 and 
MC68008 
MC68010 
MC68020 and 
MC68030 

Support Original Set 
Supports Formats $0, $8 

Support Formats $0, $1, $2, $9, $A, $B 

Addressing Modes 
MC68020 and 
MC68030 extensions: 

Memory indirect addressing modes, scaled index, 
and larger displacements. Refer to specific data 
sheets for details. 

MOTOROLA MC68030 USER'S MANUAL A-3 



MC68020 and MC68030 Instruction Set Extensions 
Bcc 
BFxxxx 

BKPT 
BRA 
BSR 
CALLM 
CAS, CAS2 
CHK 
CHK2 
CMPI 
CMP2 
cp 
DIVS/DIVU 
EXTB 
LINK 
MOVEC 
MULS/MULU 
PACK 
PFLUSH 
PLOAD 
PMOVE 
PTEST 
RTM 
TST 
TRAPcc 
UNPK 

Supports 32-Bit Displacements 
Bit Field Instructions (BFCHG, BFCLR, BFEXTS, BFEXTU, 

BFFFO, BFINS, BFSET, BFTST) 
New Instruction Functionality 
Supports 32-Bit Displacements 
Supports 32-Bit Displacements 
New Instruction (MC68020 only) 
New Instructions 
Supports 32-Bit Operands 
New Instruction 
Supports Program Counter Relative Addressing Modes 
New Instruction 
Coprocessor Instructions 
Supports 32-Bit and 64-Bit Operands 
Supports 8-Bit Extend to 32 Bits 
Supports 32-Bit Displacement 
Supports New Control Registers 
Supports 32-Bit Operands 
New Instruction 
MMU Instruction (MC68030 only) 
M M U  Instruction (MC68030 only) 
M M U  Instruction (MC68030 only) 
MMU Instruction (MC68030 only) 
New Instruction (MC68020 only) 
Supports Program Counter Relative Addressing Modes 
New Instruction 
New Instruction 

A-4 MC68030 USER'S MANUAL MOTOROLA 



INDEX 

A 

Abort Task Routine, 9-86 
Absolute Long Address Mode, 2-20 
Absolute Short Address Mode, 2-20 
Access Time Calculations, Memory, 12-14-12-17 
Accesses, Read-Modify-Write, 6-10 
Acknowledge, Breakpoint, 8-10 
Activity, 

Data Bus, 12-11 
Processor, 

Even Alignment, 11-9 
Odd Alignment, 11-10 

Actual Instruction Cache Case, 11-11 
Adapter Board, 

MC68020, 12-1 
Signal Routing, 12-1 

Address Bus, 5-4, 7-4, 7-30ff, 12-4 
Address Encoding, CPU Space, 7-68 
Address Error Exception, 8-9, 10-72 
Address Offset Encoding, 7-9 
Address Register 

Direct Mode, 2-10 
Indirect Displacement Mode, 2-12 
Indirect Index (Base Displacement) Mode, 2-13 
Indirect Index (8-Bit Displacement) Mode, 2-12 
Indirect Mode, 2-10 
Indirect Postincrement Mode, 2-10 
Indirect Predecrement Mode, 2-11 

Address Registers, 1-6, 2-3 
Address Space Types, 4-3 
Address Strobe Signal, 5-5, 7-3, 7-4, 7-26ff 
Address Translation, 9-13 

Cache, 7-3, 9-4, 9-17 
Cache Entry, 9-18 
General Flowchart, 9-14 

Addressing, 
Capabilities, 2-25 
Compatibility, M68000, 2-36 
Indexed, 2-26 
Indirect, 2-28 
Indirect Absolute Memory, 2-28 
Mode Summary, 2-31 
Modes, 1-10, 2-8 
Structure, 2-36 

Aids, Debugging, 12-35 
Arbitration, Bus, 7-96 
Arithmetic/Logical Instruction, 

Immediate, Timing Table, 11-42 
T i m i n g  Table, 11-40 
AS Signal, 5-5, 7-3, 7-4, 7-26ff 

Assignment, Pin, 14-2, 14-3 
Assignments, Exception Vector, 8-2 
Asynchronous 

Bus Operation, 7-27 
Byte 

Read Cycle, 32-Bit Port, Timing, 7-33 
Read Cycle Flowchart, 7-32 
Read-Modify-Write Cycle, 32-Bit Port, Timing, 

7-45 
Write Cycle, 32-Bit Port, Timing, 7-38 

Cycle Signal Assertion Results, 7-78, 7-79 
Long-Word Read Cycle Flowchart, 7-32 
Read Cycle, 7-31 

32-Bit Port, Timing, 7-33 
Read-Modify:Write Cycle, 7-45 

Flowchart, 7-44 
Sample Window, 7-3 
Word 

Read Cycle, 32-Bit Port, Timing, 7-33 
Write Cycle, 32-Bit Port, Timing, 7-39 

Write Cycle, 7-37 
32-Bit Port, Timing, 7-38 
Flowchart, 7-37 

ATC, 7-3, 9-4, 9-17 
Entry, 9-17 

Creation Flowchart, 9-42 
Autovector Interrupt Acknowledge Cycle, 7-71 

Timing, 7-72 
Autovector Signal, 5-8, 7-6, 7-29, 7-71ff, 8-20 
AVEC Signal, 5-8, 7-6, 7-29, 7-71ff, 8-20 
Average No Cache Case, 11-8 
A0-A1 Signals, 7-8, 7-9, 7-22ff 
A0-A31 Signals, 5-4, 7-4, 7-31ff 
A0-A7, 1-6 

B 

BERR Signal, 5-9, 6-11, 7-6, 7-27ff, 8-7, 8-22, 8-26, 
Best Case, 11-7 / 
BG Signal, 5-9, 7-43, 7-96ff 
BGACK Signal, 5-9, 7-97ff 
Binary-Coded Decimal Instruction Timing Table, 

11-43 
Binary-Coded Decimal Instructions, 3-10 
Bit, 

CA, 10-35 
CD, 6-21 
CED, 6-21 
CEI, 6-22 
CI, 6-22 
Clear Data Cache, 6-21 

MOTOROLA MC68030 USER'S MANUAL INDEX-1 

! 



Bit (Continued) 
Clear Entry in Data Cache, 6-21 
Clear Entry in Instruction Cache, 6-22 
Clear Instruction Cache, 6-22 
Data Burst Enable, 6-21 
DBE, 6-21 
DR, 10-36 
ED, 6-22 
El, 6-23 
Enable Data Cache, 6-22 
Enable Instruction Cache, 6-23 
FD, 6-22 
FI, 6-23 
Freeze Data Cache, 6-22 
Freeze Instruction Cache, 6-23 
IBE, 6-22 
Instruction Burst Enable, 6-22 
PC, 10-35 
WA, 6-21 
Write Allocate, 6-21 

Bit Field 
Instruction Timing Table, 11-47 
Instructions, 3-9 
Operations, 3-31 

Bit Manipulation 
Instruction Timing TaMe, 11-46 
Instructions, 3-9 

BKPT Instruction, 7-74, 8-15, 8-22 
Block Diagram, 1-2, 9-3 

MMU, 9-3 
Processor Resource, 11-4 

BR Signal, 5-8, 7-43, 7-60, 7-96ff 
Branch on Coprocessor Condition Instruction, 10-13 
Breakpoint Acknowledge, 8-10 

Cycle, 7-74 
Exception Signaled, Timing, 7-77 
Timing, 7-76 

Flowchart, 7-75 
Breakpoint Instruction, 7-74, 8-22 

Exception, 8-22 
Buffer, 

Instruction Fetch Pending, 11-5 
Write Pending, 11-5 

Burst 
Cycle, 7-59, 12-17 
Mode 

Cache Filling, 6-10 
Static RAM, 12-18-12-24 

Operation, 7-59 
Flowchart, 7-62 

Bus, 
Address, 5-4, 7-3, 7-30ff, 12-5 
Arbitration, 7-96 

Bus Inactive, Timing, 7-104 
Control, 7-100 
Flowchart, 7-98 
Latency, 11-62 
State Diagram, 7-101 
Timing, 7-99 

Control Signals, 7-3 
Controller, 11-5 
Data, 5-4, 7-5, 7-30ff, 12-9, 12-19 
Error, 

Late, STERM, Timing, 7-86 
Late, Third Access, Timing, 7-87 
Late, With DSACKx, Timing, 7-85 
Second Access, Timing, 7-88 
Exception, 8-7, 10-71 
Signal, 5-9, 6-11, 7-6, 7-27ff, 8-7, 8-22 
Without DSACKx Timing, 7-84 

Errors, 7-82 
Exceptions, 7-75 
Fault Recovery, 8-27 
Operation, 

Asynchronous, 7-27 
Synchronous, 7-28, 7-29 

Synchronization, 7-95 
Timing, 7-96 

Transfer Signals, 7-1 
Bus Grant, 7-99 

Signal, 5-9, 7-43, 7-96ff 
Bus Grant Acknowledge, 7-100 

Signal, 5-9, 7-97ff 
Bus Request, 7-98 

Signal, 5-8, 7-43, 7-60, 7-96ff 
Busy Primitive, 10-36 
Byte 

Data Select, 7-25 
Read Cycle, Asynchronous, 

Flowchart, 7-32 
32-Bit Port, Timing, 7-33 

Select Logic, 12-9-12-12 
Write Cycle, Asynchronous, 32-Bit Port, Timing, 

7-38 

C 

CA Bit, 10-35 
CAAR, 1-9, 2-5, 6-23 
Cache, 

Address Translation, 7-3, 9-4, 9-17 
Data, 1-16, 6-6, 11-4, 11-16 
External, 12-30-12-32 
Filling, 7-24 

Burst Mode, 6-15 
Single Entry, 6-10 

Instruction, 1-16, 6-1, 6-4, 11-4 
Interactions, 7-26 
Organization, 6-1 
Reset, 6-20 

Cache Address Register, 1-9, 2-5, 6-23 
Cache Burst Acknowledge Signal, 5-7, 6-16-6-20, 

7-6, 7-30ff 
Cache Burst Request Signal, 5-7, 6-16-6-20, 7-6, 

7-30, 7-48ff 
Cache Control Register, 1-9, 2-5, 6-1, 6-3, 6-20, 6-21 
Cache Disable Signal, 5-10, 6-3 

INDEX-2 MC68030 USER'S MANUAL MOTOROLA 



Cache Inhibit Input Signal, 5-7, 6-3, 6-9-6-11, 6-15, 
7-3, 7-26ff 

Cache Inhibit Output Signal, 5-7, 6-3, 6-9, 7-30ff, 
9-1, 9-13 

CACR, 1-9, 2-5, 6-3, 6-4, 6-20-6-22 
Calculate Effective Address Timing Table, 11-31 
Calculate Immediate Effective Address Timing 

Table, 11-33 
Calculations, Execution Time, 11-5ff 
Capabilities, Addressing, 2-25 
CAS Instruction, 7-43 

Example, 3-25 
Case, 

Actual Instruction Cache, 11-11 
Average No Cache, 11-8 
Best, 11-7 
Instruction Cache, 11-6 

CAS2 Instruction, 7-43 
Example, 3-25 

CBACK Signal, 5-7, 6-16, 7-6, 7-30ff 
C;BREQ Signal, 5-7, 6-16-6-20, 7-6, 7-30, 7-48ff, 
CCR, 2-4, 3-14 
CD Bit, 6-21 
CDIS Signal, 5-10, 6-3 
CED Bit, 6-21 
CEI Bit, 6-22 
Changing Privilege Level, 4-4 
C~ Bit, 6-22 
CIIN Signal, 5-7, 6-3, 6-9-6-11, 6-15, 7-3, 7-26ff, 
CLOUT Signal, 5-7, 6-3, 6-9, 7-30ff, 9-2, 9-17 
CIR, 10-8, 10-29 

Command, 10-31 
Condition, 10-31 
Control, 10-30 
Instruction Address, 10-33 
Operand, 10-32 
Operand Address, 10-33 
Operation Word, 10-31 
Register Select, 10-32 
Response, 10-29 
Restore, 10-31 
Save, 10-30 

Clear Data Cache Bit, 6-21 
Clear Entry in Data Cache Bit, 6-21 
Clear Entry in Instruction Cache Bit, 6-22 
Clear Instruction Cache Bit, 6-22 
CLK Signal, 5-11, 7-54ff 
Clock Signal, 5-11, 7-54ff 
Command CIR, 10-31 
Command Words, Illegal, Coprocessor Detected, 

10-63 
Compare and Swap Instruction, 7-43 
Compatibility, M68000 Addressing, 2-36 
Computation, Condition Code, 3-15 
Concurrent Operation, 10-3 
Condition CIR, 10-31 
Condition Code 

Computation, 3-15 
Register, 2-4, 3-14 

Condition Tests, 3-17 
Conditional Branch Instruction Timing Table, 11-48 
Connections, Power Supply, 5-11 
Considerations, 

Ground, 12-43 
Power, 12-43 

Contiguous Memory, 9-33, 9-35 
Example, 9-35 

Control, 
Bus Arbitration, 7-100 
Early Termination, 12-34 

Control CIR, 10-30 
Control Instruction Timing Table, 11-49 
Controller, 

Bus, 11-5 
Micro Bus, 11-5 

Coprocessor, 
Communication Cycle, 7-74 
Conditional Instructions, 10-12 
Context Restore Instruction, 10-27 
Context Save Instruction, 10-24 
Data Processing Exceptions, 10-66 
DMA, 10-6 
Format Words, 10-22 
General Instruction Protocol, 10-11 
General Instructions, 10-9 
Identification Code, 10-4 
Instruction Format, 10-4 
Instruction Summary, 10-72-10-75 
Instructions, 3-21 
Interface, 10-1, 10-6 
MC68881, 12-4 
MC68882, 12-4 
Non-DMA, 10-6 
Reset, 10-72 
Response Primitive, 10-33 
Response Primitive Format, 10-35 
State Frames, 10-21 
System Related Exceptions, 10-64 

Coprocessor Detected 
Exceptions, 10-61 
Format Errors, 10-64 
Illegal Command Words, 10-63 
Illegal Condition Words, 10-63 
Protocol Violations, 10-62 

Coprocessor Interface Register, 10-8, 10-29 
Count, Initial Shift, 9-69 
CplD, 7-74, 10-4 
cpBcc Instruction, 10-14 
cpDBcc Instruction, 10-17 
cpRESTORE Instruction, 10-27 
cpSAVE instruction, 10-25 
cpScc Instruction, 10-15 
cpTRAPcc Instruction, 10-18 
cpTRAPcc Instruction Exception, 10-69 
CPU Root Pointer, 1-9, 2-5, 9-23, 9-52, 9-54, 9-65 
CPU Space, 7-68, 7-70, 10-5ff 
CPU Space Address Encoding, 7-68 
CRP, 1-9, 2-5, 9-23, 9-52, 9-54, 9-65 

MOTOROLA MC68030 USER'S MANUAL INDEX-3 



Cycle, 
Asynchronous Read, 7-31 
Breakpoint Acknowledge, 7-74 
Burst, 7-59, 12-17 
Coprocessor Communication, 7-74 
Interrupt Acknowledge, 7-69 
Interrupt Acknowledge, Autovector, 7-71 

Cycles, Data Transfer, 7-30 

- - D i n  

Data, Immediate, 2-21 
Data Buffer Enable Signal, 5-6, 7-5, 7-31ff 
Data Burst Enable Bit, 6-21 
Data 

Bus, 5-4, 7-5, 7-30ff, 12-9 
Activity, 12-10 
Requirements, Read Cycle, 7-10 
Write Enable Signals, 7-23 

Cache, 1-16, 6-1, 6-6, 11-4, 11-16 
Movement Instructions, 3-4 
Port Organization, 7-8 
Register Direct Mode, 2-9 
Registers, 1-6, 2-2 
Select, Byte, 7-25 
Transfer 

Cycles, 7-30 
Transfer Mechanism, 7-6 

Types, 1-10 
Data Strobe Signal, 5-6, 7-5, 7-27ff 
Data Transfer and Size Acknowledge Signals, 5-6, 

6-11, 6-14, 7-5, 7-6, 7-26ff 
DBE Bit, 6-16 
DBEN Signal, 5-6, 7-5, 7-31ff 
Debugging Aids, 12-35 
Decoding, MMU Status Register, 9-61-9-64 
Definition, Task Memory Map, 9-66 
Delay, Input, 7-2 
Derivation, Table Index, 9-9 
Description, General, 1-1 
Descriptor, 

Bits, Unused, 9-71 
Fetch Operation Flowchart, 9-44 
Indirect, 

Long Format, 9-28 
Short Format, 9-26 

Invalid, 
Long Format, 9-28 
Short Format, 9-26 

Page, Early Termination, 
Long Format, 9-25 
Short Format, 9-25 

Page, 
Long Format, 9-26 
Short Format, 9-26 

Root Pointer, 9-23 
Table, 

Long Format, 9-24 
Short Format, 9-24 

Descriptors, Translation Table, 9-10, 9-20 
DFC, 1-8, 2-4 
Differences, 

MC68020 Hardware, 12-3 
MC68020 Software, 12-4 
MMU, 9-51 

DMA Coprocessor, 10-5 
Double Bus Fault, 7-94, 8-7 
Doubly-Linked List 

Deletion Example, 3-30 
Insertion Example, 3-29 

DR Bit, 10-36 
DS Signal, 5-6, 7-5, 7-27ff 
DSACK0 Signal, 5-6, 6-11, 6-14, 7-5, 7-6, 7-26ff, 
DSACK1 Signal, 5-6, 6-11, 6-14, 7-5, 7-6, 7-26ff, 
Dynamic Allocation, Table, 9-40 
Dynamic Bus Sizing, 7-6, 7-19, 7-24 
D0-D31 Signals, 5-4, 7-5, 7-30ff 
D0-DT, 1-6 

E 

Early Termination, 9-23, 9-70 
Early Termination Control, 12-34 
ECS Signal, 5-5, 7-4, 7-26ff 
ED Bit, 6-22 
Effective Address Encoding Summary, 2-22 
El Bit, 6-23 
Empty/Reset Format Word, 10-22 
Enable Data Cache Bit, 6-22 
Enable Instruction Cache Bit, 6-23 
Encoding, 

Address Offset, 7-9 
Size Signal, 7-9 

Entry, Address Translation Cache, 9-17 
Errors, Bus, 7-82 
EU, 6-16 
Example, 

CAS Instruction, 3-25 
CAS2 Instruction, 3-25 
Contiguous Memory, 9-35 
Doubly-Linked List 

Deletion, 3-30 
Insertion, 3-29 

Function Code Lookup, 9-46 
Indirection, 9-36 
Linked List 

Deletion, 3-27 
Insertion, 3-26 

Protection, Translation Tree, 9-50 
System Paging Implementation, 9-72 
Table Paging, 9-39 
Table Sharing, 9-32 
Two Task Translation Tree, 9-47 

Exception, 
Address Error, 8-8, 10-72 
Breakpoint Instruction, 8-22 
Bus Error, 8-7, 10-72 
cpTRAPcc Instruction, 10-69 

INDEX-4 MC68030 USER'S MANUAL MOTOROLA 



Exception (Continued) 
Format Error, 8-14 
Illegal Instruction, 8-9 
Instruction Trap, 8-9 
Interrupt, 8-14, 10-71 
MMU Configuration, 8-21, 9-62 
Priority, 8-16 
Privilege Violation, 8-11, 10-69 
Processing, 4-6 

Sequence, 8-1 
State, 4-1 

Reset, 8-3, 8-4 
Return from, 8-24 
Stack Frame, 4-5, 8-32 
Trace, 8-12, 10-70 
Unimplemented Instruction, 8-9 
Vector 

Assignments, 8-2 
Numbers, 8-2 

Vectors, 4-6 
Exception Related 

Instruction Timing Table, 11-50 
Operation Timing Table, 11-50 

Exceptions, 
Bus, 7-75 
Coprocessor Data Processing, 10-63 
Coprocessor Detected, 10-62 
Coprocessor System Related, 10-64 
F-Line Emulator, 8-10, 10-68 
Multiple, 8-23 
Primitive Processing, 10-66 

Execution Time Calculations, 11-5ff 
Execution Unit, 6-16 
Extended Instruction Timing Table, 11-43 
External Cache, 12-30-12-35 

Implementation, 12-30-12-35 
Instruction Only, 12-35 

External Cycle Start Signal, 5-5, 7-4, 7-26 

- - F r o  

F-Line, 10-4 
Emulator Exceptions, 8-10, 10-68 

Fault, Double Bus, 7-94, 8-7 
FC0-FC2 Signals, 5-4, 6-6, 7-4, 7-31ff 
FD Bit, 6-22 
Fetch Effective Address Timing Table, 11-26 
Fetch Immediate Effective Address Timing Table, 

11-30 
FI Bit, 6-23 
Fields, Limit, 9-70 
Floating Point Units, 12-5 
Flowchart, 

Address Translation, General, 9-14 
Asynchronous Byte Read Cycle, 7-32 
Asynchronous Long Word Read Cycle, 7-32 
Asynchronous Read-Modify-Write Cycle, 7-44 

Flowchart (Continued) 
Asynchronous Write Cycle, 7-37 
ATC Entry Creation, 9-42 
Breakpoint Acknowledge, 7-75 
Burst Operation, 7-62 
Bus Arbitration, 7-98 
Descriptor Fetch Operation, 9-44 
interrupt Acknowledge Cycle, 7-71 
Limit Check Procedure, 9-43 
Synchronous Long-Word Read Cycle, 7-49 
Synchronous Read-Modify-Write Cycle, 7-55 
Table Search 

Detailed, 9-41 
Initialization, 9-42 
Simplified, 9-29 

Format, 
Coprocessor Instruction, 10-4 
Coprocessor Response Primitive, 10-35 
Instruction, 3-1 
Instruction Description, 3-18 

Format Error Exception, 8-14 
Format Errors, 

Coprocessor Detected, 10-61 
Main Processor Detected, 10-65 

Format Word, 
Empty/Reset, 10-22 
Invalid, 10-23 
Not Ready, 10-23 
Valid, 10-24 

Format Words, Coprocessor, 10-22 
Formula, Instruction Cache Case Time, 11-I I - I  1-14 
Freeze Data Cache Bit, 6-22 
Freeze Instruction Cache Bit, 6-23 
Function Code Lookup, 9-45, 9-46 

Example, 9-46 
Logical Address Map, 9-46 

Function Code Registers, I-8, 2-5 
Function Code Signals, 5-4, 6-6, 7-4, 7-31ff 

- - G - -  

General Description, 1-1 
GetFrame Routine, 9-85 
GND Pin Assignments, 12-46 
Grant, Bus, 7-99 
Ground Considerations, 12-43 
Groups, Signal, 5-1 

m H m  

Halt Operation, 7-91 
Timing, 7-93 

Halt _Signal, 5-9, 7-6, 7-27ff 
HALT Signal, 5-9, 7-6, 7-27ff 
Halted State, 4-1 

MOTOROLA MC68030 USER'S MANUAL INDEX-5 

i 



IBE Bit, 6-22 
Identification Code, Coprocessor, 10-4 
Illegal Instruction Exception, 8-9 
Immediate Data, 2-21 
Index, Signal, 5-2 
Indexed Addressing, 2-26 
Indirect Absolute Memory Addressing, 2-28 
Indirect Addressing, 2-28 
Indirection, 9-34 

Example, 9-36 
Information, Ordering, 14-1 
Initial Reset Timing, 7-105 
Initial Shift Count, 9-69 
Input Delay, 7-2 
Instruction, 

BKPT, 7-74, 8-22 
Branch on Coprocessor Condition, 10-13 
Breakpoint, 7-74, 8-22 
CAS, 7-43, 
CAS2, 7-43 
Compare and Swap, 7-43 
Coprocessor Context Restore, 10-27 
Coprocessor Context Save, 10-25 
cpBcc, 10-14 
cpDBcc, 10-17 
cpRESTORE, 10-27 
cpSAVE, 10-25 
cpScc, 10-15 
cpTRAPcc, 10-18 
Move Address Space, 7-74 
MOVES, 7-74 
No Operation, 7-95 
NOP, 7-95 
Set on Coprocessor Condition, 10-15 
STOP, 8-14 
TAS, 7-43 
Test and Set, 7-43 
Test Coprocessor Condition, Decrement and 

Branch, 10-13 
Trap on Coprocessor Condition, 10-17 

Instruction Address CIR, 10-33 
Instruction Boundary Signals, 12-37 
Instruction Burst Enable Bit, 6-22 
Instruction Cache, 1-16, 6-1, 6-4, 11-4 

Case, 11-6 
Instruction Description 

Format, 3-18 
Notation, 3-3 

Instruction Fetch Pending Buffer, 11-5 
Instruction Format, 3-1 

Summary, 3-18-3-24 
Instruction Set, 1-13 
Instruction Timing Tables, 11-24 
Instruction Trace, Real-Time, 12-39-12-43 
Instruction Trap Exception, 8-9 

Instructions, 
Binary Coded Decimal, 3-10 
Bit Field, 3-9 
Bit Manipulation, 3-8 
Coprocessor, 3-21 

Conditional, 10-12 
General, 10-9 

Data Movement, 3-4 
Integer Arithmetic, 3-5 
Logical, 3-6 
MMU, 3-13, 9-62 
Multiprocessor, 3-13 
Privileged, 8-11 
Program Control, 3-8 
Rotate, 3-7 
Shift, 3-7 
System Control, 3-12 

Integer Arithmetic Instructions, 3-5 
Interactions, Cache, 7-26 
Interface, 

Coprocessor, 10-1, 10-5 
Memory, 12-11 

Internal Microsequencer Status Signal, 5-10, 7-94, 
Internal Operand Representation, 7-8 
Internal to External Data Bus Multiplexer, 7-11 
Interrupt Acknowledge Cycle, 7-69 

Flowchart, 7-71 
Timing, 7-72 

Interrupt 
Cycle, Spurious, 7-74 
Exception, 8-14, 10-71 
Latency, 11-61 
Levels, 8-15 

Interrupt Pending Signal, 5-8, 8-17, 8-18 
Interrupt Priority Level Signals, 5-8, 7-69ff, 8-15 
Invalid Format Word, 10-23 
IPEND Signal, 5-8, 8-17, 8-18 
IPL0-1PL2 Signals, 5-8, 7-69ff, 8-15 

Jump Effective Address Timing Table, 11-35 

Late Bus Error, 
STERM, Timing, 7-86 
Third Access, Timing, 7-87 
With DSACKx, Timing, 7-85 

Late Retry Operation, Burst, Timing, 7-92 
Latency, 

Bus Arbitration, 11-62 
Interrupt, 11-61 

Levels, Interrupt, 8-15 
Limit Check Procedure Flowchart, 9-43 
Limit Fields, 9-70 

INDEX-6 MC68030 USER'S MANUAL MOTOROLA 



Linked List 
Deletion Example, 3-27 
Insertion Example, 3-26 

Logic, Byte Select, 12-9 
Logical Address Map, 

Function Code Lookup, 9-45 
Shared Supervisor/User Address Space, 
9-46 

Logical Instructions, 3-6 
Long Format 

Early Termination Page Descriptor, 9-23 
Indirect Descriptor, 9-28 
Invalid Descriptor, 9-28 
Page Descriptor, 9-26 
Table Descriptor, 9-24 

Long-Word Operand ~ u e s t ,  
Burst, CBACK and CIIN Asserted, Timing, 7-66 
Burst Fill Deferred, Timing, 7-65 
Burst Reguest 

CBACK Negated, Timing, 7-64 
Wait States, Timing, 7-63 

Long-Word Read Cycle, 
Asynchronous, Flowchart, 7-32 
Synchronous, Flowchart, 7-49 
16-Bit Port, Timing, 7-35 
32-Bit Port, Timing, 7-35 
8-Bit Port, ClOUTAsserted, Timing, 7-34 

Long-Word to Long-Word Transfer, 
Misaligned, 7-20 

Cachable, 7-20 
Long-Word to Word Transfer, 7-11 

Misaligne d, 7-17 
Long-Word Write Cycle, 

16:Bit Port, Timing, 7-41 
8-Bit Port, Timing, 7-40 

Lookup, Function Code, 9-45, 9-46 

M 

Machine, Virtual, 1-14 
Main Processor Detected 

Format Errors, 10-65 
ProtOcol Violations, 10-61 

MC68020 
Adapter Board, 12-1 
Hardware Differences, 12-3 
Software Differences, 12-4 

MC68851 Signals, 12-4 
MC68881 Coprocessor, 12-6 
MC68882 Coprocessor, 12-6 
Mechanism, Data Transfer, 7-6 
Memory, 

Contiguous, 9-33, 9-35 
Interface, 12-11 
Virtual, 1-12, 9-76 

Memory Access Time Calculations, 12-14-12-17 
Memory Data Organization, 2-5 
Memory Indirect Postindexed Mode, 2-14 

Memory Indirect Preindexed Mode, 2-15 
Memory Management Unit, 1-15, 7-3, 7-36, 7-43ff, 

9-1, 11-6 
Micro Bus Controller, 11-5 
Microsequencer, 11-2 
Mid-Instruction Stack Frame, 10-59 
Misaligned 

Cachable 
Long-Word to Long-Word Transfer, 7-20 
Word to Long-Word Transfer, 7-17 
Word to Word Transfer, 7-20 

Long-Word to Long-Word Transfer, 7-20 
Long-Word to Word Transfer, 7-15 

Timing, 7-16 
Operand, 7-13, 7-19 
Word to Word Transfer, 7-17 
Word to Word Transfer Timing, 7-18 

MMU, 1-15, 7-3, 7-36, 7-43ff, 9-1, 11-6 
Block Diagram, 9-2 
Configuration Exception, 8-21, 9-62 
Differences, 9-51 
Disable Signal, 5-10, 9-1, 9-3, 9-11 
Effective Address Timing Table, 11-58 
Instruction Timing Table, 11-60 
Instructions, 3-1, 9-62 
Programming Model, 9-4 
Register Side Effects, 9-61 
Status Register, 1-9, 2-5, 9-60, 9-61, 9-62, 9-63 

Decoding, 9-61-9-63 
MMUDIS Signal, 5-10, 9-1, 9-2, 9-11, 12-1 
MMUSR, 1-9, 2-5, 9-60-9-63 
Mode, 

Absolute 
Long Address, 2-20 
Short Address, 2-20 

Address Registers 
Direct, 2-10 
Indirect, 2-10 
Indirect Displacement, 2-12 
Indirect Index (Base Displacement), 2-13 
Indirect Index (8-Bit Displacement), 2-12 
Indirect Postincrement, 2-10 
Indirect Predecrement, 2-11 

Data Register Direct, 2-9 
Memory Indirect 

Postindexed, 2-14 
Preindexed, 2-15 

Program Counter 
Indirect Displacement, 2-16 
Indirect Index (Base Displacement), 2-17 
Indirect Index (8-Bit Displacement), 2-16 
Memory Indirect Postindexed, 2:14 
Memory Indirect Preindexed, 2-15 

Model, Programming, 1-6, 9-4 
Modes, Addressing, 1-10, 2-8 
Move Address Space Instruction, 7-74 
MOVE Instruction, 

Special-Purpose, Timing Table, 11-37 
Timing Table, 11-37 

MOTOROLA MC68030 USER'S MANUAL INDEX-7 

I 



I 

MOVES Instruction, 7-74 
Multiple Exceptions, 8-23 
Multiplexer, Data Bus, Internal to External, 7-11 
Multiprocessor Instructions, 3-13 
M68000 Family, 1-4, 2-36 

Summary, A-l-A-3 

Nested Subroutine Calls, 3-30 
No Operation Instruction, 7495 
Non-DMA Coprocessor, 10-5 
NOP Instruction, 7-95 
Normal Processing State, 4-1 
Not Ready Format Word, 10-23 
Notation, Instruction Description, 3-3 
Null Primitive, 10-37, 10-38 
Number of Table Levels, 9-68 

- - O - -  

OCS Signal, 5-5, 7-4, 7-31ff 
Operand, Misaligned, 7-13, 7-19 
Operand Address CIR, 10-33 
Operand CIR, 10-33 
Operand Cycle Start Signal, 5-5, 7-4, 7-27ff 
Operands, 2-1 
Operation, 

Burst, 7-59 
Concurrent, 10-3 
Halt, 7-91 
Reset, 7-103 
Retry, 7-89 

Operation Word CIR, 10-31 
Operations, Bit Field, 3-31 
Ordering Information, 14-1 
Organization, 

Cache, 6-3 
Data Port, 7-8 
Memory Data, 2-5 
Register Data, 2-2 

Overlap, 11-7 

Package Dimensions, 14-2 
Paging, 

Table, 9-37, 9-38 
Implementation Example System, 9-72 

Performance Tradeoffs, 11-1 
Pin Assignment, 14-2, 14-3 
Pin Assignments, 

GND, 12-46 
VCC, 12-46 

Pipeline, 1-12, 11-2 

Pipeline Refill Signal, 5-10, 6-5 
Pipeline Synchronization, 3-32 
Pipelined Burst Mode Static RAM, 12-18-12-24 
Pointer, 

CPU Root, 1-9, 2-5, 9-23, 9-52, 9-54, 9-65 
Supervisor Root, 1-9, 2-5~ 9-23, 9-52, 9-54; 9-65 

Post-Instruction Stack Frame, 10-60 
Power Supply Connections, 5-11 
Pre-lnstruction Stack Frame, 10-57 
Primitive, 

Busy, 10-36 
Coprocessor Response, 10-11, 10-36 
Evaluate and Transfer Effective Address, 10-42 
Evaluate Effective Address and Transfer Data, 

10-43 
Null, 10-37, 10-38 
Supervisor Check, 10-40 
Take Address and Transfer Data, 10-48 
Take Mid-Instruction Exception, 10-58 
Take Post-Instruction Exception, 10-60 
Take Pre-lnstruction Exception, 10-56 
Transfer from Instruction Stream, 10-41 

Main Processor Control Register, 10-50 
Multiple Coprocessor Registers, 10-52 
Multiple Main Processor Registers, 

Transfer 
Transfer 
Transfer 

10-52 
Transfer 
Transfer 
Transfer 
Transfer 
Write to 

10-46 

Operation Word, 10-40 
Single Main Processor Register, 10-50 
Status Register and ScanPC, 10-55 
to/from Top of Stack, 10-49 
Previously Evaluated Effective Address, 

Primitive Processing Exception, 10-66 
Priority, Exception, 8-16 
Privilege Level, 

Changing, 4-4 
Supervisor, 4-3 
User, 4-3 

Privilege Violation Exception, 8-11, 10-69 
Privileged Instructions, 8-11 
Processing, Exception, 4-6 
Processor Activity, 

Even Alignment, 11-9 
Odd Alignment, 11-10 

Processor Generated Reset Timing, 7-106 
Processor Resource Block Diagram, 11-3 
Program Control Instructions, 3-11 
Program Counter 

Indirect Displacement Mode, 2-12 
Indirect Index (Base Displacement) Mode, 2-13 
Indirect index (8-Bit Displacement) Mode, 2-12 
Memory Indirect Postindexed Mode, 2-14 
Memory Indirect Preindexed Mode, 2-14 

Programming Model, 1-4, 9-4 
MMU, 9-4 

Protection, 9-43 
Supervisor Only, 9-48 
Write, 9-48 

INDEX-8 MC68030 USER'S MANUAL MOTOROLA 



Protocol 
Processor General Instruction, 10-7 
Violations, 

Coprocessor Detected, 10-62 
Main Processor Detected, 10-65 

Queue, 2-39 

- - Q - -  

m R - -  

R/W Signal, 5-5, 7-4, 7-36ff 
RAM, Static, 12-18-12-24 
Ratings, Maximum, 13-1 
Read Cycle, 

Asynchronous, 32-Bit Port, Timing, 7-33 
Data Bus Requirements, 7-10 
Synchronous, 7-48 

CIIN Asserted, CRACK Negated, Timing, 7-50 
Read-Modify-Write 

Accesses, 6-10 
Cycle, 

Asynchronous, 7-45 
Asynchronous, Byte, 32-Bit Port, Timing, 7-45 
Asynchronous, Flowchart, 7-44 
Synchronous, 7-52 
Synchronous, CIIN Asserted, Flowchart, 7-56 
Synchronous, Flowchart, 7-55 

Signal, 5-5, 7-4, 7-36ff, 12-3 
Read/Write Signal, 5-5, 7-4, 7-36ff 
Real Time Instruction Trace, 12-39-12-43 
Recovery, 

Bus Fault, 8-27 
RTE, 8-25 

REFILl- Signal, 5-10, 6-5 
Register, 

Cache Address, 1-9, 2-5, 6-23 
Cache Control, 1-9, 2-5, 6-1, 6-3, 6-20, 6-21 
Condition Code, 2-4, 3-14 
Coprocessor interface, 10-8, 10-29 
MMU Status, 1-9, 2-5, 9-60-9-63 
Status, 1-8, 2-4, 6-5 
Translation Control, 1-9, 2-5, 9-8, 9-54 
Vector Base, 1-8, 2-5 
Data Organization, 2-2 

Register Select CIR, 10-32 
Registers, 

Address, 1-6, 2-4 
Data, 1-6, 2-2 
Function Code, 1-8, 2-5 
Transparent Translation, 1-9, 2-5, 9-16, 9-55 

Representation, Internal Operand, 7-8 
Request, Bus, 7-98 
Requirements, Data Bus, Read Cycle, 7-10 
Reset, 

Cache, 6-20 

Reset (Continued) 
Coprocessor, 10-72 
Exception, 8-5, 8-6 
Operation, 7-103 
Signal, 5-9, 7-97ff, 9-15, 9-61 

RESET Signal, 5-9, 7-97ff, 9-15, 9-61 
Resource Scheduling, 11-1 
Response CIR, 10-29 
Restore CtR, 10-31 
Restore Operatio n Timing Table, 11-51 
Retry Operation, 7-89 

Late, 
Asynchronous, Timing, 7-90 
Burst, Timing, 7-92 
Synchronous, Timing, 7-91 

Return from Exception, 8-24 
RMC Signal, 5-5, 7-4, 7-36 
Root Pointer Descriptor, 9-23 
Rotate Instructions, 3-7 
Routine, 

AbortTask, 9-86 
8us Error, 9-84 
GetFrame, 9-85 
SwapPageln, 9-86 
Vallocate, 9-79 

RTE 
Bus Fault Recovery, 8-26 
Instruction, 8-24 

- - S - -  

Save CIR, 10-30 
Save Operation Timing Table, 11-51 
ScanPC, 10-15, 10-18, 10-34 
Scheduling, Resource, 11-1 
Script, Table Search Timing, 11-51 
Search, Table, 9-28, 9-30 
Sequence, Exception Processing, 8-1 
Set, instruction, 1-10, 1-13 
Set on Coprocessor Condition Instruction, 10-15 
SFC, 1-8, 2-5 
Shared Supervisor/User Address Space Logical 

Address Map, 9-49 
Sharing, Table, 9-37, 9-39 
Shift Instructions, 3-7 
Shift/Rotate Instruction Timing Table, 11-45 
Short Format 

Early Termination Page Descriptor, 9-24 
indirect Descriptor, 9~26 
Invalid Descriptor, 9-25 
Page Descriptor, 9-25 
Table Descriptor, 9-24 

Side Effects, MMU Register, 9-61 
Signal, 

Address Strobe, 5-5, 7-3, 7-4, 7-26ff 
AS, 5-5, 7-3, 7-4, 7-26ff 
Autovector, 5-8, 7-6, 7-29, 7-71ff 

MOTOROLA MC68030 USER'S MANUAL INDEX-9 

I 



I 

Signal (Continued) 
AVEC, 5-8, 7-6, 7-29, 7-71ff 
BERR, 5-9, 6-19, 7-6, 7-27ff, 8-7, 8-22, 8-26 
BG, 5-9, 7-43, 7-96ff 
BGACK, 5-9, 7-97ff 
BR, 5-8, 7-43, 7-60, 7-96ff 
Bus Error, 5-9, 6-11, 7-6, 7-27ff, 8-7, 8-22, 8-26 
Bus Grant, 5-9, 7-43, 7-96ff 
Bus Grant Acknowledge, 5-9, 7-97ff 
Bus Request, 5-8, 7-43, 7-60, 7-96ff 
Cache Burst Acknowledge, 5-7, 6-16, 7-6, 7-30ff 
Cache Burst Request, 5-7, 6-16-6-20, 7-6, 7-30, 

7-48ff 
Cache Disable, 5-10, 6-3 
Cache Inhibit Input, 5-7, 6-3, 6-9-6-19, 7-3, 7-30ff 
Cache Inhibit Output, 5-7, 6-3, 6-9, 7-30ff, 9-1, 

9-13 
CBACK, 5-7, 6-16-6-19, 7-6, 7-30ff, 
CBREQ, 5-7, 6-16-6-19, 7-6, 7-30, 7-48 
CDIS, 5-10, 6-3 
CIIN, 5-7, 6-3, 6-9-6-11, 6-15, 7-3, 7-26ff 
CLOUT, 5-7, 6-3, 6-9, 7-30ff, 9-1, 9-17 
CLK, 5-11, 7-54 
Clock, 5-11, 7-54 
Coprocessor, Chip Select, 
Data Buffer Enable, 5-6, 7-5, 7-51ff 
Data Strobe, 5-6, 7-5, 7-27ff, 
DBEN, 5-6, 7-5, 7-31 
DS, 5-6, 7-5, 7-27ff 
DSACK0, 5:6, 6-11, 6-14, 7-5, 7-6, 7-26ff 
DSACK1, 5-6, 6-11, 6-14, 7-5, 7-6, 7-26ff 
ECS, 5-5, 7-4, 7-26ff 
External Cycle Start, 5-5, 7-4, 7-26ff 
Halt,_5-9, 7-6, 7-27ff 
HALT, 5-9, 7-6, 7-27ff 
Internal Microsequencer Status, 5-10, 7-94, 8-3, 

8-17, 8-26 
Interrupt Pending, 5-8, 8-17, 8-18 
IPEND, 5-8, 8-17, 8-18 
MMU Disable, 5-4, 9-1, 9-2, 9-11 
MMUDiS, 5-10, 9-2, 9-11 
OCS, 5-5, 7-4, 7-31ff 
Operand Cycle Start, 5-5, 7-4, 7-31ff 
Pipeline Refill, 5-10, 6-5 
R/W, 5-5, 7-4, 7-36ff 
Read-Modify-Write, 5-5, 7-4, 7-36ff 
Read/Write, 5-5, 7-4, 7-36ff 
REFILL, 5-10, 6-5 
Reset, 5-9, 7-97ff, 9-15, 9-61, 12-31 
RESET, 5-9, 7-97ff, 9-15, 9-61, 12-31 
RMC, 5-5, 7-4, 7-36ff, 12-3 
SIZ0, 5-4, 7-4, 7-8, 7-9, 7-14, 7-22ff 
SIZ1, 5-4, 7-4, 7-8, 7-9, 7-14, 7-22ff 
STATUS, 5-10, 7-94, 8-4, 8-7, 8-8 
STERM, 5-6, 6-14, 6-16, 7-3, 7-6, 7-26ff 

Synchronous Termination, 5-6, 6-16, 7-3, 7-6, 
7-26ff, 

Signal Assertion Results, Asynchronous Cycle, 
7-78, 7-79 

Signal Groups, 5-1 
Signal Index, 5-2 
Signal Routing, Adapter Board, 12-1 
Signal Summary, 5-12 
Signals, 

A0-A1, 7-8, 7-9, 7-22ff 
A0-A31, 5-4, 7-4, 7-31ff 
Bus Control, 7-3 
Bus Transfer, 7-1 
Data Bus Write Enable, 7-23 
Data Transfer and Size Acknowledge, 5-6, 6-11, 

6-14, 7-5, 7-6, 7-26ff 
D0-D31, 5-4, 7-5, 7-30 
FC0-FC2, 5-4, 6-6, 7-4, 7-31ff 
Function Code, 5-4, 6-6, 7-4, 7-31ff 
Instruction Boundary, 12-37 
Interrupt Exception, 12-38 
interrupt Priority Level, 5-8, 7-69ff, 8-13 
iPL0-1PL2, 5-8, 7-69ff, 8-13 
MC68851, 12-5 
Other Exception, 12-38 
Processor Halted, 12-39 
Trace Exception, 12-38 
Transfer Size, 5-4, 7-4, 7-8, 7-9, 7-22ff 

Single Entry Cache Filling, 6-10 
Single Operand Instruction Timing Table, 11-44 
Size Restrictions, Table Index, 9-10 
Size Signal Encoding, 7-8 
Sizing, Dynamic Bus, 7-6, 7-19, 7-24 
SIZ0 Signal, 5-4, 7-4, 7-8, 7-9-7-14, 7-22ff 
SIZ1 Signal, 5-4, 7-4, 7-8, 7-9-7-14, 7-22ff 
Software Bus Fault Recovery, 8-27 
Space, CPU, 7-68, 7-70, 10-5ff 
Special Status Word, 8-28 
Spurious interrupt Cycle, 7-74 
SR, 1-8, 2-4, 6-5, 8-10, 8-13, 8-15 
SRP, 1-5, 1-9, 2-4, 9-13, 9-52, 9-54, 9-65 
Stack, 

System, 2-36 
User Program, 2-38 

Stack Frame, 
Exception, 4-7, 8-32 
Mid-Instruction, 10-59 
Post-Instruction, 10-60 
Pre-lnstruction, 10-57 

State, 
Diagram, Bus Arbitration, 7-101 
Exception Processing, 4-1 
Halted, 4-1 
Normal Processing, 4-1 

State Frames, Coprocessor, 10-21 
States, Wait, 11-18 
Static RAM, 12-18-12-24 

Burst Mode, 12-20-12-22 
Pipelined Burst Mode, 12-22-12-24 
Two Clock Synchronous, 12-18-12-19 

Status Register, 1-8, 2-4, 6-5, 8-10, 8-13, 8-16 
Status Word, Special, 8-28 
STATUS Signal, 5-10, 7-94, 8-4, 8-7, 8-8 

INDEX-10 MC68030 USER'S MANUAL MOTOROLA 



STERM Signal, 5-6, 6-14, 6-16, 7-3, 7-6, 7-26ff 
Structure Addressing, 2-25 
Subroutine Calls; Nested, 3-30 
Summary, 

Addressing Mode, 2-31 
Coprocessor Instruction, 10-73-10-75 
Effective Address Encoding, 2-22 
M68000 Family, A-l-A-3 
Signal, 5-12 

Supervisor Check Primitive, 10-40 
Supervisor Only Protection, 9-48 
Supervisor 

Privilege Level, 4-2 
Root Pointer, 1-9, 2-5, 9-13, 9-52, 9-54, 9-65 
Translation Tree, 9-48 

Synchronization, 
Bus, 7-95 
Pipeline, 3-32 

Synchronous 
Bus Operation, 7-28, 7-29 
Cycle Signal Assertion Results, 7-79 
Long Word Read Cycle Flowchart, 7-49 
Bead Cycle, 7-48 
CIIN Asserted, CBACK Negated, Timing, 7-50 
Read-Modify-Write Cycle, 7-52 
Read-Modify-Write Cycle, CIIN Asserted, Timing, 

7-56 
Read-Modify-Write Cycle Flowchart, 7-55 
Termination Signal, 5-6, 6-14, 6-16, 7-3, 7-6, 

7-26ff, 
Write Cycle, 

Wait States, CLOUT Asserted, Timing, 7-53 
Flowchart, 7-52 

System 
Control Instructions, 3-12 
Stack, 2-36 

Table 
Dynamic Allocation, 9-40 
Index 

Derivation, 9-10 
Size Restrictions, 9-10 

Levels, Number of, 9-68 
Paging, 9-37 

Example, 9-38 
Sharing, 9-36 

Example, 9-38 
Table Search, 9-30, 9-31 

Flowchart, 
Detailed, 9-41 
Simplified, 9-29 

Initialization Flowchart, 9-42 
Timing, 11-52 

Script, 11-52 
Table, 11-57 

Tables; Instruction Timing, 11-24 

Take Address and Transfer Data Primitive, 10-48 
Take Mid-Instruction Exception Primitive, 10-58 
Take Post-Instruction Exception Primitive, 10-60 
Take Pre-lnstruction Exception Primitive, 10-56 
TAS Instruction, 7-43 
Task Memory Map Definition, 9-67 
TC, 1-9, 2-5, 9-8, 9-54 
Test and Set Instruction, 7-43 
Tests, Condition, 3-17 
Timing, 

Asynchronous 
Byte Read Cycle, 32-Bit Port, 7-33 
Byte Read-Modify-Write Cycle, 32-Bit Port, 7-45 
Byte Write Cycle, 32-Bit Port, 7-38 
Read Cycle, 32-Bit Port, 7-33 
Word Read Cycle, 32-Bit Port, 7-33 
Word Write Cycle, 32-Bit Port, 7-39 
Write Cycle, 32-Bit Port, 7-38 

Autovector Interrupt Acknowledge Cycle, 7-71 
Breakpoint Acknowledge Cycle, 7-74 

Exception Signaled, 7-77 
Bus Arbitration, 7-96 

Bus InacSve, 7-104 
Bus Error, 

Late, STERM, 7-86 
Late, Third Access, 7-87 
Late, With DSACKx, 7-85 
Second Access, 7-88 
Without DSACKx, 7-84 

Bus Synchronization, 7-95 
Halt Operation, 7-91 
Initial Reset, 7-105 
Interrupt Acknowledge Cycle, 7-69 
Long Word, 

Operand Request, Burst, CBACK and CIIN 
Asserted, 7-66 

Operand Request, Burst Fill Deferred, 7-65 
Operand Request, Burst Request, CBACK 

Negated, 7-64 
Operand Request, Burst Request, Wait States, 

7-63 
Read Cycle, 16-Bit Port, 7-35 
Read Cycle, 32-Bit Port, 7-35 
Read Cycle, 8-Bit Port, CLOUT Asserted, 7-34 
Write, 7-12 
Write Cycle, 16-Bit Port, 7-41 
Write Cycle, 8-Bit Port, 7-40 

Misaligned 
Long-Word to Word Transfer, 7-11 
Word to Word Transfer, 7-20 

Processor-Generated Reset, 7-106 
Retry Operation, Late, 

Asynchronous, 7-90 
Burst, 7-92 
Synchronous, 7-91 

Synchronous 
Read Cycie, CIIN Asserted, CBACK Negated, 

7-50 
Read-Mod!fy-Write Cycle, CINN Asserted, 7-56 

MOTOROLA MC68030 USER'S MANUAL INDEX-11 
I I I  



I 

Timing (Continued) 
Write Cycle, Wait States, CLOUT Asserted, 7-53 

Table Search, 11-39 
Write, Long-Word, 7-12 
Write, Word, 7-14 

Timing Table, 
Arithmetic/Logical Instruction, 11-40 

immediate, 11-42 
Binary Coded Decimal Instruction, 11-43 
Bit Field Instruction, 11-47 
Bit Manipulation Instruction, 11-46 
Calculate Effective Address, 11-30 
Calculate Immediate Effective Address, 11-32 
Conditional Branch Instruction, 11-48 
Control Instruction, 11-49 
Exception Related 

Instruction, 11-50 
Operation, 11-50 

Extended Instruction, 11-43 
Fetch Effective Address, 11-26 
Fetch Immediate Effective Address, 11-28 
Jump Effective Address, 11-35 
MMU 

Effective Address, 11-58 
Instruction, 11-60 

MOVE Instruction, 11-37 
Special Purpose, 11-39 

Restore Operation, 11-51 
Save Operation, 11-51 
Shift/Rotate Instruction, 11-45 
Single Operand Instruction, 11-44 
Table Search, 11-51 

Trace Exception, 8-12, 10-70 
Signals, 12-38 

Tradeoffs, Performance,11-1 
Transfer, 

Long Word to Long Word, Misaligned Cachable, 
7-20 

Long Word to Word, 7-11 
Misaligned 

Cachable Word to Long Word, 7-17 
Cachable Word to Word, 7-20 
Long Word to Long Word, 7-20 
Long Word to Word, 7-17 
Word to Word, 7-17 
Word to Word, Timing, 7-18 

Word to Byte, 7-13 
Transfer Main Processor Control Register Primitive, 

10-50 
Transfer Multiple Coprocessor Registers Primitive, 

10-52 
Transfer Multiple Main Processor Registers 

Primitive, 10-52 
Transfer Operation Word Primitive, 10-40 
Transfer Single Main Processor Register Primitive, 

10-50 
Transfer Size Signals, 5-4, 7-4, 7-8, 7-9-7-14, 7-22ff 
Transfer Status Register and ScanPC Primitive, 

10-55 

Transfer to/from Top of Stack Primitive, 10-49 
Translation, Address, 9-13 
Translation Control Register, 1-9, 2-5, "9-8, 9-54 
Translation Table Descriptors, 9-10, 9-20 
Translation Table Tree, 9-5, 9-7, 9-8, 9-12, 9-30, 

9-47, 9-48, 9-65 
Translation Tree, Supervisor, 9-48 

Protection Example, 9-50 
Transparent Translation Registers, 1-9, 2-5, 9-16, 

9-55 
Tree, Translation Table, 9-5, 9-7, 9-8, 9-12, 9-30, 

9-47, 9-48, 9-65 
TT0, 1-9, 2-5, 9-16, 9-57 
TT1, 1-9, 2-5, 9q6, 9-57 
Two Clock Synchronous Static RAM, 12-18-12-20 
Types, 

Address Space, 4-3 
Data, 1-10 

Unimplemented Instruction Exception, 8-9 
Unit, 

Execution, 6-16 
Memory Management, 1-15, 7-3, 7-36, 7-43, 9-1, 

11-5, 12-4 
Units, Floating Point, 12-5 
Unused Descriptor Bits, 9-71 
User Privilege Level, 4-2, 4-4 
User Program Stack, 2-38 

V 

Valid Format Word, 10-24 
Vallocate Routine, 9-78 
VBR, 1-8, 2-5 
VCC Pin Assignments, 12-46 
Vector 

Base Register, 1-8, 2-5 
Numbers, Exception, 8-1 

Vectors, Exception, 4-6 
Virtual Machine, 1-12 
Virtual Memory, 1-12, 9-77 

- - W - -  

WA Bit, 6-21 
Wait States, 11-18 
Window, 

Asynchronous Sample, 7-3 
Word, Special Status, 8-28 
Word Read Cycle, Asynchronous, 32-Bit Port, 

Timing, 7-33 
Word to Byte Transfer, 7-13 
Word to Long-Word Transfer, Misaligned, 7-17 
Word to Word Transfer, Misaligned Cachable, 7-20 

INDEX-12 MC68030 USER'S MANUAL MOTOROLA 



Word Write Cycle, Asynchronous, 32-Bit Port, 
Timing, 7-39 

Word Write Timing, 7-14 
Write Allocate Bit, 6-21 
Write Cycle, 

Asynchronous, 7-38 
Flowchart, 7-37 
32-Bit Port, Timing, 7-38 

Synchronous, 7-51 
Flowchart, 7-52 

Wait States, CLOUT Asserted, Timing, 7-53 
Write Pending Buffer, 11-5 
Write Protection, 9-48 
Write Timing, 

Long Word, 7-12 
Word, 7-14 

Write to Previously Evaluated Effective Address 
Primitive, 10-46 

MOTOROLA MC68030 USER'S MANUAL INDEX-13 



I 



IB 
2 

3 

4 

5 

8 

7 

9 

IO 

I1 ¸ 

m 
D 
14 

A 

I 

Introduction 

Data Organization and Addressing Capabilities 

Instruction Set Summary 

Processing States 

Signal Description 

On-Chip Cache Memories 

Bus Operation 

Exception Processing 

Memory Management Unit 

Coprocessor Interface Description 

Instruction Execution Timing 

Applications Information 

Electrical Characteristics 

Ordering Information and Mechanical Data 

M68000 Family Summary 

Index 



PRENTICE HALL, Englewood Cliffs, N.J. 07632 


	MC68030 - Enhanced 32-Bit Microprocessor User's Manual
	Table of Contents
	Preface
	Section 1 - Introduction
	List of Tables
	1-1 - Addressing Modes
	1-2 - Instruction Set

	List of Illustrations
	1-1 - Block Diagram
	1-2 - User Programming Model
	1-3 - Supervisor Programming Model Supplement
	1-4 - Status Register

	1.1 - Features
	1.2 - MC68030 Extensions to the M68000 Family
	1.3 - Programming Model
	1.4 - Data Types and Addressing Modes
	1.5 - Instruction Set Overview
	1.6 - Virtual Memory and Virtual Machine Concepts
	1.6.1 - Virtual Memory
	1.6.2 - Virtual Machine

	1.7 - The Memory Management Unit
	1.8 - Pipelined Architecture
	1.9 - The Cache Memories

	Section 2 - Data Organization and Addressing Capabilities
	List of Tables
	2-1 - IS-I/IS Memory Indirection Encodings
	2-2 - Effective Addressing Mode Categories

	List of Illustrations
	2-1 - Memory Operand Address
	2-2 - Memory Data Organization
	2-3 - Single Effective Address Instruction Operation Word
	2-4 - Effective Address Specification Formats
	2-5 - Using SIZE in the Index Selection
	2-6 - Using Absolute Address with Indexes
	2-7 - Addressing Array Items
	2-8 - Using Indirect Absolute Memory Addressing
	2-9 - Accessing an Item in a Structure Using Pointer
	2-10 - Indirect Addressing, Suppressed Index Register
	2-11 - Preindexed Indirect Addressing
	2-12 - Postindexed Indirect Addressing
	2-13 - Preindexed Indirect Addressing with Outer Displacement
	2-14 - Postindexed Indirect Addressing with Outer Displacement
	2-15 - M68000 Family Address Extension Words

	2.1 - Instruction Operands
	2.2 - Organization of Data in Registers
	2.2.1 - Data Registers
	2.2.2 - Address Registers
	2.2.3 - Control Registers

	2.3 - Organization of Data in Memory
	2.4 - Addressing Modes
	2.4.1 - Data Register Direct Mode
	2.4.2 - Address Register Direct Mode
	2.4.3 - Address Register Indirect Mode
	2.4.4 - Address Register Indirect with Postincrement Mode
	2.4.5 - Address Register Indirect with Predecrement Mode
	2.4.6 - Address Register Indirect with Displacement Mode
	2.4.7 - Address Register Indirect with Index (8-Bit Displacement) Mode
	2.4.8 - Address Register Indirect with Index (Base Displacement) Mode
	2.4.9 - Memory Indirect Postindexed Mode
	2.4.10 - Memory Indirect Preindexed Mode
	2.4.11 - Program Counter Indirect with Displacement Mode
	2.4.12 - Program Counter Indirect with Index (8-Bit Displacement) Mode
	2.4.13 - Program Counter Indirect with Index (Base Displacement) Mode
	2.4.14 - Program Counter Memory Indirect Postindexed Mode
	2.4.15 - Program Counter Memory Indirect Preindexed Mode
	2.4.16 - Absolute Short Addressing Mode
	2.4.17 - Absolute Long Addressing Mode
	2.4.18 - Immediate Data

	2.5 - Effective Address Encoding Summary
	2.6 - Programmer's View of Addressing Modes
	2.6.1 - Addressing Capabilities
	2.6.2 - General Addressing Mode Summary

	2.7 - M68000 Family Addressing Compatibility
	2.8 - Other Data Structures
	2.8.1 - System Stack
	2.8.2 - User Program Stacks
	2.8.3 - Queues


	Section 3 - Instruction Set Summary
	List of Tables
	3-1 - Data Movement Operations
	3-2 - Integer Arithmetic Operations
	3-3 - Logical Operations
	3-4 - Shift and Rotate Operations
	3-5 - Bit Manipulation Operations
	3-6 - Bit Field Operations
	3-7 - BCD Operations
	3-8 - Program Control Operations
	3-9 - System Control Operations
	3-10 - MMU Instructions
	3-11 - Multiprocessor Operations (Read-Modify-Write)
	3-12 - Condition Code Computations
	3-13 - Conditional Tests
	3-14 - Instruction Set Summary

	List of Illustrations
	3-1 - Instruction Word General Format
	3-2 - Linked List Insertion
	3-3 - Linked List Deletion
	3-4 - Doubly Linked List Insertion
	3-5 - Doubly Linked List Deletion

	3.1 - Instruction Format
	3.2 - Instruction Summary
	3.2.1 - Data Movement Instructions
	3.2.2 - Integer Arithmetic Instructions
	3.2.3 - Logical Instructions
	3.2.4 - Shift and Rotate Instructions
	3.2.5 - Bit Manipulation Instructions
	3.2.6 - Bit Field Instructions
	3.2.7 - Binary-Coded Decimal Instructions
	3.2.8 - Program Control Instructions
	3.2.9 - System Control Instructions
	3.2.10 - Memory Management Unit Instructions
	3.2.11 - Multiprocessor Instructions

	3.3 - Integer Condition Codes
	3.3.1 - Condition Code Computation
	3.3.2 - Conditional Tests

	3.4 - Instruction Set Summary
	3.5 - Instruction Examples
	3.5.1 - Using the CAS and CAS2 Instructions
	3.5.2 - Nested Subroutine Calls
	3.5.3 - Bit Field Operations
	3.5.4 - Pipeline Synchronization with the NOP Instruction


	Section 4 - Processing States
	List of Tables
	4-1 - Address Space Encodings

	List of Illustrations
	4-1 - General Exception Stack Frame

	4.1 - Privilege Levels
	4.1.1 - Supervisor Privilege Level
	4.1.2 - User Privilege Level
	4.1.3 - Changing Privilege Level

	4.2 - Address Space Types
	4.3 - Exception Processing
	4.3.1 - Exception Vectors
	4.3.2 - Exception Stack Frame


	Section 5 - Signal Description
	List of Tables
	5-1 - Signal Index
	5-2 - Signal Summary

	List of Illustrations
	5-1 - Functional Signal Groups

	5.1 - Signal Index
	5.2 - Function Code Signals (FC0-FC2)
	5.3 - Address Bus (A0-A31)
	5.4 - Data Bus (D0-D31)
	5.5 - Transfer Size Signals (SIZ0, SIZ1)
	5.6 - Bus Control Signals
	5.6.1 - Operand Cycle Start (OCS)
	5.6.2 - External Cycle Start (ECS)
	5.6.3 - Read/Write (R/W)
	5.6.4 - Read-Modify-Write Cycle (RMC)
	5.6.5 - Address Strobe (AS)
	5.6.6 - Data Strobe (DS)
	5.6.7 - Data Buffer Enable (DBEN)
	5.6.8 - Data Transfer and Size Acknowledge (DSACK0, DSACK1)
	5.6.9 - Synchronous Termination (STERM)

	5.7 - Cache Control Signals
	5.7.1 - Cache Inhibit Input (CIIN)
	5.7.2 - Cache Inhibit Output (CLOUT)
	5.7.3 - Cache Burst Request (CBREQ)
	5.7.4 - Cache Burst Acknowledge (CBACK)

	5.8 - Interrupt Control Signals
	5.8.1 - Interrupt Priority Level Signals
	5.8.2 - Interrupt Pending (IPEND)
	5.8.3 - Autovector (AVEC)

	5.9 - Bus Arbitration Control Signals
	5.9.1 - Bus Request (BR)
	5.9.2 - Bus Grant (BG)
	5.9.3 - Bus Grant Acknowledge (BGACK)

	5.10 - Bus Exception Control Signals
	5.10.1 - Reset (RESET)
	5.10.2 - Halt (HALT)
	5.10.3 - Bus Error (BERR)

	5.11 - Emulator Support Signals
	5.11.1 - Cache Disable (CDIS)
	5.11.2 - MMU Disable (MMUDIS)
	5.11.3 - Pipeline Refill (REFILL)
	5.11.4 - Internal Microsequencer Status (STATUS)

	5.12 - Clock (CLK)
	5.13 - Power Supply Connections
	5.14 - Signal Summary

	Section 6 - On-Chip Cache Memories
	List of Illustrations
	6-1 - Internal Caches and the MC68030
	6-2 - On-Chip Instruction Cache Organization
	6-3 - On-Chip Data Cache Organization
	6-4 - No-Write-Allocation and Write-Allocation Mode Examples
	6-5 - Single Entry Mode Operation - 8-Bit Port
	6-6 - Single Entry Mode Operation - 16-Bit Port
	6-7 - Single Entry Mode Operation - 32-Bit Port
	6-8 - Single Entry Mode Operation - Misaligned Long Word and 8-Bit Port
	6-9 - Single Entry Mode Operation - Misaligned Long Word and 16-Bit Port
	6-10 - Single Entry Mode Operation - Misaligned Long Word and 32-Bit DSACKx Port
	6-11 - Burst Operation Cycles and Burst Mode
	6-12 - Burst Filling Wraparound Example
	6-13 - Deferred Burst Filling Example
	6-14 - Cache Control Register
	6-15 - Cache Address Register

	6.1 - On-Chip Cache Organization and Operation
	6.1.1 - Instruction Cache
	6.1.2 - Data Cache
	6.1.2.1 - Write Allocation
	6.1.2.2 - Read-Modify-Write Accesses

	6.1.3 - Cache Filling
	6.1.3.1 - Single Entry Mode
	6.1.3.2 - Burst Mode Filling


	6.2 - Cache Reset
	6.3 - Cache Control
	6.3.1 - Cache Control Register
	6.3.1.1 - Write Allocate
	6.3.1.2 - Data Burst Enable
	6.3.1.3 - Clear Data Cache
	6.3.1.4 - Clear Entry in Data Cache
	6.3.1.5 - Freeze Data Cache
	6.3.1.6 - Enable Data Cache
	6.3.1.7 - Instruction Burst Enable
	6.3.1.8 - Clear Instruction Cache
	6.3.1.9 - Clear Entry in Instruction Cache
	6.3.1.10 - Freeze Instruction Cache
	6.3.1.11 - Enable Instruction Cache

	6.3.2 - Cache Address Register


	Section 7 - Bus Operation
	List of Tables
	7-1 - DSACK Codes and Results
	7-2 - Size Signal Encoding
	7-3 - Address Offset Encodings
	7-4 - Data Bus Requirements for Read Cycles
	7-5 - MC68030 Internal to External Data Bus Multiplexer - Write Cycles
	7-6 - Memory Alignment and Port Size Influence on Write Bus Cycles
	7-7 - Data Bus Write Enable Signals for Byte, Word, and Long-Word Ports
	7-8 - DSACK, BERR, and HALT Assertion Results
	7-9 - STERM, BERR, and HALT Assertion Results

	List of Illustrations
	7-1 - Relationship Between External and Internal Signals
	7-2 - Asynchronous Input Sample Window
	7-3 - Internal Operand Representation
	7-4 - MC68030 Interface to Various Port Sizes
	7-5 - Example of Long-Word Transfer to Word Port
	7-6 - Long-Word Operand Write Timing (16-Bit Data Port)
	7-7 - Example of Word Transfer to Byte Port
	7-8 - Word Operand Write Timing (8-Bit Data Port)
	7-9 - Misaligned Long-Word Transfer to Word Port Example
	7-10 - Misaligned Long-Word Transfer to Word Port
	7-11 - Misaligned Cachable Long-Word Transfer from Word Port Example
	7-12 - Misaligned Word Transfer to Word Port Example
	7-13 - Misaligned Word Transfer to Word Port
	7-14 - Example of Misaligned Cachable Word Transfer from Word Bus
	7-15 - Misaligned Long-Word Transfer to Long-Word Port
	7-16 - Misaligned Write Cycles to Long-Word Port
	7-17 - Misaligned Cachable Long-Word Transfer from Long-Word Bus
	7-18 - Byte Data Select Generation for 16- and 32-Bit Ports
	7-19 - Asynchronous Long-Word Read Cycle Flowchart
	7-20 - Asynchronous Byte Read Cycle Flowchart
	7-21 - Asynchronous Byte and Word Read Cycles - 32-Bit Port
	7-22 - Long-Word Read - 8-Bit Port with CLOUT Asserted
	7-23 - Long-Word Read - 16-Bit and 32-Bit Port
	7-24 - Asynchronous Write Cycle Flowchart
	7-25 - Asynchronous Read-Write-Read Cycles - 32-Bit Port
	7-26 - Asynchronous Byte and Word Write Cycles - 32-Bit Port
	7-27 - Long-Word Operand Write - 8-Bit Port
	7-28 - Long-Word Operand Write - 16-Bit Port
	7-29 - Asynchronous Read-Modify-Write Cycle Flowchart
	7-30 - Asynchronous Byte Read-Modify-Write Cycle - 32-Bit Port (TAS Instruction with CLOUT or CIIN Asserted)
	7-31 - Synchronous Long-Word Read Cycle Flowchart- No Burst Allowed
	7-32 - Synchronous Read with CIIN Asserted and CBACK Negated
	7-33 - Synchronous Write Cycle Flowchart
	7-34 - Synchronous Write Cycle with Wait States - CLOUT Asserted
	7-35 - Synchronous Read-Modify-Write Cycle Flowchart
	7-36 - Synchronous Read-Modify-Write Cycle Timing - CIIN Asserted
	7-37 - Burst Operation Flowchart - Four Long Words Transferred
	7-38 - Long-Word Operand Request from $07 with Burst Request and Wait Cycles
	7-39 - Long-Word Operand Request from $07 with Burst Request - CBACK Negated Early
	7-40 - Long-Word Operand Request from $0E - Burst Fill Deferred
	7-41 - Long-Word Operand Request from $07 with Burst Request - CBACK and ClIN Asserted
	7-42 - MC68030 CPU Space Address Encoding
	7-43 - Interrupt Acknowledge Cycle Flowchart
	7-44 - Interrupt Acknowledge Cycle Timing
	7-45 - Autovector Operation Timing
	7-46 - Breakpoint Operation Flow
	7-47 - Breakpoint Acknowledge Cycle Timing
	7-48 - Breakpoint Acknowledge Cycle Timing (Exception Signaled)
	7-49 - Bus Error without DSACKx
	7-50 - Late Bus Error with DSACKx
	7-51 - Late Bus Error with STERM - Exception Taken
	7-52 - Long-Word Operand Request - Late BERR on Third Access
	7-53 - Long-Word Operand Request - BERR on Second Access
	7-54 - Asynchronous Late Retry
	7-55 - Synchronous Late Retry
	7-56 - Late Retry Operation for a Burst
	7-57 - Halt Operation Timing
	7-58 - Bus Synchronization Example
	7-59 - Bus Arbitration Flowchart for Single Request
	7-60 - Bus Arbitration Operation Timing
	7-61 - Bus Arbitration State Diagram
	7-62 - Single-Wire Bus Arbitration Timing Diagram
	7-63 - Bus Arbitration Operation (Bus Inactive)
	7-64 - Initial Reset Operation Timing
	7-65 - Processor-Generated Reset Operation

	7.1 - Bus Transfer Signals
	7.1.1 - Bus Control Signals
	7.1.2 - Address Bus
	7.1.3 - Address Strobe
	7.1.4 - Data Bus
	7.1.5 - Data Strobe
	7.1.6 - Data Buffer Enable
	7.1.7 - Bus Cycle Termination Signals

	7.2 - Data Transfer Mechanism
	7.2.1 - Dynamic Bus Sizing
	7.2.2 - Misaligned Operands
	7.2.3 - Effects of Dynamic Bus Sizing and Operand Misalignment
	7.2.4 - Address, Size, and Data Bus Relationships
	7.2.5 - MC68030 versus MC68020 Dynamic Bus Sizing
	7.2.6 - Cache Filling
	7.2.7 - Cache Interactions
	7.2.8 - Asynchronous Operation
	7.2.9 - Synchronous Operation with DSACKx
	7.2.10 - Synchronous Operation with STERM

	7.3 - Data Transfer Cycles
	7.3.1 - Asynchronous Read Cycle
	7.3.2 - Asynchronous Write Cycle
	7.3.3 - Asynchronous Read-Modify-Write Cycle
	7.3.4 - Synchronous Read Cycle
	7.3.5 - Synchronous Write Cycle
	7.3.6 - Synchronous Read-Modify-Write Cycle
	7.3.7 - Burst Operation Cycles

	7.4 - CPU Space Cycles
	7.4.1 - Interrupt Acknowledge Bus Cycles
	7.4.1.1 - Interrupt Acknowledge Cycle - Terminated Normally
	7.4.1.2 - Autovector Interrupt Acknowledge Cycle
	7.4.1.3 - Spurious Interrupt Cycle

	7.4.2 - Breakpoint Acknowledge Cycle
	7.4.3 - Coprocessor Communication Cycles

	7.5 - Bus Exception Control Cycles
	7.5.1 - Bus Errors
	7.5.2 - Retry Operation
	7.5.3 - Halt Operation
	7.5.4 - Double Bus Fault

	7.6 - Bus Synchronization
	7.7 - Bus Arbitration
	7.7.1 - Bus Request
	7.7.2 - Bus Grant
	7.7.3 - Bus Grant Acknowledge
	7.7.4 - Bus Arbitration Control

	7.8 - Reset Operation

	Section 8 - Exception Processing
	List of Tables
	8-1 - Exception Vector Assignments
	8-2 - Microsequencer STATUS Indications
	8-3 - Tracing Control
	8-4 - Interrupt Levels and Mask Values
	8-5 - Exception Priority Groups
	8-6 - Exception Stack Frames

	List of Illustrations
	8-1 - Reset Operation Flowchart
	8-2 - Interrupt Pending Procedure
	8-3 - Interrupt Recognition Examples
	8-4 - Assertion of IPEND
	8-5 - Interrupt Exception Processing Flowchart
	8-6 - Examples of Interrupt Recognition and Instruction Boundaries
	8-7 - Breakpoint Instruction Flowchart
	8-8 - RTE Instruction for Throwaway Four-Word Frames
	8-9 - Special Status Word (SSW)

	8.1 - Exception Processing Sequence
	8.1.1 - Reset Exception
	8.1.2 - Bus Error Exception
	8.1.3 - Address Error Exception
	8.1.4 - Instruction Trap Exception
	8.1.5 - Illegal Instruction and Unimplemented Instruction Exceptions
	8.1.6 - Privilege Violation Exception.
	8.1.7 - Trace Exception
	8.1.8 - Format Error Exception
	8.1.9 - Interrupt Exceptions
	8.1.10 - MMU Configuration Exception
	8.1.11 - Breakpoint Instruction Exception
	8.1.12 - Multiple Exceptions
	8.1.13 - Return from Exception

	8.2 - Bus Fault Recovery
	8.2.1 - Special Status Word (SSW)
	8.2.2 - Using Software To Complete the Bus Cycles
	8.2.3 - Completing the Bus Cycles with RTE

	8.3 - Coprocessor Considerations
	8.4 - Exception Stack Frame Formats

	Section 9 - Memory Management Unit
	List of Tables
	9-1 - Size Restrictions
	9-2 - Translation Tree Selection
	9-3 - MMUSR Bit Definitions

	List of Illustrations
	9-1 - MMU Block Diagram
	9-2 - MMU Programming Model
	9-3 - Translation Table Tree
	9-4 - Example Translation Table Tree
	9-5 - Example Translation Table Tree Layout in Memory
	9-6 - Derivation of Table Index Fields
	9-7 - Example Translation Tree Using Different Format Descriptors
	9-8 - Address Translation General Flowchart
	9-9 - Root Pointer Descriptor Format
	9-10 - Short-Format Table Descriptor
	9-11 - Long-Format Table Descriptor
	9-12 - Short-Format Page Descriptor and Short-Format Early Termination Page Descriptor
	9-13 - Long-Format Early Termination Page Descriptor
	9-14 - Long-Format Page Descriptor
	9-15 - Short-Format Invalid Descriptor
	9-16 - Long-Format Invalid Descriptor
	9-17 - Short-Format Indirect Descriptor
	9-18 - Long-Format Indirect Descriptor
	9-19 - Simplified Table Search Flowchart
	9-20 - Five-Level Table Search
	9-21 - Example Translation Tree Using Contiguous Memory
	9-22 - Example Translation Tree Using Indirect Descriptors
	9-23 - Example Translation Tree Using Shared Tables
	9-24 - Example Translation Tree with Nonresident Tables
	9-25 - Detailed Flowchart of MMU Table Search Operation
	9-26 - Table Search Initialization Flowchart
	9-27 - ATC Entry Creation Flowchart
	9-28 - Limit Check Procedure Flowchart
	9-29 - Detailed Flowchart of Descriptor Fetch Operation
	9-30 - Logical Address Map Using Function Code Lookup
	9-31 - Example Translation Tree Using Function Code Lookup
	9-32 - Example Translation Tree Structure for Two Tasks
	9-33 - Example Logical Address Map with Shared Supervisor and User Address Spaces
	9-34 - Example Translation Tree Using S and WP Bits to Set Protection
	9-35 - Root Pointer Register (CRP, SRP) Format
	9-36 - Translation Control Register (TC) Format
	9-37 - Transparent Translation Register (TT0 and TT1) Format
	9-38 - MMU Status Register (MMUSR) Format
	9-39 - MMU Status Interpretation - PTEST Level 0
	9-40 - MMU Status Interpretation - PTEST Level 7

	9.1 - Translation Table Structure
	9.1.1 - Translation Control
	9.1.2 - Translation Table Descriptors

	9.2 - Address Translation
	9.2.1 - General Flow for Address Translation
	9.2.2 - Effect of RESET on MMU
	9.2.3 - Effect of MMUDIS on Address Translation

	9.3 - Transparent Translation
	9.4 - Address Translation Cache
	9.5 - Translation Table Details
	9.5.1 - Descriptor Details
	9.5.1.1 - Descriptor Field Definitions
	9.5.1.2 - Root Pointer Descriptor
	9.5.1.3 - Short-Format Table Descriptor
	9.5.1.4 - Long-Format Table Descriptor
	9.5.1.5 - Short-Format Early Termination Page Descriptor
	9.5.1.6 - Long-Format Early Termination Page Descriptor
	9.5.1.7 - Short-Format Page Descriptor
	9.5.1.8 - Long-Format Page Descriptor
	9.5.1.9 - Short-Format Invalid Descriptor
	9.5.1.10 - Long-Format Invalid Descriptor
	9.5.1.11 - Short-Format Indirect Descriptor
	9.5.1.12 - Long-Format Indirect Descriptor

	9.5.2 - General Table Search
	9.5.3 - Variations in Translation Table Structure
	9.5.3.1 - Early Termination and Contiguous Memory
	9.5.3.2 - Indirection
	9.5.3.3 - Table Sharing between Tasks
	9.5.3.4 - Paging of Tables
	9.5.3.5 - Dynamic Allocation of Tables

	9.5.4 - Detail of Table Search Operations
	9.5.5 -Protection
	9.5.5.1 - Function Code Lookup
	9.5.5.2 - Supervisor Translation Tree
	9.5.5.3 - Supervisor Only
	9.5.5.4 - Write Protect


	9.6 - MC68030 and MC68851 MMU Differences
	9.7 - Registers
	9.7.1 - Root Pointer Registers
	9.7.2 - Translation Control Register
	9.7.3 - Transparent Translation Registers
	9.7.4 - MMU Status Register
	9.7.5 - Register Programming Considerations
	9.7.5.1 - Register Side Effects
	9.7.5.2 - MMU Status Register Decoding
	9.7.5.3 - MMU Configuration Exception


	9.8 - MMU Instructions
	9.9 - Defining and Using Page Tables in an Operating System
	9.9.1 - Root Pointer Registers
	9.9.2 - Task Memory Map Definition
	9.9.3 - Impact of MMU Features on Table Definition
	9.9.3.1 - Number of Table Levels
	9.9.3.2 - Initial Shift Count
	9.9.3.3 - Limit Fields
	9.9.3.4 - Early Termination Page Descriptors
	9.9.3.5 - Indirect Descriptors
	9.9.3.6 - Using Unused Descriptor Bits


	9.10 - An Example of Paging Implementation in an Operating System
	9.10.1 - System Description
	9.10.2 - Allocation Routines
	9.10.3 - Bus Error Handler Routine


	Section 10 - Coprocessor Interface Description
	List of Tables
	10-1 - cpTRAPcc Opmode Encodings
	10-2 - Coprocessor Format Word Encodings
	10-3 - Null Coprocessor Response Primitive Encodings
	10-4 - Valid Effective Address Codes
	10-5 - Main Processor Control Register Selector Codes
	10-6 - Exceptions Related to Primitive Processing

	List of Illustrations
	10-1 - F-Line Coprocessor Instruction Operation Word
	10-2 - Asynchronous Non-DMA M68000 Coprocessor Interface Signal Usage
	10-3 - MC68030 CPU Space Address Encodings
	10-4 - Coprocessor Address Map in MC68030 CPU Space
	10-5 - Coprocessor Interface Register Set Map
	10-6 - Coprocessor General Instruction Format (cpGEN)
	10-7 - Coprocessor Interface Protocol for General Category Instructions
	10-8 - Coprocessor nterface Protocol for Conditional Category Instructions
	10-9 - Branch on Coprocessor Condition Instruction (cpBcc.W)
	10-10 - Branch on Coprocessor Condition Instruction (cpBcc.L)
	10-11 - Set on Coprocessor Condition (cpScc)
	10-12 - Test Coprocessor Condition, Decrementand-Branch instruction Format (cpDBcc)
	10-13 - Trap on Coprocessor Condition (cpTRAPcc)
	10-14 - Coprocessor State Frame Format in Memory
	10-15 - Coprocessor Context Save Instruction Format (cpSAVE)
	10-16 - Coprocessor Context Save Instruction Protocol
	10-17 - Coprocesor Context Restore Instruction Format (cpRESTORE)
	10-18 - Coprocessor Context Restore Instruction Protocol
	10-19 - Control CIR Format
	10-20 - Condition CIR Format
	10-21 - Operand Alignment for Operand CIR Accesses
	10-22 - Coprocessor Response Primitive Format
	10-23 - Busy Primitive Format
	10-24 - Null Primitive Format
	10-25 - Supervisor Check Primitive Format
	10-26 - Transfer Operation Word Primitive Format
	10-27 - Transfer from Instruction Stream Primitive Format
	10-28 - Evaluate and Transfer Effective Address Primitive Format
	10-29 - Evaluate Effective Address and Transfer Data Primitive Format
	10-30 - Write to Previously Evaluated Effective Address Primitive Format
	10-31 - Take Address and Transfer Data Primitive Format
	10-32 - Transfer To/From Top of Stack Primitive Format
	10-33 - Transfer Single Main Processor Register Primitive Format
	10-34 - Transfer Main Processor Control Register Primitive Format
	10-35 - Transfer Multiple Main Processor Registers Primitive Format
	10-36 - Register Select Mask Format
	10-37 - Transfer Multiple Coprocessor Registers Primitive Format
	10-38 - Operand Format in Memory for Transfer to -(An)
	10-39 - Transfer Status Register and ScanPC Primitive Format
	10-40 - Take Pre-lnstruction Exception Primitive Format
	10-41 - MC68030 Pre-lnstruction Stack Frame
	10-42 - Take Mid-Instruction Exception Primitive Format
	10-43 - MC68030 Mid-Instruction Stack Frame
	10-44 - Take Post-Instruction Exception Primitive Format
	10-45 - MC68030 Post-Instruction Stack Frame

	10.1 - Introduction
	10.1.1 - Interface Features
	10.1.2 - Concurrent Operation Support
	10.1.3 - Coprocessor Instruction Format
	10.1.4 - Coprocessor System Interface
	10.1.4.1 - Coprocessor Classification
	10.1.4.2 - Processor-Coprocessor Interface
	10.1.4.3 - Coprocessor Interface Register Selection


	10.2 - Coprocessor Instruction Types
	10.2.1 - Coprocessor General Instructions
	10.2.1.1 - Format
	10.2.1.2 - Protocol

	10.2.2 - Coprocessor Conditional Instructions
	10.2.2.1 - Branch On Coprocessor Condition Instruction
	10.2.2.1.1 - Format
	10.2.2.1.2 - Protocol

	10.2.2.2 - Set On Coprocessor Condition Instruction
	10.2.2.2.1 - Format
	10.2.2.2.2 - Protocol

	10.2.2.3 - Test Coprocessor Condition, Decrement and Branch Instruction
	10.2.2.3.1 - Format
	10.2.2.3.2 - Protocol

	10.2.2.4 - Trap On Coprocessor Condition
	10.2.2.4.1 - Format
	10.2.2.4.2 - Protocol


	10.2.3 - Coprocessor Save and Restore Instructions
	10.2.3.1 - Coprocessor Internal State Frames
	10.2.3.2 - Coprocessor Format Words
	10.2.3.2.1 - Empty/Reset Format Word
	10.2.3.2.2 - Not Ready Format Word
	10.2.3.2.3 - Invalid Format Word
	10.2.3.2.4 - Valid Format Word

	10.2.3.3 - Coprocessor Context Save Instruction
	10.2.3.3.1 - Format
	10.2.3.3.2 - Protocol

	10.2.3.4 - Coprocessor Context Restore Instruction
	10.2.3.4.1 - Format
	10.2.3.4.2 - Protocol



	10.3 - Coprocessor Interface Register Set
	10.3.1 - Response CIR
	10.3.2 - Control CIR
	10.3.3 - Save CIR
	10.3.4 - Restore CIR
	10.3.5 - Operation Word CIR
	10.3.6 - Command CIR
	10.3.7 - Condition CIR
	10.3.8 - Operand CIR
	10.3.9 - Register Select CIR
	10.3.10 - Instruction Address CIR
	10.3.11 - Operand Address CIR

	10.4 - Coprocessor Response Primitives
	10.4.1 - ScanPC
	10.4.2 - Coprocessor Response Primitive General Format
	10.4.3 - Busy Primitive
	10.4.4 - Null Primitive
	10.4.5 - Supervisor Check Primitive
	10.4.6 - Transfer Operation Word Primitive
	10.4.7 - Transfer from Instruction Stream Primitive
	10.4.8 - Evaluate and Transfer Effective Address Primitive
	10.4.9 - Evaluate Effective Address and Transfer Data Primitive
	10.4.10 - Write to Previously Evaluated Effective Address Primitive
	10.4.11 - Take Address and Transfer Data Primitive
	10.4.12 - Transfer to/from Top of Stack Primitive
	10.4.13 - Transfer Single Main Processor Register Primitive
	10.4.14 - Transfer Main Processor Control Register Primitive
	10.4.15 - Transfer Multiple Main Processor Registers Primitive
	10.4.16 - Transfer Multiple Coprocessor Registers Primitive
	10.4.17 - Transfer Status Register and ScanPC Primitive
	10.4.18 - Take Pre-lnstruction Exception Primitive
	10.4.19 - Take Mid-Instruction Exception Primitive
	10.4.20 - Take Post-Instruction Exception Primitive

	10.5 - Exceptions
	10.5.1 - Coprocessor-Detected Exceptions
	10.5.1.1 - Coprocessor-Detected Protocol Violations
	10.5.1.2 - Coprocessor-Detected Illegal Command or Condition Words
	10.5.1.3 - Coprocessor Data-Processing Exceptions
	10.5.1.4 - Coprocessor System-Related Exceptions
	10.5.1.5 - Format Errors

	10.5.2 - Main-Processor-Detected Exceptions
	10.5.2.1 - Protocol Violations
	10.5.2.2 - F-Line Emulator Exceptions
	10.5.2.3 - Privilege Violations
	10.5.2.4 - cpTRAPcc Instruction Traps
	10.5.2.5 - Trace Exceptions
	10.5.2.6 - Interrupts
	10.5.2.7 - Format Errors
	10.5.2.8 - Address and Bus Errors

	10.5.3 - Coprocessor Reset

	10.6 - Coprocessor Summary

	Section 11 - Instruction Execution Timing
	List of Illustrations
	11-1 - Block Diagram - Eight Independent Resources
	11-2 - Simultaneous Instruction Execution
	11-3 - Derivation of Instruction Overlap Time
	11-4 - Processor Activity - Even Alignment
	11-5 - Processor Activity - Odd Alignment

	11.1 - Performance Tradeoffs
	11.2 - Resource Scheduling
	11.2.1 - Microsequencer
	11.2.2 - Instruction Pipe
	11.2.3 - Instruction Cache
	11.2.4 - Data Cache
	11.2.5 - Bus Controller Resources
	11.2.5.1 - Instruction Fetch Pending Buffer
	11.2.5.2 - Write Pending Buffer
	11.2.5.3 - Micro Bus Controller

	11.2.6 - Memory Management Unit

	11.3 - Instruction Execution Timing Calculations
	11.3.1 - Instruction-Cache Case
	11.3.2 - Overlap and Best Case
	11.3.3 - Average No-Cache Case
	11.3.4 - Actual Instruction-Cache-Case Execution Time Calculations

	11.4 - Effect of Data Cache
	11.5 - Effect of Wait States
	11.6 - Instruction Timing Tables
	11.6.1 - Fetch Effective Address (fea)
	11.6.2 - Fetch Immediate Effective Address (flea)
	11.6.3 - Calculate Effective Address (cea)
	11.6.4 - Calculate Immediate Effective Address Mode (ciea)
	11.6.5 - Jump Effective Address
	11.6.6 - MOVE Instruction
	11.6.7 - Special-Purpose MOVE Instruction
	11.6.8 - Arithmetical/Logical Instructions
	11.6.9 - Immediate Arithmetical/Logical Instructions
	11.6.10 - Binary-Coded Decimal and Extended Instructions
	11.6.11 - Single Operand Instructions
	11.6.12 - Shift/Rotate Instructions
	11.6.13 - Bit Manipulation Instructions
	11.6.14 - Bit Field Manipulation Instructions
	11.6.15 - Conditional Branch Instructions
	11.6.16 - Control Instructions
	11.6.17 - Exception-Related Instructions and Operations
	11.6.18 - Save and Restore Operations

	11.7 - Address Translation Tree Search Timing
	11.7.1 - MMU Effective Address Calculation
	11.7.2 - MMU Instruction Timing

	11.8 - Interrupt Latency
	11.9 - Bus Arbitration Latency

	Section 12 - Applications Information
	List of Tables
	12-1 - Data Bus Activity for Byte, Word, and Long-Word Ports
	12-2 - Memory Access Time Equations at 20 MHz
	12-3 - Calculated tAVDV Values for Operation at Frequencies Less Than or Equal to the CPU Maximum Frequency Rating
	12-4 - Microsequencer STATUS Indications
	12-5 - List of Parts
	12-6 - AS and ECSC Indications
	12-7 - VCC and GND Pin Assignments

	List of Illustrations
	12-1 - Signal Routing for Adapting the MC68030 to MC68020 Designs
	12-2 - 32-Bit Data Bus Coprocessor Connection
	12-3 - Chip-Select Generation PAL
	12-4 - PAL Equations
	12-5 - Bus Cycle Timing Diagram
	12-6 - Example MC68030 Byte Select PAL System Configuration
	12-7 - MC68030 Byte Select PAL Equations
	12-8 - Access Time Computation Diagram
	12-9 - Example Two-Clock Read, Three-Clock Write Memory Bank
	12-10 - Example PAL Equations for Two-Clock Memory Bank
	12-11 - Additional Memory Enable Circuits
	12-12 - Example Two-Clock Read and Write Memory Bank
	12-13 - Example PAL Equation for Two-Clock Read and Write Memory Bank
	12-14 - Example 2-1-1-1 Burst Mode Memory Bank at 20 MHz, 256K Bytes
	12-15 - Example 3-1-1-1 Pipelined Burst Mode Memory Bank at 20 MHz, 256K Bytes
	12-16 - Additional Memory Enable Circuit
	12-17 - Example MC68030 Hardware Configuration with External Physical Cache
	12-18 - Example Early Termination Control Circuit
	12-19 - Normal Instruction Boundaries
	12-20 - Trace or Interrupt Exception
	12-21 - Other Exceptions
	12-22 - Processor Halted
	12-23 - Trace Interface Circuit
	12-24 - PAL Pin Definitions
	12-25 - Logic Equations

	12.1 - Adapting the MC68030 to MC68020 Designs
	12.1.1 - Signal Routing
	12.1.2 - Hardware Differences
	12.1.3 - Software Differences

	12.2 - Floating-Point Units
	12.3 - Byte Select Logic for the MC68030
	12.4 - Memory Interface
	12.4.1 - Access Time Calculations
	12.4.2 - Burst Mode Cycles

	12.5 - Static RAM Memory Banks
	12.5.1 - A Two Clock Synchronous Memory Bank Using SRAMs
	12.5.2 - A 2-1-1-1 Burst Mode Memory Bank Using SRAMs
	12.5.3 - A 3-1-1-1 Burst Mode Memory Bank Using SRAMs

	12.6 - External Caches
	12.6.1 - Cache Implementation
	12.6.2 - Instruction-Only External Cache Implementations

	12.7 - Debugging Aids
	12.7.1 - STATUS and REFILL
	12.7.2 - Real-Time Instruction Trace

	12.8 - Power and Ground Considerations

	Section 13 - Electrical Characteristics
	13.1 - Maximum Ratings
	13.2 - Thermal Characteristics - PGA Package

	Section 14 - Ordering Information and Mechanical Data
	14.1 - Standard MC68030 Ordering Information
	14.2 - Pin Assignments - Pin Grid Array (RC Suffix)
	14.3 - Pin Assignments - Ceramic Surface Mount (FE Suffix)
	14.4 - Package Dimensions

	Appendix A - M68000 Family Summary
	Index


