

h -

Introduction

Data Organization and Addressing Capabilities
Instruction Set Summary

Processing States

Signal Description

On-Chip Cache Memories

Bus Operation

Exception Processing

Memory Management Unit

Coprocessor Interface Deécription
Instruction Execution Timing

Applications I»nformation

Electrical Characteristics

Ordering Information and Mechanical Data
M68000 Family Summary

Index

BESAARBAABANBBNANAR

@ MOTOROLA

MC68030

ENHANCED 32-BIT
MICROPROCESSOR USER’'S MANUAL

Third Edition

Motorola reserves the right to make changes without further notice to any products herein
to improve reliability, function or design. Motoroia does not assume any liability arising out
of the application or use of any product or circuit described herein; neither does it convey
any license under its patent rights nor the rights of others. Motorola products are not author-
ized for use as components in life support devices or systems intended for surgical implant
into the body or intended to support or sustain life. Buyer agrees to notify Motorola of any
such intended end use whereupon Motorola shall determine availability and suitability of its
product or products for the use intended. Motorola and ® are registered trademarks of
Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action
Employer.

PRENTICE HALL, Englewood Cliffs, N.J. 07632

©1990 MOTOROLA, INC.

Published by Prentice-Hal, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

W

The publisher offers discounts on this book when ordered
in bulk quantities. For more information, write:

Special Sales/College Marketing
Prentice-Hall, Inc.

College Technical and Reference Division
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

0 9 87 6 5 4 3 2 1

ISBN 0-13-5bL423-3

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

h -

P]

TABLE OF CONTENTS

Paragraph Page
Number Title Number
Section 1
Introduction

1.1 FRATUIES. oottt e e 1-3
1.2 MC68030 Extensions to the M68000 Familyooeeviiiiiiineennn. 1-4
1.3 Programming Model ..o 1-4
1.4 Data Types and Addressing Modes.........cccouivieiineieiiiiineienneanns 1-10
1.6 Instruction Set Overview U TP 1-10
1.6 Virtual Memory and Virtual Machine Conceptsc.ocovveinennnns 1-12
1.6.1 Virtual MEMOTY covivi e 1-12
1.6.2 Virtual Machingo, 1-14
1.7 The Memory Management Unit.........cooeviiiiiiiiiiiiiiieeeeieenn, 1-15
1.8 Pipelined Architectureooooiivviiiini e 1-16
1.9 The Cache MemOriBS ... eiiii i e, 1-16

Section 2
Data Organization and Addressing Capabilities

241 INSTrUCtion OPerands.........cocuvvuiiiiiiiiii e 241
2.2 Organization of Data in Registersccovvviivivie i 2-2
2.2.1 Data RegiStersouuiiiiiiiini e e 2-2
2.2.2 Address REgiSTErS. . ..oiiviviriiiei s e 2-4
2.2.3 Control RegiSters.....ovuviiviiiiir i 2-4
2.3 Organization of Data in MemMOrY........ccoovviiiiiiiiiiieie e, 2-5
2.4 Addressing MOOES. ... e 2-8
241 Data Register Direct Modecoccovvviiiiiiiiii i, 2-9
2.4.2 Address Register Direct Mode...........cooccivviiiiininciien e, 2-10
2.4.3 Address Register Indirect Mode.........ccoccevviiiviiiniiinniin 2-10
24.4 Address Register Indirect with Postincrement Mode............. 2-10
2.4.5 Address Register Indirect with Predecrement Mode.............. 2-11
2.4.6 Address Register Indirect with Displacement Mode.............. 2-12
247 Address Register Indirect with Index (8-Bit Displacement)

MO, e 2-12
24.8 Address Register Indirect with Index (Base Displacement)

MO, i 2-13
2.4.9 Memory Indirect Postindexed Modecoovvvviiiiiiniennnn. 2-14

MOTOROLA MC68030 USER'S MANUAL iit

h -

<

Paragraph Page
Number Title Number
2410 Memory Indirect Preindexed Mode......ccocviiviniieiiiininennee. 2-15
2.4.11 Program Counter Indirect with Displacement Mode.............. 2-16
2.4.12 Program Counter Indirect with Index (8-Bit Displacement)

1Yo e L= T TP 2-16
2.4.13 Program Counter Indirect with Index (Base Displacement)

1Yo e [T PP UTUPRIPPPN 2-17
24.14 Program Counter Memory Indirect Postindexed Mode.......... 2-18
2.4.15 Program Counter Memory Indirect Preindexed Mode 2-18
2.4.16 Absolute Short Addressing Mode.........occoiiieiiiiiiiiiiinnne 2-20
2.4.17 Absolute Long Addressing Mode..........ccoooiiiviiiiinniiininnnn, 2-20
24.18 IMMediate Data.....oveiiiiii et 2-21
25 Effective Address Encoding Summary.............oooovviiiiiiiiinninnnn. 2-22
2.6 Programmer’s View of Addressing Modes...........cooceeviiiiinnnennn, 2-24
2.6.1 Addressing Capabilitiesovveiiiiiii 2-25
2.6.2 General Addressing Mode Summaryc..coociiiinninininnn. 2-31
2.7 M68000 Family Addressing Compatibility........coooviiiiiiins, 2-36
2.8 Other Data StTUCIUIES. . .uiee i et ae e 2-36
2.8.1 SYStEM StACK . ovveii i e 2-36
2.8.2 User Program STackS.....oo.verviieiiiiiiiiere e e 2-38
283 QUBU S ..ttt e 2-39

Section 3
Instruction Set Summary

3.1 INStruction FOrmat ..o 3-1
3.2 INSErUCHION SUMMATIY. ... e 3-2
3.21 Data Movement INStructionscoovveeniiiiiiiicnn i 34
3.2.2 Integer Arithmetic INStructionscooovevvviiiiii i, 3-5
3.2.3 Logical INStruCtionNS.....oiiviiiriic 3-6
324 Shift and Rotate Instructions.......cooviviiniin i, 3-7
3.25 Bit Manipulation Instructionsccovieiiiieiiiicnii e 3-8
3.2.6 Bit Field INStructionsveiiii i e 3-9
3.2.7 Binary-Coded Decimal Instructionsc..coovieiviinn . 3-10
3.2.8 Program Control INStructionscoievviiinen i 3-11
3.29 System Control INstructions........ccoviiiiiiinc e, 3-12
3.2.10 Memory Management Unit Instructionscccoveiiinns 3-13
3.2.11 Multiprocessor INStructions.......c..ooveviiiiiiicniici e 3-13
3.3 Integer Condition COUESivuiiiiiiiiiiin e e 3-14
3.3.1 Condition Code Computationcoovivivieiiiiiiiiiiiaiiaeans 3-15
v MC68030 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

h -

P]

Paragraph
Number

3.3.2
34

35

3.8.1
3.6.2
3.5.3
3.54

4.1
4.1.1
4.1.2
4.1.3
4.2
4.3
4.3.1
4.3.2

5.1
5.2
5.3
5.4
5.5
5.6
5.6.1
5.6.2
5.6.3
564
565
5.6.6
5.6.7
5.6.8
5.6.9
5.7
5.7:1

MOTOROLA

TABLE OF CONTENTS (Continued)

Page
Title Number
Conditional Tests........coovivviiiiiniincnennn, SO 317
INStruction Set SUMMIATY ..o e 3-18
INSTruCtion EXampPles. ... 3-25
Using the CAS and CAS2 Instructions.....cocvviiiiiieiiiiviceeeeenn, 3-25
Nested Subroutine Calls........covviiiiniiicii e 3-30
Bit Field Operations ...c....oviiiiiiii e 3-31
Pipeline Synchronization with the NOP Instruction...................s 3-32
Section 4
Processing States
Privilege Levels . ..o 4-2
Supervisor Privilege Level ..o, 4-2
User Privilege Level ..., 4-3 .
Changing Privilege Levelccoviiiiiiiiiiniii e 4-4
Address SPace TYPES . vuiviiiiiiiiiii e er e 4-5
EXCEPioN ProCesSingvvvvviiii i e e 4-6
EXCEPLION VECIOIS .o ittt 4-6
Exception Stack Framecivviiiiiiiiiiiiic e 4-7
Section 5
Signal Description
SIgNAl INAEX ..o 5-2
Function Code Signals (FCO-FC2)cccoiiiiiiiiiiiiiieiees 5-4
Address Bus {AD=A3T). i 5-4
Data Bus (DO0-D31) et 5-4
Transfer Size Signals (SIZ0, SIZ1) .o, 5-4
Bus Control Signalscooooeiiiiiiiiiniincennnn, e e 5-5
Operand Cycle Start (OCS)....uveirieeeiiiiiieieeiiiiiee e 5-5
External Cycle Start (ECS).....cooiiiiriiiiiiiiieiiiiiiieeeeeeeee e 5-5
Read/Write (RIW) ...ttt 5-5
Read-Modify-Write Cycle (RMC)vvvvviiiiieeiiiiiieiieeieieeeeeeen 5-5
Address Strobe (AS)uvveiiiiiiiiie e 5-5
Data Strobe (DS).....coovie et e 5-6
Data Buffer Enable (DBEN)...........ovvvvviiieeeeieieeeee e, 5-6
Data Transfer and Size Acknowledge (DSACKO DSACK1)..... 5-6
Synchronous Termination (STERM)ccoiviiiiiiiiini 5-6
Cache Control Signals........ooiciiiiiii e 5-7
Cache Inhibit Input (CIIN)...oooivviiiii e 5-7

MC68030 USER'S MANUAL v

h -
P]

Paragraph
Number

57.2
5.7.3
57.4
58
5.8.1
5.8.2
5.8.3
5.9
5.9.1
59.2
5.9.3
5.10
5.10.1
5.10.2
5.10.3
5.11
511.1
5.11.2
511.3
511.4
5.12
5.13
5.14

6.1
6.1.1
6.1.2
6.1.2.1
6.1.2.2
6.1.3
6.1.3.1
6.1.3.2
6.2

6.3
6.3.1
6.3.1.1

vi

TABLE OF CONTENTS (Continued)

- Page

Title Number
Cache Inhibit Output {CIOUT) ..o, 5-7
Cache Burst Request (CBREQ).......cocooviviiiviiniieiineinienns 5-7
Cache Burst Acknowledge (CBACK)iccoocoviiiiiiniiiiiinini 5-7

Interrupt Control Signalsc.oiiiiii i 5-3
Interrupt Priority Level Signals.........o.cooiiiviiiiiniiiiiiineen, 5-8
Interrupt Pending (IPEND).........c.cooiiiiinen, e 5-8
Autovector {AVEC)coiiiiiiie i 5-8

Bus Arbitration Control Signals........ccocoviviiiiiiiniiic e, 5-8
Bus ReqUESt (BR}......coouiiieieiee et 5-8
BUS Grant (BG) ...oooueiiiieiie e 5-9
Bus Grant Acknowledge (BGACK)..........ooooiiiiiiiiiiiiiin, 5-9

Bus Exception Control Signalsccooeviiiiiiiiieiie i 5-9
Reset (RESET) it 5-9
Halt (HALT) oo et 5-9
Bus Error {BERR) ..o 5-9

Emulator Support Signals.......coooviiiiiiii 5-10
Cache Disable (CDIS)...........ovvviiiiiiiieieieieeee e 5-10
MMU Disable (MMUDIS)........ S ORI 5-10
Pipeline Refill (REFILL).......cooiiiiiii e 5-10
Internal Microsequencer Status (STATUS)......cocovveiiiinnnnn. 5-10

Clock (CLK) ..o e e e e e 5-11

Power Supply Connectionsccocovieiiiiiiniiiiii i, 5-11

SIgnal SUMIMAIY. ..o e 5-11

Section 6
On-Chip Cache Memories :

On-Chip Cache Organization and Operation................cccc.ccee..... 6-3
INStruction Cache....cooiiiii i 6-4
Data Cache.. ..ot 6-6

Write AOCatioN. ..o 6-8
Read-Modify-Write ACCESSES.........ccvvvvinninns et 6-10
Cache Filling ...coooviiiiici e e 6-10
Single Entry Mode ...l 6-10
Burst Mode Filling «...ooovviiiii 6-15

£ache RESBT . it 6-20

Cache Control.......ccooiiiiii e e 6-20
Cache Control Register......cocviviiiiii e 6-20

WIIte AllOCAtE. .. i e 6-21
MC68030 USER'S MANUAL MOTOROLA

h -

P]

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
6.3.1.2 Data Burst Enable ..o 6-21
6.3.1.3 Clear Data Cachecooiiiiii e 6-21
6.3.1.4 Clear Entry in Data Cache ...c.oovviiiiiiiiiiiniiic i 6-21
6.3.1.5 Freeze Data Cacheccoiiiiiiiiiiiiii e 6-22
6.3.1.6 Enable Data Cache..........coooiiiiiiiie e 6-22
6.3.1.7 Instruction Burst Enableooovviiiiiiiii e 6-22
6.3.1.8 Clear Instruction Cache......coviviiviiiciiiiiiincie e 6-22
6.3.1.9 Clear Entry in Instruction Cachec.ccoivivviiiiiiiiinncnnnn, 6-22
6.3.1.10 Freeze Instruction Cache.....c.ociiiiiiiiiiiiiciiiiin e 6-23
6.3.1.11 Enable Instruction Cachecooveeieiviviiniini e, 6-23
6.3.2 Cache Address Register.....cocooivviiiiiiiiii e 6-23
Section 7
: Bus Operation

7.1 Bus Transfer Signals ..o 7-1
7.1.1 Bus Control Signals ..o.viiiiiiii e 7-3
7.1.2 Address Bus....ooii e 7-4
7.1.3 Address STrobe......oooviii 7-4
7.1.4 Data BUS .ottt e 7-5
7.1.5 Data Strobe. . 7-5
7.1.8 L Data Buffer Enable......oooi 7-5
7.1.7 Bus Cycle Termination Signals.........ocvevvieviiiiiniiineeenen 7-5
7.2 Data Transfer Mechanism.......coooiiiiiiiii e 7-6
7.2.1 Dynamic BUS SiZiNgoviiiiiiiiiii e 7-6
7.2.2 Misaligned Operands ..ot 7-13
7.2.3 Effects of Dynamic Bus Sizing and Operand Misalignment.... 7-19
7.2.4 Address, Size, and Data Bus Relationships............ooceevivnen. 7-22
7.2.5 - MC68030 versus MC68020 Dynamic Bus Sizing.................... 7-24
7.2.6 Cache FIING s 7-24
727 Cache Interactionscoovviiieiiicii e e 7-26
7.2.8 Asynchronous Operation................... TP 7-27
7.2.9 Synchronous Operation with DSACKX......ccovvvivviviiviniininnns 7-28
7.2.10 Synchronous Operation with STERM ... 7-29
7.3 Data Transfer CyCles ..o v 7-30
7.3.1 ; Asynchronous Read Cycle ..., 7-31
7.3.2 Asynchronous Write Cycle...ccocoiiviiiiiiiiiii e 7-37
7.3.3 Asynchronous Read-Modify-Write Cycle..........co.oivvieninnen. 7-43
7.3.4 Synchronous Read Cycle.....ooiiiiiiiiii e 7-48

MOTOROLA MC68030 USER'S MANUAL Vi

h -

P]

Paragraph
Number

7.35
7.3.6
7.3.7
7.4
7.4.1
7.4.1.1
7.4.1.2
7.41.3
7.4.2
7.4.3
7.5
7.5.1
7.5.2
753
7.5.4
7.6

7.7
7.7.1
7.7.2
7.7.3
7.7.4
7.8

8.1

8.1.1
8.1.2
8.1.3
8.1.4
8.1.6

8.1.6
8.1.7
8.1.8
8.1.9
8.1.10
8.1.11

viff

TABLE OF CONTENTS (Continued)

Page
Title Number
Synchronous Write Cycle.......c..ooiiiiiiiiiiiiniis e, 7-51
Synchronous Read-Modify-Write Cycleccoocoivvvveiiniinnnn. 7-54
Burst Operation Cycles.......cooviiiiiiiiiii e 7-59
CPU Space CyCles.. ..o 7-68
Interrupt Acknowledge Bus Cycles........ocovvviiiiiinn 7-69
Interrupt Acknowledge Cycle — Terminated Normally.... 7-70
Autovector Interrupt Acknowledge Cycle......c..ccooevinnnnn. 7-71
Spurious Interrupt Cycle......oo i e 7-74
Breakpoint Acknowledge Cycle.......ccoooiiiiniiiiiiiiiiciinn 7-74
Coprocessor Communication Cycles.....covvevveiviiiniiiinininn 7-74
Bus Exception Control Cycles......ocviviiinivin i 7-75
BUS ErTOrS. i e e 7-82
Retry Operation ..o.vee i et 7-89
Halt Operation......ocoiiiiie e e 7-91
Double BUS Fault........oiviiiiii e ea e e eias 7-94
Bus Synchronization PPN 7-95
BUS Arbitrationoier i e 7-96
BUS REQUEST ...t ittt eie e e e e et ee e e enas 7-98
BUS Grantovveeiii e e 7-99
Bus Grant Acknowledgecovvvviiveiiiinnien i 7-100
Bus Arbitration Control..........o.iciiiiiiiiinii 7-100
Reset Operation. v e 7-103
Section 8
Exception Processing
Exception Processing SEQUENCE . .ov.vvvv i iviiienicnieieeeecn e 8-1
Reset EXCEPLION .. .vtv it e e 8-5
Bus Error EXCEpLioN ..o it e 8-7
Address Error EXCeption.......ciiviiiiiiiiiiir e 8-8
Instruction Trap EXCePLioN .ivvviiiri i, 8-9
lilegal Instruction and Unimplemented Instruction
EXCEPLIONS (o e 8-9
Privilege Violation EXception.i.....ccooeiiviiiioniiinciennn, 8-11
Trace EXCeptiONo s e 8-12
Format Error EXCeptioN ...oovieiiiiiiiiieiee e eae e, 8-14
[nterrupt EXCeptioNS . ..civi i 8-14
MMU Configuration EXceptionc.coeveieviiiniinniinninnn, 8-21
Breakpoint Instruction EXception ..., 8-22
MC68030 USER'S MANUAL MOTOROLA

h -

TABLE OF CONTENTS (Continued)

Paragraph
Number Title
8.1.12 Multiple EXCEPLioNS.......cciiiiiiiiici e
8.1.13 Return from Exceptionoccoiviiiiieiiniiiniiieene .
8.2 Bus Fault ReCOVEIy ...ccviiiiiiiiiiii e
8.2.1 Special Status Word (SSW)........cociviiiiiiiiei i,
8.2.2 Using Software To Complete the Bus Cycles
8.2.3 Completing the Bus Cycles with RTE
8.3 Coprocessor Considerations......cooveviiiiiieveiiiniiiinenns
8.4 Exception Stack Frame Formatscc.covvvviiiiiiinennne.
Section 9
Memory Management Unit
9.1 Translation Table Structure.........cc.coooviiiivicni e,
9.1.1 Translation Controlocoveiiiiiiiiiii e,
9.1.2 Translation Table Descriptors.........cocovviviiiiiiiiennnns
9.2 Address Translationoocoiiiiriiiii e
9.2.1 General Flow for Address Translation.....................
9.2.2 Effect of RESET on MMU.........ooiiiiiiiiice
9.2.3 Effect of MMUDIS on Address Translation...............
9.3 Transparent Translation.........c.cocvviiiiiii i
9.4 Address Translation Cacheccoooviiiiiiiiiiiiiicn,
9.5 Translation Table Detailsc.cocoveiiviiiiiiicineee,
9.5.1 Descriptor Detailscooviieiiiii e
9.5.1.1 Descriptor Field Definitions............ocovevivieninns
9.5.1.2 Root Pointer Descriptorc.ovveieiiniiiiiiees
9.5.1.3 Short-Format Table Descriptor........cooceeviveenenen.
9.5.1.4 Long-Format Table Descriptor..........ccocevevevnannns
9.5.1.5 Short-Format Early Termination Page Descriptor
9.5.1.6 Long-Format Early Termination Page Descriptor
9.5.1.7 Short-Format Page Descriptor..........cooeviiinenn.
9.5.1.8 Long-Format Page Descriptor..........cocovvvvenennnn.
9.5.1.9 Short-Format Invalid Descriptor.........cocovvivinnns
9.5.1.10 Long-Format Invalid Descriptor.......cccocviviennnnn
9.5.1.11 Short-Format Indirect Descriptor «...coovvvvveninne.n,
9.5.1.12 Long-Format Indirect Descriptor.......................
9.5.2 General Table Search.........cocociviiiiiii e,
9.5.3 Variations in Translation Table Structure.................
9.5.3.1 Early Termination and Contiguous Memory.......
9.5.3.2 INAITECHION. et

MOTOROLA MC68030 USER'S MANUAL

Page
Number

h -

TABLE OF CONTENTS (Continued)

Paragraph ‘Page
Number Title Number
9.5.3.3 Table Sharing between Tasks........coccovviviiiiiniiiiinnininnes 9-37
9.5.3.4 Paging of Tables. ... e 9-37
9.56.3.5 Dynamic Allocation of Tables......c.covvviiiiiiciiiiincinennnnn. 9-40
9.5.4 Detail of Table Search Operanons 9-40
9.5.5 Protectionooceiivii i i eeererreaeen 9-43
9.5.5.1 Function Code Lookup........... T 9-45
9.5.6.2 Supervisor Translation Tree............ RN 9-48
9.56.5.3 SUPEIVISOr ONIY.. . i e e aeens 9-48
9554 Write Protect........cocovviinn i B LTI S PRRUPPPIN 9-48
9.6 MC68030 and MC68851 MMU D;fferences PRI T 9-51
9.7 RIS it irii et e T S 9-52
9.7.1 Root Pointer Registers.............i.oi. i e 9-52
9.7.2 Translation Control Register........coveviiviiein e 9-54
9.7.3 Transparent Translation Reglsters [T T - 9-57
9.7.4 MMU Status Register.......ccoeeeviiivnnneniiiinn.s e 9-59
9.7.5 Register Programming Considerations............covivevinvieeiinnen. 9-61
9.7.5.1 Register Side EffectS .ivveeiiiniiiiiii i e cees 9-61
9.7.5.2 MMU Status Register Decoding.......cocovvievieriniiccnnennenn. 9-61
9753 MMU Configuration EXceptionccoovviiviiinniniinninnn, 9-62
9.8 MIMU INSTFUCTIONS toov it e e 9-63
9.9 Defining and Using Page Tables in an Operating System 9-65
9.9.1 Root Pointer Registers........cc.ivoiiiiiiiii e 9-65
9.9.2 Task Memory Map Definition.........cocoiiiniii 9-66
9.9.3 Impact of MMU Features on Table Definition....................... 9-68
9.9.3.1 Number of Table Levelscoocoiiiiiiii e 9-68
9.9.3.2 tnitial Shift Count..............veuvuvene 9-69
9.9.3.3 Limit Fields ..o e 9-70
9.9.34 Early Termination Page Descriptorscocoveviuninneninnennes 9-70
9.9.3.5 INAIrECt DESCHIPTOIS .oi vvirieiviiiiiie ettt i e 9-71
9.9.3.6 Using Unused Descriptor Bits ...l 9-71
9.10 An Example of Paging Implementatlon in an Operatlng System .. 9-72
9.10.1 System DesCriptioN .. v i e 9-72
9.10.2 Allocation Routines............ PP 9-78
9.10.3

Bus Error Handler Routine......oovvviiiiiiiiiiic s - 9-82

MC68030 USER'S MANUAL MOTOROLA

h -

TABLE OF CONTENTS (Continued)

Paragraph
Number Title
Section 10
Coprocessor Interface Description

10.1 INTrOdUCTION Lot e
10.1.1 Interface Features ...ocoviiii i,
10.1.2 Concurrent Operation SUpportoccvviviiiiiviiniic e,
10.1.3 Coprocessor Instruction Format........c.ovviviiicenieninnnnnnn,
10.1.4 Coprocessor System Interface.........covvviviiiinnenniiniennnns
10.1.4.1 Coprocessor Classification.,.........cococivcinnniini,
10.1.4.2 Processor-Coprocessor Interface.................. SETUUI
10.1.4.3 Coprocessor Interface Register Selection.................
10.2 Coprocessor INStruction TYPES vouvvvvveiviiiiiiiiiererrevineenss
10.2.1 Coprocessor General INStrUCtionS.......ovvvvivviveiiiiiinnnnn
10.2.1.1 o 0o T- | O
10.2.1.2 ProtoCol. ... e
10.2.2 Coprocessor Conditional InStructions........c.cccevvenvinennnnn.
10.2.2.1 Branch On Coprocessor Condition Instruction..........
10.2.2.1.1 FOrmat. ..o e
10.2.2.1.2 Protocol. .o
10.2.2.2 Set On Coprocessor Condition Instruction...............
10.2.2.2.1 FOrmat. v
10.2.2.2.2 Protocol.. oo e
10.2.2.3 Test Coprocessor Condition, Decrement and

Branch Instruction.............covi v
10.2.2.3.1 ; Format....cooooiii
10.2.2.3.2 ProtoCO ..ot
10.2.2.4 Trap On Coprocessor Conditioncoovivevvicninnnnen,
10.2.2.4.1 o o 1 0 -) S
10.2.2.4.2 Protocol. oo
10.2.3 Coprocessor Save and Restore Instructions...................
10.2.3.1 Coprocessor Internal State Frames..........cccovvvvienenns
10.2.3.2 Coprocessor Format Wordscooovviiiivivininicennnnn,
10.2.3.2.1 Empty/Reset Format Word.........coovveiviiiniinnenns
10.2.3.2.2 Not Ready Format Word.......... et
10.2.3.2.3 Invalid Format Wordcoocoiiinn i,
10.2.3.2.4 Valid Format Word........coccoiiiiiiii e,
10.2.3.3 Coprocessor Context Save Instruction.....................
10.2.3.3.1 Format....oooiiii s,
10.2.3.3.2 Protocol. oo e,

MOTOROLA MC68030 USER'S MANUAL

Page
Number

Xi

h -

P

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
10.2.3.4 Coprocessor Context Restore Instruction............coeevnneen. 10-27
10.2.3.4.1 Format.. .o 10-27
10.2.3.4.2 ProtoCol . i 10-28
10.3 Coprocessor Interface Register Set........cooovvvvieiiviiriiiiiiren. 10-29
10.3.1 Response CIR 10-29
10.3.2 Control CIR ... e 10-30
10.3.3 SaAVE ClIR e 10-30
10.3.4 CRestore ClIR .., 10-31
10.3.5 Operation Word CIR ..ot 10-31
10.3.6 Command ClIR. ... 10-31
10.3.7 Condition CIR ..o 10-31
10.3.8 Operand CIR......coooiiiiiii e 10-32
10.3.9 Register Select CIR.......cociiiiiiii e 10-32
10.3.10 Instruction Address CIR ..., 10-33
10.3.11 Operand Address CIR ..., 10-33
10.4 Coprocessor Response Primitives..........ocovviiiiiiiviiincnieeen, 10-33
10.4.1 SCaNPC . e 10-34
10.4.2 Coprocessor Response Primitive General Format................. 10-35
10.4.3 Busy Primitive.......coovvoiiiniii e, e 10-36
10.44 NUE PrImMITIVE co e 10-37
10.4.5 Supervisor Check Primitive.......ccocoviiiiiiiciniiiciic i, 10-40
10.4.6 Transfer Operation Word Primitiveoocoviviiviniicniiieens, 10-40
10.4.7 Transfer from Instruction Stream Primitive....................oee. 10-41
10.4.8 Evaluate and Transfer Effective Address Primitive................ 10-42
10.4.9 Evaluate Effective Address and Transfer Data Primitive 10-43
10.4.10 Write to Previously Evaluated Effective Address Primitive..... 10-46
10.4.11 Take Address and Transfer Data Primitive..........c.coceoeininnenl, 10-48
10.4.12 Transfer to/from Top of Stack Primitive..............coocoeevi, 10-49
10.4.13 Transfer Single Main Processor Register Primitive 10-50
10.4.14 Transfer Main Processor Control Register Primitive.............. 10-50
10.4.15 Transfer Multiple Main Processor Registers Primitive 10-62
10.4.16 Transfer Multiple Coprocessor Registers Primitive................ 10-52
10.4.17 Transfer Status Register and ScanPC Primitive 10-55
10.4.18 Take Pre-Instruction Exception Primitive..........oooiiiiiniiinnens 10-56
10.4.19 Take Mid-Instruction Exception Primitive................ocoeeninns, 10-58
10.4.20 Take Post-Instruction Exception Primitive........cocoeeiciiiiiinne 10-60
10.5 o CoT=Y o 11T o - PR 10-61
10.5.1 Coprocessor-Detected EXCeptionS.......covveeiiiiiiiiiiiiiineneenss 10-61

xii MC68030 USER'S MANUAL MOTOROLA

h -
P]

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
10.5.1.1 Coprocessor-Detected Protocol Violations 10-62
10.5.1.2 Coprocessor-Detected lliegal Command or Condition

WOIAS oo 10-63
10.5.1.3 Coprocessor Data-Processing Exceptionsccoceeenee. 10-63
10.5.1.4 Coprocessor System-Related Exceptions...........ccovevneenn. 10-64
10.5.1.5 FOrmat Errors. ..o e 10-64
10.5.2 Main-Processor-Detected Exceonns 10-65
10.5.2.1 Protocol Violations......coooviiiiiiiic e 10-65
10.5.2.2 F-Line Emulator EXCeptions......covviviiiiiiiiiincniiieniieeenes 10-68
10.5.2.3 Privilege Violationscooviiiiieiicc e 10-69
10.5.2.4 CPTRAPCC InStruction Traps ..cv.veeeeeeiiviviien i 10-69
10.5.2.5 Trace EXCEPLiONS ... e 10-70
10.5.2.6 N EITUPTS e e 10-71
10.5.2.7 Format Errors ..o 10-71
10.5.2.8 Address and Bus Errors.........cocoviiiiiiiiiinii e 10-72
10.5.3 Coprocessor RESBL......ouciiiiiiii s 10-72
10.6 COProCesSSOr SUMIMAIY .couiuiiit it e e e r e e eaees 10-72

Section 11
Instruction Execution Timing

11.1 Performance Tradeoffs.......c..ocoiiiiiiiiii i 11-1
11.2 Resource Scheduling........covviviiiiiiii e, 11-2
11.2.1 MICIOSEQUENCEY ...\ttt e e e 11-2
11.2.2 INSTrUCION PiPe coivnii i e e 11-2
11.2.3 INStruction Cache......cocviiiii 11-4
11.2.4 Data CaChE. vvvvreeiiiiiiiiiee e e e e 11-4
11.2.5 Bus Controller ReSOUICES........iiiiiir e, 11-4
11.2.5.1 Instruction Fetch Pending Buffer...........cccoovcviiininiinennn, 11-5
11.2.5.2 Write Pending Buffer.........cccooivviiiiiiioni e 11-5
11.2.6.3 Micro Bus Controller...........iiiiiiiiii e, 11-5
11.2.6 Memory Management Unit.........ocoiviviiiiiniiie e, 11-6
11.3 Instruction Execution Timing Calculations............cccoevviiiiinnnn, 11-6
11.3.1 [Instruction-Cache Case........ocviviviviiiiii e 11-6
11.3.2 Overlap and Best Casecocvviviiivii i 11-7
11.3.3 Average No-Cache Casec..ccoeeiiiiiiiniiiiiiiiii, 11-8
11.3.4 Actual Instruction-Cache-Case Execution Time Calculations... 11-11
11.4 Effect of Data Cache. ... 11-16
11.5 Effect of Wait States.. ..o 11-18

‘MOTOROLA MC68030 USER'S MANUAL xiii

o
<

Paragraph Page
Number Title Number
11.6 Instruction Timing Tablescooiieiiiiiii 11-24
11.6.1 Fetch Effective Address {fea).......ccovveiiiiiiiiiiiiiiiiine 11-26
11.6.2 Fetch Immediate Effective Address (fiea)......ccovveiininiinannn. 11-28
11.6.3 Calculate Effective Address (€C€a)....vivvvvieiiiiiiiiiiiiiinineiens 11-30
11.6.4 Calculate Immediate Effective Address Mode {ciea).............. 11-32
11.6.5 Jump Effective AdAress.....ooiviiviniiiiieiiiiee e 11-36
11.6.6 MOVE InStruction..... .ot 11-37
11.6.7 Special-Purpose MOVE Instruction.........cccoioviviniiniieiiienenen. 11-39
11.6.8 Arithmetical/Logical Instructions........ccooeveiiiiiiniciiiinniennnnn. 11-40
11.6.9 Immediate Arithmetical/Logical Instructions..............coveeeen. 11-42
11.6.10 Binary-Coded Decimal and Extended Instructions................. 11-43
11.6.11 Single Operand INStruCtionS.......ccoviiiiiiiiiiini e 11-44
11.6.12 Shift/Rotate INStruCtioNScoovvviriii e 11-45
11.6.13 Bit Manipulation InStructionscoevviiiiiin e 11-46
11.6.14 Bit Field Manipulation InStructions.....cocvevvevivveiiivineniianeeenas 11-47
11.6.15 Conditional Branch Instructions.......c.ccoveiiiiicrininnniiienenne. 11-48
11.6.16 Control INStrUCHIONS. oot 11-49
11.6.17 Exception-Related Instructions and Operations 11-50
11.6.18 Save and Restore Operations.........ccvervevriieiiencincicninnes 11-61
11.7 Address Translation Tree Search Timing........ccovvovviiiiieiciinnnn. 11-51
11.7.1 MMU Effective Address Calculation.......ccocoociiiiiiiiiciiiinnn.. 11-58
11.7.2 MMU Instruction TIMINg......ovoviiiiiir e eeenes 11-60
11.8 INterrupt LatenCy . oo 11-61
11.9 Bus Arbitration LateNCY ..cciiviiiiiiiiiricriiie e iecen s nneaeaas 11-62
Section 12
Applications Information

121 Adapting the MC68030 to MC68020 Designs......ovvevvenviinninniinnnn, 12-1
12.1.1 Signal ROULING.....oiiiiiiiii e 12-2
12.1.2 Hardware Differences......cocoveeviiiiiiiniiiin i e 12-3
12.1.3 Software DifferenCas...oviivi i 12-4
12.2 Floating-Point Unitscoiiiiiiiniiii e 12-5
12.3 Byte Select Logic for the MCB8030coeiiiiiiiiiiiiee, 12-9
12.4 Memory INterfaceoviciiiii e 12-11
12.4.1 Access Time Calculations co.vvvviiiviiiicii e 12-14
12.4.2 Burst Mode CyCles.....vviiiiiii e 12-17
12.5 Static RAM Memory Banksovvveiiioiiiiiiiiini e e ennenes 12-18
12.5.1 A Two Clock Synchronous Memory Bank Using SRAMs....... 12-18
Xiv MC68030 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

h -
P]

TABLE OF CONTENTS (Concluded)

Paragraph
Number Title
12.5.2 A 2-1-1-1 Burst Mode Memory Bank Using SRAMs
12.5.3 A 3-1-1-1 Burst Mode Memory Bank Using SRAMs
12.6 External Caches. ...cooiiiiii e
12.6.1 Cache Implementation..........ccooviiiii i
12.6.2 Instruction-Only External Cache Implementations...........
12.7 Debugging Aids.....ccoovviiiii e
12.7.1 STATUS and REFILL......cooiiiiiiiecee e,
12.7.2 Real-Time Instruction Tracecovoveiieiiiiiiiiiiviciieeeenne
12.8 Power and Ground Considerationsc.cooveiiieiiiiiniiniinneen,

Section 13

Electrical Characteristics

13.1 Maximum Ratings...c.o.viviriiii i
13.2 Thermal Characteristics — PGA Package......c..ccooeveviiininnnns

Section 14

Ordering Information and Mechanical Data

14.1 Standard MC68030 Ordering Informationcocoeeeiinnnns
14.2 Pin Assignments — Pin Grid Array (RC Suffix)............cocein.
14.3 Pin Assignments — Ceramic Surface Mount (FE Suffix)........
14.4 Package DImensions ...c..oo.cvviiiiiii i

Appendix A

M68000 Family Summary
Index

MOTOROLA MC68030 USER'S MANUAL

XV

h -

P]

LIST

OF ILLUSTRATIONS

Figure
Number Title

1-1 Block Diagram ...
1-2 User Programming Modelccociiiiiiiiiiiiiiei e
1-3 Supervisor Programming Model Supplement..........ccovvneeinnenn.
1-4 StatUS RegiSter .ivviii i
2-1 Memory Operand Address........covevviriiiiiiiee e ene e
2-2 Memory Data Organizationccoiviiiniineiin i e
2-3 Single Effective Address Instruction Operation Word...............
2-4 Effective Address Specification Formats........c.cocovveviiiiinieenns
2-5 Using SIZE in the Index Selection...........coociviiviiiiiiinineen,
2-6 Using Absolute Address with Indexes...........cccovvviiiiiininnnane.
2-7 Addressing Array TemsSooiiiiii i
2-8 Using Indirect Absolute Memory Addressing.........ccccevevvennneen.
2-9 Accessing an ltem in a Structure Using Pointer............c..........
2-10 Indirect Addressing, Suppressed Index Register............co.euee...
2-11 Preindexed Indirect Addressing.....c.cvvvvviierineiireniiinnineineineenn
2-12 Postindexed Indirect Addressingcovvvveveiiiniiniieneviereenen,
2-13 Preindexed Indirect Addressing with Outer Displacement
2-14 Postindexed Indirect Addressing with Cuter Displacement.......
2-15 M68000 Family Address Extension Words.......coocvevivieveniniennnnd
3-1 Instruction Word General Formatccovvorviiiiniiiiininnceen,
3-2 Linked List INSErtioNcooviiii e
3-3 Linked List Deletion.........cooiiiii e
34 Doubly Linked List InSertion..........ooiiviiiiiiiiiiiiii e
3-5 Doubly Linked List Deletion ...o..oovviiviiiiiici e
4-1 General Exception Stack Frame..........ccooiiivviiiin e,
5-1 Functional Signal Groupsccooviiiiiiiiiiiiciieie e
6-1 Internal Caches and the MCB8030..........cocvviiiiiiiiiicn e,
6-2 On-Chip Instruction Cache Organization.........c.cveeveneiniiinnnnn.e.
6-3 On-Chip Data Cache Organization........ccccoovieiiiniiiiiniiniiiinnn

MOTOROLA

MC68030 USER'S MANUAL

2-23
2-25
2-26
2-27
2-28
2-28
2-29
2-29
2-30
2-30
2-31
2-37

3-1

3-26
3-27
3-29
3-30

4-7
5-1
6-2

6-5
6-7

XVii

h -

y
LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
6-4 No-Write-Allocation and Write-Allocation Mode Examples....... 6-9
6-5 Single Entry Mode Operation — 8-Bit Port.........coooviivininnnnn. 6-11
6-6 Single Entry Mode Operation — 16-Bit Port........coccoevinveeannnn. 6-12
6-7 Single Entry Mode Operation — 32-Bit Port..........cc.cocivenvennen. 6-12
6-8 Single Entry Mode Operation — Misaligned Long Word and

8-Bit POrt oo 6-13

6-9 Single Entry Mode Operation — lVIisaIigned Long Word and

16-Bit POt . i s 6-14
6-10 Single Entry Mode Operation — Mlsahgned Long Word and
32-Bit DSACKX Port.......c.u........ T PPN 6-15

6-11 Burst Operation Cycles and Burst Mode.:.....coocvvviniiiinineninennn, 6-17
6-12 Burst Filling Wraparound Exampleccoovviiiiiiinniniinennenn. 6-17
6-13 Deferred Burst Filling Example......ovciiiiiiviiicineeeeee, 6-18
6-14 Cache Control Register...coivueveeriiiies it 6-21
6-15 Cache Address Register......ccovvvvviiiiieiiice e 6-23
7-1 Relationship Between External and Internal Signals................ 7-2
7-2 Asynchronous Input Sample Windowcocooviiiniin, 7-3
7-3 Internal Operand Representation.................. e 7-8
7-4 MC68030 Interface to Various Port Sizesccoveevviiiniiiniinnnnn. 7-9
7-5 Example of Long-Word Transfer to Word Port..........cc.ccoevennne 7-11
7-6 Long-Word Operand Write Timing (16-Bit Data Port) 7-12
7-7 Example of Word Transfer to Byte Port.......c.ccoveeviivieiniiinnnn, 7-13
7-8 Word Operand Write Timing (8-Bit Data Port)...........ooeivivennen. 7-14
7-9 Misaligned Long-Word Transfer to Word Port Example 7-15
7-10 Misaligned Long-Word Transfer to Word Port.........oooovevinnnn. 7-16
7-11 Misaligned Cachable Long -Word Transfer from Word Port

EXAMPIE oo e 7-17

7-12 Misaligned Word Transfer to Word Port Example.................... 7-17
7-13 Misaligned Word Transfer to Word Port....... e 7-18
7-14 Example of Misaligned Cachable Word Transfer from Word

BUS it e e e e 7-20

7-15 Misaligned Long-Word Transfer to Long-Word Port................. 7-20
7-16 ~ Misaligned Write Cycles to Long-Word Port........ OO 7-21
7-17 Misaligned Cachable Long-Word Transfer from Long-Word :

B ittt e e et 7-22

7-18 Byte Data Select Generation for 16- and 32-Bit Ports 7-25

7-19 Asynchronous Long-Word Read Cycle Flowchart 7-32

xviii MC68030 USER’S MANUAL MOTOROLA

h -

y
LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
7-20 Asynchronous Byte Read Cycle Flowchart.........cocoviiveniennn. 7-32
7-21 Asynchronous Byte and Word Read Cycles — 32-Bit Port 7-33
7-22 Long-Word Read — 8-Bit Port with CIOUT Asserted 7-34
7-23.: Long-Word Read — 16-Bit and 32-Bit Port............coocviniennnnnn. 7-35
7-24 Asynchronous Write Cycle Flowchart.........c.ivcoviiviniiiniiiniinnn, 7-37
7-25 Asynchronous Read-Write-Read Cycles — 32-Bit Port.............. 7-38
7-26 Asynchronous Byte and Word Write Cycles — 32-Bit Port........ 7-39
7-27 Long-Word Operand Write — 8-Bit Portccvvvvviiniiiiciniinnnn 7-40
7-28 Long-Word Operand Write — 16-Bit Port..........o.coeviveniiiiiennnns 7-41
7-29 - Asynchronous Read-Modify-Write Cycle Flowchart.................. 7-44

7-30 Asynchronous Byte Read-Modify-Write Cycle — 32-Bit Port

(TAS Instruction with CIOUT or CIIN Asserted).........c...ccenn... 7-45
7-31 Synchronous Long-Word Read Cycle Flowchart — No Burst

Allowed ..o, e e 7-49
7-32° Synchronous Read with CIIN Asserted and CBACK Negated..... 7-50
7-33 Synchronous Write Cycle Flowchart.......ccocooiiiniiiiciininieenennn. 7-52
7-34 Synchronous Write Cycle with Wait States — CIOUT Asserted 7-53
7-35 Synchronous Read-Modify-Write Cycle Flowchartocou. 7-55
7-36 Synchronous Read-Modify-Write Cycle Timing — CIIN

ASSEITEA .. e 7-56
7-37 Burst Operation Flowchart — Four Long Words Transferred..... 7-62
7-38 Long-Word Operand Request from $07 with Burst Request

' and Wait CyClES. ..ot e e 7-63

7-39 Long-Word Operand Request from $07 with Burst

Request — CBACK Negated Early.......c.cccoeeevinenn. eeereeeaanas 7-64

7-40 Long-Word Operand Request from $0E — Burst Fill Deferred... 7-65
7-41 Long-Word Operand Request from $07 with Burst

Request — CBACK and CIIN Assertedco.oveviiiiiiiviinnnnns 7-66
7-42 MC68030 CPU Space Address Encoding...........covvvvviiiiinniinannn. 7-69
7-43 Interrupt Acknowledge Cycle Flowchart...........oovveviviiieniininnann 7-71
7-44 Interrupt Acknowledge Cycle Timing.......ccovciiviiviiiiiiinienninns 7-72
7-45 Autovector Operation TimiNg.......cooccoriiiiiieiiinii e erienien 7-73
7-46 Breakpoint Operation FIOWc.ccoviviiininiiiniiiee e, 7-75
7-47 Breakpoint Acknowledge Cycle Timing.......cccoovvveniannn, v 7-76
7-48 Breakpoint Acknowledge Cycle Timing (Exception Signaled).... 7-77
7-49 Bus Error without DSACKXcooiiiiiiiiiiiiic e 7-84
7-50 Late Bus Error with DSACKXccooiiiiiiiiiiii e, 7-85
7-51 Late Bus Error with STERM — Exception Taken..........ccovvvvnn.. 7-86

MOTOROLA MC68030 USER'S MANUAL Xix

h -

P

Figure
Number

7-52
7-53
7-54
7-55
7-56
7-57
7-58
7-59
7-60
7-61
7-62
7-63
7-64
7-65

8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9

9-1
9-2
93
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11
9-12

XX

LIST OF ILLUSTRATIONS (Continued)

Page
Title Number

Long-Word Operand Request — Late BERR on Third Access.... 7-87

Long-Word Operand Request — BERR on Second Access........ 7-88
Asynchronous Late Retry............coooviiini, 7-90
Synchronous Late Retry oo 7-91
Late Retry Operation for @ Burst..........cooviiiieiiiiicn i 7-92
Halt Operation Timing......ooeceiiiiriiin i 7-93
Bus Synchronization EXample...........cooovviirriiiiiiiiiieee e, 7-96
Bus Arbitration Flowchart for Singie Request...............ccooouveene. 7-98
Bus Arbitration Operation Timing.......ccooviiiviiiiiiini e, 7-99
Bus Arbitration State Diagram.......cc.coeeviiiiiiiiiiiniiii e 7-101
Single-Wire Bus Arbitration Timing Diagramc.ccovinnee. 7-103
Bus Arbitration Operation (Bus Inactive)...........ocooviviiininninnnn. 7-104
Initial Reset Operation TimiNg......ccoiiiiiiiiiirie e e 7-105
Processor-Generated Reset Operation........cocovviiveiiiiiininnninen, 7-106
Reset Operation Flowchart..........coooii i 8-6
Interrupt Pending Procedurecoooiiiiiiiiiiiiiiiie 8-15
Interrupt Recognition Examples.........cooiovviiiiniiiciiie e 8-17
Assertion of IPENDot e 8-18
Interrupt Exception Processing Flowchart..............cccooeeiiinnnd 8-19
Examples of Interrupt Recognition and Instruction Boundaries.. 8-20
Breakpoint Instruction Flowchartoocoiinnl, 8-23
RTE Instruction for Throwaway Four-Word Frames 8-26
Special Status Word (SSW)...coiviiiiiiiii e 9-28
MMU Block Diagramcooiiiiiiiiiiiciiiiicc e 9-3
MMU Programming Modelcccoiviiiiiiiii e 9-4
Translation Table Tree...coocovviiiiie e 9-b
Example Transiation Table Treecccoviiiiiiiiiiiinii e, 9-7
Example Translation Table Tree Layout in Memory................. 9-8
Derivation of Table Index Fieldsc.ccocoviiiiiiiiiinn, 9-9
Example Translation Tree Using Different Format Descriptors.. 9-12
Address Translation General Flowchart.............oocoenininnnnn, 9-14
Root Pointer Descriptor FOrmat......ooooveeeviiiviiiiiiee i, 9-23
Short-Format Table Descriptorco.iovviiiiiiii i, 9-24
Long-Format Table Descriptor.......ccovviviiiiiiiiiiiecceei e, 9-24
Short-Format Page Descriptor and Short-Format Early

Termination Page Descriptor.......ccovvivieeiiiiiiniiin 9-25

MC68030 USER’S MANUAL MOTOROLA

h -

Figure
Number

9-13
9-14
9-15
9-16
9-17
9-18
9-19
9-20
9-21
9-22
9-23
9-24
9-26 -
9-26
9-27
9-28
9-29
9-30
9-31
9-32
9-33

9-34

9-35
9-36
9-37
9-38
9-39
9-40

10-1
10-2

10-3
10-4
10-5
10-6

LIST OF ILLUSTRATIONS (Continued)

Title

Long-Format Early Termination Page Descriptor...................
Long-Format Page Descriptor...c...ccoviiiiiniiiniiniiiei i,
Short-Format Invalid Descriptor........ccoo.oiviiieiiiiiieeninnees
Long-Format Invalid Descriptor.......ocvveeionvine i
Short-Format Indirect Descriptorcooiiiviiiiincininrn e
Long-Format Indirect Descriptor......ocovvviriiiiiiiniinnens e
Simplified Table Search Flowchart...............c.ovvveiivennnns, weeis
Five-Level Table Search.......ccocooiivoniiniviiiir e
Example Translation Tree Using Contiguous Memory
Example Translation Tree Using Indirect Descriptors.............
Example Translation Tree Using Shared Tables....................

Example Translation Tree with Nonresident Tables...............
Detailed Flowchart of MMU Table Search Operation
Table Search Initialization Flowchart..........c...cooceiit e
ATC Entry Creation Flowchartcoiieiii i
Limit Check Procedure Flowchart.........oiooiiiiiiii i,
Detailed Flowchart of Descriptor Fetch Operation..................
Logical Address Map Using Function Code Lookup
Example Translation Tree Using Function Code Lookup.........
Example Translation Tree Structure for Two Tasks................

Example Logical Address Map with Shared Supervisor and

User Address Spaceso.iiviviiiiiiniii i et v e

Example Translation Tree Using S and WP Bits to Set

ProteCtiON .. v e e
Root Pointer Register {CRP, SRP) Format...........c..cooeviveinnn.
Translation Control Register {TC) Format........ccoceviviannvinninnn,
Transparent Translation Register {TT0 and TT1) Format.........
MMU Status Register (MMUSR) Format............cco..licnien,
MMU Status Interpretation — PTEST Level O..ocvvivviniininnnee.
MMU Status Interpretation — PTEST Level 7.....cco.oiiiinnnns

F-Line Coprocessor Instruction Operation Word....................

Asynchronous Non-DMA M68000 Coprocessor Interface

Signal Usage...ooiiiii i
MC68030 CPU Space Address Encodingsccoveevveiiniinnnn,
Coprocessor Address Map in MC68030 CPU Space...............
Coprocessor Interface Register Set Map.........coooevvuvnniiinn -
Coprocessor General Instruction Format {cpGEN)..................

MOTOROLA MC68030 USER'S MANUAL

Page
Number-

9-25
9-26
9-26
9-27
9-27
9-28
9-29
9-31
9-35
9-36
9-38
9-39
9-41
9-42
9-42
9-43
9-44
9-45
9-46
9-47

9-49

9-50
9-54
9-54
9-57
9-59
9-62
9-63

10-4

10-6
10-7
10-8
10-9
10-10

XXi

h -

Figure
Number

10-7
10-8

10-9

10-10
10-11
10-12

10-13
10-14
10-15
10-16
10-17
10-18
10-19
10-20
10-21
10-22
10-23
10-24
10-25
10-26
10-27
10-28
10-29
10-30

10-31
10-32
10-33
10-34
10-35
10-36
10-37
10-38
10-39
10-40

XXii

LIST OF ILLUSTRATIONS (Continued)

Page
Title Number

Coprocessor Interface Protocol for General Category

INSIrUCHIONS .. it e e e 10-11
Coprocessor Interface Protocol for Conditional Category

INSIIU I ONS c ittt e e 10-13
Branch on Coprocessor Condition Instruction (cpBcc.W).......... 10-14
Branch on Coprocessor Condition Instruction (cpBce.L) 10-14
Set on Coprocessor Condition {cpSCc)coovvvivriiiiniiiiiiiiiinn, 10-15
Test Coprocessor Condition, Decrement and Branch Instruction

Format (CPDBCC) covviviiniviniiiiie e T S 10-17
Trap on Coprocessor Condition {cpTRAPCC).....cvvvvvvniiininnen i, 10-18
Coprocessor State Frame Format in Memory.......cocveeivenniidins 10-21
Coprocessor Context Save Instruction Format (cpSAVE} 10-25
Coprocessor Context Save Instruction Protocol................. e 10-26
Coprocesor Context Restore Instruction Format (cpRESTORE}.. 10-27
Coprocessor Context Restore Instruction Protocol................... 10-28
Control CIR FOrmatcovvviiii e e 10-30
Condition CIR FOrmMat.....cooiiiiiiiciiiinc e e e 10-31
Operand Alignment for Operand CIR Accesses 10-32
Coprocessor Response Primitive Formatcocoeviviiiiiiiiinnnnns 10-35
Busy Primitive Format..........cocoooviiiiniiiiiciinieeivnecneeienene.. 10-36
Null Primitive FOrmat.......ccoooviiiiiiini e 10-37
Supervisor Check Primitive Format.........cocoivvveniciiiciininiinnis 10-40
Transfer Operation Word Primitive Format..........ccvevvviniiinnnnn. 10-41
Transfer from Instruction Stream Primitive Format.................. 10-41
Evaluate and Transfer Effective Address Primitive Format........ 10-42

Evaluate Effective Address and Transfer Data Primitive Format 10-43
Write to Previously Evaluated Effective Address Primitive

FOrmMat. e e e 10-46
Take Address and Transfer Data Primitive Format.............c..... 10-48
Transfer To/From Top of Stack Primitive Format...........c.coeuu.. 10-49
Transfer Single Main Processor Register Primitive Format 10-50
Transfer Main Processor Control Register Primitive Format...... 10-51
Transfer Multiple Main Processor Registers Primitive Format... 10-52
Register Select Mask Format.........ccoovvvniiiiiiiiniin i 10-52
Transfer Multiple Coprocessor Registers Prlmltlve Format 10-63
Operand Format in Memory for Transfer to —(An}.................. 10-54
Transfer Status Register and ScanPC Primitive Format 10-55
Take Pre-Instruction Exception Primitive Format 10-56

MC68030 USER’S MANUAL MOTOROLA

h -

Figure
Number

10-41
10-42
10-43
10-44
10-45

12-1

12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
12-10
12-11
12-12
12-13

12-14
12-15

12-16
12-17

12-18
12-19
12-20
12-21

MOTOROLA

LIST OF ILLUSTRATIONS (Continued)

Page
Title Number

MC68030 Pre-Instruction Stack Frame..........cooceevviiiieieinnnen. 10-57
Take Mid-Instruction Exception Primitive Format..................... 10-58
MC68030 Mid-Instruction Stack Framecoiiveeniinsinnnn, 10-59
Take Post-Instruction Exception Primitive Format............c.oovens 10-60
MC68030 Post-Instruction Stack Frame...........coovvciiiiiiininnnnnn. 10-60
Block Diagram — Eight Independent Resources..............c....... 11-3
Simultaneous Instruction Execution.........ccocevvviiiivicininiieennn, 11-7
Derivation of Instruction Overlap Time..........iveeiiviiniiiviianiennn. 11-8
Processor Activity — Even Alignmentoocoviiiiieiiiiiiiniinenen, 11-9
Processor Activity — Odd Alignmentc.ccoovciviiniineinniinninn. 11-10
Signal Routing for Adapting the MC68030 to MC68020

DS NS e e 12-2
32-Bit Data Bus Coprocessaor Connection......c.oiviiiiiiiniiinenanns 12-6
Chip-Select Generation PALccoviiiiiiiiiii i 12-8
P AL EQUATIONS ettt e et 12-8
Bus Cycle Timing Diagram......ccocoveiiniiniiiiiie e, 12-9
Example MC68030 Byte Select PAL System Configuration 12-12
MC68030 Byte Select PAL Equations........cccovveeiiiiiniinniineennan, 12-13
Access Time Computation Diagramccooiviriiiiniiininiinninnn. 12-15
Example Two-Clock Read, Three-Clock Write Memory Bank..... 12-19
Example PAL Equations for Two-Clock Memory Bank.............. 12-20
Additional Memory Enable Circuits........cocvivvieiiviniiiiinienns 12-21
Example Two-Clock Read and Write Memory Bank 12-22
Example PAL Equation for Two-Clock Read and Write Memory

Ban K. 12-23
Example 2-1-1-1 Burst Mode Memory Bank at 20 MHz, 256K

By S et 12-25
Example 3-1-1-1 Pipelined Burst Mode Memory Bank at 20 MHz,

258K BY S ..t iuiii et i s 12-28
Additional Memory Enable Circuit............ccooooiniiinin 12-29
Example MC68030 Hardware Configuration with External

Physical Cache ..ot 12-33
Example Early Termination Control Circuit............c.ooveiiennn. 12-34
Normal Instruction Boundaries.........occcoiiiviiiiiiiiiiiiiccnen, 12-37
Trace or Interrupt EXCeption.....cooviiii e 12-38
Other EXCEPLIONS «oivvviie et 12-38

MC68030 USER'S MANUAL xxiii

h -

P |

LIST OF ILLUSTRATIONS (Concluded)

Figure
Number Title

12-22 Processor Halted

12-23. Trace Interface Circuit
12-24 PAL Pin Definitions

XXiv MC68030 USER'S MANUAL

12-25 LOGIC EQUBLIONS. .ovviee ittt

Page
Number

MOTOROLA

h -
P]

3-10
3-11
3-12
3-13
3-14

7-1
7-2
7-3
7-4
7-5

7-6

LIST OF TABLES

Page
Title Number
Addressing MOdes......ccooiiiiiiiiii 1-11
INSTFUCTION SBL.u.iiniiiiii it e e 1-13
IS-I/IS Memory Indirection Encodingsc.ccovvviiieniiniinieinnineaonn, 2-22
Effective Addressing Mode Categories....c..covvvirivvernciianironecinnin, 2-24
Data Movement Operationsccocoveevviniine e 3-5
Integer Arithmetic Operationscovvevvveviieiiniiiie e 3-6
Logical OperationsS....cc. e it eev e enas 3-7
Shift and Rotate OPerations.........cc.vceevievueeeeiiuvieeeiieiessiieresen, 3-8
Bit Manipulation Operationscco.veeiiiiiviei e eeaae 39
Bit Field Operationsc.oiuviieiiiiiiiie e e 3-9
BCD Operations . ..ocueee it vttt e 3-10
Program Control Operationsoovvveriiiiiiiniiiiiii e 3-11
System Control OperationS........coeuviiieiiiiiiiiiir e ee e 3-12
MMU INSTIUCTIONS ..o e e 3-13
Multiprocessor Operations {Read-Modify-Write)............coevveennnn. 3-13
Condition Code Computations.......coverviiiiiieiviiee v 3-15
CoNditioNal TeSIS ..uuiie ittt et e e 3-17
INStrUCHION Set SUMMAIY ...t 3-20
Address Space ENCOUINGS.....oviiiiiiiiiis e e 4-5
SIgNAl INAEX .. et e 5-2
SIGNAl SUMMATY ..cet i e e s e, 5-12
DSACK Codes and ReSUItS.......cccuviiiiiiiiiiiii e eeeees e 7-7
Size Signal ENCOdiNg......ccviiiiiiiiiiiii e, 7-9
Address Offset ENCOdiNgS......v.iciviiirii i 7-9
Data Bus Requirements for Read Cycles..........coovviiiiiiiiiniiinnnn.n, 7-10
MC68030 Internal to External Data Bus Multiplexer — Write
CY IS e 7-1

Memory Alignment and Port Size Influence on Write Bus Cycles.. 7-19

MOTOROLA MC68030 USER’S MANUAL XXV

h -

P]

Table
Number

7-7

7-8
7-9

8-1
8-2
8-3

8-5
8-6

9-1
9-2
9-3

10-1
10-2
10-3
10-4
10-5
10-6

12-1
12-2
12-3

12-4
12-5
12-6
12-7

XXvi

LIST OF TABLES (Continued)

Page
Title Number
Data Bus Write Enable Signals for Byte, Word, and Long-Word
P oS i 7-23
DSACK, BERR, and HALT Assertion ResuliS..........cccovvvvnnee e 7-79
STERM, BERR, and HALT Assertion Results......cocoviviviiiiienininnnns 7-81
Exception Vector Assignmentscooveiivieviiiieiiniesiieeeeeee e, © 82
Microsequencer STATUS Indicationsccvveiiiiviiiiiniiiniinainenn, 8-4
Tracing Control .. it s e 8-13
interrupt Levels and Mask Values.........cioviiniiiiii i 8-16
Exception Priority Groups.......coveiiiiiiiiiiii e i 8-24
Exception Stack Frames........cooovviiiiiiiiii i e neaeas 8-33
Siz€ ReSIICHONS ittt 9-10
Translation Tree Selection ... e 9-30
MMUSR Bit Definitions.......ccoviiiiiiiiici e 9-60
cpTRAPcc Opmode Encodingsovevvvviiiniiiiiniiiniienen, eeeenees 10-19
Coprocessor Format Word Encodings.................. PP 10-22
Null Coprocessor Response Primitive Encodings..........ccovvvvinnen. 10-39
Valid Effective Address Codes.........ccovvvvivnnennninn. O S 10-43
Main Processor Control Register Selector Codes............ovvevninnn. 10-51
Exceptions Related to Primitive Processing..........icocoeviiviiniinnnn. 10-66
Data Bus Activity for Byte, Word, and Long-Word Ports.............. 12-11
Memory Access Time Equations at 20 MHz ...t 12-16

Calculated tAVDV Values for Operation at Frequencies
Less Than or Equal to the CPU Maximum Frequency Rating 12-17

Microsequencer STATUS Indicationscoovvivivviiniiniininnonnnn, 12-36
List of Parts.......ccccovveiiviiiiiiicic i, e ferrrrieeans 12-42
AS and ECSC INdiCationS......cvvevvreeieresineeirinesieenenennas O 12-43
VEC and GND Pin AssignmentS......coveiieiiiniieiieneeneenaieenen 12-46

MC68030 USER'S MANUAL MOTOROLA

h -
P]

PREFACE

The MC68030 User’'s Manual describes the capabilities, operation, and pro-
gramming of the MC688030 32-bit second-generation enhanced microproces-
sor. The manual consists of the following sections and appendix. For detailed
information on the' MC68030 instruction set refer to M68000PM/AD, M68000
Family Programmer’s Reference Manual.

Section 1. Introduction

Section 2. Data Organization and Addressing Capabilities
Section 3. Instruction Set Summary

Section 4. Processing States

Section 5. Signal Description

Section 6. On-Chip Cache Memories

Section 7. Bus Operation

Section 8. Exception Processing

Section 9. Memory Management Unit

Section 10. Coprocessor Interface Description

Section 11. Instruction Execution Timing

Section 12. Applications Information

Section 13. Electrical Characteristics

Section 14. Ordering Information and Mechanical Data
Appendix A. M68000 Family Summary

Index

NOTE

In this manual, assertion and negation are used to specify forcing a
signal to a particular state. In particular, assertion and assert refer
to a signal that is active or true; negation and negate indicate a
sighal that is inactive or false. These terms are used independently
of the voltage level (high or low) that they represent.

The audience of this manual includes systems designers, systems program-
mers, and applications programmers. Systems designers need some knowl-
edge of all sections, with particular emphasis on Sections 1, 5, 6, 7, 13, 14,
and Appendix A. Designers who implement a coprocessor for their system
also need athorough knowledge of Section 10. Systems programmers should

MOTOROLA MC68030 USER'S MANUAL Xxvii

h -

P]

XXviii

become familiar with Sections 1, 2, 3, 4, 6, 8, 9, 11, and Appendix A. Appli-
cations programmers can find most of the information they need in Sections
1,2,3,4,9,11, 12, and Appendix A.

From a different viewpoint, the audience for this book consists of users of
other M68000 Family members and those who are not familiar with these
microprocessors. Users of the other family members can find references to
similarities to and differences from the other Motorola microprocessors
throughout the manual. However, Section 1 and Appendix A specifically
identify the MC68030 within the rest of the family and contrast ifs differences.

MC68030 USER'S MANUAL MOTOROLA

h -

SECTION 1

INTRODUCTION

The MC68030 is a second-generation full 32-bit enhanced microprocessor
from Motorola. The MC68030 is a member of the M68000 Family of devices
that combines a central processing unit (CPU) core, a data cache, an instruc-
tion cache, an enhanced bus controller, and a memory management unit
(MMU) in a single VLSI device. The processor is designed to operate at clock
speeds beyond 20 MHz. The MC68030 is implemented with 32-bit registers
and data paths, 32-bit addresses, a rich instruction set, and versatile ad-
dressing modes.

The MC68030 is upward object code compatible with the earlier members
of the M68000 Family and has the added features of an on-chip MMU, a data
cache, and an improved bus interface. It retains the flexible coprocessor
interface pioneered in the MC68020 and provides full IEEE floating-point
support through this interface with the MC68881 or MC68882 floating-point
capracessor. Also, the internal functional blocks of this microprocessor are
designed to operate in parallel, allowing instruction execution to be over-
lapped. In addition to instruction execution, the internal caches, the on-chip
MMU, and the external bus controller all operate in parallel.

The MC68030 fully supports the nonmultiplexed bus structure of the MC68020,
with 32 bits of address and 32 bits of data. The MC68030 bus has an enhanced
controlier that supports both asynchronous and synchronous bus cycles and
burst data transfers. It also supports the MC68020 dynamic bus sizing mech-
anism that automatically determines device port sizes on a cycle-by-cycle
basis as the processor transfers operands to or from external devices.

A block diagram of the MC68030 is shown in Figure 1-1. The instructions and
data required by the processor are supplied from the internal caches when-
ever possible. The MMU translates the logical address generated by the
processor into a physical address utilizing its address translation cache (ATC).
The bus controller manages the transfer of data between the CPU and mem-
ory or devices at the physical address.

MOTOROLA MC68030 USER'S MANUAL 1-1

-t

TVNANVIA S.43SN 0£0890N

V104010

ADORESS
8US

-

ADDRESS
PADS

7S

___J\l'

PHYSICAL
ADDRESS

MICROSEQUENCER AND CONTROL

CONTROL
STORE

Lz

CONTROL
LoGIE

INSTRUCTION PIPE

CACHE
HOLDING
REGISTER

{CAHR}

7

LOGICAL
ADDRESS

INSTRUCTION
CACHE

i

INSTRUCTION EXECUTION UNIT
ADDRESS
BUS
PROGRAM
COUNTER
SECTION

ADORESS
SECTION

DATA
SECTION

£

.

INTERNAL
DATA
BUS

—

BUS CONTROLLER

WRITE PENDING PREFETCH PENDIN
BUFFER BUFFER

K=

L MICRO BUS
CONTROLLER

Ry

BUS CONTROL
SIGNALS

DATA
ADQRESS
8uUs

.:q

MISALGNMENT
MULTIPLEXER

CACHE

SIZE DATA <:‘f> DATA
MULYIPLEXER PADS BUS

Figure 1-1. Block Diagram

A Y 4
A \

1.1 FEATURES

The features of the MC68030 microprocessor are:

Object Code Compatible with the MC68020 and Earlier M68000 Micro-
processors

Complete 32-Bit Nonmultiplexed Address and Data Buses
16 32-Bit General-Purpose Data and Address Registers

Two 32-Bit Supervisor Stack Pointers and 10 Special-Purpose Control
Registers

256-Byte Instruction Cache and 256-Byte Data Cache Can Be Accessed
Simultaneously

Paged MMU that Translates Addresses in Paraliel with Instruction Exe-
cution and Internal Cache Accesses

Two Transparent Segments Allow Untranslated Access to Physical Mem-
ory To Be Defined for Systems That Transfer Large Blocks of Data be-
tween Predefined Physical Addresses — e.g., Graphics Applications

Pipelined Architecture with Increased Parailelism Allows Accesses to
Internal Caches To Occur in Parallel with Bus Transfers and Instruction
Execution To Be Overlapped

Enhanced Bus Controller Supports Asynchronous Bus Cycles (three clocks
minimum), Synchronous Bus Cycles {two clocks minimum), and Burst
Data Transfers {one clock minimum) all to the Physical Address Space

Dynamic Bus Sizing Supports 8-, 16-, 32-Bit Memories and Peripherals

Support for Coprocessors with the M68000 Coprocessor Interface —e.g.,
Full I[EEE Floating-Point Support Provided by the MC68881/MC68882
Floating-Point Coprocessors

4-Gbyte Logical and Physical Addressing Range

tmplemented in Motorola’s HCMOS Technology That Allows CMOS and
HMOS (High-Density NMOS) Gates to be Combined for Maximum Speed,
Low Power, and Optimum Die Size

Processor Speeds Beyond 20 MHz

Both improved performance and increased functionality result from the on-
chip imptementation of the MMU and the data and instruction caches. The
enhanced bus controller and the internal parallelism also provide increased
system performance. Finally, the improved bus interface, the reduction in
physical size, and the lower power consumption combine to reduce system
costs and satisfy cost/performance goals of the system designer.

MOTOROLA

MC68030 USER'S MANUAL 1-3

N\
y

y

1.2 MC68030 EXTENSIONS TO THE M68000 FAMILY

In addition to the on-chip instruction cache present in the MC68020, the
MC68030 has an internal data cache. Data that is accessed during read cycles
may be stored in the on-chip cache, where it is available for subsequent
accesses. The data cache reduces the number of external bus cycies when
the data operand required by an instruction is already in the data cache.

Performance is enhanced further because the on-chip caches can be internally
accessed in a single clock cycle. In addition, the bus controller provides a
two-clock cycle synchronous mode and burst mode accesses that can transfer
data in as little as one clock per long word.

The. MC68030 enhanced microprocessor contains an on-chip MMU that al-
lows address translation to operate in paraliei with the CPU core, the internal
caches, and the bus controller.

Additional signals support emulation and system analysis. External debug
equipment can disable the on-chip caches and the MMU to freeze the MC68030
internal state during breakpoint processing. In addition, the MC68030 indi-
cates:

The start of a refill of the instruction pipe
Instruction boundaries

Pending trace or interrupt processing
Exception processing

Halt conditions

o=

This status and control information allows external debugging equipment to
trace the MC68030 activity and interact nonintrusively with the MC68030 to
effectively reduce system debug effort.

1.3 PROGRAMMING MODEL

1-4

The programming model of the MC68030 consists of two groups of registers:
the user model and the supervisor model. This corresponds to the user and
supervisor privilege levels. User programs executing at the user privilege
level use the registers of the user model. System software executing at the
supervisor level uses the control registers of the supervisor level to perform
supervisor functions.

MC68030 USER'S MANUAL MOTOROLA

N\
y

y

Figure 1-2 shows the user programming model, consisting of 16 32-bit
general-purpose registers and two control registers:

e General-Purpose 32-Bit Registers (D0-D7, A0-A7)
® 32-Bit Program Counter (PC)
e 8-Bit Condition Code Register {CCR)

The supervisor programming model consists of the registers available to the
user plus 14 control registers:

® Two 32-Bit Supervisor Stack Pointers (ISP and MSP)

® 16-Bit Status Register (SR)

e 32-Bit Vector Base Register (VBR)

® 32-Bit Alternate Function Code Registers {SFC and DFC)
e 32-Bit Cache Control Register (CACR)

® 32-Bit Cache Address Register (CAAR)

e 654-Bit CPU Root Pointer (CRP)

® 64-Bit Supervisor Root Pointer (SRP)

® 32-Bit Translation Control Register (TC)

® 32-Bit Transparent Translation Registers (TT0O and TT1)
® 16-Bit MMU Status Register (MMUSR)

The user programming model remains unchanged from previous M68000
Family microprocessors. The supervisor programming model supplements
the user programming model and is used exclusively by the MC68030 system
programmers who utilize the supervisor privilege level to implement sen-
sitive operating system functions, /0O control, and memory management
subsystems. The supervisor programming model contains all the controls to
access and enable the special features of the MC68030. This segregation was
carefuily planned so that ail appiication software is written to run at the
nonprivileged user level and migrates to the MC68030 from any M68000
platform without modification. Since system software is usually modified by
system programmers when ported to a new design, the control features are
properly placed in the supervisor programming model. For example, the
transparent translation feature of the MC68030 is new to the family supervisor
programming model for the MC68030 and the two translation registers are

MOTOROLA MC68030 USER'S MANUAL 1-5

h -

P]

new additions to the family supervisor programming model for the MC68030.
Only supervisor code uses this feature, and user application programs remain
unaffected.

Registers D0-D7 are used as data registers for bit and bit field (1 to 32 bits),
byte (8 bit), word (16 bit), long-word (32 bit), and quad-word (64 bit) oper-
ations. Registers A0-A6 and the user, interrupt, and master stack pointers
are address registers that may be used as software stack pointers or base
address registers. Register A7 (shown as A7’ and A7” in Figure 1-3) is a
register designation that applies to the user stack pointer in the user privilege
level and to either the interrupt or master stack pointer in the supervisor
privilege level. In the supervisor privilege level, the active stack pointer (in-
terrupt or master) is called the supervisor stack pointer (SSP). in addition,

3t 16 15 8 7 0

Do
b1

D2

D3 | DATA
04 REGISTERS

05
06

.

3t 16 15 0 —
A0
Al
A2
ADDRESS
A3 I REGISTERS
A4
A5
A6
3 16 15 0 —
USER STACK
[l AT(USP) I poiNTER
ki 0 -
| PROGRAM
[]re 'COUNTER

— CONDITION
A e T

REGISTER

Figure 1-2. User Programming Model

MC68030 USER'S MANUAL MOTOROLA

h -

P]

the address registers may be used for word and long-word operations. All
of the 16 general-purpose registers (D0-D7, A0-A7) may be used as index

registers.

The program counter (PC) contains the address of the next instruction to be
executed by the MC68030. During instruction execution and exception pro-
cessing, the processor automatically increments the contents of the PC or
places a new value in the PC, as appropriate.

16 15

0

=

16 15

INTERRUPT
] AT (iSP) STACK
POINTER

0

. MASTER STACK
l A7 ‘Msﬂ‘ POINTER

0

STATUS

(CCR) REGISTER

!_,_i

VECTOR BASE
REGISTER

=] o
<
=]
=

~

ALTERNATE
FUNCTION

[}
@
™

=]
2
3]

CODE REGISTERS

CACHE CONTROL
REGISTER

CACHE
ADDRESS

REGISTER

CPU ROOT

CRP POINTER

REGISTER

63

32

SUPERVISOR

1%
=
5

ROOT POINTER
REGISTER

TRANSLATION
CONTROL

=
o

REGISTER

TRANSPARENT
TRANSLATION

REGISTER 0

_
L

TRANSPARENT
TRANSLATION

3

MQOTORQLA

REGISTER 1

MU STATUS

MMUSR REGISTER

L e S

HEENEREE
3

MC68030 USER'S MANUAL

Figure 1-3. Supervisor Programming Model Supplement

h -

P

1-8

The status register, SR, (see Figure 1-4) stores the processor status. it contains
the condition codes that reflect the results of a previous operation and can
be used for conditional instruction execution in a program. The condition
codes are extend (X), negative (N}, zero (Z}, overflow (V), and carry (C). The
user byte containing the condition codes is the only portion of the status
register information available in the user privilege level, and it is referenced
as the CCR in user programs. In the supervisor privilege level, software can
access the full status register, including the interrupt priority mask (three
bits) as well as additional control bits. These bits indicate whether the pro-
cessor is in:

1. One of two trace modes (T1, TO)

2. Supervisor or user privilege level (S)

3. Master or interrupt mode (M)

The vector base register (VBR) contains the base address of the exception
vector table in memory. The displacement of an exception vector is added
to the value in this register to access the vector table.

Alternate function code registers, SFC and DFC, contain 3-bit function codes.
Function codes can be considered extensions of the 32-bit linear address that
optionally provide as many as eight 4-Gbyte address spaces. Function codes
are automatically generated by the processor to select address spaces for
data and program at the user and supervisor privilege levels and a CPU
address space for processor functions (e.g., coprocessor communications).
Registers SFC and DFC are used by certain instructions to explicitly specify
the function codes for operations.

USER BYTE

SYSTEM BYTE {CONDITION CODE REGISTER)
| |
i 1
% % 13 12 1 109 8 7 6 5 4 3 2 1 .0
milrols{mjo|iz{nfw]ofo|olx|{nfz{vic
I S S
TRACE INTERRUPT
ENABLE PRIGRITY MASK ————— OVERFLOW
ZERD
SUPERVISOR/USER

STATE

NEGATIVE

MASTER/INTERRUPT

EXTEND
STATE XTE

Figure 1-4. Status Register

MC68030 USER’'S MANUAL MOTOROLA

h -

P

The cache control register (CACR) controls the on-chip instruction and data
caches of the MC68030. The cache address register (CAAR) stores an address
for cache control functions.

The CPU root pointer {CRP) contains a pointer to the root of the translation
tree for the currently executing task of the MC68030. This tree contains the
mapping information for the task’s address space. When the MC68030 is
configured to provide a separate address space for supervisor routines, the
supervisor root pointer (SRP) contains a pointer to the root of the translation
tree describing the supervisor’s address space.

The translation control register (TC) consists of several fields that control
address translation. These fields enable and disable address translation, en-
able and disable the use of SRP for the supervisor address space, and select
or ignore the function codes in translating addresses. Other fields define the
size of memory pages, the number of address bits used in translation, and
the translation table structure.

The transparent translation registers, TT0 and TT1, can each specify separate
blocks of memory as directly accessible without address transiation. Logical
addresses in these areas become the physical addresses for memory access.
Function codes and the eight most significant bits of the address can be used
to define the area of memory and type of access; either read, write, or both
types of memory access can be directly mapped. The transparent translation
feature allows rapid movement of large blocks of data in memory or {/O
space without disturbing the context of the on-chip address translation cache
or incurring delays associated with translation table lookups. This feature is
useful to graphics, controller, and real-time applications.

The MMU status register (MMUSR) contains memory management status
information resuiting from a search of the address translation cache or the
translation tree for a particular logical address.

MOTOROLA MC68030 USER’S MANUAL 1-9

4

y

1.4 DATA TYPES AND ADDRESSING MODES

Seven basic data types are supported:

Bits

Bit Fields (Fields of consecutive bits, 1-32 bits long)

BCD Digits (Packed: 2 digits.byte, Unpacked: 1 digit/byte)
Byte Integers (8 bits)

Word Integers {16 bits)

Long-Word Integers (32 bits)

Quad-Word Integers (64 bits)

Noop,rwN =

In addition, the instruction set supports operations on other data types such
as memory addresses. The coprocessor mechanism allows direct support of
floating-point operations with the MC68881 and MC68882 floating-point co-
processors as well as specialized user-defined data types and functions.

The 18 addressing modes, shown in Table 1-1, include nine basic types:
Register Direct

Register Indirect

Register Indirect with Index

Memory Indirect

Program Counter Indirect with Displacement

Program Counter Indirect with Index

Program Counter Memory Indirect

Absolute

Immediate

LCoNOOSWN =

The register indirect addressing modes can also postincrement, predecre-
ment, offset, and index addresses. The program counter relative mode also
has index and offset capabilities. As in the MC68020, both modes are ex-
tended to provide indirect reference through memory. In addition to these
addressing modes, many instructions implicitly specify the use of the con-
dition code register, stack pointer, and/or program counter.

1.5 INSTRUCTION SET OVERVIEW

The instructions in the MC68030 instruction set are listed in Table 1-2. The
instruction set has been tailored to support structured high-level languages
and sophisticated operating systems. Many instructions operate on bytes,
words, or long words, and most instructions can use any of the 18 addressing
modes.

MC68030 USER'S MANUAL MOTOROLA

h -

P]

Table 1-1. Addressing Modes

Addressing Modes Syntax

Register Direct

Data Register Direct Dn

Address Register Direct An
Register Indirect

Address Register Indirect {An)

Address Register Indirect with Postincrement {An) -+

Address Register Indirect with Prececrement —(An)

Address Register Indirect with G'splacement (d16,AN)
Register Indirect with Index

Address Register Indirect with Incex i8-Bit Displacement) {dg,An,Xn)

Address Register Indirect with Index (Base Displacement) {bd,An,Xn)
Memory Indirect

Memory Indirect Postindexed {[bd,An],Xn,od}

Memory Indirect Preindexed {{bd,An,Xn],od)
Program Counter Indirect with Displacement (d16.PC)
Program Counter Indirect with Index

PC Indirect with Index (8-Bit Displacement) (dg,PC,Xn)

PC Indirect with Index (Base Displacement) (bd,PC,Xn)
Program Counter Memory Indirect

PC Memory Indirect Postindexed ([bd,PC],Xn,o0d)

PC Memory Indirect Preindexed ([bd,PC,Xn],0d)
Absolute

Absolute Short {xxx).W

Absolute Long {xxx).L
Immediate #(data)

NOTES:

Dn = Data Register, D0-D7
An = Address Register, AO-A7

8, d16 = A twos-complement or sign-extended displacement; added as part of the
effective address calculation; size is 8 (dg) or 16 (d1g} bits; when omitted,
assemblers use a value of zero.

Xn = Address or data register used as an index register; form is Xn.SIZE*SCALE,
where SIZE is .\W or .L {indicates index register size) and SCALE is 1, 2, 4,
or 8 {index register is multiplied by SCALE}; use of SIZE and/or SCALE is
optional.

bd = A twos-complement base displacement; when present, size can be 16 or
32 bits.

od = Quter displacement, added as part of effective address calculation after
any memory indirection; use is opticnal with a size of 16 or 32 bits.

PC = Program Counter

(data) = Immediate value of 8, 16, or 32 bis

(} = Effective Address
[1= Use as indirect access to long-word address.

MOTOROLA MC68030 USER’S MANUAL 1-11

1.6 VIRTUAL MEMORY AND VIRTUAL MACHINE CONCEPTS

The full addressing range of the MC68030 is 4 Gbytes (4,294,967,296 bytes)
in each of eight address spaces. Even though most systems implement a
smaller physical memory, the system can be made to appear to have a full
4 Gbytes of memory available to each user program by using virtual memory
techniques.

In a virtual memory system, a user program can be written as if it has a large
amount of memory available, when the physical memory actually present is
much smaller. Similarly, a system can be designed to allow user programs
to access devices that are not physically present in the system, such as tape
drives, disk drives, printers, terminals, and so forth. With proper software
emulation, a physical system can appear to be any other M68000 computer
system to a user program, and the program can be given full access to all
of the resources of that emulated system. Such an emulated system is called
a virtual machine.

1.6.1 Virtual Memory

A system that supports virtual memory has a limited amount of high-speed
physical memory that can be accessed directly by the processor and main-
tains an image of a much larger virtual memory on a secondary storage
device such as a large-capacity disk drive. When the processor attempts to
access a location in the virtual memory map that is not resident in physical
memory, a page fault occurs. The access to that location is temporarily sus-
pended while the necessary data is fetched from secondary storage and
placed in physical memory. The suspended access is then either restarted
or continued.

The MC88030 uses instruction continuation to support virtual memory. When
a bus cycle is terminated with a bus error, the microprocessor suspends the
current instruction and executes the virtual memory bus error handler. When
the bus error handler has completed execution, it returns control to the
program that was executing when the error was detected, reruns the faulted
bus cycle (when required), and continues the suspended instruction.

MC68030 USER'S MANUAL MOTOROLA

o
<

Table 1-2. Instruction Set

Mnemonic Description Mnemonic Description
ABCD Add Decimal with Extend MOVE USP [Move User Stack Pointer
ADD Add MOVEC Move Control Register
ADDA Add Address MOVEM Move Multiple Registers
ADDI Add Immediate MOVEP Move Peripheral
ADDQ Add Quick MOVEQ Move Quick
ADDX Add with Extend MOVES Move Alternate Address Space
AND Logical AND R i
R M
ANDI Logical AND Immediate muLs 3'{?;9:6“2““%1‘{ y
ASL, ASR | Arithmetic Shift Left and Right 9 p
N 1 7
Bee Branch Conditionally QESD EZSZI? Decimal with Extend
pons e B A Cnge NEGX Negate with Extend
BFCHG Test Bit Field and Change :8? Ef ﬁgfg’;‘rﬁ“] et
BFCLR Test Bit Field and Clear 9 pe
BFEXTS Signed Bit Field Extract OR Logical Inclusive OR
BFEXTU Unsigned Bit Field Extract ORI Logical inclusive OR Immediate
BFFFO Bit Field Find First One ORI CCR Logical Inclusive OR Immediate to
BFINS Bit Field Insert Condition Codes
BFSET Test Bit Field and Set ORI SR Logical Inclusive OR Immediate to Status
BFTST Test Bit Field Register
BKPT Breakpoint PACK Pack BCD
BRA Branch PEA Push Effective Address
BSET Test Bit and Set .
BSR Branch to Subroutine PFLUSH Flush Entry{ies) in the ATC
BTST Test Bit PFLUSHA Flush All Entries in the ATC
PLOADR, Load Entry into the ATC
CAS Compare and Swap Operands PLOADW
CAS2 Compare and Swap Dual Operands PMOVE Move to/from MMU Registers
CHK Check Register Against Bound PMOVEFD | Move to/from MMU Registers with Flush
CHK2 Check Register Against Upper and Disable
Lower Bounds PTESTR, [Testa Logical Address
CLR Clear PTESTW
CMP Compare N
CMPA Compare Address RESET Reset External Devices
CMPI Compare Immediate ROL, ROR Rotate Left and Right
CMPM Compare Memory to Memory ROXL, ROXR | Rotate with Extend Left and Right
CMP2 Compare Register Against Upper and RTD Return and Deallocate
Lower Bounds RTE Return from Exception
. RTR Return and Restore Codes
DBce Test Condition, Decrement and Branch RTS Return from Subroutine
DIVS, DIVSL | Signed Divide) -
DIVU, DIVUL | Unsigned Divide SBCD Subtract Decimal with Extend
- - Scc Set Conditionally
EOR Logical Exclusive OR] STOP Stop
EORI Logical Exclus!ve OR Immediate SUB Subtract
EXG E)'<change Registers SUBA Subtract Address
EXT. EXTB_|Sign Extend SUBI Subtract Immediate
ILLEGAL Take Illegal Instruction Trap SUBQ Subtract Quick
JMP Jump SUBX Subtract with Extend
JSR Jump to Subroutine SWAP Swap Register Words
LEA Load Effective Address Ias Test Operand and Set
. TRAP Trap
LINK Link and Allocate TRAPcc Trap Conditionally
LSL, LSR Logical Shift Left and Right TRAPV Trap on Overflow
MOVE Move TST Test Operand
MOVEA Move Address R
MOVE CCR | Move Condition Code Register Hm;'é ok .
MOVE SR Move Status Register pac
MOTOROLA MC68030 USER'S MANUAL 1-13

h -

Coprocessor Instructions

Mnemonic Description Mnemonic Description
cpBcc Branch Conditionally cpRESTORE |Restore Internal State of Coprocessor
cpDBcc Test Coprocessor Condition, cpSAVE Save Internal State of Coprocessor
Decrement and Branch cpSce Set Conditionally
cpGEN Coprocessor General Instruction ¢pTRAPcC Trap Conditionally
1.6.2 Virtual Machine

A typical use for a virtual machine system is the development of software,
such as -an operating system, for a new machine also under development
and not yet available for programming use. In a virtual machine system, a
governing operating system emulates the hardware of the new machine and
allows the new software to be executed and debugged as though it were
running on the new hardware. Since the new software is controlled by the
governing operating system, it is executed at a lower privilege level than the
governing operating system. Thus, any attempts by the new software to use
virtual resources that are not physically present (and should be emulated)
are trapped to the governing operating system and performed by its software.

in the MC68030 implementation of a virtual machine, the virtual application
runs at the user privilege level. The governing operating system executes at
the supervisor privilege level and any attempt by the new operating system
to access supervisor resources or execute privileged instructions causes a
trap to the governing operating system.

Instruction continuation is used to support virtual IO devices in memory-
mapped input/output systems. Control and data registers for the virtual de-
vice are simulated in the memory map. An access to a virtual register causes
a fault and the function of the register is emulated by software.

MC68030 USER'S MANUAL MOTOROLA

N\
y

y

1.7 THE MEMORY MANAGEMENT UNIT

The MMU supports virtual memory systems by translating logical addresses
to physical addresses using translation tables stored in memory. The MMU
stores address mappings in an address translation cache {(ATC) that contains
the most recently used translations. When the ATC contains the address for
a bus cycle requested by the CPU, a translation table search is not performed.
Features of the MMU include:

e Multiple Level Translation Tables with Short- and Long-Format Descrip-
tors for Efficient Table Space Usage

® Table Searches Automatically Performed in Microcode
@ 22-Entry Fully Associative ATC

® Address Translations and Internal Instruction and Data Cache Accesses
Performed in Parallel

® Fight Page Sizes Available Ranging from 256 to 32K Bytes

e Two Optional Transparent Blocks

® User and Supervisor Root Pointer Registers

e Write Protection and Supervisor Protection Attributes

® Translations Enabled/Disabled by Software

e Translations Can Be Disabled with External MMUDIS Signal

¢ Used and Modified Bits Automatically Maintained in Tables and ATC

e Cache Inhibit Output (CIOUT) Signal Can Be Asserted on a Page-by-Page
Basis

® 32-Bit Internal Logical Address with Capability To Ignore as many as 15
Upper Address Bits

e 3-Bit Function Code Supports Separate Address Spaces
@ 32-Bit Physical Address

The memory management function performed by the MMU is called demand
paged memory management. Since a task specifies the areas of memory it
requires as it executes, memory allocation is supported on a demand basis.
If a requested access to memory is not currently mapped by the system, then
the access causes a demand for the operating system to load or allocate the
required memory image. The technique used by the MC68030 is paged mem-
ory management because physical memory is managed in blocks of a spec-
ified number of bytes, called page frames. The logical address space is divided

MOTOROLA MC68030 USER'S MANUAL 1-16

h -

P

into fixed-size pages that contain the same number of bytes as the page
frames. Memory management assigns a physical base address to a logical
page. The system software then transfers data between secondary storage
and memory one or more pages at a time.

1.8 PIPELINED ARCHITECTURE

The MC68030 uses a three-stage pipelined internal architecture to provide
for optimum instruction throughput. The pipeline allows as many as three
words of a single instruction or three consecutive instructions to be decoded
concurrently.

1.9 THE CACHE MEMORIES

Due to locality of reference, instructions and data that are used in a program
have a high probability of being reused within a short time. Additionally,
instructions and data operands that reside in proximity to the instructions
and data currently in use also have a high probability of being utilized within
a short period. To exploit these locality characteristics, the MC68030 contains
two on-chip logical caches, a data cache, and an instruction cache.

Each of the caches stores 256 bytes of information, organized as 16 entries,
each containing a block of four long words (16 bytes). The processor fills the
cache entries either one long word at a time or, during burst mode accesses,
four long words consecutively. The burst mode of operation not only fills
the cache efficiently but also captures adjacent instruction or data items that
are likely to be required in the near future due to locality characteristics of
the executing task.

The caches improve the overall performance of the system by reducing the
number of bus cycles required by the processor to fetch information from
memory and by increasing the bus bandwidth available for other bus masters
in the system. Addition of the data cache in the MC68030 extends the benefits
of cache techniques to all memory accesses. During a write cycle, the data
cache circuitry writes data to a cached data item as well as to the item in
memory, maintaining consistency between data in the cache and that in
memory. However, writing data that is not in the cache may or may not cause
the data item to be stored in the cache, depending on the write allocation
policy selected in the cache control register (CACR).

MC68030 USER’S MANUAL MOTOROLA

h -

SECTION 2

DATA ORGANIZATION AND ADDRESSING
CAPABILITIES

Most external references to memory by a microprocessor are either program
references or data references; they either access instruction words or op-
erands (data items) for an instruction. Program references are references to
the program space, the section of memory that contains the program in-
structions and any immediate data operands that reside in the instruction
stream. Refer to M68000PM/AD, M68000 Programmer’s Reference Manual,
for descriptions of the instructions in the program space. Data references
refer to the data space, the section of memory that contains the program
data. Data items in the instruction stream can be accessed with the program
counter relative addressing modes, and these accesses are classified as pro-
gram references. A third type of external reference used for coprocessor
communications, interrupt acknowledge cycles, and breakpoint acknowledge
cycles is classified as a CPU space reference. The MC68030 automatically
sets the function codes to access the program space, the data space, or the
CPU space for special functions as required. The function codes can be used
by the memory management unit to organize separate program (read only)
and data (read-write) memory areas.

This section describes the data organization and addressing capabilities of
the MC68030. It lists the types of operands used by instructions and describes
the registers and their use as operands. Next, the section describes the or-
ganization of data in memory and the addressing modes available to access
data in memory. Last, the section describes the system stack and user pro-
gram stacks and queues.

2.1 INSTRUCTION OPERANDS

The MC68030 supports a general-purpose set of operands to serve the re-
quirements of a large range of applications. Operands of MC68030 instruc-
tions may reside in registers, in memory, or within the instructions themselves.
An instruction operand might also reside in a coprocessor. An operand may
be a single bit, a bit field of from 1 to 32 bits in length, a byte (8 bits), a word
(16 bits), a long word (32 bits), or a quad word (64 bits). The operand size
for each instruction is either explicitly encoded in the instruction or implicitly

MOTOROLA MC68030 USER’S MANUAL 2-1

h -

defined by the instruction operation. Coprocessors are designed to support
special computation models that require very specific but widely varying
data operand types and sizes. Hence, coprocessor instructions can specify
operands of any size.

2.2 ORGANIZATION OF DATA IN REGISTERS

2.2.1

2-2

The eight data registers can store data operands of 1, 8, 16, 32, and 64 bits,
addresses of 16 or 32 bits, or bit fields of 1 to 32 bits. The seven address
registers and the three stack pointers are used for address operands of 16
or 32 bits. The control registers (SR, VBR, SFC, DFC, CACR, CAAR, CRP, SRP,
TC, TTO, TT1, and MMUSR) vary in size according to function. Coprocessors
may define unique operand sizes and support them with on-chip registers
accordingly.

Data Registers

Each data register is 32 bits wide. Byte operands occupy the low-order 8 bits,
word operands the low-order 16 bits, and long-word operands the entire 32
bits. When a data register is used as either a source or destination operand,
only the appropriate low-order byte or word (in byte or word operations,
respectively) is used or changed; the remaining high-order portion is neither
used nor changed. The least significant bit of along-word integer is addressed
as bit zero, and the most significant bit is addressed as bit 31. For bit fields,
the most significant bit is addressed as bit zero, and the least significant bit
is addressed as the width of the field minus one. If the width of the field plus
the offset is greater than 32, the bit field wraps around within the register.
The following illustration shows the organization of various types of data in
the data registers.

Quad-word data consists of two long words: for example, the product of 32-
bit multiply or the quotient of 32-bit divide operations (signed and unsigned).
Quad words may be organized in any two data registers without restrictions
on order or pairing. There are no explicit instructions for the management
of this data type, although the MOVEM instruction can be used to move a
quad word into or out of the registers.

Binary-coded decimal (BCD) data represents decimal numbers in binary form.
Although many BCD codes have been devised, the BCD instructions of the
M68000 Family support formats in which the four least significant bits consist
of a binary number having the numeric value of the corresponding decimal
number. Two BCD formats are used. In the unpacked BCD format, a byte

MC68030 USER'S MANUAL MOTOROLA

h -

y
A

Bit (0=Modulo (Offset)<31, Offset of 0=MSB)

31 30 29 . 1 0
[wss]] | 158 |
Byte

3 24 23 16 15 8 7 0

High-Order Byte Middle-High Byte Middle-Low Byte Low-Order Byte l
16-Bit Word

kil 16 15 0
I High-Order Word J Low-Order Word
Long Word

3t 0
i Long Word
Quad Word

63 62 32
| st | Any Dx |

31 1 0
| Any Dy | Ls8 |

Bit Field (0==Offset<32, 0<Width=32)
31 | Width | 0

I Offset [ise . L35

Note: If width + offset<32, bit field wraps around within the register.

Unpacked BCD (a=MSB)
31 8 7 6 5 4 3 2 1 0

| [xlx [x[xfafofe]d]

Packed BCD (a=MSB First Digit, e=MSB Second Digit)
31 8

7 6 5 4
| [oo fefefele]oalr]

Data Organization in Data Registers

MOTOROLA MC68030 USER'S MANUAL 2-3

h -

contains one digit; the four least significant bits contain the binary value and
the four most significant bits are undefined. Each byte of the packed BCD
format contains two digits; the least significant four bits contain the least
significant digit.

2.2.2 Address Registers

Each address register and stack pointer is 32 bits wide and holds a 32-bit
address. Address registers cannot be used for byte-sized operands. There-
fore, when an address register is used as a source operand, either the low-
order word or the entire long-word operand is used, depending upon the
operation size. When an address register is used as the destination operand,
the entire register is affected, regardless of the operation size. If the source
operand is a word size, it is first sign-extended to 32 bits and then used in
the operation to an address register destination. Address registers are used
primarily for addresses and to support address computation. The instruction
set includes instructions that add to, subtract from, compare, and move the
contents of address registers. The following example shows the organization
of addresses in address registers.

31 16 15 0

Sign-Extended 16-Bit Address Operand I

31 0

Fult 32-Bit Address Operand I

Address Organization in Address Registers

2.2.3 Control Registers

24

The control registers described in this section contain control information
for supervisor functions and vary in size. With the exception -of the user
portion of the status register (CCR), they are accessed only by instructions
at the supervisor privilege level.

The status register (SR), shown in Figure 1-4, is 16 bits wide. Only 12 bits of
the status register are defined; all undefined values are reserved by Motorola
for future definition. The undefined bits are read as zeros and should be
written as zeros for future compatibility. The lower byte of the status register
is the CCR. Operations to the CCR can be performed at the supervisor or user

MC68030 USER'S MANUAL MOTOROLA

h -

privilege level. All operations to the status register and CCR are word-sized
operations, but for all CCR operations, the upper byte is read as all zeros and
is ignored when written, regardless of privilege level.

The supervisor programming model (see Figure 1-3) shows the control reg-
isters. The cache control register (CACR) provides control and status infor-
mation for the on-chip instruction and data caches. The cache address register
{CAAR) contains the address for cache control functions. The vector base
register (VBR) provides the base address of the exception vector table. All
operations involving the CACR, CAAR, and VBR are long-word operations,
whether these registers are used as the source or the destination operand.

The alternate function code registers {SFC and DFC) are 32-bit registers with
only bits 2:0 implemented that contain the address space values (FC0-FC2)
for the read or write operands of MOVES, PLOAD, PFLUSH, and PTEST in-
structions. The MOVEC instruction is used to transfer values to and from the
alternate function code registers. These are long-word transfers; the upper
29 bits are read as zeros and are ignored when written.

The remaining control registers in the supervisor programming model are
used by the memory management unit (MMU). The CPU root pointer (CRP)
and supervisor root pointer (SRP) contain pointers to the user and supervisor
address translation trees. Transfers of data to and from these 64-bit registers
are quad-word transfers. The translation control register {TC) contains control
information for the MMU. The MC68030 always uses long-word transfers to
access this 32-bit register. The transparent translation registers (TTO and TT1)
also contain 32 bits each; they identify memory areas for direct addressing
without address translation. Data transfers to and from these registers are
long-word transfers. The MMU status register (MMUSR) stores the status of
the MMU after execution of a PTEST instruction. It is a 16-bit register, and
transfers to and from the MMUSR are word transfers. Refer to SECTION 9
MEMORY MANAGEMENT UNIT for more detail.

2.3 ORGANIZATION OF DATA IN MEMORY

Memory is organized on a byte-addressable basis where lower addresses
correspond to higher order bytes. The address, N, of a long-word data item
corresponds to the address of the most significant byte of the highest order
word. The lower order word is located at address N + 2, leaving the least
significant byte at address N + 3 (refer to Figure 2-1). Notice that the MC68030

MOTOROLA MC68030 USER'S MANUAL 2-5

h -

P]

2-6

does not require data to be aligned on word boundaries (refer to Figure
2-2), but the most efficient data transfers occur when data is aligned on the
same byte boundary as its operand size. However, instruction words must
be aligned on word boundaries.

The data types supported in memory by the MC68030 are bit and bit field
data; integer data of 8, 16, or 32 bits; 32-bit addresses; and BCD data (packed
and unpacked). These data types are organized in memory as shown in Figure
2-2. Note that all of these data types can be accessed at any byte address.

Coprocessors can implement any data types and lengths up to 255 bytes.
For example, the MC68881/MC68882 floating-point coprocessors support
memory accesses for quad-word-sized items (double-precision floating-point
values).

A bit operand is specified by a base address that selects one byte in memory

(the base byte) and a bit number that selects the one bit in this byte. The
most significant bit of the byte is bit 7.

31 23 15 7 0

LONG WORD $00000000
WORD $00000000 WORD $00000002

BYTE $00000000 I BYTE $00000001 BYTE $00000002 l BYTE $00000003

LONG WORD $00000004

WORD $00000004 WORD $00000006
BYTE 800000004 , BYTE $00000005 BYTE $00000006 , BYTE $00000007
. L]
/ . / . /
. [

LONG WORD SFFFFFFFC
WORD SFFFFFFFC WORD SFFFFFFFE

BYTE $FFFFFFFC ‘ BYTE $FFFFFFFD BYTE SFFFFFFFE l BYTE $FFFFFFFF

Figure 2-1. Memory Operand Address

MC68030 USER'S MANUAL MOTOROLA

h -

P]

BIT DATA
7 07 07 07 0
BYTEn-1 765 4[3]2 10 BYTE n+1 BYTEn+2
BASE ADDRESS BIT NUMBER
BIT FIELD DATA gase giT
7 o7 0|7 0|7 0
[erEn BYTE n [o2s]]
}ot—— OFFSET-— o P OFFSET — o }tt—— WIDTH ——»]
L.321 012,
BASE ADDRESS
BYTE INTEGER DATA
7 0|7 0|7)7 0
HEEE MSB BYTEn LSB BYTE n+1 BYTE n+2
ADDRESS
WORD INTEGER DATA
7 o7 0]7 07 07 0
IR WORD INTEGER BYTE n+2 BYTE n+3
ADDRESS
LONG WORD INTEGER DATA
7 07 0|7 07 07 07 0
BYTE -1 LONG WORD INTEGER BYTE n+4
|
ADDRESS
ADDRESS QUAD WORD DATA
7 0§7 0|7 0|7 07 07 0
[evEna
QUAD WORD
BYTE n+8
PACKED BINARY-CODED DATA
7 07 4|3 07 07 0
BYTE n-1 MSD tsp BYTEn+1 BYIEn+2 |
b
ADDRESS
UNPACKED BINARY-CODED DATA
7 07 443 0p7 4|3 07 0
BYTE n-1 XX MSD XX Lsp BYTE n+2
ADDRESS
XX = USER-DEFINED VALUE
Figure 2-2. Memory Data Organization
MOTOROLA MC68030 USER'S MANUAL 2-7

h -

P

A bit field operand is specified by:
1. A base address that selects one byte in memory,

2. A bit field offset that indicates the leftmost (base) bit of the bit field in
relation to the most significant bit of the base byte, and

3. Abit field width that determines how many bits to the right of the base
bit are in the bit field.

The most significant bit of the base byte is bit field offset 0, the least significant
bit of the base byte is bit field offset 7, and the least significant bit of the
previous byte in memory is bit offset —1. Bit field offsets may have values
in the range of —231 to 231—1, and bit field widths may range between 1
and 32 bits.

2.4 ADDRESSING MODES

2-8

The addressing mode of an instruction can specify the value of an operand
{with an immediate operand), a register that contains the operand (with the
register direct addressing mode), or how the effective address of an operand
in memory is derived. An assembler syntax has been defined for each ad-
dressing mode.

Figure 2-3 shows the general format of the single effective address instruction
operation word. The effective address field specifies the addressing mode
for an operand that can use one of the numerous defined modes. The (ea)
designation is composed of two 3-bit fields: the mode field and the register
field. The value in the mode field selects one or a set of addressing modes.
The register field specifies a register for the mode or a submode for modes
that do not use registers.

EFFECTIVE ADDRESS
MODE [REGISTER

Figure 2-3. Single Effective Address Instruction Operation Word

Many instructions imply the addressing mode for one of the operands. The
formats of these instructions include appropriate fields for operands that use
only one addressing mode.

MC68030 USER'S MANUAL MOTOROLA

h -
P]

2.4.1

MOTOR

The effective address field may require additional information to fully specify
the operand address. This additional information, called the effective address
extension, is contained in an additional word or words and is considered part
of the instruction. Refer to 2.5 EFFECTIVE ADDRESS ENCODING SUMMARY
for a description of the extension word formats.

The notational conventions used in the addressing mode descriptions in this
section are:

EA—Effective address
An—Address register n
Example: A3 is address register 3
Dn—Data register n
Example: D5 is data register 5
Xn.SIZE*SCALE—Denotes index register n (data or address), the index size
(W for word, L for long word), and a scale factor (1, 2, 4,
or 8, for no, word, long-word or 8 for quad-word scaling,
respectively).
PC—The program counter
dn—Displacement value, n bits wide
bd—Base displacement
od—Outer displacement
L—Long-word size
W—Word size
{)—ldentify an indirect address in a register
[]—ldentify an indirect address in memory

When the addressing mode uses a register, the register field of the operation
word specifies the register to be used. Other fields within the instruction
specify whether the register selected is an address or data register and how
the register is to be used.

Data Register Direct Mode

in the data register direct mode, the operand is in the data register specified
by the effective address register field.

GENERATION: EA = Dn

ASSEMBLER SYNTAX: Dn

MODE: 000

REGISTER: n 3 0

DATA REGISTER: Dn 7Jl OPERAND l
NUMBER OF EXTENSION WORDS: 0

OLA MC68030 USER'S MANUAL 2-9

h -

y
A

2.4.2 Address Register Direct Mode

In the address register direct mode, the operand is in the address register
specified by the effective address register field.

GENERATION: EA = An
ASSEMBLER SYNTAX: An
MODE: 001
31 0
REGISTER: n
ADDRESS REGISTER: An ‘=IL OPERAND I

NUMBER OF EXTENSION WORDS: 0

2.4.3 Address Register Indirect Mode

In the address register indirect mode, the operand is in memory, and the
address of the operand is in the address register specified by the register
field.

GENERATION: €A = (An)

ASSEMBLER SYNTAX: {An)

MODE: 010

REGISTER: n 3 0

ADDRESS REGISTER: An AJL MEMGRY ADDRESS]
31 { 0

MEMORY ACDRESS: L OPERAND l

NUMBER OF EXTENSION WORDS: 0

2.4.4 Address Register Indirect with Postincrement Mode

2-10

In the address register indirect with postincrement mode, the operand is in
memory, and the address of the operand is in the address register specified
by the register field. After the operand address is used,-it is incremented by
one, two, or four depending on the size of the operand: byte, word, or long
word. Coprocessors may support incrementing for any size of operand up
to 255 bytes. If the address register is the stack pointer and the operand size
is byte, the address is incremented by two rather than one to keep the stack
pointer aligned to a word boundary.

MC68030 USER'S MANUAL MOTOROLA

h -
P]

GENERATION:

ASSEMBLER SYNTAX:
MODE:

REGISTER:

ADDRESS REGISTER:

OPERAND LENGTH (1, 2, OR 4):

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS:

EA = (An})
An = An + SIZE
(An) +
011 » 0
n
o] MEMORY ADDRESS j
N
AL/
5 9
[OPERAND J

0

2.45 Address Register Indirect with Predecrement Mode

In the address register indirect with predecrement mode, the operand is in
memory, and the address of the operand is in the address register specified
by the register field. Before the operand address is used, it is decremented
by one, two, or four depending on the operand size: byte, word, or long
word. Coprocessors may support decrementing for any operand size up to
255 bytes. If the address register is the stack pointer and the operand size is
byte, the address is decremented by two rather than one to keep the stack
pointer aligned to a word boundary.

GENERATION:
ASSEMBLER SYNTAX:
MODE:

REGISTER:
ADDRESS REGISTER:

QPERAND LENGTH (1, 2, OR 4}

MEMORY ADDRESS:

NUMBER OF EXTENSION WORDS:

MOTOROLA

An = An - SIZE

EA = (An)

- (An)

100 31 0

n

An ————-»[MEMORY ADDRESS J
3 0
[OPERAND J

0

MC68030 USER’S MANUAL

h -

2.4.6 Address Register indirect with Displacement Mode

In the address register indirect with displacement mode, the operand is in
memory. The address of the operand is the sum of the address in the address
register plus the sign-extended 16-bit displacement integer in the extension
word. Displacements are always sign-extended to 32 bits prior to being used
in effective address caiculations.

GENERATION: EA = (An) + dig
ASSEMBLER SYNTAX: {16, An)
MODE: 10
REGISTER: 0 8 0
ADDRESS REGISTER: An =|[MEMORY ADDRESS j
3 15 0
. T Teenexennen
OISPLACEMENT. | SIGNEXTENDED _L INTEGER
3 0
MEMORY ADDRESS: { OPERAND }
NUMBER OF EXTENSION WORDS: 1

2.4.7 Address Register Indirect with Index (8-Bit Displacement) Mode

This addressing mode requires one extension word that contains the index
register indicator and an 8-bit displacement. The index register indicator
includes size and scale information. In this mode, the operand is in memory.
The address of the operand is the sum of the contents of the address register,
the sign-extended displacement value in the low-order eight bits of the ex-
tension word, and the sign-extended contents of the index register {possibly
scaled). The user must specify the displacement, the address register, and
the index register in this mode.

GENERATION:
ASSEMBLER SYNTAX:
MODE:

REGISTER:

ADODRESS REGISTER:

DISPLACEMENT: L

EA = {An] + (Xn) + dg
(dg, An,Xn SIZE *SCALE)
110

31 0
n
ol
An > MEMORY ADDRESS |
7 0

0

INDEX REGISTER: |

SIGN EXTENDED VALUE

SCALE:

MEMORY ADDRESS:

NUMBER OF EXTENSION WORDS: 1

2-12

L SCALE VALUE
3 0

[QPERAND |

MC68030 USER'S MANUAL MOTOROLA

)V 4
A \

2.4.8 Address Register Indirect with Index (Base Displacement) Mode

This addressing mode requires an index register indicator and an optional
16- or 32-bit sign-extended base displacement. The index register indicator
includes size and scaling information. The operand is in memory. The address
of the operand is the sum of the contents of the address register, the scaled
contents of the sign-extended index register, and the base displacement.

In this mode, the address register, the index register, and the displacement
are all optional. If none is specified, the effective address is zero. This mode
provides a data register indirect address when no address register is specified
and the index register is a data register (Dn).

GENERATION: EA = (An} + (Xn) + bd
ASSEMBLER SYNTAX: {bd, An, Xn.SIZE *SCALE)
MODE: 110

REGISTER: n

ADDRESS REGISTER: An =]L MEMORY ADDRESS]

31 0
BASE DISPLACEMENT: [SIGN EXTENDED VALUE |- »{ +

31

o

oL

31

INDEX REGISTER: F SIGN EXTENDED VALUE

SCALE: L SCALE VALUE
31 0

MEMORY ADDRESS: l OPERAND]
NUMBER OF EXTENSION WORDS: 1,2, OR 3

MOTOROLA MC68030 USER'S MANUAL 2-13

h -
P]

2.4.9 Memory Indirect Postindexed Mode

2-14

In this mode, the operand and its address are in memory. The processor
calculates an intermediate indirect memory address using the base register
(An) and base displacement (bd). The processor accesses a long word at this
address and adds the index operand (Xn.SIZE*SCALE)} and the outer dis-
placement to yield the effective address. Both displacements and the index
register contents are sign-extended to 32 bits.

In the syntax for this mode, brackets enclose the values used to calculate the
intermediate memory address. All four user-specified values are optional.
Both the base and outer displacements may be null, word, or long word.
When a displacement is omitted or an element is suppressed, its value is
taken as zero in the effective address calculation.

GENERATION: EA = {bd + An) + Xn.SIZE*SCALE + od
ASSEMBLER SYNTAX: {[bd, An],Xn.S1ZE * SCALE, od} 3 0
AMgr?nEéss REGISTER: ;‘\:10 — MEMORY ADDRESS j
31 0
BASE DISPLACEMENT: | SIGN EXTENDED VALUE
31 0
r INDIRECT MEMORY ADDRESS]
N Powis 10 .
r VALUE AT INDIRECT MEMORY ADDRESS J
3 0
INDEX REGISTER: | SIGN EXTENDED VALUE
SCALE: | SCALE VALUE
31 0
OUTER DISPLACEMENT: | SIGN EXTENDED VALUE
31 0
EFFECTIVE ADDRESS: [OPERAND B

NUMBER OF EXTENSION WORDS: 1,2, 3,4, 0R5

MC68030 USER’S MANUAL MOTOROLA

2.4.10 Memory Indirect Preindexed Mode

In this mode, the operand and its address are in memory. The processor
calculates an intermediate indirect memory address using the base register
(An), a base displacement (bd), and the index operand (Xn.SIZE * SCALE).
The processor accesses a long word at this address and adds the outer
displacement to yield the effective address. Both displacements and the index
register contents are sign-extended to 32 bits.

in the syntax for this mode, brackets enclose the values used to calculate the
intermediate memory address. All four user-specified values are optional.
Both the base and outer displacements may be null, word, or long word.
When a displacement is omitted or an element is suppressed, its value is
taken as zero in the effective address calculation.

GENERATION; EA = {bd + An + Xn.SIZE*SCALE} + od
ASSEMBLER SYNTAX: {[bd, An.Xn.SIZE *SCALE]od) . 0
rt?z?:éss REGISTER: ‘1\:10 — MEMORY ADDRESS |
3 0
Base oiseLaceven. [SIGN EXTENDED VALUE
3 0
NOEX REGISTER: | SIGN EXTENDED VALUE
SCALE: SCALE VALUE
31 0
[INDIRECT MEMORY ADDRESS |
POINTS TO
3
[VALUE AT INDIRECT MEMORY ADDRESS]
N 0
OUTER DISPLACEMENT. | SIGN EXTENDED VALUE
31 0
EFFECTIVE ADDRESS: [DPERAND)

NUMBER OF EXTENSION WORDS: 1,2, 3,4 0R5

MOTOROLA MC68030 USER'S MANUAL 2-15

N\
y

y

2.4.11 Program Counter Indirect with Displacement Mode

In this mode, the operand is in memory. The address of the operand is the
sum of the address in the PC and the sign-extended 16-bit displacement
integer in the extension word. The value in the PC is the address of the
extension word. The reference is a program space reference and is only
allowed for reads (refer to 4.2 ADDRESS SPACE TYPES).

GENERATION: EA = (PC) + d1g
ASSEMBLER SYNTAX; {€16.PC)
MODE: m . 0
REGISTER: 010
PROGRAM COUNTER: =B ADDRESS OF EXTENSION WORD |
3 15 0
DISPLACEMENT: E SIGN EXTENDED [INTEGER
3 0
MEMORY ADDRESS: [OPERAND |

NUMBER OF EXTENSION WORDS: 1

2.4.12 Program Counter Indirect with Index (8-Bit Displacement) Mode

2-16

This mode is similar to the address register indirect with index (8-bit dis-
placement) mode described in 2.4.7 Address Register Indirect with Index
(8-Bit Displacement) Mode, but the PC is used as the base register. The
operand is in memory. The address of the operand is the sum of the address
in the PC, the sign-extended displacement integer in the lower eight bits of
the extension word, and the sized, scaled, and sign-extended index operand.
The value in the PC is the address of the extension word. This reference is
a program space reference and is only allowed for reads. The user must
include the displacement, the PC, and the index register when specifying this
addressing mode.

GENERATION: EA = (PC) + (Xn) + dg
ASSEMBLER SYNTAX: {dg, PC, X0 SIZE *SCALE)
MGDE: m . .
REGISTER: ot X
PROGRAM COUNTER: [ADDRESS OF EXTENSION WORD l
3 7 0
DISPLACEMENT: [SIGN EXTENDED ‘ INTEGER I[»(+
n T T 0
NDEX REGISTER: | SIGN EXTENDED VALUE
SCALE: [scauvmue
3 0
MEMORY ADDRESS; { OPERAND |
NUMBER OF EXTENSION WORDS: 1
MC68030 USER'S MANUAL MOTOROLA

A Y 4
A \

2.4.13 Program Counter Indirect with Index (Base Displacement) Mode

This mode is similar to the address register indirect with index {base dis-
placement) mode described in 2.4.8 Address Register Indirect with Index
(Base Displacement) Mode, but the PC is used as the base register. [t requires
an index register indicator and an optional 16- or 32-bit sign-extended base
displacement. The operand is in memory. The address of the operand is the
sum of the contents of the PC, the scaled contents of the sign-extended index
register, and the base displacement. The value of the PC is the address of
the first extension word. The reference is a program space reference and is
only allowed for reads (refer to 4.2 ADDRESS SPACE TYPES).

In this mode, the PC, the index register, and the displacement are all optional.
However, the user must supply the assembler notation “ZPC" (zero value is
taken for the PC) to indicate that the PC is not used. This allows the user to
access the program space without using the PC in calculating the effective
address. The user can access the program space with a data register indirect
access by placing ZPC in the instruction and specifying a data register (Dn)
as the index register.

GENERATION: EA = {PC) + (Xn) + bd
ASSEMBLER SYNTAX: {belPC.Xn SIZESCALE)
MODE: 11 . 0
REGISTER: o1
PROGRAM COUNTER: »{ ADORESS OF EXTENSION WORD {
R 0
BASE DISPLACEMENT: | SIGN EXTENDED VALUE
N D
NDEX REGISTER: | SIGN EXTENDED VALUE
SCALE: L SCALE VALUE
31 0
MEMORY ADDRESS: l OPERAND)
NUMBER OF EXTENSION WORDS: 1, 2, OR 3

MOTOROLA MC68030 USER’S MANUAL 2-17

h -

2.4.14 Program Counter Memory Indirect Postindexed Mode

2-18

This mode is similar to the memory indirect postindexed mode described in
2.4.9 Memory Indirect Postindexed Mode, but the PC is used as the base
register. Both the operand and operand address are in memory. The pro-
cessor calculfates an intermediate indirect memory address by adding a base
displacement (bd) to the PC contents. The processor accesses a long word
at that address and adds the scaled contents of the index register and the
optional outer dispiacement {(od) to yield the effective address. The value of
the PC used in the calculation is the address of the first extension word. The
reference is a program space reference and is only allowed for reads (refer
to 4.2 ADDRESS SPACE TYPES).

In the syntax for this mode, brackets enclose the values used to calculate the
intermediate memory address. All four user-specified values are optional.
However, the user must supply the assembler notation ZPC (zero value is
taken for the PC) to indicate that the PC is not used. This allows the user to
access the program space without using the PC in calculating the effective
address. Both the base and outer displacements may be null, word, or long
word. When a displacement is omitted or an element is suppressed, its value
is taken as zero in the effective address calculation.

GENERATION: EA = (b + PL) + Xn.SIZESCALE + 0d
ASSEMBLER SYNTAX: (Ibd.PC], X0 SIZE*SCALE o)
MODE; m
31 0
REGISTER FIELD: o
PROGRAM COUNTER: =]r ADDRESS OF EXTENSION WORD]
3 0
BASE DISPLACEMENT: [SIGN EXTENDED VALUE jJ +
31 0
‘ INDIRECT MEMORY ADDRESS]
POINTS TO
31 1 0
[VALUE AT INDIRECT MEMORY ADDRESS I PROGRAM SPACE]
3 0
INDEX REGISTER: [SIGN EXTENDED VALUE
[soaewue
3 0
QUTER DISPLACEMENT: r SIGN EXTENDED VALUE
3 0
EFFECTIVE ADDRESS: { OPERAND |
NUMBER OF EXTENSION WORDS: 1. 2.3, 4 RS
MC68030 USER'S MANUAL MOTOROLA

A Y 4
A \

2.4.15 Program Counter Memory Indirect Preindexed Mode

This mode is similar to the memory indirect preindexed mode. described in
2.4.10 Memory Indirect Preindexed Mode, but the PC is used as the base
register. Both the operand and operand address are in memory. The pro-
cessor calculates an intermediate indirect memory address by adding the PC
contents, a base displacement (bd), and the scaled contents of an index
register. The processor accesses a long word at that address and adds the
optional outer displacement (od) to yield the effective address. The value of
the PC is the address of the first extension word. The reference is a program
space reference and is only allowed for reads (refer to 4.2 ADDRESS SPACE
TYPES).

In the syntax for this mode, brackets enclose the values used to calculate the
intermediate memory address. All four user-specified values are optional.
However, the user must supply the assembler notation ZPC (zero value is
taken for the PC) to indicate that the PC is not used. This allows the user to
access the program space without using the PC in calculating the effective
address. Both the base and outer displacements may be null, word, or long
word. When a displacement is omitted or an element is suppressed, its value
is taken as zero in the effective address calculation.

GENERATION: EA = (bd + PC + XnSIZE*SCALE) + od
ASSEMBLER SYNTAX: {Ebd,PC. Xn.SIZE *SCALELod)
MODE: 1 . 0
REGISTER FIELD: ot
PROGRAM COUNTER: >|F ADDRESS OF EXTENSION WORD J
3
BASE DISPLACEMENT: [SIGN EXTENDED VALUE
3
INDEX REGISTER: E SIGN EXTENDED VALUE
[SCALE VALUE
3 6
r INDIRECT MEMORY ADDRESS]
L
POINTS TO
3 0
r VALUE AT INDIRECT MEMORY ADDRESS IN PROGRAM SPACE J
31 0
. 1
OUTER DISPLACEMENT: SIGN EXTENDED VALLE B +
31 0
EFFECTIVE ADDRESS: r OPERAND J
NUMBER OF EXTENSION WORDS: 1, 2,3, 4, OR §

MOTOROLA MC68030 USER'S MANUAL 2-19

h -

y
A
2.4.16 Absolute Short Addressing Mode

In this addressing mode, the operand is in memory, and the address of the
operand is in the extension word. The 16-bit address is sign-extended to 32
bits before it is used.

GENERATION: EA GIVEN
ASSEMBLER SYATAX: W
MOGE: "
3
REGISTER: 000 ————— 1 0
EXTENSION WORD: > SoNExmoe MEMORY ADDRESS |
3 0
MEMORY ADDRESS: L OPERAND J

NUMBER OF EXTENSION WORDS: 1

2.4.17 Absolute Long Addressing Mode

In this mode, the operand is in memory, and the address of the operand
occupies the two extension words following the instruction word in memory.
The first extension word contains the high-order part of the address; the low-

order part of the address is the second extension word.

GENERATION:
ASSEMBLER SYNTAX:
MODE:

REGISTER:

FIRST EXTENSION WORD:

SECOND EXTENSION WORD:

MEMORY ADDRESS:

NUMBER OF EXTENSION WORDS:

2-20

EA GIVEN
{xxx).L
m
15 o
001
:’L ADDRESS HIGH 1
15 0
»l
»{ ADDRESS LOW
3 Y 0
L CONCATENATION J

31

K}

0

OPERAND

|

MC68030 USER'S MANUAL

MOTOROLA

)V 4
A \

2.4.18 Immediate Data
In this addressing mode, the operand is in one or two extension words:

Byte Operation
Operand is in the low-order byte of the extension word

Word Operation
Operand is in the extension word

Long-Word Operation
The high-order 16 bits of the operand are in the first extension word;
the low-order 16 bits are in the second extension word.

Coprocessor instructions can support immediate data of any size. The in-
struction word is followed by as many extension words as are required.

Generation: Operand given

Assembler Syntax: F#XXX

Maode Fielfd: m

Register Field: 100

Number of Extension Words: 1 or 2, except for coprocessor instructions

MOTOROLA MC68030 USER'S MANUAL 2-21

N\
y

y

2.5 EFFECTIVE ADDRESS ENCODING SUMMARY

2-22

Most of the addressing modes use one of the three formats shown in Figure
2-4. The single effective address instruction is in the format of the instruction
word. The encoding of the mode field of this word selects the addressing
mode. The register field contains the general register number or a value that
selects the addressing mode when the mode field contains “111”. Table
2-2 shows the encoding of these fields. Some indexed or indirect modes use
the instruction word followed by the brief format extension word. Other
indexed or indirect modes consist of the instruction word and the full format
of extension words. The longest instruction for the MC68030 contains 10
extension words. It is a MOVE instruction with full format extension words
for both the source and destination effective addresses.and with 32-bit base
displacements and 32-bit outer displacements for both addresses. However,
coprocessor instructions can have any number of extension words. Refer to
the coprocessor instruction formats in SECTION 10 COPROCESSOR INTER-
FACE DESCRIPTION.

For effective addresses that use the full format, the index suppress (IS) bit
and the index/indirect selection {I/IS) field determine the type of indexing and
indirection. Table 2-1 lists the indexing and indirection operations corre-
sponding to all combinations of IS and I/IS values.

Table 2-1. IS-/IS Memory Indirection Encodings

IS Index/Indirect Operation
0 000 No Memory Indirection
0 001 Indirect Preindexed with Null Outer Displacement
0 010 Indirect Preindexed with Word Outer Displacement
0 011 Indirect Preindexed with Long Outer Displacement
0 100 Reserved
0 101 Indirect Postindexed with Null Outer Displacement
0 110 Indirect Postindexed with Word Quter Displacement
0 1 Indirect Postindexed with Long Outer Displacement
1 000 No Memory Indirection
1 001 Memory Indirect with Null Outer Displacement
1 010 Memory Indirect with Word Quter Displacement
1 011 Memory Indirect with Long Outer Displacement
1 100-111 Reserved

MC68030 USER'S MANUAL MOTOROLA

h -

P]

Single Effective Address Instruction Format

15 14 13 12 1 10 9 8 7 6 5 0
X X % X % X X X X X EFFECTIVE ADDRESS
MODE REGISTER
Brief Format Extension Word
15 14 12 11 10 9 8 7 0
Lo] resister IR ER DISPLACEMENT |
Full Format Extension Word(s)
15 14 12 i1 10 9 8 7 6 5 4 3 2 0
DIA L REGISTER lW/LJ SCALE l 1 I BS | 1S] BD SIZE | 0 | s
BASE DISPLACEMENT (0, 1, OR 2 WORDS)
OUTER DISPLACEMENT (0, 1, OR 2 WORDS)
Field Definition Field ~ Definition
Instruction: i : BS Base Register Suppress:
Register General Register Number 0=Base Register Added
Extensions: S imiodase Regiser Supprossed
Register Index Reg{ster Number 0 = Evaluate and Add Index
D/A Index Register Type 0 d
0= Dn peran
1=An 1=Suppress Index Operand
WL Word/Long-Word Index Size BD SIZE BaseﬁDlspIacement Size:
0=Sign-Extended Word 00=Reserved
1=L Word 01=Nul| Displacement
Scal S r Sn%o or 10=Word Displacement
caie coaoe_ 130 r 11=Long Displacement
01 :2 Ins Index/Indirect Selection:
10:4 Indirect and Indexing Operand
1 ;8 Determined in Conjunction with

Bit 6, Index Suppress

Figure 2-4. Effective Address Specification Formats

Effective address modes are grouped according to the use of the mode. They
can be classified as follows:

Data A data addressing effective address mode is one that refers to
data operands.

Memory A memory addressing effective address mode is one that refers
to memory operands.

Alterable An alterable addressing effective address mode is one that refers
to alterable {writable) operands.

Control A control addressing effective address mode is one that refers
to memory operands without an associated size.

MOTOROLA MC68030 USER'S MANUAL 2-23

h -

<

1able 2-2 shows the categories to which each of the effective addressing
modes belong.

Table 2-2. Effective Addressing Mode Categories

Address Modes Mode| Register | Data | Memory | Control | Alterable |Assembler Syntax

Data Register Direct 000 | reg. no. X — — X Dn
Address Register Direct 001 reg. no. — — — X An
Address Register Indirect 010 | reg. no. X X X X (An)
Address Register Indirect

with Postincrement 011 { reg. no. X X — X (An) +
Address Register Indirect

with Predecrement 100 | reg. no. X X — X - (An}
Address Register Indirect

with Displacement 101 | reg. no. X X X X {d16.An)
Address Register Indirect with

Index (8-Bit Displacement) 110 | reg. no. X X X X {dg,An,Xn}
Address Register Indirect with

Index (Base Displacement) 110 | reg. no. | X X X X {bd,An,Xn)
Memory Indirect Postindexed 110 | reg. no. X X X X {(bd,An],Xn,o0d)
Memory Indirect.Preindexed 110 | reg. no. X X X X ({[bd,An,Xn],0d}
Absolute Short AN 000 X X X X (xxx).W
Absolute Long M 001 X X X X {xxx}.L
Program Counter Indirect

with Displacement 11 010 X X X — {d16.PC)
Program Counter Indirect with

Index (8-Bit) Displacement 111 011 X X X — {dg.PC,Xn}
Program Counter Indirect with

index {Base Displacement) 111 011 X X X — {bd,PC,Xn)
PC Memory Indirect

Postindexed i 011 X X X — ([bd,PC],Xn,od
PC Memory Indirect

Preindexed 11 011 X X — ([bd,PC,Xn],0d)
Immediate 11 100 X X — — #(data)

These categories are sometimes combined, forming new categories that are
more restrictive. Two combined classifications are alterable memory or data
alterable. The former refers to those addressing modes that are both alterable
and memory addresses, and the latter refers to addressing modes that are
both data and alterable.

2.6 PROGRAMMER'S VIEW OF ADDRESSING MODES

Extensions to the indexed addressing modes, indirection, and full 32-bit dis-
placements provide additional programming capabilities for both the MC68020
and the MC68030. This section describes addressing techniques that exploit
these capabilities and summarizes the addressing modes from a program-
ming point of view.

2-24 MC68030 USER’'S MANUAL MOTOROLA

h -

2.6.1

Several of the addressing techniques described in this section use data reg-
isters and address registers interchangeably. While the MC68030 provides
this capability, its performance has been optimized for addressing with ad-
dress registers. The performance of a program that uses address registers
in address calculations is superior to that of a program that similarly uses
data registers. The specification of addresses with data registers should be
used sparingly (if at all), particularly in programs that require maximum
performance.

Addressing Capabilities

In both the MC68020 and the MC68030, setting the base register suppress
{BS) bit in the full format extension word (see Figure 2-4) suppresses use of
the base address register in calculating the effective address. This allows any
index register to be used in place of the base register. Since any of the data
registers can be index registers, this provides a data register indirect form
{Dn). The mode could be called register indirect {Rn) since either a data
register or an address register can be used. This addressing mode is an
extension to the M68000 Family because the MC68030 and MC68020 can use
both the data registers and the address registers to address memory. The
capability of specifying the size and scale of an index register (Xn.SIZE*SCALE)
in these modes provides additional addressing flexibility. Using the SIZE
parameter, either the entire contents of the index register can be used, or
the least significant word can be sign-extended to provide a 32-bit index
value (refer to Figure 2-5).

i VL ////////////}l d

16 15 0

o [77 777777777777777777)

m . USED IN ADDRESS CALCULATION

Figure 2-5. Using SIZE in the Index Selection

MOTOROLA MC68030 USER'S MANUAL 2-25

h -

2-26

For both the MC68020 and the MC68030, the register indirect modes can be
extended further. Since displacements can be 32 bits wide, they can represent
absolute addresses or the results of expressions that contain absolute ad-
dresses. This allows the general register indirect form to be (bd,Rn) or
{bd,An,Rn} when the base register is not suppressed. Thus, an absolute ad-
dress can be directly indexed by one or two registers (refer to Figure 2-6).

SYNTAX: (bd,An,Rn)

LI

/ . /

Figure 2-6. Using Absolute Address with Indexes

Scaling provides an optional shifting of the value in an index register to the
left by zero, one, two, or three bits before using it in the effective address
calculation (the actual value in the index register remains unchanged). This
is equivalent to multiplying the register by one, two, four, or eight for direct
subscripting into an array of elements of corresponding size using an arith-
metic value residing in any of the 16 general registers. Scaling does not add
to the effective address calculation time. However, when combined with the
appropriate derived modes, it produces additional capabilities. Arrayed struc-
tures can be addressed absolutely and then subscripted, (bd,Rn*scale), for
example. Optionally, an address register that contains a dynamic displace-
ment can be included in the address calculation (bd,An,Rn*scale). Another
variation that can be derived is (An,Rn*scale). In the first case, the array
address is the sum of the contents of a register and a displacement, as shown
in Figure 2-7. In the second example, An contains the address of an array
and Rn contains a subscript.

MC68030 USER’S MANUAL MOTOROLA

h -
P]

SYNTAX: MOVE.W {A5,A8.L*SCALE).{A7}
WHERE:
A5 = ADDRESS OF ARRAY STRUCTURE
A6 = INDEX NUMBER OF ARRAY ITEM
A7 = STACK POINTER
SIMPLE ARRAY

(SCALE = 1)

15 0

16 =1 ——»y [T
2 —>ANNNNNANNNNNN

3
4 ———p

/

RECORD OF 4 WORDS
(SCALE = 4)

v

RECORD OF 2 WORDS
(SCALE = 2)

0

MMM

/ /

/

RECORD OF 8 WORDS
(SCALE = 8)

15 0

AB = 1 il

-
A\

.

.

/ /

\

.

NOTE: Regardiess of array structure, software increments index by the
appropriate amount to point to next record.

Figure 2-7. Addressing Array ltems

The memory indirect addressing modes use a long-word pointer in memory
to access an operand. Any of the modes previously described can be used
to address the memory pointer. Because the base and index registers can
both be suppressed, the displacement acts as an absolute address, providing
indirect absolute memory addressing {refer to Figure 2-8).

MOTOROLA MC68030 USER'S MANUAL

h -

P]

2-28

I ne outer displacement (od) available in the memory indirect modes is added
to the pointer in memory. The syntax for these modes is {[bd,An],Xn,od) and
([bd,An,Xn],0d). When the pointer is the address of a structure in memory
and the outer displacement is the offset of an item in the structure, the
memory indirect modes can access the item efficiently (refer to Figure 2-9).

Memory indirect addressing modes are used with a base displacement in
five basic forms:

. [bd,An] — Indirect, suppressed index register

. {[bd,An,Xn]) — Preindexed indirect

. {[bd,An],Xn) — Postindexed indirect

. {[bd,An,Xn],0d) — Preindexed indirect with outer displacement

. {[bd,An],Xn,od) — Postindexed indirect with outer displacement

O WN =

SYNTAX: {[bd])

bd —————— POINTER DATA ITEM

/ / / /

Figure 2-8. Using Indirect Absolute Memory Addressing

SYNTAX: {[An),0d)

MEMORY STRUCTURE

An —-——"—’ POINTER o

od

DATA ITEM

/ / / /

Figure 2-9. Accessing an Item in a Structure Using Pointer

MC68030 USER'S MANUAL MOTOROLA

h -

MOTOROLA

P]

The indirect, suppressed index register mode (see Figure 2-10) uses the con-
tents of register An as an index to the pointer located at the address specified

by the displacement. The actual data item is at the address in the selected
pointer.

SYNTAX: {[bd,An])

PGINTER LIST

An

POINTER L

DATA ITEM

/ / / /

Figure 2-10. Indirect Addressing, Suppressed Index Register

The preindexed indirect mode (see Figure 2-11) uses the contents of An as
an index to the pointer list structure at the displacement. Register Xn is the
index to the pointer, which contains the address of the data item.

SYNTAX: {[bd,An,Xn])

POINTER LIST

by —————} l

An

l

I DATA ITEM
Xn

l

POINTER

/ / / /

Figure 2-11. Preindexed Indirect Addressing

MC68030 USER'S MANUAL 2-29

h -

P]

I ne postindexed indirect mode (see Figure 2-12) uses the contents of An as
an index to the pointer list at the displacement. Register Xn is used as an
index to the structure of data items located at the address specified by the
pointer. Figure 2-13 shows the preindexed indirect addressing with outer
displacement mode.

SYNTAX: ({bd,An].Xn)

POINTER LIST POST-INDEXED STRUCTURE

bd ———]

l

Xn

!

POINTER DATA ITEM

/ / / /

Figure 2-12. Postindexed Indirect Addressing

SYNTAX: {{bd,An,Xn},od)

POINTER LIST STRUCTURE

bd ———— '
An

PUINTER DATA ITEM

/ / / /

Figure 2-13. Preindexed Indirect Addressing with Outer Displacement

2-30 MC68030 USER'S MANUAL MOTOROLA

h -

P

The postindexed indirect mode with outer displacement (see Figure 2-14)
uses the contents of An as an index to the pointer list at the displacement.
Register Xn is used as an index to the structure of data structures at the

- address-in the pointer. The outer displacement (od) is the displacement of

the data item within the selected data structure.

SYNTAX: {[bd,An].Xn,0d}

POST-INDEXED STRUCTURE
POINTER LIST WITH OUTER DISPLACEMENT

bd
I
od

An &
I

Xn

!

POINTER DATA ITEM

/ /7

Figure 2-14. Postindexed Indirect Addressing with Outer Displacement

2.6.2 General Addressing Mode Summary

MOTOROLA

The addressing modes described in the previous section are derived from
specific combinations of options in the indexing mode or a selection of two
alternate addressing modes. For example, the addressing mode called reg-
ister indirect (Rn) assembles as the address register indirect if the register is
an address register. If Rn is a data register, the assembler uses the address
register indirect with index mode using the data register as the indirect reg-
ister and suppresses the address register by setting the base suppress bit in
the effective address specification. Assigning an address register as Rn pro-
vides higher performance than using a data register as Rn. Another case is
{bd,An), which selects an addressing mode depending on the size of the
displacement. If the displacement is 16 bits or less, the address register
indirect with displacement mode (d16,An) is used. When a 32-bit displace-
ment is required, the address register indirect with index (bd,An,Xn) is used
with the index register suppressed.

MC68030 USER'S MANUAL 2-31

h -

P]

It is useful to examine the derived addressing modes available to a pro-
grammer (without regard to the MC68030 effective addressing mode actually
encoded) because the programmer need not be concerned about these de-
cisions. The assembler can choose the more efficient addressing mode to

encode.

In the list of derived addressing modes that follows, common programming
terms are used. The following definitions apply:

pointer

base

index

disp

subscript

relative

addr

psaddr

preindexed

2-32

— Long-word value in a register or in memory which rep-

resents an address.

A pointer combined with a displacement to represent
an address.

A constant or variable value added into an effective
address calculation. A constant index is a displacement.
A variable index is always represented by a register
containing the value.

Displacement, a constant index.

The use of any of the data or address registers as a
variable index subscript into arrays of items 1, 2, 4, or
8 bytes in size.

An address calculated from the program counter con-
tents. The address is position independent and is in
program space. All other addresses but psaddr are in
data space.

An absolute address.

An absolute address in program space. All other ad-
dresses but PC relative are in data space.

All modes from absolute address through program
counter relative.

MC68030 USER'S MANUAL MOTOROLA

h -

P]

postindexed — Any of the following modes:

addr — Absolute address in data space

psaddr,ZPC — Absolute address in program space

An — Register pointer

disp,An — Register pointer with constant dis-
placement

addr,An — Absolute address with single variable
name

disp,PC — Simple PC relative

The addressing modes defined in programming terms, which are derivations
of the addressing modes provided by the MC68030 architecture, are as foli-
lows:

Immediate Data — #data:
The data is a constant located in the instruction stream.

Register Direct — Rn:
The contents of a register contain the operand.

Scanning Modes:
(An) +
Address register pointer automatically incremented after use.
—(An)
Address register pointer automatically decremented before use.

Absolute Address:
{addr)
Absolute address in data space.

{(psaddr,ZPC)
Absolute address in program space. Symbol ZPC suppresses the PC,
but retains PC relative mode to directly access the program space.

Register Pointer:
(Rn)
Register as a pointer.
(disp,Rn)
Register as a pointer with constant index {(or base address).

MOTOROLA MC68030 USER'S MANUAL 2-33

h -

P]

Indexing:
(An,Rn)
Register pointer An with variable index Rn.
(disp,An,Rn)
Register pointer with constant and variable index (or a base address
with a variable index).

(addr,Rh)
Absolute address with variable index.

(addr,An,Rn}
Absolute address with two variable indexes.

Subscripting:
{An,Rn*scale)
Address register pointer subscript.
(disp,An,Rn*scale)
Address register pointer subscript with constant displacement {or base
address with subscript).

{addr, Rn*scale)
Absolute address with subscript.

{(addr,An,Rn*scale)
Absolute address subscript with variable index.

Program Relative:
{disp,PC)
Simple PC relative.

{disp,PC,Rn)
PC relative with variable index.

{disp,PC,Rn*scale)
PC relative with subscript.

2-34 MC68030 USER'S MANUAL MOTOROLA

h -
P |

Memory Pointer:
{[preindexed])
Memory pointer directly to data operand.

([preindexed],disp)
Memory pointer as base with displacement to data operand.

{[postindexed],Rn)

Memory pointer with variable index.
([postindexed],disp,Rn)

Memory pointer with constant and variable index.

{[postindexed],Rn*scale)
Memory pointer subscripted.

(Ipostindexed], disp, Rn*scale)
Memory pointer subscripted with constant index.

MOTOROLA MC68030 USER'S MANUAL

2-35

N\
y

y

<.7 Mo8000 FAMILY ADDRESSING COMPATIBILITY

Programs can be easily transported from one member of the M68000 Family
to another in an upward compatible fashion. The user object code of each
early member of the family is upward compatible with newer members and
can be executed on the newer microprocessor without change. The address
extension word(s) are encoded with the information that allows the MC68020/
MC68030 to distinguish the new address extensions to the basic M63000
Family architecture. The address extension words for the early MC68000/
MC68008/MC68010 microprocessors and for the newer 32-bit MC68020/
MC68030 microprocessors are shown in Figure 2-15. Notice the encoding for
SCALE used by the MC68020/MC68030 is a compatible extension of the
M68000 architecture. A value of zero for SCALE is the same encoding for
both extension words; hence, software that uses this encoding is both up-
ward and downward compatible across all processors in the product line.
However, the other values of SCALE are not found in both extension formats;
thus, while software can be easily migrated in an upward compatible direc-
tion, only nonscaled addressing is supported in a downward fashion. If the
MC68000 were to execute an instruction that encoded a scaling factor, the
scaling factor would be ignored and not access the desired memory address.
The earlier microprocessors have no knowledge of the extension word for-
mats implemented by newer processors; while they do detect illegal instruc-
tions, they do not decode invalid encodings of the extension words as
exceptions.

2.8 OTHER DATA STRUCTURES

Stacks and queues are widely used data structures. The MC68030 implements
a system stack and also provides instructions that support the use of user
stacks and queues.

2.8.1 System Stack

2-36

Address register seven (A7) is used as the system stack pointer (SP). Any of
the three system stack registers is active at any one time. The M and S bits
of the status register determine which stack pointer is used. When S=0
indicating user mode (user privilege level), the user stack pointer {USP) is
the active system stack pointer, and the master and interrupt stack pointers
cannot be referenced. When S=1 indicating supervisor mode (at supervisor
privilege level) and M =1, the master stack pointer (MSP) is the active system
stack pointer. When S=1 and M =0, the interrupt stack pointer (ISP} is the
active system stack pointer. This mode is the MC68030 default mode after
reset and corresponds to the MC68000, MC68008, and MC68010 supervisor

MC68030 USER'S MANUAL. MOTOROLA

h -

P]

MC68000/MC68008/MC68010 Address
Extension Word

15 4 12 t 10 9 8 7 0
[oa| mesiseR Jwi] o [o [o | DISPLACEMENT INTEGER i
D/A: 0 = Data Register Select

1 = Address Register Select
WiL: 0 = Word-Sized Operation
1 = Long-Word-Sized Operation

MC68020/MC68030 Address
Extension Word

15 14 12 i 10 9 8 7 0
lom]| reoister Jwi] scae [o] DISPLACEMENT INTEGER
D/A: 0 = Data Register Select
1 = Address Register Select
W/L: 0 = Word-Sized Operation
1 = Long-Word-Sized Operation
SCALE: 00 = Scale Factor 1 {Compatible with MC68000)
01 = Scale Factor 2 (Extension to MC68000)
10 = Scale Factor 4 (Extension to MC68000)
=8

11 cale Factor 8 (Extension to MC63000)

Figure 2-15. M68000 Family Address Extension Words

mode. The term supervisor stack pointer (SSP) refers to the master or inter-
rupt stack pointers, depending on the state of the M bit. When M=1, the
term SSP (or A7) refers to the MSP address register. When M =0, the term
SSP (or A7) refers to the ISP address register. The active system stack pointer
is implicitly referenced by all instructions that use the system stack. Each
system stack fills from high to low memory.

A subroutine call saves the program counter on the active system stack, and
the return restores it from the active system stack. During the processing of
traps and interrupts, both the program counter and the status register are
saved on the supervisor stack (either master or interrupt). Thus, the execution
of supervisor code is independent of user code and the condition of the user
stack; conversely, user programs use the user stack pointer independently
of supervisor stack requirements.

To keep data on the system stack aligned for maximum efficiency, the active
stack pointer is automatically decremented or incremented by two for all
byte-sized operands moved to or from the stack. In long-word-organized

MOTOROLA MC68030 USER'S MANUAL 2-37

h -

P]

memory, aligning the stack pointer on a long-word address significantly
increases the efficiency of stacking exception frames, subroutine calls and
returns, and other stacking operations.

2.8.2 User Program Stacks

The user can implement stacks with the address register indirect with post-
increment and predecrement addressing modes. With address register An
{n=0-6), the user can implement a stack that is filled either from high to low
memory or from low to high memory. Important considerations are:

o Usethe predecrement mode to decrement the register before its contents
are used as the pointer to the stack.

e Use the postincrement mode to increment the register after its contents
are used as the pointer to the stack.

e Maintain the stack pointer correctly when byte, word, and long-word
items are mixed in these stacks.
To implement stack growth from high to low memory, use:
—{An) to push data on the stack,
{An)+ to pull data from the stack.

For this type of stack, after either a push or a pull operation, register An
points to the top item on the stack. This is illustrated as:

LOW MEMORY
(FREE)
At ——— TGP OF STACK

: /

BOTTOM OF STACK
HIGH MEMORY

To implement stack growth from low to high memory, use:
(An}+ to push data on the stack,
—(An) to pull data from the stack.

2-38 MC68030 USER'S MANUAL MOTOROLA

h -

P]

In this case, after either a push or pull operation, register An points to the
next available space on the stack. This is illustrated as:

LG MEMORY
2CTICM OF STACK
.
7 : 7

.

TSP OF STACK

An ———] -FREE)
#.CH MEMORY

2.8.3 Queues

The user can implement queues with the address register indirect with post-
increment or predecrement addressing modes. Using a pair of address reg-
isters (two of AO-AB), the user can implement a queue which is filled either
from high to low memory or from low to high memory. Two registers are
used because queues are pushed from one end and pulled from the other.
One register, An, contains the "“put” pointer; the other, Am, the “get” pointer.

To implement growth of the queue from low to high memory, use:
(An)-+ to put data into the queue,
. (Am)+ to get data from the queue.

After a “put” operation, the “put” address register points to the next available
space in the queue, and the unchanged ““get” address register points to the
next item to be removed from the queue. After a ’get” operation, the “get”
address register points to the next item to be removed from the queue, and
the unchanged “put’”’ address register points to the next available space in
the queue. This is illustrated as:

LOW MEMORY
LAST GET {FREE)
GET (Am)+ ———] NEXT GET

/ : /

LAST PUT
PUT {An)+ ————= (FREE)
HIGH MEMORY

MOTOROLA MC68030 USER’'S MANUAL 2-39

h -

P]

2-40

To implement the queue as a circular buffer, the relevant address register
should be checked and adjusted, if necessary, before performing the “put”
or 'get” operation. The address register is adjusted by subtracting the buffer
length (in bytes) from the register.

To implement growth of the queue from high to low memory, use:
—(An) to put data into the queue,

—{Am} to get data from the queue.

After a “put’”’ operation, the “put” address register points to the last item
placed in the queue, and the unchanged “get’” address register points to the
last item removed from the queue. After a ““get’” operation, the “get’’ address
register points to the last item removed from the queue, and the unchanged
“put” address register points to the last item placed in the queue. This is
illustrated as:

LOW MEMORY
(FREE)
PUT —(An) ~——3»] LAST PUT
*
/ .
-
NEXT GET
GET —(Am) ———] LAST GET {FREE)
HIGH MEMORY

To implement the queue as a circular buffer, the “get” or “put’” operation
should be performed first, and then the relevant address register should be
checked and adjusted, if necessary. The address register is adjusted by adding
the buffer length (in bytes) to the register contents.

MC68030 USER’S MANUAL MOTOROLA

h -

SECTION 3

INSTRUCTION SET SUMMARY

This section briefly describes the MC68030 instruction set. Refer to the
MC68000PM/AD, MC68000 Programmer’s Reference Manual, for complete
details on the MCB68030 instruction set.

The following paragraphs include descriptions of the instruction format and
the operands used by instructions, foliowed by a summary of the instruction
set. The integer condition codes and floating-point details are discussed.
Programming examples for selected instructions are also presented.

3.1 INSTRUCTION FORMAT

All MC68030 instructions consist of at least one word; some have as many
as 11 words {see Figure 3-1). The first word of the instruction, calied the
operation word, specifies the length of the instruction and the operation to
be performed. The remaining words, called extension words, further specify
the instruction and operands. These words may be floating-point command
words, conditional predicates, immediate operands, extensions to the effec-
tive address mode specified in the operation word, branch displacements,
bit number or bit field specifications, special register specifications, trap op-
erands, pack/unpack constants, or argument counts.

15 0

OPERATION WGRD
(ONE WORD, SPECIFIES OPERATION AND MODES)

SPECIAL OPERAND SPECIFIERS
{IF ANY, ONE OR TWO0 WORDS)

IMMEDIATE OPERAND OR SOURCE EFFECTIVE ADDRESS EXTENSION
{IF ANY, ONE 70 SIX WORDS)

DESTINATION EFFECTIVE ADDRESS EXTENSION
(IF ANY, ONE TO SIX WORDS!

Figure 3-1. Instruction Word General Format

MOTOROLA MC68030 USER'S MANUAL 3-1

h -

P]

Besides the operation code, which specifies the function to be performed,
an instruction defines the location of every operand for the function. Instruc-
tions specify an operand location in one of three ways:

1. Register Specification — A register field of the instruction contains the
number of the register.

2. Effective Address — An effective address field of the instruction contains
address mode information.

3. Implicit Reference — The definition of an instruction implies the use of
specific registers.

The register field within an instruction specifies the register to be used. Other
fields within the instruction specify whether the register selected is an address
or data register and how the register is to be used. SECTION 1 INTRODUC-
TION contains register information.

Effective address information includes the registers, displacements, and ab-
solute addresses for the effective address mode. SECTION 2 DATA ORGANI-
ZATION AND ADDRESSING CAPABILITIES describes the effective address
modes in detail.

Certain instructions operate on specific registers. These instructions imply
the required registers.

3.2 INSTRUCTION SUMMARY

3-2

The instructions form a set of tools to perform the following operations:

Data Movement Bit Field Manipulation

Integer Arithmetic Binary-Coded Decimal Arithmetic
Logical Program Control

Shift and Rotate System Control

Bit Manipulation Multiprocessor Communications

Each instruction type is described in detail in the following paragraphs.

MC68030 USER’'S MANUAL MOTOROLA

h -

P]

The following notations are used in this section. In the operand syntax state-
ments of the instruction definitions, the operand on the right is the destination
operand.

An=any address register, A7-A0
Dn=any data register, D7-D0
Rn=any address or data register
CCR=condition code register (lower byte of status register)
cc=condition codes frorn CCR
SR =status register
SP=active stack pointer
USP =user stack pointer
ISP =supervisor/interrupt stack pointer
MSP = supervisor/master stack pointer
SSP =supervisor (master or interrupt) stack pointer
DFC =destination function code register
SFC=source function code register
Rc=control register (VBR, SFC, DFC, CACR)
MRc=MMU contro! register (SRP, URP, TC, DTTOQ, DTT1, ITT0,
ITT1, MMUSR)
MMUSR = MMU status register
B, W, L=specifies a signed integer data type (twos complement)
of byte, word, or long word
S=single-precision real data format (32 bits)
D =double-precision real data format (64 bits)
X=extended-precision real data format (96 bits, 16 bits
unused)
P =packed BCD real data format (96 bits, 12 bytes)
FPm, FPn=any floating-point data register, FP7-FP0
PFcr=floating-point system control register (FPCR, FPSR, or
FPIAR)
k=a twos-complement signed integer {—64 to +17) that
specifies the format of a number to be stored in the packed
BCD format
d=displacement; d1g is a 16-bit displacement
<ea> = effective address
list=list of registers, for exampie D3-DO
#<data>=immediate data; a literal integer
{offset:width} = bit field selection
label =assemble program label
{m]=bit m of an operand
[m:n]=bits m through n of operand

MOTOROLA MC68030 USER'S MANUAL 3-3

h -

P]

X=extend (X) bit in CCR
N =negative (N) bit in CCR
Z=Zero (Z) bit in CCR
V=overflow (V) bit in CCR
C=carry (C) bit in CCR
+ =arithmetic addition or postincrement indicator
— =arithmetic subtraction or predecrement indicator
X = arithmetic multiplication
+ =arithmetic division or conjunction symbol
~=invert; operand is logically compiemented
A =logical AND
V=logical OR
®=logical exclusive OR
Dc=data register, D7-D0 used during compare
Du=data register, D7-D0 used during update
Dr, Dg=data registers, remainder or quotient of divide
Dh, Di=data registers, high- or low-order 32 bits of product
MSW = most significant word
LSW =least significant word
MSB =most significant bit
FC = function code
{R/W}=read or write indicator
[An] = address extensions

3.2.1 Data Movement Instructions

3-4

The MOVE instructions with their associated addressing modes are the basic
means of transferring and storing addresses and data. MOVE instructions
transfer byte, word, and long-word operands from memory to memory, mem-
ory to register, register to memory, and register to register. Address move-
ment instructions (MOVE or MOVEA) transfer word and long-word operands
and ensure that only valid address manipulations are executed. In addition
to the general MOVE instructions, there are several special data movement
instructions: move multiple registers {MOVEM), move peripheral data
(MOVEP), move quick (MOVEQ), exchange registers (EXG), load effective
address (LEA), push effective address (PEA), link stack (LINK), and unlink
stack (UNLK).

MC68030 USER'S MANUAL MOTOROLA

A Y 4
A \

1anle 3-1 is a summary of the integer and floating-point data movement

operations.
Table 3-1. Data Movement Operations
Instruction Operand Syntax Operand Size Operation
EXG Rn, Rn 32 Rn 4» Rn
LEA <ea>,An 32 <ea> » An
LINK An#<d> 16,32 Sp—4 8 SP; An# (SP); SP» An, SP+D # SP
MOVE <ea>,<ea> 8,16,32 source # destination
MOVEA <ea>,An 16,329 32
MOVEM list,<ea> 16,32 listed registers # destination
<ea> list 16,32 9 32 source # listed registers
MOVEP Dn, (d1g,An) 16,32 Dn{31:24] » (An+d); Dn{23:16] # An+d +2);
Dn{15:8] # {An+d +4); Dn{7:0] # {An+d +6)
{d16,An),Dn {An—d) » Dn[31:24}; {An+d+2) » Dn[23:16];
(An+d—~4)» Dn[15:8]; {An+d+6) » Dn[7:0]
MOVEQ #<data>Dn 3932 immediate data # destination
PEA <@a> 32 SP—4 » SP; <ea> » (SP)
UNLK An 32 ' An » SP; (SP) » An; SP+4 » SP

3.2.2 Integer Arithmetic Instructions

The integer arithmetic operations include the four basic operations of add
{ADD), subtract (SUB), multiply (MUL}, and divide {DIV) as well as arithmetic
compare (CMP, CMPM, CMP2), clear (CLR), and negate (NEG). The instruction
set includes ADD, CMP, and SUB instructions for both address and data
operations with all operand sizes valid for data operations. Address operands
consist of 16 or 32 bits. The clear and negate instructions apply to all sizes
of data operands.

Slgned and unsigned MUL and DIV instructions include:
® Word multiply to produce a long-word product
® | ong-word multiply to produce and long-word or quad-word product
® Division of a long word divided by a word divisor (word quotient and
word remainder)
- @ Division of a long word or quad word dividend by a long-word divisor
{long-word quotient and long-word remainder)

A set of extended instructions provides multiprecision and mixed-size arith-
metic. These instructions are add extended (ADDX), subtract extended (SUBX),
sign extended (EXT), and negate binary with extend (NEGX). Refer to Table
3-2 for a summary of the integer arithmetic operations.

MOTOROLA MC68030 USER'S MANUAL 3-5

o
<

Table 3-2. Integer Arithmetic Operations

Instruction Operand Syntax | Operand Size Operation
ADD Dn,{ea) 8, 16, 32 source + destination # destination
(ea),Dn 8, 16, 32
ADDA {ea),An 16, 32
ADD! #(data),(ea) 8, 16, 32 immediate data + destination » destination
ADDQ #(data)(ea) 8,16, 32
ADDX Dn,Dn 8, 16, 32 source +destination + X # destination
—{An), - {An) 8, 16, 32
CLR (ea) 8,16, 32 0 # destination
CMP {ea),Dn 8, 16, 32 destination — source
CMPA {ea),An 16, 32
CMPI #(data),(ea) 8, 16, 32 destination — immediate data
CMPM (An)+ ,(An)+ 8, 16, 32 destination —~ source
CMP2 (ea),Rn 8, 16, 32 lower bound { = Rn (= upper bound
DIVS/DiVU {ea),Dn 32/16 # 16:16 | destination/source # destination {signed or unsigned)
{ea),Dr:Dg 64/32 » 32:32
(ea),Dq 32/32 % 32
DIVSL/DIVUL {ea),Dr:Dg 32/32 % 32:32
EXT Dn 8816 sign extended destination # destination
Dn 16 8 32
EXTB Dn 8#32
MULS/MULU {ea),Dn 16x16 932 [source x destination $ destination {signed or unsigned)
(ea),Dl 32x329 32
(ea),Dh:DI 32x329 64
NEG {ea) 8, 16, 32 0 — destination # destination
NEGX {ea) 8, 16, 32 0 — destination —~ X # destination
SuUB {ea},Dn 8, 16, 32 destination = source % destination
Dn,(ea) 8, 16, 32
SUBA (ea),An 16, 32
SuB! #(data),(ea) 8, 16, 32 destination — immediate data » destination’
SUBQ #(data)(ea) 8, 16, 32
SUBX Dn,Dn 8, 16, 32 destination — source — X # destination
—(An),—(An) 8,16, 32

3.2.3 Logical Instructions

The logical operation instructions (AND, OR, EOR, and NOT) perform logical
operations with all sizes of integer data operands. A similar set of immediate
instructions (ANDI, ORI, and EORI) provide these logical operations with all
sizes of immediate data. The TST instruction compares the operand with zero
arithmetically, placing the result in the condition code register. Table 3-3
summarizes the logical operations.

3-6

MIC68030 USER'S MANUAL MOTOROLA

h -

Tabie 3-3. Logical Operations

fnstruction Operand Syntax Operand Size Operation
AND (ea),Dn 8. 1%, 32 source A destination # destination
Dn,(ea) 8, 18,32
ANDI #<data>,<ea> 8, 1832 immediate data A destination # destination
EOR Dn,<data>, <ea> 8,18, 32 source ® destination ¥ destination
EORI #(data).(ea) 8, 16. 32 immediate data @ destination § destination
NOT {ea) 8, 18, 32 ~ destination # destination
OR {ea),Dn 8, i6. 32 source V destination ¥ destination
Dn,(ea) 8, 18, 32
ORI #(data),(ea) 8, 16. 32 immediate data V destination # destination
TST {ea) 8, 16, 32 source — 0 to set condition codes

3.2.4 Shift and Rotate Instructions

The arithmetic shift instructions (ASR and ASL) and logical shift instructions
(LSR and LSL) provide shift operations in both directions. The ROR, ROL,
ROXR, and ROXL instructions perform rotate (circular shift) operations, with
and without the extend bit. All shift and rotate operations can be performed
on either registers or memory.

Register shift and rotate operations shift all operand sizes. The shift count
may be specified in the instruction operation word (to shift from 1-8 places)
or in a register (modulo 64 shift count).

Memory shift and rotate operations shift word-length operands one bit po-
sition only. The. SWAP instruction exchanges the 16-bit halves of a register.
Performance of shift/rotate instructions is enhanced so that use of the ROR
and ROL instructions with a shift count of eight alfows fast byte swapping.
Table 3-4 is a summary of the shift and rotate operations.

MOTOROLA MC68030 USER'S MANUAL 3-7

h -

P]

3.2,5 Bit Manipulation Instructions

3-8

Table 3-4. Shift and Rotate Operations

Instruction | Operand Syntax Operand Size Operation
ASL Dn,Dn 8, 16, 32
#(data),Dn 8, 16, 32
-
{ea) 16 X 0
ASR Dn,Dn 8, 16, 32
#(data),Dn 8, 16, 32 JE— . XC
{ea) 16
LSL Dn,Dn 8, 16, 32
#(data),Dn 8, 186, 32 l XC |< | -— l(_o
{ea) 16
LSR Dn,Dn 8, 16,32
#(data),Dn 8,16, 32
(ea) 16 0-——)L—————> '——)l XC]
ROL Dn,Dn 8, 16, 32
#(data),Dn 8,16, 32
(ea) 16 4 €
ROR Dn,Dn 8, 16, 32
#(data),Dn 8,16, 32
(ea) 16 —> c I
ROXL Dn,Dn 8, 16, 32
#(data),Dn 8, 16, 32
(ea) 16 [¢ D —— X
ROXR Dn,Dn 8, 16, 32
#(data),Dn 8,16, 32
(ea) 16 X —> C
SWAP Dn 32 [y
S

Bit manipulation operations are accomplished using the following instruc-
tions: bit test (BTST), bit test and set (BSET), bit test and clear (BCLR), and
bit test and change (BCHG). All bit manipulation operations can be performed
on either registers or memory. The bit number is specified as immediate
data or in a data register. Register operands are 32 bits long, and memory
operands are 8 bits long. In Table 3-5, the summary of the bit manipulation

operations, Z refers to bit 2, the zero bit of the status register.

MC68030 USER'S MANUAL

MOTOROLA

o
<

Table 3-5. Bit Manipulation Operations

Instruction Operand Syntax | Operand Size Operation

BCHG Dn,{ea) 8, 32 ~ {{bit number) of destination) » Z # bit of destination
#(data),(ea) 8, 32

BCLR Dn (ea) 8,32 ~ {{bit number’ of destination) # Z;
#{data){ea) 8, 32 0 # bit of destination

BSET Dn (ea) 8,32 ~ {{bit number) of destination) » Z;
#(data),(ea) 8,32 1 ¥ bit of destination

BTST Dn,(ea) 8, 32 ~ {{bit number) of destination) » Z
#{data),(ea) 8,32

3.2.6 Bit Field Instructions

The MC68030 supports variable-length bit field operations on fields of up to
32 bits. The bit field insert (BFINS) instruction inserts a value into a bit field.
Bit field extract unsigned {BFEXTU) and bit field extract signed (BFEXTS)
extract a value from the field. Bit field find first one (BFFFQ) finds the first
bit that is set in a bit field. Also included are instructions that are analogous
to the bit manipulation operations; bit field test (BFTST), bit field test and
set (BFSET), bit field test and clear (BFCLR), and bit field test and change
(BFCHG). Table 3-6 is a summary of the bit field operations.

Table 3-6. Bit Field Operations

Instruction Operand Syntax Operand Size Operation

BFCHG {ea) {offset:width} 1-32 ~ Field » Field

BFCLR (ea) {offset:width} 1-32 0’s » Field

BFEXTS {ea) {offset:width},Dn 1-32 Field # Dn; Sign Extended

BFEXTU {ea) {offset:width},Dn 1-32 Field # Dn; Zero Extended

BFFFO (ea) {offset:width},Dn 1-32 Scan for first bit set in field; offset # Dn
BFINS Dn,{(ea) {offset:width} 1-32 Dn » Field

BFSET {ea) {offset:width} 1-32 1's » Field

BFTST {ea) {offset:width} 1-32 Field MSB » N; ~ (OR of all bits in field) # Z

NOTE: All bit field instructions set the N and Z bits as shown for BFTST before performing the specified operation.

MOTOROLA

MC68030 USER'S MANUAL 3-9

h -

P]

3.2.7 Binary-Coded Decimal Instructions

3-10

Five instructions support operations on binary-coded decimal {(BCD) num-
bers. The arithmetic operations on packed BCD numbers are add decimal
with extend (ABCD), subtract decimal with extend (SBCD), and negate dec-
imal with extend (NBCD). PACK and UNPACK instructions aid in the con-
version of byte encoded numeric data, such as ASCIl or EBCDIC strings, to
BCD data and vice versa. Table 3-7 is a summary of the BCD operations.

Table 3-7. BCD Operations

Instruction Operand Syntax | Operand Size Operation
ABCD Dn,bn 8 sourceqq +destinationqg + X # destination
—(An),—(An) 8
NBCD (ea) 8 0 - destinationyg ~ X # destination
PACK —{An},—(An) 1648 unpackaged source + immediate data # packed
#{data) destination
Dn,Dn,#(data) 16 %8
SBCD Dn,Dn 8 destinationqg — sourceyg — X # destination
- (An}, - (An) 8
UNPK —(An},—{An) 8416 packed source » unpacked source
#(data) unpacked source + immediate data #
Dn,Dn,#(data) 8% 16 unpacked destination
MC68030 USER'S MANUAL MOTOROLA

)V 4
A \

3.2.8 Program Control Instructions

~ A set of subroutine call and return instructions and conditional and uncon-
ditional branch instructions perform program control operations. The no
operation instruction (NOP) may be used to force synchronization of the
internal pipelines. Table 3-8 summarizes these instructions. ‘

Table 3-8. Program Control Operations

Instructionj Operand Syntax | Operand Size | Operation
Integer and Floating-Point Conditional

Bee <label> 8,16,32 if condition true, then PC+d » PC
DBcc bn,<label> 16 if condition false, then Dn—~1 % Dn

if Dn# —1, then PC+d # PC
Scc <ea> 8 if condition true, then 1's » destination;

else 0's ¢ destination

Unconditional
BRA <label> 8,16,32 PC+d # PC
BSR <label> 8,16,32 SP-4% SP; PC# (SP); PC+d » PC
JMP <ea> none destination » PC
JSR <ea> none SP -4 » SP; PC » (SP); destination » PC
NOP none none PC+2#» PC
Returns

RTD #<d> 16 (SP) » PC; SP+4+d # SP
RTR none none (SP) # CCR; SP+2 » SP; (SP)# PC; SP+4 % SP
RTS none none (SP) % PC; SP+4 9 SP

" Letters cc in the integer instruction mnemonics Beg, DBcc, and Scc specify testing one of the following conditions:
GE — Greater or equal
PL —Plus

CC — Carry clear

LS — Lower or same

CS — Carry set
LT — Less than
EQ — Equal

M|l — Minus

F —Never true¥
NE — Not equal

*Not applicable to the Bec or cpBec instructions.

MOTOROLA

GT — Greater than

T

— Always true¥

HI — Higher

VC — Overflow clear
LE — Less or equal
VS — Overflow set

MC68030 USER'S MANUAL

3-11

3.2.9 System Control Instructions

3-12

Privileged instructions, trapping instructions, and instructions that use or
modify the condition code register (CCR) provide system control operations.
Table 3-9 summarizes these instructions. The TRAPcc instruction uses the
same conditional tests as the corresponding program control instructions.
All of these instructions cause the processor to flush the instruction pipe.

Table 3-9. System Control Operations

Instruction l Operand Syntax I Operand Size L Operation
Privileged
ANDI| #<data>,8R 16 immediate data A SR » SR
EORI #<data>,SR 16 immediate data ® SR # SR
MOVE <ea> SR 16 source $ SR
SR,<ea> 16 SR # destination
MOVE USP,An 32 USP # An
An,USP 32 An $ USP
MOVEC Rc,Rn 32 Rc $ Rn
Rn,Rc 32 Rn % Re
MOVES Rn,<ea> 8,16,32 Rn # destination using DFC
<ea>Rn source using SFC # Rn
OR! #<data>,SR 16 immediate data V SR # SR
RESET none none assert RESET line
RTE none none {SP) # SR; SP+2 » SP; (SP) » PC; SP+4» SP;
Restore stack according to format
STOP #<data> 16 immediate data # SR; STOP
Trap Generating
BKPT #<data> none run breakpoint cycle, then trap as illegal instruction
CHK <ea>Dn 16,32 if Dn<0 or Dn>>{ea), then CHK exception
CHK2 <ea>,Rn 8,16,32 if Rn<lower bound or Rn>upper bound, the CHK
exception
ILLEGAL none none SSP —2 » SSP; Vector Offset » (SSP);
SSP —4 9 SSP; PC » (SSP);
SSP —2 » SSP; SR » (SSP);
lllega! Instruction Vector Address » PC
TRAP #<data> none SSP —2 » SSP; Format and Vector Offset » {SSP)
SSP —4 » SSP; PC » (SSP); SSP —2 » SSP;
. SR # {SSP); Vector Address » PC
TRAPcc none none if cc true, then TRAP exception
#<data> 16,32
TRAPV none none if V then take overflow TRAP exception
Condition Code Register)
ANDI #<data>,CCR 8 immediate data A CCR » CCR
EORI #<data>,CCR 8 immediate data @ CCR ¢ CCR
MOVE <ea>,CCR 16 source ¥ CCR
CCR,<ea> 16 CCR # destination
ORI #<data>,CCR 8 immediate data V CCR # CCR
MC68030 USER'S MANUAL MOTOROLA

A Y 4
A \

3.2.10 Memory Management Unit Instructions

The PFLUSH instructions flush the address transfation caches (ATCs) and
can optionally select only nonglobal entries for flushing. PTEST performs a
search of the address translation tables, storing results in the MMU status
register and loading the entry into the ATC. Table 3-10 summarizes these
instructions.

Table 3-10. MMU Instructions

Instruction Operand Syntax Operand Size . Operation
PFLUSHA none none Invalidate all ATC entries
PFLUSHA.N none none Invalidate all nohglobal ATC entries
PFLUSH {An) none Invalidate ATC entries at effective address
PFLUSH.N (An) none Invalidate nonglobatl ATC entries at effective address
PTEST (An) none Information about logical address # MMU status register

3.2.11 Multiprocessor Instructions

The TAS, CAS, and CAS2 instructions coordinate the operations of processors
in multiprocessing systems. These instructions use read-modify-write bus
cycles to ensure uninterrupted updating of memory. Coprocessor instructions
control the coprocessor operations. Table 3-11 lists these instructions.

Table 3-11. Multiprocessor Operations (Read-Modify-Write)

Instruction l Operand Syntax l Operand Size I Operation
Read-Modify-Write
CAS Dc,Du,<ea> 8,16,32 destination — Dc # CC; if Z then Du » destination
¢lse destination # Dc
CAS2 Dc1:Dc¢2, Du1:Du2, 8,16,32 dual operand CAS
(Rn}:(Rn}
TAS <ea> 8 destination — 0; set condition codes; 1 » destination [7]
Coprocessor
cpBee ({label) 16, 32 if cpcc true then pc = d # PC
cpDBcc {label),Dn 16 if cpcc false then Dn - 1 % Dn
ifDn # - 1,then PC = d» PC
cpGEN User Defined User Defined |operand # coprecessor
cp RESTORE (ea) . none restore coprocessor state from (ga)
cpSAVE (ea) none save coprocessor state at (ea)
cpSce {ea) 8 if cpec true, then 1's ¢ destination; else 0's » destination
cpTRAPcc none none if cpcc true then TRAPcc exception
#(data) 16, 32

MOTOROLA MC68030 USER'S MANUAL 3-13

h -

P

3.3 INTEGER CONDITION CODES

3-14

The CCR portion of the SR contains five bits which indicate the results of
many integer instructions. Program and system control instructions use cer-
tain combinations of these bits to control program and system flow.

The first four bits represent a condition resulting from a processor operation.
The X bit is an operand for multiprecision computations; when it is used, it
is set to the value of the C bit. The carry bit and the multiprecision extend
bit are separate in the M68000 Family to simplify programming techniques
that use them (refer to Table 3-8 as an example).

The condition codes were developed to meet two criteria:
® Consistency — across instructions, uses, and instances
® Meaningful Results — no change unless it provides useful information

Consistency across instructions means that all instructions that are special
cases of more general instructions affect the condition codes in the same
way. Consistency across instances means that all instances of an instruction
affect the condition codes in the same way. Consistency across uses means
that conditional instructions test the condition codes similarly and provide
the same results, regardless of whether the condition codes are set by a
compare, test, or move instruction.

In the instruction set definitions, the CCR is shown as follows:

where:
X (extend)
Set to the value of the C bit for arithmetic operations. Otherwise not
affected or set to a specified result.

N (negative)
Set if the most significant bit of the result is set. Cleared otherwise.

Z (zero)
Set if the result equals zero. Cleared otherwise.

V (overfiow)
Set if arithmetic overflow oceurs. This implies that the result cannot be
represented in the operand size. Cleared otherwise.

C (carry)
Set if a carry out of the most significant bit of the operand occurs for an
addition. Also set if a borrow occurs in a subtraction. Cleared otherwise.

MC68030 USER'S MANUAL MOTOROLA

N\
y

y

3.3.1 Condition Code Computation

Most operations take a source operand and a destination operand, compute,
and store the result in the destination location. Single-operand operations
take a destination operand, compute, and store the result in the destination
location. Table 3-12 lists each instruction and how it affects the condition

code bits.

Table 3-12. Condition Code Computations (Sheet 1 of 2)

Operations N 2 Special Definition

ABCD U C=Decimal Carry
Z=ZARmA...ARO

ADD, ADDI, ADDQ R V = Sm A Dm ARmV Sm A Dm A Rm
C = 8mADmVRmADmMYSmARmM

ADDX L V =SmADmARmVSmADm A Rm
C=5SmADmMVRmMADmMYSmARmM
Z=ZARmA...ARO

AND, ANDI, EOR, EORI, x *

MOVEQ, MOVE, OR, ORI,

CLR, EXT, NOT, TAS, TST

CHK * U

CHK2, CmP2 U Z=(R=1LB) V(R =UB)
C=(LB< =UBJA(R<LB)V(R>UB)

V{UB < LB) A (R>UB) A (R<LB)

SUB, SUBI, SUBQ S V =38mADmARmMYSmADmARmM
C=SmADmMYRmADmVSmARmM

SUBX = |2 V =SmADm ARmVSm A Dm ARm
C=8mADmVRmMADMYSmARm
Z=ZARmA...ARO

CAS, CAS2, CMP, CMP!, L V =SmADmARmYSmADmARm

CMPM C=8mADmVRmMADmMYSmARmM

DIVS, DUVI * * V = Division Overflow

MULS, MULU * * V = Multiplication Overflow

SBCD, NBCD u ? C = Decimal Borrow__
Z=Z2ARmA...ARo

NEG * * V = Dm A Rm
C =DmVRm

NEGX * ? V = Dm A Rm
C = DmVRm .
Z=ZARmA...ARD

MOTOROLA MC68030 USER'S MANUAL 3-15

h -

P]

Table 3-12. Condition Code Computations {Sheet 2 of 2)

Operations X N 4 \Y C Special Definition
BTST,BCHG,BSET,BCLR{ — | — | 72 | — | — |Z=Dn
BFTST, BFCHG, BFSET, — ? ? 0 0 [N =Dm _
BFCLR Z=DmADM-1A...ADO
BFEXTS, BFEXTU, BFFFO| — ? ? 0 0 IN=38m -
Z=SmASm-1A...A80
BFINS —_ ? ? 0 0 [N =Dm o
Z=DmADM-1A...ADO
ASL =l x o+ 2 8 2 WW=DmADm-1V...VDm—r} VDm A
(DM-1V...+Dm-r)
C=Dm-r+1
ASL (R=0) — * * 0 0
LSL, ROXL * * * 0 ?7 |C=Dm-r+1
LSR {r=0) — * * 0 0
ROXL (r=0) — * * 0 ?7 |C=X
ROL — * * 0 ? |C=Dm-r+1
ROL {r=0) — * * 0 0
ASR, LSR, ROXR * ® * 0 ? |C=Dr-1
ASR, LSR (r=0) — * * 0 0
ROXR {r=0) — * * 0 ? jC=X
ROR — * * 0 ? |C=Dr-1
ROR (r=0) — * * 0 0
— = Not Affected Rm = Result Operand — Most Significant Bit
U = Undefined, Result Meaningless R = Register Tested
? = Other — See Special Definition i = Bit Number
* = General Case r = Shift Count
X=C LB = Lower Bound
N = Bm - UB = Upper Bound
=RmA...ARO A = Boolean AND
Sm = Source Operand — Most Significant Bit __V = Boolean OR
Dm = Destination Operand — Most Significant Bit Rm = NOT Rm

3-16

MC68030 USER'S MANUAL

MOTOROLA

3.3.2 Conditional Tests

Table 3-13 lists the condition names, encodings, and tests for the conditional

branch and set instructions. The test associated with each condition is a

logical formula using the current states of the condition codes. If this formula

evaluates to one, the condition is true. If the formula evaluates to zero, the
condition is false. For example, the T condition is always true, and the EQ
condition is true only if the Z bit condition code is currently true.

MOTOROLA

Table 3-13. Conditional Tests

Mnemonic Condition Encoding Test

T* True 0000 1
F* False 0001 0
HI High 0010 Gz
LS Low or Same 0011 C+Z

CC(HS) Carry Clear 0100 C

CS(LO) Carry Set 0101 o]
NE Not Equal 0110 z
EQ Equal 0111 Z
Ve Overflow Clear 1000 v
VS Overflow Set 1001 \%
PL Plus 1010 N
il Minus 1011 N
GE Greater or Equal 1100 NeV + NV
LT Less Than 1101 NV + NV
GT Greater Than 1110 NVeZ + NVeZ
LE Less or Equal 1111 Z+ NV + NV

+ = Boolean AND
+ = Boolean OR
N = Boolean NOT N

*Not available for the Bec instruction.

MC68030 USER'S MANUAL

3-17

3.4 INSTRUCTION SET SUMMARY

Table 3-14 provides a alphabetized listing of the MC68030 instruction set
listed by opcode, operation, and syntax. -

Table 3-14 use notational conventions for the operands, the subfields and
qualifiers, and the operations performed by the instructions. In the syntax
descriptions, the left operand is the source operand, and the right operand
is the destination operand. The following list contains the notations used in
Table 3-14.

Notation for operands:
PC—Program counter
SR—Status register
V—Overflow condition code
Immediate Data—Immediate data from the instruction
Source—Source contents
Destination—Destination contents
Vector—Location of exception vector
+ inf—Positive infinity
—-inf—Negative infinity
<fmt>—O0perand data format: byte (B), word (W), long
(L}, single (S), double (D)}, extended (X), or packed
(P).
FPm—One of eight floating-point data registers (always
specifies the source register)
FPn—One of eight floating-point data registers (always
specifies the detination register)

Notation for subfields and qualifiers:
<bit> of <operand>—Selects a single bit of the operand
<ea>{offset:width}—Selects a bit field
(<operand>)—The contents of the referenced location
<operand>10—The operand is binary coded decimal, operations
are performed in decimal
{<address register>)—The register indirect operator
—(<address register>)—Indicates that the operand register points to the
memory
(<address register>) +—Location of the instruction operand — the op-
tional mode qualifiers are —, +, (d), and (d,ix)
#xxx or #<data>—Immediate data that follows the instruction
word(s)

3-18 MC68030 USER'S MANUAL MOTOROLA

h -

P]

Notations for operations that have two operands, written <operand> <op>
<operand>, where <op> is one of the following:
#—The source operand is moved to the destination
operand
#—The two operands are exchanged
+—The operands are added
——The destination operand is subtracted from the
source operand
X—The operands are multiplied
+—The source operand is divided by the destination
operand
<—~Relational test, true if source operand is less than
destination operand
>-—Relational test, true if source operand is greater
than destination operand
V—Logical OR
®—Logical exclusive OR
A—Logical AND
shifted by, rotated by—The source operand is shifted or rotated by the
number of positions specified by the second
operand

Notation for single-operand operations:
~<operand>—The operand is logically complemented
<operand=>sign-extended—The operand is sigh extended; all bits of the upper
portion are made equal to the high-order bit of
the lower portion
<operand>tested—The operand is compared to zero, and the con-
dition codes are set appropriately

Notation for other operations:
TRAP—Equivalent to Format/Offset Word » (SSP) SSP-2
B SSP; PC » (SSP); SSP—4 » SSP; SR » (SSP);
SSP—2 » SSP; (vector) b PC
STOP—Enter the stopped state, waiting for interrupts
If <condition> then—The condition is tested. If true, the operations
<operations> else after “then” are performed. If the condition is
<operations> false and the optional “else” clause is present,
the operations after “else” are performed. If the
condition is false and else is omitted, the instruc-
tion performs no operation. Refer to the Bec in-
struction description as an example.

MOTOROLA MC68030 USER’S MANUAL 3-19

h -

Table 3-14. Instruction Set Summary (Sheet 1 of 5)

Opcode Operation Syntax
ABCD Sourceqq + Destinationqg + X # Destination ABCD Dy,Dx
ABCD —{Ay), - {Ax}
ADD Source + Destination # Destination ADD (ea),Dn
ADD Dnea)
ADDA Source + Destination # Destination ADDA (ea),An
ADDI Immediate Data -+ Destination # Destination ADDI #(data)(ea)
ADDQ Immediate Data + Destination » Destination ADDQ #(data),(ea)
ADDX Source + Destination + X » Destination ADDX Dy,Dx
ADDX —(Ay}, - {Ax}
AND Source \Destination # Destination AND (ea),Dn
AND Dn (ea)
ANDI Immediate DataADestination § Destination ANDI #(data),(ea)
ANDI Source ACCR »CCR ANDI #(data),CCR
to CCR
ANDI If supervisor state ANDI #(data),SR
to SR the SourceASR # SR
else TRAP
ASL,ASR | Destination Shifted by {count) » Destination ASd Dx,Dy
ASd #(data),Dy
ASd (ea)
Bee If {condition true) then PC+d » PC Bec (label)
BCHG ~{{number) of Destination) # Z; BCHG Dn,{ea)
~{{number) of Destination) » (bit number) of Destination BCHG #(data)(ea)
BCLR ~({(bit number) of Destination) » Z; BCLR Dn,(ea)
0 # (bit number) of Destination BCLR #(data),(ea)
BFCHG ~{{bit field) of Destination) # (bit field) of Destination BFCHG (ea){offset:width}
BFCLR 0 » {bit field) of Destination BFCLR (ea){offset:width}
BFEXTS [(bit field) of Source » Dn BFEXTS (ea)offset:width},Dn
BFEXTU | (bit offset) of Source # Dn BFEXTU (ea){offset:width},Dn
BFFFO (bit offset) of Source Bit Scan » Dn BFFFO (ea){offset:width},Dn
BFINS Dn # (bit field) of Destination BFINS Dn {ea){offset:width}
BFSET 1s # (bit field) of Destination BFSET (ea){offset:width}
BFTST (bit field) of Destination BFTST (ea){offset:width}
BKPT Run breakpoint acknowledge cycle; BKPT #(data)
TRAP as illegal instruction
BRA PC+d» PC BRA {label)
BSET ~({bit number) of Déstination) »Z; BSET Dn,{ea)
1 # (bit number) of Destination BSET #(data),(ea)
BSR SP—4 9 SP; PC# (SP); PC+d » PC BSR (labei)
BTST —{{(bit number) of Destination) » Z; BTST Dn.(ea)
BTST #(data),(ea)

3-20

MC68030 USER'S MANUAL

MOTOROLA

h -

Table 3-14. Instruction Set Summary (Sheet 2 of 5)

Opcode Operation Syntax
CAS CAS Destination — Compare Operand # cc; CAS Dc,Du,(ea)
CAS2 if Z, Update Operand » Destination CAS2 Dc1:Dc2,Du1:Du2,(Rn1):(Rn2}
else Destination » Compare Operand
CAS2 Destination 1 — Compare 1 # cc;
if Z, Destination 2 — Compare % cc;
if Z, Update 1 » Destination 1; Update 2 » Dest!
else Destination 1 # Compare 1; Destination 2 # Cc
CHK If Dn <2 0 or Dn > Source then TRAP CHK (ea),Dn
CHK2 If Rn < lower bound or CHK2 {ea),Rn
Rn > upper bound
then TRAP
CLR 0 # Destination CLR {(ea)
CMP Destination — Source » cc CMP (ea),Dn
CMPA Destination — Source CMPA (ea),An
CMPI Destination — Immediate Data CMPI #(data),(ea)
CMPM Destination — Source » cc CMPM {Ay) +,(Ax) +
CMP2 Compare Rn < lower-bound or CMP2 (ea),Rn
Rn > upper-bound
and Set Condition Codes
cpBcec If cpce true then scanPC+d # PC cpBcec {abel)
cpDBcc If cpee false then (Bn — 1 9 Bn; cpDBec Dn,(label)
If Dn # — 1 then scanPC+d # PC)
cpGEN Pass Command Word to Coprocessor cpGEN (parameters as defined by co-
processor)
cpRESTORE | If supervisor state cpRESTORE (ea)
then Restore Internal State of Coprocessor
else TRAP
cpSAVE | If supervisor state cpSAVE (ea)
then Save Internal State of Coprocessor
else TRAP
cpSce If cpce true then 1s § Destination cpScc (ea)
else Os # Destination
cpTRAPcc | If cpec true then TRAP cpTRAPcc
cpTRAPcc #(data)
DBcc If condition faise then (Dn—1 » Dn; DBcc Dn,(label)
If Dn# —1 then PC+d #» PC}
DIVS Destination/Source # Destination DIVS.W {(ea),Dn 32/16 » 16r:16g
DIVSL DIVS.L (ea),Dq 32/32 % 32q
DIVS.L {ea),Dr:Dg 64/32 » 32r:32g
DIVSL.L (ea),Dr:Dqg 32/32 » 32r:32g
DIVU Destination/Source » Destination DIVU.W (ea),Dn 32/16 # 16r.1€g
DIVUL DIVU.L {ea),Dq 32/32 % 32q
DIVU.L {ea),Dr:Dg 64/32 » 32r:32g
DIVUL.L (ea),Dr:Dq 32/32 # 32r:32g
EOR Source @ Destination » Destination EOR Dn,(ea)
EORI Immediate Data @ Destination » Destination EORI #(data),(ea)
MOTOROLA MC68030 USER’S MANUAL 3-21

h -

Table 3-14. instruction Set Summary (Sheet 3 of 5)

Opcode . Operation Syntax
EORI Source © CCR # CCR EORI #(data),CCR
to CCR
EORI if supervisor state EORI #(data),SR
to SR the Source @ SR # SR
else TRAP
EXG Rx 4» Ry EXG Dx,Dy
EXG Ax,Ay
EXG Dx,Ay
EXG Ay,Dx
EXT Destination Sign-Extended # Destination EXT.W Dn extend byte to word
EXTB EXT.L L Dn extend word to long word
EXTB.L Dn extend byte to long word
ILLEGAL |SSP-2# SSP; Vector Offset # (SSP); ILLEGAL
SSP—4 9 SSP; PC »{SSP);
SSp—2 # SSP; SR # (SSP);
lllegal Instruction Vector Address # PC
JMP Destination Address § PC JMP (ea)
JSR SP-4 9 SP; PC » (SP) JSR (ea)
Destination Address » PC
LEA (ea) » An LEA {ea),An
LINK SP—4 9 SP; An » (SP) LINK An,#(displacement)
SP » An, SP+d # SP
LSL,LSR Destination Shifted by (count) § Destination LSdS Dx,Dy
LSdS #(data),Dy
LSd5 (ea)
MOVE Source » Destination MOVE (ea).(ea)
MOVEA | Source #» Destination MOVEA (ea),An
MOVE CCR # Destination MOVE CCR (ea)
from CCR
MOVE Source # CCR MOVE (ea),CCR
to CCR
MOVE If supervisor state MOVE SR.(ea)
from SR then SR # Destination
else TRAP
MOVE If supervisor state’ MOVE (ea),SR
to SR then Source #» SR
else TRAP
MOVE If supervisor state MOVE USP,An
usp then USP # An or An » USP MOVE An,USP
else TRAP
MOVEC |If supervisor state MOVEC Re,Rn
then Rc # Rn or Rn % Re MOVEC Rn,Rc
else TRAP
MOVEM | Registers # Destination MOVEM register list{ea)
Source » Registers MOVEM (ea),register list
MOVEP Source ¥ Destination MOVEP Dx,(d,Ay)
MOVEP (d,Ay),Dx
MOVEQ | Immediate Data » Destination MOVEQ #(data),Dn
3-22 MC68030 USER'S MANUAL MOTOROLA

h -

Table 3-14. Instruction Set Summary (Sheet 4 of 5)

Opcode Operation Syntax
MOVES | If supervisor state MOVES Rn(ea)
then Rn # Destination [DFC} or Sourcz 'SFC) # Rn MOVES (ea),Rn
else TRAP
MULS Source x Destination » Destination MULS.W (ea),Dn
MULS.L {ea),Di
MULS.L (ea),Dh:Dl 32x32 » 64
MULU Source x Destination # Destination MULU.W (ea),Dn
MULU.L (ea),Di
MULU.L {ea),Dh:DI 32x32 » 64
NBCD 0 - (Destinationyg) — X #» Destination NBCD (ea)
NEG 0— {Destination) » Destination NEG (ea)
NEGX 0 - (Destination) — X # Destination NEGX (ea)
NOP None NOP
NOT ~Destination » Destination NOT (ea)
OR Source V Destination # Destination OR (ea),Dn
OR Dn.(ea)
ORI Immediate Data V Destination # Destination OR! #(data).(ea)
ORI Source V CCR » CCR ORI #(data),CCR
to CCR
ORI If supervisor state ORI #(data),SR
to SR then Source V SR » SR
else TRAP
PACK Source {Unpacked BCD) +adjustment # Destintion (Packed BCD) | PACK —{Ax), — {Ay),#(adjustment)
PACK Dx,Dy,#(adjustment)
PEA Sp—4# SP; (ea) # (SP) PEA (ea)
PFLUSH | If supervisor state PFLUSH (An)
then invalidate instruction and data ATC entries for destination | PFLUSHN {An)
address PFLUSHA
else TRAP PFLUSHAN
PLOAD If supervisor state PLOADR (function code){ea)
then entry » ATC PLOADW ({function code),(ea)
else TRAP
PMOVE If supervisor state PMOVE MRn {ea)
then (Source) » MRn or MRn #» {Destination) PMOVE {(ea),MRn
PMOVEFD (ea),MRn
PTEST If supervisor state PTESTR (An)
then logical address status » MMUSR; entry # ATC PTESTW (An)
else TRAP
RESET If supervisor state RESET
then Assert RSTO Line
else TRAP
ROL,ROR [Destination Rotated by (count) # Destination ROd5 Rx,Dy
ROd® #(data),Dy
ROd® (ea)
ROXL,ROXR | Destination Rotated with X by {count: ¢ Destination ROXd5 Dx,Dy
ROXd® #(data),Dy
ROXd® (ea)
MOTOROLA MC68030 USER'S MANUAL 3-23

h -

Table 3-14. Instruction Set Summary (Sheet 5 of 5)

Opcode Operation Syntax
RTD (SP)» PC; SP+4+d # SP RTD #(displacement)
RTE If supervisor state RTE

the (SP) » SR; SP+2 » SP; (SP) » PC;
SP+4# SP;
restore state and deallocate stack according to {SP)
else TRAP
RTR (SP) » CCR; SP+2 » SP; RTR
. (SP}» PC; SP+4» SP
RTS (SP)#» PC; SP+4» SP RTS
SBCD Destination1g —Source1g — X # Destination SBCD Dx,Dy

SBCD —(Ax),— (Ay)

Scc If Condition True Scc (ea)
then 1s » Destination
else Os » Destination

STOP If supervisor state STOP #{data)
then Immediate Data » SR; STOP
else TRAP

SuB Destination — Source $ Destination SUB (ea),.Dn

SUB Dn(ea)
SUBA Destination — Source # Destination SUBA (ea),An
SUBI Destination — Immediate Data » Destination SUBI #(data)(ea)
SUBQ Destination — Immediate Data # Destination SUBQ #(data), (ea)
SUBX Destination — Source — X » Destination SUBX Dx,Dy

SUBX —(Ax), — (Ay}

SWAP Register [31:16] 4 Register [15:0] SWAP Dn

TAS Destination Tested » Condition Codes; 1 # bit 7 of Destination TAS (ea)

TRAP SSP -2 » SSP; Format/Offset » (SSP); TRAP #(vector)
SSP--4 9 SSP; PC » (SSP); SSP—2# SSP;
SR # {SSP); Vector Address » PC

TRAPcc If cc then TRAP TRAPcc
TRAPcc.W #(data)
TRAPcc.L #(data)

TRAPV If V then TRAP TRAPV
TST Destination Tested # Condition Codes TST (ea)
UNLK An » SP; (SP) » An; SP+4 # SP UNLK An

UNPK Source (Packed BCD}+ adjustment # Destination {Unpacked BCD) [UNPACK —{Ax), - {Ay),#(adjustment)
UNPACK Dx,Dy, #(adjustment)

NOTES:

1
2.
3.

4.

Specifies either the instruction (IC), data (DC), or IC/DC caches.

Where r is rounding precision, S or D.

A list of any combination of the eight floating-point data registers, with individual register names separated by a slash
(/); and/or contiguous blocks of registers specified by the first and last register names separated by a dash (-).

A list of any combination of the three floating-point system control registers (FPCR, FPSR, and FPIAR} with individual
register names separated by a slash {/).

. where d is direction, L or R.

3-24 MC68030 USER’S MANUAL MOTOROLA

A Y 4
A \

3.5 INSTRUCTION EXAMPLES

The following paragraphs provide examples of how to use selected instruc-
tions.

3.5.1 Using the CAS and CAS2 Instructions

The CAS instruction compares the value in a memory location with the value
in a data register, and copies a second data register into the memory location
if the compared values are equal. This provides a means of updating system
counters, history information, and globally shared pointers. The instruction
uses an indivisible read-modify-write cycle; after CAS reads the memory
location, no other instruction can change that location before CAS has written
the new value. This provides security in single-processor systems, in multi-
tasking environments, and in multiprocessor environments. In a single-
processor system, the operation is protected from instructions of an interrupt
routine. fn a multitasking environment, no other task can interfere with writing
the new value of a system variable. In a multiprocessor environment, the
other processors must wait until the CAS instruction completes before ac-
cessing a-global pointer.

The following code fragment shows a routine to maintain a count, in location
SYS_CNTR, of the executions of an operation that may be performed by any
process or processor in a system. The routine obtains the current value of
the count in register DO and stores the new count value in register D1. The
CAS instruction copies the new count into SYS_CNTR if it is valid. However,
if another user has incremented the counter between the time the count was
stored and the read-modify-write cycle of the CAS instruction, the write por-
tion of the cycle copies the new count in SYS_CNTR into DO, and the routine
branches to repeat the test. The following code sequence guarantees that
SYS_CNTR is correctly incremented.

MOVEW SYS_CNTR,DO get the old value of the counter

INC_LOOP MOVEW DO,D1 make a copy of it
ADDQ.W #1,.D1 and increment it
CAS.W D0,D1,SYS_.CNTR if counter value is still the same, update it
BNE INC_LOOP if not, try again

MOTOROLA MC68030 USER'S MANUAL 3-25

h -

3-26

The CAS and CAS2 instructions together allow safe operations in the ma-
nipulation of system linked lists. Controlling a single location, HEAD in the
example, manages a last-in-first-out linked list (see Figure 3-2). If the list is
empty, HEAD contains the NULL pointer (0); otherwise, HEAD contains the
address of the element most recently added to the list. The code fragment
shown in Figure 3-2 illustrates the code for inserting an element. The MOVE
instructions load the address in location HEAD into DO and into the NEXT
pointer in the element being inserted, and the address of the new element
into D1. The CAS instruction stores the address of the inserted element into
location HEAD if the address in HEAD remains unaltered. If HEAD contains
a new address, the instruction loads the new address into D0"and branches
to the second MOVE instruction to try again.

The CAS2 instruction is similar to the CAS instruction except that it performs
two-comparisons -and updates two variables when the results of the com-
parisons are equal. If the resuits of both comparisons are equal, CAS2 copies
new values into the destination addresses. If the result of either comparison
is not equal, the instruction copies the values in the destination addresses
into the compare operands.

SINSERT ALLOCATE NEW ENTRY, ADDRESS IN A1
. MOVE.L HEAD,DO MOVE HEAD POINTER VALUE 70 DO
siLoop MOVE.L DO (NEXT A1) ESTABLISH FORWARD LINK IN NEW ENTRY
MOVE.L A1D1 MOVE NEW ENTRY POINTER VALUE TG D1
CASL DO.D1.HEAD IF WE STILL POINT TO TOP OF STACK, UPDATE THE HEAD POINTER
BNE SiLoop IF NOT TRY AGAIN

BEFORE INSERTING AN ELEMENT:
ENTRY ENTRY / ENTRY
LA X]
. + NEXT + NEXT + NEXT
NEW ? HEAD

AFTER INSERTING AN ELEMENT:

ENTRY ENTRY ENTRY
+ NEXT) + NEXT + NEXT

Figure 3-2. Linked List Insertion

HEAD

A

NEW

MC68030 USER'S MANUAL MOTOROLA

h -

P]

The next code (see Figure 3-3) fragment shows the use of a CAS2 instruction
to. delete.an element from a linked list. The first LEA instruction loads the
effective address of HEAD into A0. The MOVE instruction loads the address
in pointer HEAD into DO. The TST instruction checks for an empty list, and
the BEQ instruction branches to a routine at label SDEMPTY if the list is
empty. Otherwise, a second LEA instruction loads the address of the NEXT
pointer in the-newest element on the list into A1, and the following MOVE
instruction loads the pointer contents into D1. The CAS2 instruction compares
the address of the newest structure to the value in HEAD and the address in
D1 to the pointer in the address in A1. If no element has been inserted or
deleted by another routine while this routine has been executing, the results
of these comparisons are equal, and the CAS2 instruction stores the new
value into location HEAD. If an element has been inserted or deleted, the

- CAS2 instruction loads the new address in location HEAD into DO, and the

BNE instruction branches to the TST instruction to try again.

SDELETE

LEA HEAD,ACQ LOAD ADDRESS OF HEAD POINTER INTO AO
MOVE.L (AD).DO MOVE VALUE OF HEAD POINTER INTO DO
sbLoop TSTL 00 CHECK FOR NULL HEAD PGINTER
BEQ - "SDEMPTY IF EMPTY, NOTHING TO DELETE
LEA {NEXT BO),A1 LOAD ADDRESS OF FORWARD LINK INTO A1
MOVE.L (A1),01 PUT FORWARD LINK VALUE IN D1
CAS2.L 00:01,01:01,(A0):{A1) IF STILL POINT TO ENTRY TO BE DELETED, THEN UPDATE HEAD AND FGRWARD POINTERS
BNE SDLOOP IF NOT, TRY AGAIN
SDEMPTY SUCCESSFUL DELETION, ABDRESS OF DELETED ENTRY IN DO (MAY BE NULL}

BEFORE DELETING AN ELEMENT:
ENTRY ENTRY Vad ENTRY
[2 X
+ NEXT + NEXT / + NEXT
HEAD

AFTER DELETING AN ELEMENT:

ENTRY ENTRY Vad ENTRY

+ NEXT ' + NEXT / + NEXT
HEAD

Figure 3-3. Linked List Deletion

MOTOROLA MC68030 USER’'S MANUAL 3-27

h -

P

3-28

I he CAS2 instruction can also be used to correctly maintain a first-in-first-
out doubly linked list. A doubly linked list needs two controlled locations,
LIST-PUT and LIST.-GET, which contain pointers to the last element inserted
in the list and the next to be removed, respectively. If the list is empty, both
pointers are NULL {0).

The code fragment shown in Figure 3-4 illustrates the insertion of an element
in a doubly linked list. The first two instructions load the effective addresses
of LIST-PUT and LIST-GET into registers A0 and A1, respectively. The next
instruction moves the address of the new element into register D2. Another
MOVE instruction moves the address in LIST-PUT into register D0. At label
DILOOP, a TST instruction tests the value in DO, and the BEQ instruction
branches to the MOVE instruction when D0 is equal to zero. Assuming the
list is empty, this MOVE instruction is executed next; it moves the zero in
DO into the NEXT and LAST pointers of the new element. Then the CAS2
instruction moves the address of the new element into both LIST-PUT and
LIST-GET, assuming that both of these pointers still contain zero. If not, the
BNE instruction branches to the TST instruction at label DILOOP to try again.
This time, the BEQ instruction does not branch, and the following MOVE
instruction moves the address in DO to the NEXT pointer of the new element.
The CLR instruction clears register D1 to zero, and the MOVE instruction
moves the zero into the LAST pointer of the new element. The LEA instruction
loads the address of the LAST pointer of the most recently inserted element
into register A1, Assuming the LIST_-PUT pointer and the pointer in A1 have
not been changed, the CAS2 instruction stores the address of the new element
into these pointers.

The code fragment to delete an element from a doubly linked list is similar
(see Figure 3-5). The first two instructions load the effective addresses of
pointers LIST_PUT and LIST-GET into registers A0 and A1, respectively. The
MOVE instruction at label DDLOOP moves the LIST-GET pointer into register
D1. The BEQ instruction that follows branches out of the routine when the
pointer is zero. The MOVE instruction moves the LAST pointer of the element
to be deleted into register D2. Assuming this is not the last element in the
list, the Z condition code is not set, and the branch to label DDEMPTY does
not occur. The LEA instruction loads the address of the NEXT pointer of the
element at the address in D2 into register A2. The next instruction, a CLR
instruction, clears register DO to zero. The CAS2 instruction compares the
address in D1 to the LIST-GET pointer and to the address in register A2. if
the pointers have not been updated, the CAS2 instruction loads the address
in D2 into the LIST-GET pointer and zero into the address in register A2.

MC68030 USER'S MANUAL MOTOROLA

h -
P]

DINSERT

LEA

LEA

MOVE.L

MOVE.L
DILOOP TST.L
MOVE.L
CIR.L
MOVE.L
LEA
CAS2.L
BNE
DIEMPTY MOVE.L
MOVE.L
CAS2.L
BNE
DIDONE

LST_PUT AD
LIST_GET A1

A2,D2

(A0).00

0o

DIEMPTY

DO, (NEXT A2)

D1

D1,{LAST A2}

(LAST DO} AT
D0:D1,02:02,{A0):(A1)
DiLOOP

DIDONE

DO, (NEXT, A2)
DO,{LAST AZ)
D0:D0,D2:D2,(A0):(A1)
DILOOP

BEFORE INSERTING NEW ENTRY:

+ LAST

ENTRY

+ NEXT

| |

NEW ENTRY /‘

AFTER INSERTING NEW ENTRY:

+ LAST

ENTRY

+ NEXT

l

A\ UST_pUT

-~LLOCATE NEW LIST ENTRY, LOAD ADDRESS INTO A2)
LCAD ADDRESS OF HEAD POINTER INTO AQ

LC~D ADDRESS OF TAIL POINTER INTO A1

W& £/ ENTRY POINTER INTO D2

> POINTER TQ HEAD ENTRY INTO DO

POINTER NULL (0 ENTRIES IN LIST)?

E NEED ONLY TO ESTABLISH POINTERS

~C POINTER INTO FORWARD POINTER OF NEW ENTRY
POINTER VALUE IN D1

POINTER IN BACKWARD POINTER OF NEW ENTRY
XVWARD POINTER OF OLO HEAD ENTRY INTO Al
LL POINT TO OLD HEAD ENTRY, UPDATE PQINTERS

2 %TT TRY AGAIN

IF WE STILL HAVE NO ENTRIES, SET BOTH POINTERS TO THIS ENTRY
IF NOT. TRY AGAIN
SUCCESSFUL LIST ENTRY INSERTION

ENTRY ENTRY

+ LAST

LIST_PUT /‘

+ NEXT + LAST

|
LIST_GET -j

+ NEXT

ENTRY ENTRY

+ LAST + NEXT

]

+ LAST

e

+ NEXT

K LIST_GET

Figure 3-4. Doubly Linked List Insertion

When the list contains only one element, the routine branches to the CAS2
instruction at label DDEMPTY after moving a zero pointer value into D2. This
instruction checks the addresses in LIST-PUT and LIST-GET to verify that
no other routine has inserted another element or deleted the last element.
Then the instruction moves zero into both pointers, and the list is empty.

MOTOROLA

MC68030 USER'S MANUAL

3-29

h -

P]

DOELETE
LEA LIST_PUTAD GET ADDRESS OF HEAD POINTER IN AD
LEA LIST_GET A1 GET ADDRESS OF TAIL POINTER IN A1
DOLOOP MOVEL (A1)D1 MOVE TAIL POINTER INTO D1
BEQ DODONE IF NO LIST QUIT
MOVEL (LASTD1).D2 PUT BACKWARD POINTER IN D2
BEQ DOEMPTY IF ONLY ONE ELEMENT, UPDATE POINTERS
LEA {NEXT D2),A2 PUT ADDRESS OF FORWARD POINTER IN A2
CLRL 00 PUT NULL POINTER VALUE (N 00
CAS2L DI:D1,D200(A1):(A2) IF BOTH POINTERS STILL POINT TO THIS ENTRY, UPDATE THEM
BNE DDLOOP IF NOT TRY AGAIN
BRA DDDONE
DDEMPTY ~ CAS2L D1:01.02:02,(A1):{A0) - IF STILL FIRST ENTRY, SET HEAD AND TAIL POINTERS TO NULL
BNE - DDLOOP IF NOT TRY AGAIN
DDDONE SUCGESSFUL ENTRY DELETION, ADDRESS OF DELETED ENTRY IN D1 (MAY BE NULL)
BEFORE DELETING ENTRY:
ENTRY ENTRY ENTRY
+LAST +NEXT +LAST +NEXT +UAST +NEXT
LIST_PUT j LIST_GET -/‘
AFTER DELETING ENTRY:
ENTRY ENTRY ENTRY
+LAST +NEXT +LAST +NEXT +LAST +NEXT

‘\ LIST_PUT

‘\ LIST_GET ‘\ DELETED ENTRY

Figure 3-5. Doubly Linked List Deletion

3.5.2 Nested Subroutine Calls

3-30

The LINK instruction pushes an address onto the stack, saves the stack ad-
dress at which the address is stored, and reserves an area of the stack. Using
this instruction in a series of subroutine calls results in a linked list of stack
frames.

The UNLK instruction removes a stack frame from the end of the list by
loading an address into the stack pointer and pulling the value at that address
from the stack. When the operand of the instruction is the address of the link
address at the bottom of a stack frame, the effect is to remove the stack
frame from the stack and from the linked list.

MIC68030 USER'S MANUAL MOTOROLA

N\
y

y

3.5.3 Bit Field Operations

One data type provided by the MC68030 is the bit field, consisting of as many
as 32 consecutive bits. A bit field is defined by an offset from an effective
address and a width value. The offset is a value in the range of —231 through
2311 from the most significant bit {bit 7) at the effective address. The width
is a positive number, 1-32. The most significant bit of a bit fiefd is bit 0; the
bits number in a direction opposite to the bits of an integer.

The instruction set includes eight instructions that have bit field operands.
The insert bit field (BFINS) instruction inserts a bit field stored in a register
into a bit field. The extract bit field signed (BFEXTS) instruction loads a bit
field into the least significant bits of a register and extends the sign to the
left, filling the register. The extract bit field unsigned (BFEXTU) also loads a
bit field, but zero fills the unused portion of the destination register.

The set bit field {BFSET) instruction sets all the bits of a field to ones. The
clear bit field (BFCLR) instruction clears a field. The change bit field (BFCHG)
instruction complements all the bits in a bit field. These three instructions
all test the previous value of the bit field, setting the condition codes ac-
cordingly. The test bit field (BFTST) instruction tests the value in the field,
setting the condition codes appropriately without altering the bit field. The
find first one in bit field (BFFFO) instruction scans a bit field from bit 0 to the
right until it finds a bit set to one and loads the bit offset of the first set bit
into the specified data register. If no bits in the field are set, the field offset
and the field width is loaded into the register.

An important application of bit field instructions is the manipulation of the
exponent field in a floating-point number. In the IEEE standard format, the
most significant bit is the sign bit of the mantissa. The exponent value begins
at the next most significant bit position; the exponent field does not begin
on a byte boundary. The extract bit field (BFEXTU) instruction and the BFTST
instruction are the most useful for this application, but other bit field instruc-
tions can also be used.

Programming of input and output operations to peripherals requires testing,
setting, and inserting of bit fields in the control registers of the peripherals,
which is another application for bit field instructions. However, control reg-
ister locations are not memory locations; therefore, it is not always possible
to insert or extract bit fields of a register without affecting other fields within
the register.

MOTOROLA MC68030 USER'S MANUAL 3-31

h -

P]

Another widely used application for bit field instructions is bit-mapped graph-
ics. Because byte boundaries are ignored in these areas of memory, the field
definitions used with bit field instructions are very helpful.

3.5.4 Pipeline Synchronization with the NOP Instruction

Although the no operation (NOP) instruction performs no visible operation,
it serves an important purpose. It forces synchronization of the integer unit
pipeline by waiting for all pending bus cycles to complete. All previous integer
instructions and floating-point external operand accesses complete execution
before the NOP begins. The NOP instruction does not synchronize the FPU
pipeline; floating-point instructions with floating-point register operand des-
tinations can be executing when the NOP begins.

3-32 MC68030 USER'S MANUAL MOTOROLA

h -

SECTION 4

PROCESSING STATES

This section describes the processing states of the MC68030. It describes the
functions of the bits in the supervisor portion of the status register and the
actions taken by the processor in response to exception conditions.

Unless the processor has halted, it is always in either the normal or the
exception processing state. Whenever the processor is executing instructions
or fetching instructions or operands, it is in the normal processing state. The
processor is also in the normal processing state while it is storing instruction
results or communicating with a coprocessor.

NOTE

Exception processing refers specifically to the transition from normal
processing of a program to normal processing of system routines,
interrupt routines, and other exception handlers. Exception pro-
cessing includes all stacking operations, the fetch of the exception
vector, and filling of the instruction pipe caused by an exception. It
has completed when execution of the first instruction of the excep-
tion handler routine begins.

The processor enters the exception processing state when an interrupt is
acknowledged, when an instruction is traced or results in a trap, or when
some other exceptional condition arises. Execution of certain instructions or
unusual conditions occurring during the execution of any instructions can
cause exceptions. External conditions, such as interrupts, bus errors, and
some coprocessor responses, also cause exceptions. Exception processing
provides an efficient transfer of control to handlers and routines that process
the exceptions.

A catastrophic system failure occurs whenever the processor receives a bus
error or generates an address error while in the exception processing state.
This type of failure halts the processor. For example, if during the exception
processing of one bus error another bus error occurs, the MC68030 has not
completed the transition to normal processing and has not completed saving
the internal state of the machine, so the processor assumes that the system
is not operational and halts. Only an external reset can restart a halted pro-

MOTOROLA MC68030 USER'S MANUAL 4-1

h -

cessor. (When the processor executes a STOP instruction, it is in a special
type of normal processing state, one without bus cycles. It is stopped, not
halted.)

4.1 PRIVILEGE LEVELS

4.1.1

4-2

The processor operates at one of two levels of privilege: the user level or
the supervisor level. The supervisor level has higher privileges than the user
level. Not all processor or coprocessor instructions are permitted to execute
in the lower privileged user level, but all are available at the supervisor level.
This allows a separation of supervisor and user so the supervisor can protect
system resources from uncontrolled access. The processor uses the privilege
level indicated by the S bit in the status register to select either the user or
supervisor privilege level and either the user stack pointer or a supervisor
stack pointer for stack operations. The processor identifies a bus access
(supervisor or user mode) via the function codes so that differentiation be-
tween supervisor and user can be maintained. The memory management
unit uses the indication of privilege level to control and translate memory
accesses to protect supervisor code, data, and resources from access by user
programs.

In many systems, the majority of programs execute at the user level. User
programs can access only their own code and data areas and can be restricted
from accessing other information. The operating system typically executes
at the supervisor privilege level. It has access to all resources, performs the
overhead tasks for the user level programs, and coordinates their activities.

Supervisor Privilege Level

The supervisor level is the higher privilege level. The privilege level is de-
termined by the S bit of the status register; if the S bit is set, the supervisor
privilege level applies, and all instructions are executable. The bus cycles for
instructions executed at the supervisor level are normally classified as su-
pervisor references, and the values of the function codes on FCO-FC2 refer
to supervisor address spaces.

In a multitasking operating system, it is more efficient to have a supervisor
stack space associated with each user task and a separate stack space for
interrupt associated tasks. The MC68030 provides two supervisor stacks,
master and interrupt; the M bit of the status register selects which of the
two is active. When the M bit is set to one, supervisor stack pointer references
{either implicit or by specifying address register A7) access the master stack

MC68030 USER’S MANUAL MOTOROLA

h -

P

pointer (MSP). The operating system sets the MSP for each task to point to
a task-related area of supervisor data space. This separates task-related su-
pervisor activity from asynchronous, |/O-related supervisor tasks that may
be only coincidental to the currently executing task. The master stack (MSP)
can separately maintain task control information for each currently executing
user task, and the software updates the MSP when a task switch is performed,
providing an efficient means for transferring task-related stack items. The
other supervisor stack (ISP) can be used for interrupt control information and
workspace area as interrupt handling routines require.

When the M bitis clear, the MC68030 is in the interrupt mode of the supervisor
privilege level, and operation is the same as in the MC68000, MC68008, and
MC68010 supervisor mode. (The processor is in this mode after a reset op-
eration.) All supervisor stack pointer references access the interrupt stack
pointer (ISP} in this mode.

The value of the M bit in the status register does not affect execution of
privileged instructions; both master and interrupt modes are at the supervisor
privilege level. Instructions that affect the M bit are MOVE to SR, ANDI to
SR, EORI to SR, ORI to SR, and RTE. Also, the processor automatically saves
the M-bit value and clears it in the SR as part of the exception processing
for interrupts.

All exception processing is performed at the supervisor privilege level. All
bus cycles generated during exception processing are supervisor references,
and all stack accesses use the active supervisor stack pointer.

4.1.2 User Privilege Level

The user level is the lower privilege level. The privilege level is determined
by the S bit of the status register; if the S bit is clear, the processor executes
instructions at the user privilege level.

Most instructions execute at either privilege level, but some instructions that
have important system effects are privileged and can only be executed at
the supervisor level. For instance, user programs are not allowed to execute
the STOP instruction or the RESET instruction. To prevent a user program
from entering the supervisor privilege level, except in a controlled manner,
instructions that can alter the S bit in the status register are privileged. The
TRAP #n instruction provides controiled access to operating system services
for user programs.

MOTOROLA MC68030 USER'S MANUAL 4-3

h -

The bus cycles for an instruction executed at the user privilege level are
classified as user references, and the values of the function codes on FCO-FC2
specify user address spaces. The memory management unit of the processor,
when it is enabled, uses the value of the function codes to distinguish be-
tween user and supervisor activity and to control access to protected portions
of the address space. While the processor is at the user level, references to
the system stack pointer implicitly, or to address register seven (A7) explicitly,
refer to the user stack pointer (USP).

4.1.3 Changing Privilege Level

4-4

To change from the user to the supervisor privilege level, one of the con-
ditions that causes the processor to perform exception processing must oc-
cur. This causes a change from the user level to the supervisor level and can
cause a change from the master mode to the interrupt mode. Exception
processing saves the current values of the S and M bits of the status register
(along with the rest of the status register) on the active supervisor stack, and
then sets the S bit, forcing the processor into the supervisor privilege level.
When the exception being processed is an interrupt and the M bit is set, the
M bit is cleared, putting the processor into the interrupt mode. Execution of
instructions continues at the supervisor level to process the exception con-
dition.

To return to the user privilege level, a system routine must execute one of
the following instructions: MOVE to SR, ANDI to SR, EORI to SR, ORI to SR,
or RTE. The MOVE, ANDI, EORI, and ORI to SR and RTE instructions execute
at the supervisor privilege level and can modify the S bit of the status register.
After these instructions execute, the instruction pipeline is flushed and is
refilled from the appropriate address space. This is indicated externally by
the assertion of the REFILL signal.

The RTE instruction returns to the program that was executing when the
exception occurred. It restores the exception stack frame saved on the su-
pervisor stack. If the frame on top of the stack was generated by an interrupt,
trap, or instruction exception, the RTE instruction restores the status register
and program counter to the values saved on the supervisor stack. The pro-
cessor then continues execution at the restored program counter address
and at the privilege level determined by the S bit of the restored status
register. If the frame on top of the stack was generated by a bus fault (bus
error or address error exception), the RTE instruction restores the entire saved
processor state from the stack. »

MC68030 USER'S MANUAL MOTOROLA

N\
y

y

4.2 ADDRESS SPACE TYPES

The processor specifies a target address space for every bus cycle with the
function code signhals according to the type of access required. In addition
to distinguishing between supervisor user and program/data, the processor
can identify special processor cycles, such as the interrupt acknowledge cycle,
and the memory management unit can control accesses and translate ad-
dresses appropriately. Table 4-1 lists the types of accesses defined for the
MC68030 and the corresponding values of function codes FCO-FC2.

Table 4-1. Address Space Encodings

FC2 FC1 FCo Address Space
0 0 0 (Undefined, Reserved)*
0 0 1 User Data Space
0 1 0 User Program Space
0 1 1 {Undefined, Reserved)*
1 0 0 (Undefined, Reserved)*
1 0 1 Supervisor Data Space
1 1 0 Supervisor Program Space
1 1 1 CPU Space

*Address space 3 is reserved for user definition, while 0 and 4
are reserved for future use by Motorola.

The memory locations of user program and data accesses are not predefined.
Neither are the locations of supervisor data space. During reset, the first two
long words beginning at memory location zero in the supervisor program
space are used for processor initialization. No other memory locations are
explicitly defined by the MC68030.

A function code of $7 ([FC2:FCO0] = 111) selects the CPU address space. This
is a special address space that does not contain instructions or operands but
is reserved for special processor functions. The processor uses accesses in
this space to communicate with external devices for special purposes. For
example, all M68000 processors use the CPU space for interrupt acknowledge
cycles. The MC68020 and MC68030 also generate CPU space accesses for
breakpoint acknowledge and coprocessor operations.

Supervisor programs can use the MOVES instruction to access all address
spaces, including the user spaces and the CPU address space. Aithough the
MOVES instruction can be used to generate CPU space cycles, this may
interfere with proper system operation. Thus, the use of MOVES to access
the CPU space should be done with caution.

MOTOROLA MC68030 USER’S MANUAL 4-5

N\
y

y

4.3 EXCEPTION PROCESSING

An exception is defined as a special condition that pre-empts normal pro-
cessing. Both internal and external conditions cause exceptions. External
conditions that cause exceptions are interrupts from external devices, bus
errors, coprocessor detected errors, and reset. Instructions, address errors,
tracing, and breakpoints are internal conditions that cause exceptions. The
TRAP, TRAPcc, TRAPV, cpTRAPcc, CHK, CHK2, RTE, and DIV instructions can
all generate exceptions as part of their normal execution. In addition, illegal
instructions, privilege violations, and coprocessor protocol violations cause
exceptions.

Exception processing, which is the transition from the normal processing of
a program to the processing required for the exception condition, involves
the exception vector table and an exception stack frame. The following par-
agraphs describe the vector table and a generalized exception stack frame.
Exception processing is discussed in detail in SECTION 8 EXCEPTION PRO-
CESSING. Coprocessor detected exceptions are discussed in detail in SEC-
TION 10 COPROCESSOR INTERFACE DESCRIPTION.

4.3.1 Exception Vectors

4-6

The vector base register (VBR) contains the base address of the 1024-byte
exception vector table, which consists of 256 exception vectors. Exception
vectors contain the memory addresses of routines that begin execution at
the completion of exception processing. These routines perform a series of
operations appropriate for the corresponding exceptions. Because the ex-
ception vectors contain memory addresses, each consists of one long word,
except for the reset vector. The reset vector consists of two long words: the
address used to initialize the interrupt stack pointer and the address used to
initialize the program counter.

The address of an exception vector is derived from an 8-bit vector number
and the VBR. The vector numbers for some exceptions are obtained from an
external device; others are supplied automatically by the processor. The
processor multiplies the vector number by four to calculate the vector offset,
which it adds to the VBR. The sum is the memory address of the vector. All
exception vectors are [ocated in supervisor data space, except the reset vec-
tor, which is located in supervisor program space. Only the initial reset vector
is fixed in the processor's memory map; once initialization is complete, there
are no fixed assignments. Since the VBR provides the base address of the
vector table, the vector table can be located anywhere in memory; it can

MC68030 USER’S MANUAL MOTOROLA

h -

P]

even be dynamically relocated for each task that is executed by an operating
system. Details of exception processing are provided in SECTION 8 EXCEP-
TION PROCESSING, and Table 8-1 lists the exception vector assignments.

4.3.2 Exception Stack Frame

Exception processing saves the most volatile portion of the current processor
context on the top of the supervisor stack. This context is organized in a
format called the exception stack frame. This information always includes a
copy of the status register, the program counter, the vector offset of the
vector, and the frame format field. The frame format field identifies the type
of stack frame. The RTE instruction uses the value in the format field to
properly restore the information stored in the stack frame and to deallocate
the stack space. The general form of the exception stack frame is illustrated
in Figure 4-1. Refer to SECTION 8 EXCEPTION PROCESSING for a complete
list of exception stack frames.

15 12 0

SPp ———» STATUS REGISTER

PROGRAM COUNTER

FORMAT VECTOR OFFSET

ADDITIONAL PROCESSOR STATE INFORMATION
(2, 6, 12. OR 42 WORDS, IF NEEDED)

Figure 4-1. General Exception Stack Frame

MOTOROLA MC68030 USER’S MANUAL 4-7

h
P

h -
P]

SECTION 5
SIGNAL DESCRIPTION

This section contains brief descriptions of the input and output signals in
their functional groups, as shown in Figure 5-1. Each signal is explained in
a brief paragraph with reference to other sections that contain more detail
about the signal and the related operations.

: 1PLO -
FUNCTION CODES { FCO-FC2 ’4—————'——
IPL1
f———————

P2 | INTERRUPT

e
PEND CONTROL
ADDRESS BUS AQ-A31 fb——————
AVEC
f————————
DATA BUS po-p3t ""B'_R—'—__
BG BUS ARBITRATION
- e
BGACK
l——————————
RESET
——————————»

CONTROL
8120
- — e
TRANSFER SIZE ‘-[: SIzt
- T]

7 HALT BUS EXCEPTION
— UL
S R o CONTROL
i MCE8030 |egooin
R/W
< —
RMC STERM SYNCHRONOUS
-~] le—
ASYNCHRONOUS _ | . AS | BUS CONTROL
BUS CONTROL 5
B e —— REFILL
- UBEN | STRTUS
HSACKO ———V EMULATOR
o Doacko =
DSACKT ‘—:"‘*—— SUPPORT
e bttt K
L VNUDIS
— CiN
e — CIK
giouT I ——
-] vee
CACHE CONTROL — CBRED <
-+ GND
CBACK je————
—]

Figure 5-1. Functional Signal Groups

MOTOROLA MC68030 USER'S MANUAL 5-1

o
<

NOTE

In this section and in the remainder of the manual, assertion and
negation are used to specify forcing a signal to a particular state. In
particular, assertion and assert refer to a signal that is active or true;
negation and negate indicate a signal that is inactive or false. These
terms are used independently of the voltage level (high or low) that
they represent.

5.1 SIGNAL INDEX

The input and output signals for the MC68030 are listed in Table 5-1. Both
: the names and mnemonics are shown along with brief signal descriptions.
ﬂ For more detail on each signal, refer to the paragraph in this section named
for the signal and the reference in that paragraph to a description of the

related operations.

Guaranteed timing specifications for the signals listed in Table 5-1 can be
found in M68030EC/D, MC68030 Electrical Specifications..

Table 5-1. Signal Index {Sheet 1 of 2}

Signal Name Mnemonic Function
Function Codes FCO-FC2 }3-bit function code used to identify the address space of
each bus cycle.
Address Bus AO0-A31 [32-bit address bus.
Data Bus DO-D31 32-bit data bus used to transfer 8, 16, 24, or 32 bits of data

per bus cycle.

Size SIZ0/S1Z1 |indicates the number of bytes remaining to be transferred
for this cycle. These signals, together with A0 and A1, define
the active sections of the data bus.

Operand Cycle Start -0CSs identical operation to that of ECS except that OCS is asserted
only during the first bus cycle of an operand transfer.

External Cycle Start ECS Provides an indication that a bus cycle is beginning.

Read/Write RIW Defines the bus transfer as a processor read or write.

Read-Modify-Write Cycle RMC Provides an indicator that the current bus cycle is part of an
indivisible read-modify-write operation.

Address Strobe AS Indicates that a valid address is on the bus.

Data Strobe DS Indicates that valid data is to be placed on the data bus by

an external device or has been placed on the data bus by
the MC68030.

Data Buffer Enable DBEN Provides an enable signal for external data buffers.

5-2 MC68030 USER'S MANUAL MOTOROLA

o
<

Table 5-1. Signal Index (Sheet 2 of 2}

MOTOROLA

Signal Name Mnemonic Function
Data Transfer and DSACKO [Bus response signals that indicate the requested data trans-
Size Acknowledge DSACK1 |fer stion is completed. In addition, these two lines in-
S e size of the external bus port on a cycle-by-cycle
nc are used for asynchronous transfers.
Synchronous STERM Bus response signal that indicates a port size of 32 bits and
Termination that date may be latched on the next falling clock edge.
Cache Inhibit In CIIN Prevents data from being loaded into the MC68030 instruc-
: tion and data caches.
Cache Inhibit Qut CIOUT |Reflects the Cl bit in ATC entries or TTx register; indicates
g that external caches should ignore these accesses.
Cache Burst Request CBREQ Indicates a burst request for the instruction or data cache.
Cache Burst CBACK Indicates that the accessed device can operate in burst mode.
Acknowledge
Interrupt Priority Level IPLO-IPL2 {Provides an encoded interrupt level to the processor.
Interrupt Pending IPEND indicates that an interrupt is pending.
Autovector AVEC Requests an autovector during an interrupt acknowledge
cycle.
Bus Request BR Indicates that an external device requires bus mastership.
Bus Grant BG Indicates that an external device may assume bus master-
ship.
Bus Grant Acknowledge BGACK {Indicates that an external device has assumed bus master-
ship.
Reset RESET System reset.
Halt HALT Indicates that the processor should suspend bus activity.
Bus Error BERR Indicates that an erroneous bus operation is being at-
tempted.
Cache Disable CDIS Dynamically disables the on-chip cache to assist emulator
support.
MMU Disable MMUDIS {Dynamically disables the translation mechanism of the MMU.
Pipe Refill REFILL Indicates when the MCB8030 is beginning to fill pipeline.
Microsequencer Status STATUS |indicates the state of the microsequencer.
Clock CLK Clock input to the processor.
Power Supply Vee Power supply.
Ground GND Ground connection.
MC68030 USER'S MANUAL 5-3

N\
y

y

«.« + ~NCTION CODE SIGNALS (FC0-FC2)

These three-state outputs identify the address space of the current bus cycle.
Table 4-1 shows the relationship of the function code signals to the privilege
levels and the address spaces. Refer to 4.2 ADDRESS SPACE TYPES for more
information.

5.3 ADDRESS BUS (A0-A31)

These three-state outputs provide the address for the current bus cycle, ex-
cept in the CPU address space. Refer to 4.2 ADDRESS SPACE TYPES for more
information on the CPU address space. A31 is the most significant address
signal. Refer to 7.1.2 Address Bus for information on the address bus and
its relationship to bus operation.

5.4 DATA BUS (D0-D31)

These three-state bidirectional signals provide the general-purpose data path
between the MC68030 and all other devices. The data bus can transfer 8, 16,
24, or 32 bits of data per bus cycle. D31 is the most significant bit of the data
bus. Refer to 7.1.4 Data Bus for more information on the data bus and its
relationship to bus operation.

5.5 TRANSFER SIZE SIGNALS (S120, SiZ1)

5-4

These three-state outputs indicate the number of bytes remaining to be trans-
ferred for the current bus cycle. With A0, A1, DSACKO, DSACK1, and STERM,
SIZ0 and SIZ1 define the number of bits transferred on the data bus. Refer
to 7.2.1 Dynamic Bus Sizing for more information on the size signals and
their use in dynamic bus sizing.

MC68030 USER'S MANUAL MOTOROLA

4

y

5.6 BUS CONTROL SIGNALS

The following signals control synchronous bus transfer operations for the
MC68030.

5.6.1 Operand Cycle Start (OCS)

This output signal indicates the beginning of the first external bus cycle for
an instruction prefetch or a data operand transfer. OCS is not asserted for
subsequent cycles that are performed due to dynamic bus sizing or operand
misalignment. Refer to 7.1.1 Bus Control Signals for information about the
relationship of OCS to bus operation.

5.6.2 External Cycle Start (ECS)

This output signal indicates the beginning of a bus cycle of any type. Refer
to 7.1.1 Bus Control Signals for information about the relationship of ECS to
bus operation.

5.6.3 Read/Write (R/W)

This three-state output signal defines the type of bus cycle. A high level
indicates a read cycle; a low level indicates a write cycle. Refer to 7.1.1 Bus
Control Signals for information about the relationship of R/W to bus oper-
ation.

5.6.4 Read-Modify-Write Cycle (RMC)

This three-state output signal identifies the current bus cycle as part of an
indivisible read-modify-write operation; it remains asserted during all bus
cycles of the read-modify-write operation. Refer to 7.1.1 Bus Control Signals
for information about the relationship of RMC to bus operation.

5.6.5 Address Strobe (AS)

This three-state output indicates that a valid address is on the address bus.
The function code, size, and read/write signals are also valid when AS is
asserted. Refer to 7.1.3 Address Strobe for information about the relationship
of AS to bus operation.

MOTOROLA MC68030 USER'S MANUAL 5-5

«.v.v ata Strobe (DS)

During a read cycle, this three-state output indicates that an external device
should place valid data on the data bus. During a write cycle, the data strobe
indicates that the MC68030 has placed valid data on the bus. During two-
clock synchronous write cycles, the MC68030 does not assert DS. Refer to
7.1.5 Data Strobe for more information about the relationship of DS to bus
operation.

5.6.7 Data Buffer Enable (DBEN)

This output is an enable signal for external data buffers. This signal may not
be required in all systems. The timing of this signal may preclude its use in
a system that supports two-clock synchronous bus cycles. Refer to 7.1.6 Data
Buffer Enable for more information about the relationship of DBEN to bus
operation.

5.6.8 Data Transfer and Size Acknowledge (DSACKO, DSACK1)

These inputs indicate the completion of a requested data transfer operation.
In addition, they indicate the size of the external bus port at the completion
of each cycle. These signals apply only to asynchronous bus cycles. Refer to
7.1.7 Bus Cycle Termination Signals for more information on these signals
and their relationship to dynamic bus sizing.

5.6.9 Synchronous Termination (STERM)

5-6

This input is a bus handshake signal indicating that the addressed port size
is 32 bits and that data is to be latched on the next falling clock edge for a
read cycle. This signal applies only to synchronous operation. Refer to 7.1.7
Bus Cycle Termination Signals for more information about the relationship
of STERM to bus operation.

MC68030 USER'S MANUAL MOTOROLA

4

y

5.7 CACHE CONTROL SIGNALS

The following sig'nals relate to the on-chip caches.

5.7.1 Cache Inhibit Input (CIIN)

This input signal prevents data from being loaded into the MC68030 instruc-
tion and data caches. It is a synchronous input signal and is interpreted on
a bus-cycle-by-bus-cycle basis. CIIN is ignored during all write cycles. Refer
to 6.1 ON-CHIP CACHE ORGANIZATION AND OPERATION for information
on the relationship of CIIN to the on-chip caches.

5.7.2 Cache Inhibit Output (CIOUT)

This three-state output signal reflects the state of the Cl bit in the address
translation cache entry for the referenced logical address, indicating that an
external cache should ignore the bus transfer. When the referenced logical
address is within an area specified for transparent translation, the Cl bit of
the appropriate transparent translation register controls the state of CIOUT.
Refer to SECTION 9 MEMORY MANAGEMENT UNIT for more information
about the address translation cache and transparent translation. Also, refer
to SECTION 6 ON-CHIP CACHE MEMORIES for the effect of CIOUT on the
internal caches.

5.7.3 Cache Burst Request (CBREQ)

This three-state output signal requests a burst mode operation to fill a line
in the instruction or data cache. Refer to 6.1.3 Cache Filling for filling infor-
mation and 7.3.7 Burst Operation Cycles for bus cycle information pertaining
to burst mode operations.

5.7.4 Cache Burst Acknowledge (CBACK)

This input signal indicates that the accessed device can operate in the burst
mode and can supply at least one more long word for the instruction or data
cache. Refer to 7.3.7 Burst Operation Cycles for information about burst mode
operation.

MOTOROLA MC68030 USER'S MANUAL 5-7

N\
y

y

v.v uv, ERRUPT CONTROL SIGNALS

The following signals are the interrupt control signals for the MC68030.

5.8.1 Interrupt Priority Level Signals

These input signals provide an indication of an interrupt condition and the
encoding of the interrupt level from a peripheral or external prioritizing cir-
cuitry. IPL2 is the most significant bit of the level number. For example, since
the TPLn signals are active low, IPLO-IPL2 equal to $5 corresponds to an
interrupt request at interrupt level 2. Refer to 8.1.9 Interrupt Exceptions for
information on MC68030 interrupts.

5.8.2 Interrupt Pending (IPEND)

This output signal indicates that an interrupt request has been recognized
internally and exceeds the current interrupt priority mask in the status register
(SR). This output is for use by external devices (coprocessors and other bus
masters, for example) to predict processor operation on the following in-
struction boundaries. Refer to 8.1.9 Interrupt Exceptions for interrupt infor-
mation. Also, refer to 7.4.1 Interrupt Acknowledge Bus Cycles for bus
information related to interrupts.

5.8.3 Autovector {AVEC)

This input signal indicates that the MC68030 should generate an automatic
vector during an interrupt acknowledge cycle. Refer to 7.4.1.2 AUTOVECTOR
INTERRUPT ACKNOWLEDGE CYCLE for more information about automatic
vectors.

5.9 BUS ARBITRATION CONTROL SIGNALS

The following signals are the three bus arbitration control signals used to
determine which device in a system is the bus master. '

5.9.1 Bus Request (BR)

5-8

This input signal indicates that an external device needs to become the bus
master. This is typically a “wire-ORed" input (but does not need to be con-
structed from open-collector devices). Refer to 7.7 BUS ARBITRATION for
more information.

MC68030 USER'S MANUAL MOTOROLA

A Y 4
A \

5.9.2 Bus Grant (BG)

This output indicates that the MC68030 will release ownership of the bus
master when the current processor bus cycle completes. Refer to 7.7.2 Bus
Grant for more information.

5.9.3 Bus Grant Acknowledge (BGACK)

This input indicates that an external device has become the bus master. Refer
to 7.7.3 Bus Grant Acknowledge for more information.

5.10 BUS EXCEPTION CONTROL SIGNALS E

The following signals are the bus exception control signals for the MC68030.

5.10.1 Reset (RESET)

This bidirectional open-drain signal is used to initiate a system reset. An
external reset signal resets the MC68030 as well as all external devices. A
. reset signal from the processor (asserted as part of the RESET instruction)
resets external devices only; the internal state of the processor is not altered.
Refer to 7.8 RESET OPERATION for a description of reset bus operation and
8.1.1 Reset Exception for information about the reset exception.

5.10.2 Hait (HALT)

The halt signhal indicates that the processor should suspend bus activity or,
when used with BERR, that the processor should retry the current cycle. Refer
to 7.5 BUS EXCEPTION CONTROL CYCLES for a description of the effects of
HALT on bus operations.

5.10.3 Bus Error (BERR)

The-bus error signal indicates that an invalid bus operation is being attempted
or, when used with HALT, that the processor should retry the current cycle.
Refer to 7.5 BUS EXCEPTION CONTROL CYCLES for a description of the
effects of BERR on bus operations.

MOTOROLA MC68030 USER'S MANUAL 5-9

h -

P

. —.VIULATOR SUPPORT SIGNALS

The following signals support emulation by providing a means for an em-
ulator to disable the on-chip caches and memory management unit and by
supplying internal status information to an emulator. Refer to SECTION 12
APPLICATIONS INFORMATION for more detailed information on emulation
support.

5.11.1 Cache Disable (CDIS)

The cache disable signal dynamically disables the on-chip caches to assist
emulator support. Refer to 6.1 ON-CHIP CACHE ORGANIZATION AND OP-
ERATION for information about the caches; refer to SECTION 12 APPLICA-
TIONS INFORMATION for a description of the use of this signal by an emulator.
CDIS does not flush the data and instruction caches; entries remain unaltered
and become available again when CDIS is negated.

5.11.2 MMU Disable (MMUDIS)

The MMU disable signal dynamically disables the‘translétion of addresses

by the MMU. Refer to 9.4 ADDRESS TRANSLATION CACHE for a description
- of address translation; refer to SECTION 12 APPLICATIONS INFORMATION

for a description of the use of this signal by an emulator. The assertion of
MMUDIS does not flush the address translation cache (ATC); ATC entries
become available again when MMUDIS is negated.

5.11.3 Pipeline Refill (REFILL)

The pipeline refill signal indicates that the MC68030 is beginning to refill the
internal instruction pipeline. Refer to SECTION 12 APPLICATIONS INFOR-
MATION for a description of the use of this signal by an emulator.

5.11.4 Internal Microsequencer Status (STATUS)

5-10

The microsequencer status signal indicates the state of the internal micro-
sequencer. The varying number of clocks for which this signal is asserted
indicates instruction boundaries, pending exceptions, and the haited con-
dition. Refer to SECTION 12 APPLICATIONS INFORMATION for a description
of the use of this signal by an emulator.

MC68030 USER'S MANUAL MOTOROLA

5.12 CLOCK (CLK)

The clock signal is the clock input to the MC68030. It is a TTL-compatible
signal. Refer to SECTION 12 APPLICATIONS INFORMATION for suggestions
on clock generation.

5.13 POWER SUPPLY CONNECTIONS

The MC68030 requires connection to a Vgg power supply, positive with
respect to ground. The V¢ connections are grouped to supply adequate
current for the various sections of the processor. The ground connections
are similarly grouped. SECTION 14 ORDERING INFORMATION AND ME-
CHANICAL DATA describes the groupings of V¢ and ground connections,
and SECTION 12 APPLICATIONS INFORMATION describes a typical power
supply interface. : :

5.14 SIGNAL SUMMARY

Table 5-2 provides a summary of the electrical characteristics of the signals
discussed in this section.

-MOTOROLA MC68030 USER'S MANUAL 5-11

h -

P

Table 5-2. Signal Summary

Signal Function Signal Name [Input/Output | Active State | Three-State
Function Codes FCO-FC2 Output High Yes
Address Bus AD-A31 Output High Yes
Data Bus D0-D31 Input/Output High Yes
Transfer Size SIZ0/sSIZ1 Output High Yes
Operand Cycle Start ocs Output Low No
External Cycle Start ECS Output Low No
Read/Write RW Output High/Low Yes
Read-Modify-Write Cycle RMC Output Low Yes
Address Strobe AS ’ Output Low Yes
Data Strobe DS Output Low Yes
Data Buffer Enable DBEN Output Low Yes
Data Transfer and Size Acknowledge DSACK0/ Input Low —
DSACK1
Synchronous Termination STERM Input Low —
Cache Inhibit In CIIN Input Low —
Cache Inhibit Qut cIouT Output Low Yes
Cache Burst Request CBREQ Output Low Yes
Cache Burst Acknowledge CBACK Input Low —
Interrupt Priority Level PLO-IPL2 Input Low —
Interrupt Pending IPEND Output Low No
Autovector AVEC Input Low —_
Bus Request BR Input Low —
Bus Grant BG Output Low No
Bus Grant Acknowledge BGACK Input Low —
Reset RESET Input/Qutput Low No
Halt HALT Input Low —
Bus Error BERR Input Low —_
Cache Disable CDIS Input Low -
MMU Disable MMUDIS Input Low —
Pipeline Refill REFILL Output Low No
Microsequencer Status STATUS Output Low No
Clock CLK Input — —
Power Supply vee Input — —
Ground GND Input — —
5-12 MC68030 USER'S MANUAL MOTOROLA

h -

SECTION 6
ON-CHIP CACHE MEMORIES

The MC68030 microprocessor includes a 256-byte on-chip instruction cache
and a 256-byte on-chip data cache that are accessed by logical (virtual) ad-
dresses. These caches improve performance by reducing external bus activity
and increasing instruction throughput.

Reduced external bus activity increases overall performance by increasing
the availability of the bus for use by external devices (in systems with more
than one bus master, such as a processor and a DMA device) without de-
-grading the performance of the MC68030. An increase in instruction through-
put results when instruction words and data required by a program are
available in the on-chip caches and the time required to access them on the
external bus is eliminated. Additionally, instruction throughput increases when
.instruction words and data can be accessed simultaneously.

As shown in Figure 6-1, the instruction cache and the data cache are con-
nected to separate on-chip address and data buses. The address buses are
combined to provide the logical address to the memory management unit
{(MMU). The MC68030 initiates an access to the appropriate cache for the
requested instruction or data operand at the same time that it initiates an
access for the translation of the logical address in the address translation
cache of the MMU. When a hit occurs in the instruction or data cache and
the MMU validates the access on a write, the information is transferred from
the cache (on a read) or to the cache and the bus controller (on a write).
When a hit does not occur, the MMU translation of the address is used for
an external bus cycle to obtain the instruction or operand. Regardiess of
whether or not the required operand is located in one of the on-chip caches,
the address translation cache of the MMU performs logical-to-physical ad-
dress transiation in parallel with the cache lookup in case an external cycle
is required.

MOTOROLA MC68030 USER'S MANUAL 6-1

Z9

TVNNVIA $,.43SN 0€0890IN

VI0HO10W

ADDRESS
BUS

PHYSICAL
ADDRESS

ADDRESS
PADS

MICROSEQUENCER AND CONTROL

CONTROL
STORE

s

CONTROL
LOGIC

INSTRUCTION PIPE

CACHE
HOLDING
REGISTER

(CAHR)

LOGICAL
ADDRESS

INSTRUCTION

EXECUTION UNIT

ADDRESS

BUS

z

BUS CONTROLLER

RITE PENDING
BUFFER

PREFETCH PENDING
BUFFER

|

MICRO BUS
CENTROLLER

DATA
ADDRESS

&

BUS CONTROL
SIGNALS

PROGRAM
COUNTER
SECTION

ADDRESS
SECTION

’—'\ DATA

SECTION

=

7T

BUS

MISALIGNMENT
MULTIPLEXER

INTERNAL
DATA
BUS

DATA
BUS

N] sz DATA
—/| MuLTIPLEXER PADS
AN

Figure 6-1. Internal Caches and the MC68030

N\
y

y

6.1 ON-CHIP CACHE ORGANIZATION AND OPERATION

Both on-chip caches are 256-byte direct-mapped caches, each organized as
16 lines. Each line consists of four entries, and each entry contains four bytes.
The tag field for each line contains a valid bit for each entry in the line; each
entry is independently replaceable. When appropriate, the bus controller
requests a burst mode operation to replace an entire cache line. The cache
control register (CACR) is accessible by supervisor programs to control the
operation of both caches.

System hardware can assert the cache disable (CDIS) signal to disable both
caches. The assertion of CDIS disables the caches, regardless of the state of
the enable bits in CACR. CDIS is primarily intended for use by in-circuit
emulators.

Another input signal, cache inhibit in (CIIN), inhibits caching of data reads
or instruction prefetches on a bus-cycle by bus-cycle basis. Examples of data
that should not be cached are data for /0 devices and data from memory
devices that cannot supply a full port width of data, regardless of the size of
the required operand.

Subsequent paragraphs describe how CIIN is used during the filling of the
caches.

An output signal, cache inhibit out (CIOUT), reflects the state of the cache
inhibit (Cl) bit from the MMU of either the address translation cache entry
that corresponds to a specified logical address or the transparent translation
register that corresponds to that address. Whenever the appropriate Cl bit
is set for either a read or a‘write access and an external bus cycle is required,
CIOUT is asserted and the instruction and data caches are ignored for the
access. This signal can also be used by external hardware to inhibit caching
in external caches.

Whenever a read access occurs and the required instruction word or data
operand is resident in the appropriate on-chip cache (no external bus cycle
is required), the MMU is completely ignored, unless an invalid translation
resides in the MMU at that time (see next two paragraphs). Therefore, the
state of the corresponding Cl bits in the MMU are also ignored. The MMU
is used to validate all accesses that require external bus cycles; an address
translation must be available and valid, protections are checked, and the
CIOUT signal is asserted appropriately.

MOTOROLA MC68030 USER'S MANUAL 6-3

h -

P

6.1.1

6-4

An external access is defined as ““cachable’” for either the instruction or data
cache when all the following conditions apply:

® The cache is enabled with the appropriate bit in the CACR set.
e The CDIS signal is negated.

¢ The CIIN signal is negated for the access.

e The CIOUT signal is negated for the access.
® The MMU validates the access.

Because both the data and instruction caches are referenced by logical ad-
dresses, they should be flushed during a task switch or at any time the logical-
to-physical address mapping changes, including when the MMU is first en-
abled. In addition, if a page descriptor is currently marked as valid and is
later changed to the invalid type (due to a context switch or a page replace-
ment operation) entries in the on-chip instruction or data cache correspond-
ing to the physical page must be first cleared (invalidated). Otherwise, if on-
chip cache entries are valid for pages with descriptors in memory marked
invalid, processor operation is unpredictable.

Data read and write accesses to the same address should also have consistent
cachability status to ensure that the data in the cache remains consistent
with external memory. For example, if CIOUT is negated for read accesses
within a page and the MMU configuration is changed so that CIOUT is sub-
sequently asserted for write accesses within the same page, those write
accesses do not update data in the cache, and stale data may result. Similarly,
when the MMU maps multiple logical addresses to the same physical ad-
dress, ali accesses to those logical addresses should have the same cacha-
bility status.

Instruction Cache

The instruction cache is organized with a line size of four long words, as
shown in Figure 6-2. Each of these long words is considered a separate cache
entry as each has a separate valid bit. All four entries in a line have the same
tag address. Burst filling all four long words can be advantageous when the
time spent in filling the line is not long relative to the equivalent bus-cycle
time for four nonburst long-word accesses, because of the probability that
the contents of memory adjacent to or close to a referenced operand or
instruction is also required by subsequent accesses. Dynamic RAMs sup-
porting fast access modes (page, nibble, or static column) are easily em-
ployed to support the MC68030 burst mode.

MC68030 USER'S MANUAL MOTOROLA

h -

LONG WORD
SELECT

TAG IN?EX ’_l_,
l o

FFF
cce
210

AeeeA AAAAAAAAAAAAAAAAAAAAAARA
36002 2221111111111 000000000°¢0 ACCESS ADDRESS
1eee3 21 0987654321098 76543210

| L

TAG Viviv]v

10F 16
SELECT . HERE . 9
.

TAG '
REPLACE f [[? T I 1 DATA FROM INSTRUCTON

CACHE DATA BUS

DATA TO INSTRUCTION
CACHE HOLDING REGISTER

7\ ENTRY HIT l
&—— CACHE CONTROL LOGIC

VALID

L COMPARATOR

LINE HIT

CACHE SIZE = 64 (LONG WORDS)
LINE SIZE = 4 (LONG WORDS)

SET SIZE

=1

Figure 6-2. On-Chip Instruction Cache Organization

When enabled, the instruction cache is used to store instruction prefetches
{instruction words and extension words) as they are requested by the CPU.
Instruction prefetches are normaily requested from sequential memory ad-
dresses except when a change of program flow occurs {e.g., a branch taken)
or when an instruction is executed that can modify the status register, in
which cases the instruction pipe is automatically flushed and refilled. The
output signal REFILL indicates this condition. For more information on the
operation of this signal, refer to SECTION 12 APPLICATIONS INFORMATION.

In the instruction cache, each of the 16 lines has a tag consisting of the 24
most significant logical address bits, the FC2 function code bit (used to dis-
tinguish between user and supervisor accesses), and the four valid bits (one

MOTOROLA MC68030 USER'S MANUAL 6-5

h -

P

corresponding to each fong word). Refer to Figure 6-2 for the instruction
cache organization. Address bits A7-A4 select one of 16 lines and its asso-
ciated tag. The comparator compares the address and function code bits in
the selected tag with address bits A31-A8 and FC2 from the internal prefetch
request to determine if the requested word is in the cache. A cache hit occurs
when there is a tag match and the corresponding valid bit (selected by A3-A2)
is set. On a cache hit, the word selected by address bit A1 is supplied to the
instruction pipe. - "

When the address and function code bits do not match or the requested entry
is not valid, a miss occurs. The bus controller initiates a long-word prefetch
operation for the required instruction word and loads the cache entry, pro-
vided the entry is cachable. A burst mode operation may be requested to fill
an entire cache line. If the function code and address bits match and the
corresponding long word is not valid {but one or more of the other three
valid bits for that line are set) a single entry fill operation replaces the required
long word only, using a normal prefetch bus cycle or cycles {no burst).

6.1.2 Data Cache

6-6

The data cache stores data references to any address space except CPU space
{(FC=$%7), including those references made with PC relative addressing modes
and accesses made with the MOVES instruction. Operation of the data cache
is similar to that of the instruction cache, except for the address comparison
and cache filling operations. The tag of each line in the data cache contains
function code bits FCO, FC1, and FC2 in addition to address bits A31-A8. The
cache control circuitry selects the tag using bits A7-A4 and compares it to
the corresponding bits of the access address to determine if a tag match has
occurred. Address bits A3—-A2 select the valid bit for the appropriate long
word in the cache to determine if an entry hit has occurred. Misaligned data
transfers may span two data cache entries. In this case, the processor checks
for a hit one entry at a time. Therefore, it is possible that a portion of the
access results in a hit and a portion results in a miss. The ‘hit and miss are
treated independently. Figure 6-3 illustrates the organization of the data cache.

The operation of the data cache differs for read and write cycles. A data read
cycle operates exactly like an instruction cache read cycle; when a miss
occurs, an external cycle is initiated to obtain the operand from memory,
and the data is loaded into the cache if the access is cachable. In the case of
a misaligned operand that spans two cache entries, two long words are
required from memory. Burst mode operation may also be initiated to fill an
entire line of the data cache. Read accesses from the CPU address space and
address translation table search accesses are not stored in the data cache.

MC68030 USER'S MANUAL MOTOROLA

h -
P]

LCNG WORD
SELECT

TAG NEx
T

FFF
cce
210

AeecA AAAAAAAAAAAAAARLLT L AAARARA
3es¢2 22211111117 1T110032230000 ACCESS ADDRESS
Teee3 21 09876543210887¢32 23210

me {v[vivlv
10F 16
SELECT =T .
AR - I A
. - -
TAG
REPLACE J t —f t DATA FROM DATA CACHE
—* DATA BUS
DATA TO
VALID > EXECUTION UNIT

ENTRY HIT
‘ - CACHE CONTROL LOGIC

> COMPARATOR

LINE HIT

CACHE SIZE = 64 {LONG WORDS)
LINE SIZE = 4 {LONG WORDS)
SET SIZE=1

Figure 6-3. On-Chip Data Cache Organization

The data cache on the MC68030 is a writethrough cache. When a hit occurs
on a write cycle, the data is written both to the cache and to external memory
(provided the MMU validates the access), regardiess of the operand size and
even if the cache is frozen. If the MMU determines that the access is invalid,
the write is aborted, the corresponding entry is invalidated, and a bus error
exception is taken. Since the write to the cache completes before the write
to external memory, the cache contains the new value even if the external
write terminates in a bus error. The value in the data cache might be used
by another instruction before the external write cycle has completed, al-
though this should not have any adverse consequences. Refer to 7.6 BUS
SYNCHRONIZATION for the details of bus synchronization.

MOTOROLA MC68030 USER'S MANUAL 6-7

A Y 4
A \

6.1.2.1 WRITE ALLOCATION. The supervisor program can configure the data cache

6-8

for either of two types of allocation for data cache entries that miss on write
cycles. The state of the write allocation (WA) bit in the cache control register
specifies either no write allocation or write allocation with partial validation
of the data entries in the cache on writes.

When no write allocation is selected (WA =0), write cycles that miss do not
alter the data cache contents. In this mode, the processor does not replace
entries in the cache during write operations. The cache is updated only during
a write hit.

When write allocation is selected (WA =1), the processor always updates the
data cache on cachable write cycles, but only validates an updated entry that
hits or an entry that is updated with long-word data that is long-word aligned.
When a tag miss occurs on a write of long-word data that is long-word
aligned, the corresponding tag is replaced, and only the long word being
written is marked as valid. The other three entries in the cache line are
invalidated when a tag miss occurs on a misaligned long-word write or on
a byte or word write, the data is not written in the cache, the tag is unaltered,
and the valid bit(s) are cleared. Thus, an aligned long-word data write may
replace a previously valid entry; whereas, a misaligned data write or a write
of data that is not long word may invalidate a previously valid entry or entries.

Write allocation eliminates stale data that may reside in the cache because
of either of two unique situations: multiple mapping of two or more logical
addresses to one physical address within the same task or allowing the same
physical location to be accessed by both supervisor and user mode cycles.
Stale data conditions can arise when operating in the no-write-allocation
mode and all the following conditions are satisfied:

e Multiple mapping (object aliasing) is allowed by the operating system.

® A read cycle loads a value for an “aliased” physical address into the
data cache.

e A write cycle occurs, referencing the same aliased physical object as
above but using a different logical address, causing a cache miss and
no update to the cache (has the same page offset).

® The physical object is then read using the first alias, which provides stale
data from the cache.

MC68030 USER'S MANUAL MOTOROLA

h -

P]

In this case, the data in the cache no longer matches that in physical memory
and is stale. Since the write-allocation mode updates the cache during write
cycles, the data in the cache remains consistent with physical memory. Note
that when CIOUT is asserted, the data cache is completely ignored, even on
write cycles operating in the write-allocation mode. Also note that since the
CIIN signal is ignored on write cycles, cache entries may be created for
- noncachable data (when CIIN is asserted on a write) when operating in the
write-allocation mode. Figure 6-4 shows the manner in which each mode

operates in five different situations.

TAG"

I—J—!

LOGICAL ADDRESS = FC2-FC0, A31-A8, A7-A4, A3-A2

T L

ENTRY SELECT

! !

—DI USER DATA, $000010 I [b0-b3, VO=1] [b4-b7. V1=0 I I b8-bB, V2=1 I I bC-bF, V3=1

LINE
SELECT
(85)
TAG
NOWRITE-ALLOCATE WRITE ALLOCATE
EXAMPLE 1:
USER WORD WRITE OF b2"-h3’ TO $00001052 A) START EXTERNAL CYCLE A) START EXTERNAL CYCLE
" (CACHE HIT, ALWAYS UPDATE CACHE AND MEMORY) 8) b2-h3 —h2"-b3’ B) b2-b3-=—h2'-h3’
EXAMPLE 2:
USER LONG WORD WRITE OF b6"-b9’ TO $00001056 A) START EXTERNAL CYCLE A) START EXTERNAL CYCLE
(TAG MATCH, LONG WORD DATA, MISALIGNED, 8) b8-b9 - b8"b9’ B) b8-b9-e—b8'-bg"
b6-b7 RESULT IN A CACHE MISS,
b8-b9 RESULT IN A CACHE HIT)
EXAMPLE 3:
USER LONG WORD WRITE OF b4"-b7’ TO $00001054 A) START EXTERNAL CYCLE A) START EXTERNAL CYCLE
(TAG MATCH, CACHE MISS, LONG WORD DATA, B) b4-b7-eh4' b7’
LONG WORD ALIGNED) €) V-t
EXAMPLE 4:
USER LONG WORD WRITE OF b4"b7’ T0 $00002054 A) START EXTERNAL CYCLE A) START EXTERNAL CYCLE
{ND TAG MATCH, LONG WORD DATA, LONG WORD ALIGNED) B) TAG - TAG’
C) b4-b7-= b4’ b7’
D} VOO
V1 -1
V20
V30
EXAMPLE 5:

USER LONG WORD WRITE OF b6"-b9’ TO $00002056
(NO TAG MATCH, LONG WORD DATA, MISALIGNED)

Figure 6-4. No-Write-Allocation and Write-Allocation Mode Examples

MOTOROLA

A) START EXTERNAL CYCLE

MC68030 USER'S MANUAL

A) START EXTERNAL CYCLE
B} V20

6-9

6.1.2.2 READ-MODIFY-WRITE ACCESSES. The read portion of a read-modify-write

cycle is always forced to miss in the data cache. However, if the system
allows internal caching of read-modify-write cycle operands (CIOUT and CIIN
both negated}, the processor either uses the data read from memory to
update a matching entry in the data cache or creates a new entry with the
read data in the case of no matching entry. The write portion of a read-
modify-write operation also updates a matching entry in the data cache. In
the case of a cache miss on the write, the allocation of a new cache entry
for the data being written is controlled by the WA bit. Table search accesses,
however, are completely ignored by the data cache; it is never updated for
a table search access.

6.1.3 Cache Filling

The bus controller can load either cache in either of two ways:
e Single entry mode

e Burst fill mode

In the single entry mode, the bus controller loads a single long-word entry
of a cache line. In the burst fill mode, an entire line {four long words) can be
filled. Refer to SECTION 7 BUS OPERATION for detailed information about
the bus cycles required for both modes.

6.1.3.1 SINGLE ENTRY MODE. When a cachable access is initiated and a burst

6-10

mode operation is not requested by the MC68030 or is not supported by
external hardware, the bus controller transfers a single long word for the
corresponding cache entry. An entire long word is required. If the port size
of the responding device is smaller than 32 bits, the MC68030 executes all
bus cycles necessary to fill the long word.

When a device cannot supply its entire port width of data, regardless of the
size of the transfer, the responding device must consistently assert the cache
inhibit input (CIIN) signal. For example, a 32-bit port must always supply 32
bits, even for 8- and 16-bit transfers; a 16-bit port must supply 16 bits, even
for 8-bit transfers. The MC68030 assumes that a 32-bit termination signal for
the bus cycle indicates availability of 32 valid data bits, even if only 16 or 8
bits are requested. Similarly, the processor assumes that a 16-bit termination
signal indicates that all 16 bits are valid. If the device cannot supply its fuil
port width of data, it must assert CIIN for all bus cycles corresponding to a
cache entry.

MC68030 USER'S MANUAL MOTOROLA

h -

When a cachable read cycle provides data with both CIIN and BERR negated,
the MC68030 attempts to fill the cache entry. Figure 6-5 shows the organi-
zation of a line of data in the caches. The notation b0, b1, b2, and so forth
identifies the bytes within the line. For each entry in the line, a valid bit in
the associated tag corresponds to a long-word entry to be loaded. Since a
single valid bit applies to an entire long word, a single entry mode operation
must provide a full 32 bits of data. Ports less than 32 bits wide require several
read cycles for each entry.

Figure 6-5 shows an example of a byte data operand read cycle starting at
byte address $03 from an 8-bit port. Provided the data item is cachable, this
operation results in four bus cycles. The first cycle requested by the MC68030
reads a byte from address $03. The 8-bit DSACKx response causes the
MC68030 to fetch the remainder of the long word starting at address $00.
The bytes are latched in the following order: b3, b0, b1, and b2. Note that
during cache loading operations, devices must indicate the same port size
consistently throughout all cycles for that long-word entry in the cache.

Figure 6-6 shows the access of a byte data operand from a 16-bit port. This
operation requires two read cycles. The first cycle requests the byte at address
$03. If the device responds with a 16-bit DSACKx encoding, the word at
address $02 (including the requested byte) is accepted by the MC68030. The
second cycle requests the word at address $00. Since the device again re-
sponds with a 16-bit DSACKx encoding, the remaining two bytes of the long
word are latched, and the cache entry is filled.

$00 304 S08 $0C
Lo [oo | fefodefe] LTTT] CLDTY CTTT]
CYCLE SiZE ADDRESS COMMENT
1 BYTE $03 . - THIS IS THE REQUESTED OPERAND

- NEXT BYTE FOR COMPLETING CACHE ENTRY

2 3-BYTE $oo m.l
3 WORD 501 .
4 BYTE §02

Figure 6-5. Single Entry Mode Operation — 8-Bit Port

~ NEXT BYTE FOR COMPLETING CACHE ENTRY

- LAST BYTE TO COMPLETE THE LONG WORD

MOTOROLA MC68030 USER'S MANUAL 6-11

h -

P]

o Tor] BREE (0 0 I

CYCLE SIZE ADDRESS COMMENT

1 BYTE $03 - INCLUDES THE REQUESTED OPERAND AND THE PREVIOUS BYTE

2 WORD $00 — THE REMAINING WORD FOR THE LONG WORD CACHE ENTRY

Figure 6-6. Single Entry Mode Operation — 16-Bit Port

With a 32-bit port, the same operation is shown in Figure 6-7. Only one read
cycle is required. All four bytes (including the requested byte) are latched
during the cycle.

$00

o] FEEE L7100 LI

CYCLE SIZE ADDRESS COMMENT

1 BYTE $03 m - THE ENTIRE LONG WORD MUST BE VALID

Figure 6-7. Single Entry Mode Operation — 32-Bit Port

If a requested access is misaligned and spans two cache entries, the bus
controller attempts to fill both associated long-word cache entries. An ex-
ample of this is an operand request for a long word on an odd-word boundary.
The MC68030 first fetches the initial byte(s) of the operand (residing in the
first long word) and then requests the remaining bytes to fill that cache entry
(if the port size is less than 32 bits) before it requests the remainder of the
operand and corresponding long word to fill the second cache entry. If the
port size is 32 bits, the processor performs two accesses, one for each cache
entry.

6-12 MC68030 USER’S MANUAL MOTOROLA

h -
P]

Figure 6-8 shows a misaligned access of a long word at address $06 from
an 8-bit port requiring eight bus cycles to complete. Reading this long-word
operand requires eight read cycles, since accesses to all eight addresses
return 8-bit port-size encodings. These cycles fetch the two cache entries that
the requested long-word spans. The first cycle requests a long word at ad-
dress $06 and accepts the first requested byte (b6). The subsequent transfers
of the first long word are performed in the following order: b7, b4, b5. The
remaining four read cycles transfer the four bytes of the second cache entry.
The sequence of access for the entire operation is b6, b7, b4, b5, b8, b9, bA,

and bB.
$00 $04 $08 $0C
[me Joww | []]]| [e]os]se]or] [osfuosafss] [[| []
CYCLE SIZE ADDRESS COMMENT

1 LONGWORD $06 I:[j ~ FIRST BYTE OF OPERAND LATCHED
2 3BYE $07 [:D — SECOND BYTE OF GPERAND

3 WORD $04 . ~ TO FILL THE CACHE ENTRY AT $04

4 BYTE $05 - REMAINDER OF CACHE ENTRY AT $04

5 WORD $08 - THIRD BYTE OF OPERAND

7 WORD $0A - T0 FILL CACHE ENTRY AT $08

6 BYTE $09 — LAST BYTE OF OPERAND
ED

8 BYTE " $08 ! b8 - REMAINDER OF ENTRY AT $08

Figure 6-8. Single Entry Mode Operation —
Misaligned Long Word and 8-Bit Port

MOTOROLA MC68030 USER'S MANUAL 6-13

h -

P]

6-14

The next example, shown in Figure 6-9, is a read of a misaligned long-word
operand from devices that return 16-bit DSACKx encodings. The processor
accepts the first portion of the operand, the word from address $06, and
requests a word from address $04 to fill the cache entry. Next, the processor
reads the word at address $08, the second portion of the operand, and stores
it in the cache also. Finally, the processor accesses the word at $0A to fill
the second long-word cache entry.

$00

|

= Tor] (110 R BEEE (1110

CYCLE SIZE ADDRESS COMMENT

1

LONG WORD $06 D:] - FIRST WORD GF OPERAND LATCHED

WORD $04 — TO FILL THE CACHE ENTRY AT $04

WORD $08 - SECOND WORD OF OPERAND
WORD $0A ~ TO FILL ENTRY AT $08

Figure 6-9. Single Entry Mode Operation —
Misaligned Long Word and 16-Bit Port

Two read cycles are required for a misaligned long-word operand transfer
from devices that return 32-bit BSACKx encodings. As shown in Figure 6-10,
the first read cycle requests the long word at address $06 and latches the
long word at address $04. The second read cycle requests and latches the
long word corresponding to the second cache entry at address $08. Two read
cycles are also required if STERM is used to indicate a 32-bit port instead of
the 32-bit DSACKx encoding.

MC68030 USER'S MANUAL MOTOROLA

$00 $04 368 $0c
e e | L] L[] [sefssfuefor] [eefsofuafs] [[]]]
CYCLE SIzE ADDRESS COMMENT
; - FIRST WORD OF OPERAND PLUS
1 LONG WORD 06 i
‘ $ mﬂ :D REST OF ENTRY AT 304
2 LONGWORD $08 m - SECOND WORD OF OPERAND PLUS
REST OF ENTRY AT $08

Figure 6-10. Single Entry Mode Operation —
Misaligned Long Word and 32-Bit DSACKx Port

If all bytes of a long word are cachable, CIIN must be negated for all bus
cycles required to fill the entry. If any byte is not cachable, CIIN must be
asserted for all corresponding bus cycles. The assertion of the CIIN signal
prevents the caches from being updated during read cycles. Write cycles
{including the write portion of a read-modify-write cycle) ignore the assertion
of the CIIN signal and may cause the data cache to be altered, depending on
the state of the cache (whether or not the write cycle hits), the state of the
WA bit in the CACR, and the conditions indicated by the MMU.

The occurrence of a bus error while attempting to load a cache entry aborts
the entry fill operation but does not necessarily cause a bus error exception.
If the bus error occurs on a read cycle for a portion of the required operand
{not the remaining bytes of the cache entry) to be loaded into the data cache,
the processor immediately takes a bus error exception. If the read cycle in
error is made only to fill the data cache (the data is not part of the target
operand), no exception occurs, but the corresponding entry is marked invalid.
For the instruction cache, the processor marks the entry as invalid, but only
takes an exception if the execution unit attempts to use the instruction word(s).

6.1.3.2 BURST MODE FILLING. Burst mode filling is enabled by bits in the cache
control register. The data burst enable bit must be set to enable burst filling
of the data cache. Similarly, the instruction burst enable bit must be set to
enable burst filling of the instruction cache. When burst filling is enabled and
the corresponding cache is enabled, the bus controller requests a burst mode
fill operation in either of these cases:

e A read cycle for either the instruction or data cache misses due to the
indexed tag not matching. '

® A read cycle tag matches, but all long words in the line are invalid.

MOTOROLA MC68030 USER'S MANUAL 6-15

h -

6-16

he bus controller requests a burst mode fill operation by asserting the cache
burst request signal (CBREQ). The responding device may sequentially supply
one to four long words of cachable data, or it may assert the cache inhibit
input signal (CIIN) when the data in a long word is not cachable. If the
responding device does not support the burst mode and it terminates cycles
with STERM, it should not acknowiedge the request with the assertion of the
cache burst acknowledge (CBACK) signal. The MC688030 ignores the assertion
of CBACK during cycles terminated with DSACKx.

The cache burst request signal (CBREQ) requests burst mode operation from
the referenced external device. To operate in the burst mode, the device or
external hardware must be able to increment the low-order address bits if
required, and the current cycle must be a 32-bit synchronous transfer (STERM
must be asserted) as described in SECTION 7 BUS OPERATION. The device
must also assert CBACK (at the same time as STERM) at the end of the cycle

" in which the MC68030 asserts CBREQ. CBACK causes the processor to con-

tinue driving the address and bus control signals and to latch a new data
value for the next cache entry at the completion of each subsequent cycle
{as defined by STERM), for a total of up to four cycles {(until four long words
have been read).

When a cache burst is initiated, the first cycle attempts to load the cache
entry corresponding to the instruction word or data item explicitly requested
by the execution unit. The subsequent cycles are for the subsequent entries
in the cache line. In the case of a misaligned transfer when the operand spans
two cache entries within a cache ling, the first cycle corresponds to the cache
entry containing the portion of the operand at the lower address.

Figure 6-11 illustrates the four cycles of a burst operation and shows that
the second, third, and fourth cycles are run in burst mode. A distinction is
made between the first cycle of a burst operation and the subsequent cycles
because the first cycle is requested by the microsequencer and the burst fill
cycles are requested by the bus controller. Therefore, when data from the
first cycle is returned, it is immediately available for the execution unit (EU).
However, data from the burst fill cycles is not available to the EU until the
burst operation is complete. Since the microsequencer makes two separate
requests for misaligned data operands, only the first portion of the misaligned
operand returned during a burst operation is available to the EU after the
first cycle is complete. The microsequencer must wait for the burst operation
to complete before requesting the second portion of the operand. Normally,
the request for the second portion results in a data cache hit unless the second
cycle of the burst operation terminates abnormally.

MC68030 USER’S MANUAL MOTOROLA

A Y 4
A \

i: BURST OPERATION -]

CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 ’

FIRST ACCESS OF BURST OPERATION >< >< ><
X REQUIRED OPERAND OR PREFETCH BURST FILL CYCLE BURST FILL CYCLE BURST FILL CYCLE X

BURST MODE REQUESTED AND
ACKNOWLEDGED —L‘ BURST MODE BEGINS HERE

Figure 6-11. Burst Operation Cycles and Burst Mode

The bursting mechanism allows addresses to wrap around so that the entire
four long words in the cache line can be filled in a single burst operation,
regardless of the initial address and operand alignment. Depending on the
structure of the external memory system, address bits A2 and A3 may have
to be incremented externally to select the long words in the proper order for
loading into the cache. The MC68030 holds the entire address bus constant
for the duration of the burst cycle. Figure 6-12 shows an example of this
address wraparound. The initial cycle is a long-word access from address
$6. Because the responding device returns CBACK and STERM (signaling a
32-bit port), the entire long word at base address $04 is transferred. Since
the initial address is $06 when CBREQ is asserted, the next entry to be burst
filled into the cache should correspond to address $08, then $0C, and last,
$00. This addressing is compatible with existing nibble-mode dynamic RAMs,
and can be supported by page and static column modes with an external
modulo 4 counter for A2 and A3.

(= o] [T17] BEEH BREE (111

L ! 1 I
r I T I
FINAL CACHE ENTRY ~ FIRST LONG WORD ~ SECOND CACHE ENTRY THIRD CACHE ENTRY
T0 BE FILLED ACCESS - INCLUDES 70 BE FILLED T0 BE FILLED

FIRST PART OF
OPERAND REQUIRED

Figure 6-12. Burst Filling Wraparound Example

MOTOROLA MC68030 USER'S MANUAL 6-17

h -

The MC68030 does not assert CBREQ during the first portion of a misaligned
access if the remainder of the access does not correspond to the same cache
line. Figure 6-13 shows an example in which the first portion of a misaligned
access is at address $0F. With a 32-bit port, the first access corresponds to
the cache entry at address $0C, which is filled using a single-entry load
operation. The second access, at address $10 corresponding to the second
cache line, requests a burst fill and the processor asserts CBREQ. During this
burst operation, long words $10, $14, $18, and $1C are all filled in that order.

] [T (000 [T CREE

FIRST LONG WORD CACHED -
NO BURST REQUEST

$10 $i4 $18 $1C
[ve [| pofodoefed TT]) LTI LITT
11 |
T T
SECOND CYCLE - THE REMAINING CACHE ENTRIES FOR SECOND BLOCK ARE BURSTED

BURST REQUESTED

Figure 6-13. Deferred Burst Filling Example

The processor does not assert CBREQ if any of the following conditions exist:

® The appropriate cache is not enabled

Burst filling for the cache is not enabled

The cache freeze bit for the appropriate cache is set

The current operation is the read portion of a read-modify-write oper-
ation

The MMU has inhibited caching for the current page

The cycle is for the first access of an operand that spans two cache lines
{crosses a modulo 16 boundary)

Additionally, the assertion of CIIN and BERR and the premature negation of
CBACK affect burst operation as described in the following paragraphs.

6-18 MC68030 USER’S MANUAL MOTOROLA

h -

The assertion of CIIN during the first cycle of a burst operation causes the
data to be latched by the processor, and if the requested operand is aligned
(the entire operand is latched in the first cycle), the data is passed on to the
instruction pipe or execution unit. However, the data is not loaded into its
corresponding cache. In addition, the MC68030 negates CBREQ, and the burst
operation is aborted. If a portion of the requested operand remains to be
read (due to misalignment), a second read cycle is initiated at the appropriate
address with CBREQ negated.

The assertion of CIIN during the second, third, or fourth cycle of a burst
operation prevents the data during that cycle from being loaded into the
appropriate cache and causes CBREQ to negate, aborting the burst operation.
However, if the data for the cycle contains part of the requested operand,
the execution unit uses that data.

The premature negation of the CBACK signal during the burst operation
causes the current cycle to complete normally, loading the data successfully
transferred into the appropriate cache. However, the burst operation aborts
and CBREQ negates.

A bus error occurring during a burst operation also causes the burst operation
to abort. If the bus error occurs during the first cycle of a burst {i.e., before
burst mode is entered), the data read from the bus is ignored, and the entire
associated cache line is marked “invalid”. If the access is a data cycle, ex-
ception processing proceeds immediately. If the cycle is for an instruction
fetch, a bus error exception is made pending. This bus error is processed
only if the execution unit attempts to use either instruction word. Refer to
11.2.2 Instruction Pipe for more information about pipeline operation.

For either cache, when a bus error occurs after the burst mode has been
entered (that is, on the second cycle or later), the cache entry corresponding
to that cycle is marked invalid, but the processor does not take an exception
{the microsequencer has not yet requested the data). In the case of an in-
struction cache burst, the data from the aborted cycle is completely ignored.
Pending instruction prefetches are still pending and are subsequently run by
the processor. If the second cycle is for a portion of a misaligned data operand
fetch and a bus error occurs, the processor terminates the burst operation
and negates CBREQ. Once the burst terminates, the microsequencer requests
a read cycle for the second portion. Since the burst terminated abnormally

" for the second cycle of the burst, the data cache results in a miss, and a

second external cycle is required. If BERR is again asserted, the MC68030
then takes an exception.

MOTOROLA MC68030 USER'S MANUAL 6-19

h -

Un the initial access of a burst operation, a "retry” (indicated by the assertion
of BERR and HALT) causes the processor to retry the bus cycle and assert
CBREQ again. However, signaling a retry with simultaneous BERR and HALT
during the second, third, or fourth cycle of a burst operation does not cause
a retry operation, even if the requested operand is misaligned. Assertion of
BERR and HALT during burst fill cycles of a burst operation causes inde-
pendent bus error and halt operations. The processor remains halted unti!
HALT is negated, and then handles the bus error as described in the previous
paragraphs.

6.2 CACHE RESET

When a hardware reset of the processor occurs, all valid bits of both caches
are cleared. The cache enable bits, burst enable bits, and the freeze bits in
the cache control register (CACR) for both caches (refer to Figure 6-14) are
also cleared, effectively disabling both caches. The WA bit in the CACR is
also cleared.

6.3 CACHE CONTROL

6.3.1

6-20

Only the MC68030 cache control circuitry can directly access the cache arrays,
but the supervisor program can set bits in the CACR to exercise control over
cache operations. The supervisor also has access to the cache address reg-
ister (CAAR), which contains the address for a cache entry to be cleared.

Cache Control Register

The CACR, shown in Figure 6-14, is a 32-bit register that can be written or
read by the MOVEC instruction or indirectly modified by a reset. Five of the
bits (4-0) control the instruction cache; six other bits (13-8) control the data
cache, Each cache is controlled independently of the other, although a similar
operation can be performed for both caches by a single MOVEC instruction.
For example, loading a long word in which bits 3 and 11 are set into the
CACR clears both caches. Bits 31-14 and 7-5 are reserved for Motorola
definition. They are currently read as zeros and are ignored when written.
For future compatibility, writes should not set these bits.

MC68030 USER'S MANUAL MOTOROLA

N\
y

-
A

y

s W13 12 m o w 8§ 8 7 6 5 4 3 2 1 0
IOOOOOOOOOOUOOOOOOOIWAIDBEICDICED FD}EDI 0] 0 I 0 |IBE| ol]CE|| Fl [El I

WA = Write Allocate

DBE = Data Burst Enable

CD = Clear Data Cache

CED = Clear Entry in Data Cache
FD = Freeze Data Cache

ED = Enable Data Cache

IBE = Instruction Burst Enable
Ci = Clear instruction Cache
CE! = Clear Entry in Instruction Cache
Fi = Freeze Instruction Cache
El = Enable Instruction Cache

Figure 6-14. Cache Control Register

6.3.1.1 WRITE ALLOCATE. Bit 13, the WA bit, is set to select the write-allocation

mode (refer to 6.1.2.1 WRITE ALLOCATION) for write cycles. Clearing this bit
selects the no-write-allocation mode. A reset operation clears this bit. The
supervisor should set this bit when it shares data with the user task or when
any task maps multiple logical addresses to one physical address. If the data
cache is disabled or frozen, the WA bit is ignored.

6.3.1.2 DATA BURST ENABLE. Bit 12, the DBE bit, is set to enable burst filling of

the data cache. Operating systems and other software set this bit when burst
filling of the data cache is desired. A reset operation clears the DBE bit.

6.3.1.3 CLEAR DATA CACHE. Bit 11, the CD bit, is set to clear all entries in the

data cache. Operating systems and other software set this bit to clear data
from the cache prior to a context switch. The processor clears all valid bits
in the data cache at the time a MOVEC instruction loads a one into the CD
bit of the CACR. The CD bit is always read as a zero.

6.3.1.4 CLEAR ENTRY IN DATA CACHE. Bit 10, the CED bit, is set to clear an entry

in the data cache. The index field of the CAAR {see Figure 6-15) corresponding
to the index and long-word select portion of an address specifies the entry
to be cleared. The processor clears only the specified long word by clearing
the valid bit for the entry at the time a MOVEC instruction loads a one into
the CED bit of the CACR, regardless of the states of the ED and FD bits. The
CED bit is always read as a zero.

MOTOROLA MC68030 USER'S MANUAL 6-21

N\
y

y

o.5.1.0 FREEZE DATA CACHE. Bit 9, the FD bit, is set to freeze the data cache.
When the FD bit is set and a miss occurs during a read or write of the data
cache, the indexed entry is not replaced. However, write cycles that hit in
the data cache cause the entry to be updated even when the cache is frozen.
When the FD bit is clear, a miss in the data cache during a read cycle causes
the entry (or line) to be filled, and the filling of entries on writes that miss
are then controlled by the WA bit. A reset operation clears the FD bit.

6.3.1.6 ENABLE DATA CACHE. Bit 8, the ED bit, is set to enable the data cache.
When it is cleared, the data cache is disabled. A reset operation clears the
ED bit. The supervisor normally enables the data cache, but it can clear ED
for system debugging or emulation, as required. Disabling the data cache
does not flush the entries. If it is enabled again, the previously valid entries
remain valid and can be used.

6.3.1.7 INSTRUCTION BURST ENABLE. Bit 4, the IBE bit, is set to enable burst
filling of the instruction cache. Operating systems and other software set this
bit when burst filling of the instruction cache is desired. A reset operation
clears the IBE bit.

6.3.1.8 CLEAR INSTRUCTION CACHE. Bit 3, the Cl bit, is set to clear all entries in
the instruction cache. Operating systems and other software set this bit to
clear instructions from the cache prior to a context switch. The processor
clears all valid bits in the instruction cache at the time a MOVEC instruction
loads a one into the CI bit of the CACR. The CI bit is always read as a zero.

6.3.1.9 CLEAR ENTRY IN INSTRUCTION CACHE. Bit 2, the CEl bit, is set to clear
an entry in the instruction cache. The index field of the CAAR (see Figure
6-15) corresponding to the index and long-word select portion of an address
specifies the entry to be cleared. The processor clears only the specified long
word by clearing the valid bit for the entry at the time a MOVEC instruction
loads a one into the CEl bit of the CACR, regardless of the states of the El
and F| bits. The CE! bit is always read as a zero.

6-22 MC68030 USER'S MANUAL MOTOROLA

6.3.1.10 FREEZE INSTRUCTION CACHE. Bit 1, the FI bit, is set to freeze the in-
struction cache. When the Fl bit is set and a miss occurs inh the instruction
cache, the entry (or line) is not replaced. When the Fl bit is cleared to zero,
a miss in the instruction cache causes the entry (or line) to be filled. A reset
operation clears the Fl bit.

6.3.1.11 ENABLE INSTRUCTION CACHE. Bit 0, the E! bit, is set to enable the in-
struction cache. When it is cleared, the instruction cache is disabled. A reset
operation clears the El bit. The supervisor normally enables the instruction
cache, but it can clear El for system debugging or emulation, as required.
Disabling the instruction cache does not flush the entries. If it is enabled
again, the previously valid entries remain valid and may be used.

6.3.2 Cache Address Register

The CAAR is a 32-bit register shown in Figure 8-15. The index field (bits 7-2)
contains the address for the “’clear cache entry” operations. The bits of this
field correspond to bits 7-2 of addresses; they specify the index and a long
word of a cache line. Although only the index field is used currently, all 32
bits of the register are implemented and are reserved for use by Motorola.

31 8§ 7 21 0
CACHE FUNCTION ADDRESS INDEX |]

Figure 6-15. Cache Address Register

MOTOROLA MC68030 USER'S MANUAL 6-23

h
P

h -

SECTION 7

BUS OPERATION

This section provides a functional description of the bus, the signals that
control it, and the bus cycles provided for data transfer operations. It also
describes the error and halt conditions, bus arbitration, and the reset oper-
ation. Operation of the bus is the same whether the processor or an external
device is the bus master; the names and descriptions of bus cycles are from
the point of view of the bus master. For exact timing specifications, refer to
SECTION 13 ELECTRICAL CHARACTERISTICS.

The MC68030 architecture supports byte, word, and long-word operands,
allowing access to 8-, 16-, and 32-bit data ports through the use of asyn-
chronous cycles controlled by the data transfer and size acknowledge inputs
(DSACKO and DSACK1).

Synchronous bus cycles controlled by the synchronous termination signal
{STERM) can only be used to transfer data to and from 32-bit ports.

The MC68030 allows byte, word, and long-word operands to be located in
memory on any byte boundary. For a misaligned transfer, more than one
bus cycle may be required to complete the transfer, regardless of port size.
For a port less than 32 bits wide, muitiple bus cycles may be required for an
operand transfer due to either misalignment or a port width smaller than the
operand size. Instruction words and their associated extension words must
be aligned on word boundaries. The user should be aware that misalignment
of word or long-word operands can cause the MC68030 to perform multiple
bus cycles for the operand transfer; therefore, processor performance is
optimized if word and long-word memory operands are aligned on word or
long-word boundaries, respectively.

7.1 BUS TRANSFER SIGNALS

The bus transfers information between the MC68030 and an external mem-
ory, coprocessor, or peripheral device. External devices can accept or provide
8 bits, 16 bits, or 32 bits in parallel and must follow the handshake protocol
described in this section, The maximum number of bits accepted or provided
during a bus transfer is defined as the port width. The MC68030 contains an

MOTOROLA MC68030 USER'S MANUAL 7-1

h -

7-2

address bus that specifies the address for the transfer and a data bus that
transfers the data. Control signals indicate the beginning of the cycle, the
address space and the size of the transfer, and the type of cycle. The selected
device then controls the length of the cycle with the signal(s) used to ter-
minate the cycle. Strobe signals, one for the address bus and another for the
data bus, indicate the validity of the address and provide timing information
for the data.

The bus can operate in an asynchronous mode identical to the MC68020 bus
for any port width. The bus and control input signals used for asynchronous
operation are internally synchronized to the MC68030 clock, introducing a
delay. This delay is the time period required for the MC68030 to sample an
asynchronous input signal, synchronize the input to the internal clocks of the
processor, and determine whether it is high or low. Figure 7-1 shows the
relationship between the clock signal and the associated internal signal of a
typical asynchronous input.

CLK

EXT

|

g—————— SYNC DELAY ~——————»

Figure 7-1. Relationship between External and Internal Signals

Furthermore, for all asynchronous inputs, the processor latches the level of
the input during a sample window around the falling edge of the clock signal.
This window is illustrated in Figure 7-2. To ensure that an input signal is
recognized on a specific falling edge of the clock, that input must be stable
during the sample window. If an input makes a transition during the window
time period, the level recognized by the processor is not predictable; how-
ever, the processor always resolves the latched level to either a logic high
or low before using it. In addition to meeting input setup and hold times for
deterministic operation, all input signals must obey the protocols described
in this section.

MC68030 USER'S MANUAL MOTOROLA

h -

tsu———bjﬁv'
Legt——— 1)

clK

EXT

——

SAMPLE
WINDOW

Figure 7-2. Asynchronous Input Sample Window

A device with a 32-bit port size can also provide a synchronous mode transfer.
In synchronous operation, input signals are externally synchronized to the
processor clock, and the synchronizing delay is not incurred.

Synchronous inputs (STERM, CBACK, and CIIN) must remain stable during
a sample window for all rising edges of the clock during a bus cycle (i.e.,
while address strobe (AS) is asserted), regardless of when the signals are
asserted or negated, to ensure proper operation. This sample window is
defined by the synchronous input setup and hold times (see MC68030EC/D,
MC68030 Electrical Specifications).

7.1.1 Bus Control Signals

The external cycle start (ECS) signal is the earliest indication that the pro-
cessor is initiating a bus cycle. The MC68030 initiates a bus cycle by driving
the address, size, function code, read/write, and cache inhibit-out outputs
and by asserting ECS. However, if the processor finds the required program
or data item in an on-chip cache, if a miss occurs in the address translation
cache (ATC) of the memory management unit (MMU), or if the MMU finds
a fault with the access, the processor aborts the cycle before asserting AS.
ECS can be used to initiate various timing sequences that are eventually
qualified with AS. Qualification with AS may be required since, in the case
of an internal cache hit, an ATC miss, or an MMU fault, a bus cycle may be
aborted after ECS has been asserted. The assertion of AS ensures that the
cycle has not been aborted by these internal conditions.

During the first external bus cycle of an operand transfer, the operand cycle
start (OCS) signal is asserted with ECS. When several bus cycles are required

MOTOROLA MC68030 USER'S MANUAL 7-3

h -

P

to transfer the entire operand, OCS is asserted only at the beginning of the
first external bus cycle. With respect to OCS, an “operand” is any entity
required by the execution unit, whether a program or data item.

The function code signals (FCO-FC2) are also driven at the beginning of a
bus cycle. These three signals sefect one of eight address spaces (refer to
Table 4-1) to which the address applies. Five address spaces are presently
defined. Of the remaining three, one is reserved for user definition and two
are reserved by Motorola for future use. The function code signals are valid
while AS is asserted.

At the beginning of a bus cycle, the size signals (SIZ0 and SIZ1) are driven
along with ECS and the FCO-FC2. SIZ0 and SIZ1 indicate the number of bytes
remaining to be transferred during an operand cycle (consisting of one or
more bus cycles) or during a cache fill operation from a device with a port
size that is less than 32 bits. Table 7-2 shows the encoding of SIZ0 and SIZ1.
These signals are valid while AS is asserted.

The read/write (R/W) signal determines the direction of the transfer during
a bus cycle. This signal changes state, when required, at the beginning of a
bus cycle and is valid while AS is asserted. R'W only transitions when a write
cycle is preceded by a read cycle or vice versa. The signal may remain low
for two consecutive write cycles,

The read-modify-write cycle signal (RMC) is asserted at.the beginning of the
first bus cycle of a read-modify-write operation and remains asserted until
completion of the final bus cycle of the operation. The RMC signal is guar-
anteed to be negated before the end of state 0 for a bus cycle following a
read-modify-write operation.

7.1.2 Address Bus

The address bus signals (A0-A31) define the address of the byte (or the most
significant byte) to be transferred during a bus cycle. The processor places
the address on the bus at the beginning of a bus cycle. The address is valid
while AS is asserted.

7.1.3 Address Strobe

7-4

AS is a timing signal that indicates the validity of an address on the address
bus and of many control signals. It is asserted one-half clock after the be-
ginning of a bus cycle.

MC68030 USER'S MANUAL MOTOROLA

7.1.4 Data Bus

The data bus signals (D0-D31) comprise a bidirectional, nonmultiplexed par-
allel bus that contains the data being transferred to or from the processor.
A read or write operation may transfer 8, 16; 24, or 32 bits of data (one, two,
three, or four bytes) in one bus cycle. During a read cycle, the data is latched
by the processor on the last falling edge of the clock for that bus cycle. For
a write cycle, all 32 bits of the data bus are driven, regardless of the port
width or operand size. The processor places the data on the data bus one-
half clock cycle after AS is asserted in a write cycle.

7.1.5 Data Strobe

The data strobe (DS) is a timing signal that applies to the data bus. For a
read cycle, the processor asserts DS to signal the external device to place
data on the bus. It is asserted at the same time as AS during a read cycle.
For a write cycle, DS signals to the external device that the data to be written
is valid on the bus. The processor asserts DS one full clock cycle after the
assertion of AS during a write cycle.

7.1.6 Data Buffer Enable

The data buffer enable signal (DBEN) can be used to enable external data
buffers while data is present on the data bus. During a read operation, DBEN
is asserted one clock cycle after the beginning of the bus cycle and is negated
as DS is negated. In a write operation, DBEN is asserted at the time AS is
asserted and is held active for the duration of the cycle. In a synchronous
system supporting two-clock bus cycles, DBEN timing may prevent its use.

7.1.7 Bus Cycle Termination Signals

During asynchronous bus cycles, external devices assert the data transfer
and size acknowledge signals (DSACKO and/or DSACK1) as part of the bus
protocol. During a read cycle, the assertion of DSACKXx signals the processor
to terminate the bus cycle and to latch the data. During a write cycle, the
assertion of DSACKx indicates that the external device has successfully stored
the data and that the cycle may terminate. These signals also indicate to the
processor the size of the port for the bus cycle just completed, as shown in
Table 7-1. Refer to 7.3.1 Asynchronous Read Cycle for timing relationships
of DSACKOQ and DSACKI.

MOTOROLA MC68030 USER'S MANUAL 7-5

h -

P

For synchronous bus cycles, external devices assert the synchronous ter-
mination signal (STERM) as part of the bus protocol. During a read cycle,

. the assertion of STERM causes the processor to latch the data. During a write

cycle, it indicates that the external device has successfully stored the data.
In either case, it terminates the cycle and indicates that the transfer was made
to a 32-bit port. Refer to 7.3.2 Asynchronous Write Cycle for timing relation-
ships of STERM.

The bus error (BERR) signal is also a bus cycle termination indicator and can
be used in the absence of DSACKx or STERM to indicate a bus error condition.
It can also be asserted in conjunction with DSACKx or STERM to indicate a
bus error condition, provided it meets the appropriate timing described in
this section and in MC68030EC/D, MC68030 Electrical Specifications. Addi-
tionally, the BERR and HALT signals can be asserted together to indicate a
retry termination. Again, the BERR and HALT signals can be asserted simul-
taneously in lieu of or in conjunction with the DSACKx or STERM signals.

Finally, the autovector (AVEC) signal can be used to terminate interrupt ac-
khowledge cycles, indicating that the MC68030 shouid internally generate a
vector number to locate an interrupt handler routine. AVEC is ignored during
alf other bus cycles.

7.2 DATA TRANSFER MECHANISM

The MC68030 architecture supports byte, word, and long-word operands
allowing access to 8-, 16-, and 32-bit data ports through the use of asyn-
chronous cycles controlled by DSACKO and DSACK1. It also supports syn-
chronous bus cycles to and from 32-bit ports, terminated by STERM. Byte,
word, and long-word operands can be located on any byte boundary, but
misaligned transfers may require additional bus cycles, regardless of port
size.

When the processor requests a burst mode fill operation, it asserts the cache
burst request (CBREQ) signal to attempt to fill four entries within a line in
one of the on-chip caches. This mode is compatible with nibble, static column,
or page mode dynamic RAMs. The burst fill operation uses synchronous bus
cycles, each terminated by STERM, to fetch as many as four long words.

7.2.1 Dynamic Bus Sizing

7-6

The MC68030 dynamically interprets the port size of the addressed device
during each bus cycle, allowing operand transfers to or from 8-, 16-, and 32-
bit ports. During an asynchronous operand transfer cycle, the slave device

MC68030 USER'S MANUAL MOTOROLA

N\
y

y

signals its port size (byte, word, or long word) and indicates completion of
the bus cycle to the processor through the use of the DSACKx inputs. Refer
to Table 7-1 for DSACKx encodings and assertion results.

Table 7-1. DSACK Codes and Results

DSACK1 | DSACKO Result
H H Insert Wait States in Current Bus Cycle
H L Complete Cycle — Data Bus Port Size is 8 Bits
L H Complete Cycle — Data Bus Port Size is 16 Bits
L L Complete Cycle — Data Bus Port Size is 32 Bits

For example, if the processor is executing an instruction that reads a long-
word operand from a long-word aligned address, it attempts to read 32 bits
during the first bus cycle. (Refer to 7.2.2 Misaligned Operands for the case
of a word or byte address.) If the port responds that it is 32 bits wide, the
MC68030 latches all 32 bits of data and continues with the next operation. If
the port responds that it is 16 bits wide, the MC68030 latches the 16 bits of
valid data and runs another bus cycle to obtain the other 16 bits. The operation
for an 8-bit port is similar, but requires four read cycles. The addressed device
uses the DSACKx signals to indicate the port width. For instance, a 32-bit
device always returns DSACKx for a 32-bit port (regardless of whether the
bus cycle is a byte, word, or long-word operation).

Dynamicbus sizing requires that the portion of the data bus used for a transfer
to or from a particular port size be fixed. A 32-bit port must reside on data
bus bits 0-31, a 16-bit port must reside on data bus bits 16-32, and an 8-bit
port must reside on data bus bits 24-31. This requirement minimizes the
number of bus cycles needed to transfer data to 8- and 16-bit ports and
ensures that the MC68030 correctly transfers valid data. The MC68030 always
attempts to transfer the maximum amount of data on all bus cycles; for a
long-word operation, it always assumes that the port is 32 bit wide when
beginning the bus cycle.

The bytes of operands are designated as shown in Figure 7-3. The most
significant byte of a long-word operand is OP0, and OP3 is the least significant
byte. The two bytes of a word-length operand are OP2 (most significant) and
OP3. The single byte of a byte-length operand is OP3. These designations
are used in the figures and descriptions that follow.

MOTOROLA MIC68030 USER'S MANUAL 7-7

h -

P

7-8

3 0
LONG WORD OPERAND | 0P | oP1 i 0p2 | 0P3 1
15 0
worooperanD J op2 | or3 |
7 0
BYTE OPERAND 0P3

Figure 7-3. Internal Operand Representation

Figure 7-4 shows the required organization of data ports on the MC68030
bus for 8-, 16-, and 32-bit devices. The four bytes shown in Figure 7-4 are
connected through the internal data bus and data multiplexer to the external
data bus. This path is the means through which the MC68030 supports dy-
namic bus sizing and operand misalignment. Refer to 7.2.2 Misaligned Op-
erands for the definition of misaligned operand. The data multiplexer
establishes the necessary connections for different combinations of address
and data sizes.

The muitiplexer takes the four bytes of the 32-bit bus and routes them to
their required positions. For example, OP0 can be routed to D24-D31, as
would be the normal case, or it can be routed to any other byte position to
support a misaligned transfer. The same is true for any of the operand bytes.
The positioning of bytes is determined by the size (SIZ0 and SIZ1) and address
(A0 and A1) outputs.

The SIZ0 and SIZ1 outputs indicate the remaining number of bytes to be
transferred during the current bus cycle, as shown in Table 7-2.

The number of bytes transferred during a write or noncachable read bus

. cycle is equal to or less than the size indicated by the SIZ0 and SiZ1 outputs,

depending on port width and operand alignment. For example, during the
first bus cycle of a long-word transfer to a word port, the size outputs indicate
that four bytes are to be transferred, although only two bytes are moved on
that bus cycle. Cachable read cycles must always transfer the number of
bytes indicated by the port size.

A0 and A1 also affect operation of the data multiplexer. During an operand
transfer, A2-A31 indicate the long-word base address of that portion of the
operand to be accessed; A0 and A1 indicate the byte offset from the base.
Table 7-3 shows the encodings of A0 and A1 and the corresponding byte
offsets from the long-word base.

MC68030 USER'S MANUAL MOTOROLA

h -

P

REGISTER |

MULTIPLEXER

EXTERNAL

0PQ

QP1 opP2

o |

I
NIV

A\
|

ROUTING AND QUPLICATION

/

/N

INCREASING
MEMORY
ADDRESSES

xxxxxxx0
| :

oaTA Bus —L__D31-024 023016 01508
ADDRESS Y L
f emo | el | evw2
/ Y
BYTEO BYIE 16-8IT PORT
BYTE 2 BYTE 3
Y b
xxxxxxx0 BYTE D
1 BYTE 1
8-BIT PORT
2 BYTE 2
3 BYTE 3

Figure 7-4. MIC68030 Interface to Various Port Sizes

!

INTERNAL TO
THE MC68030

EXTERNAL BUS

| s2ameosr ¢

Table 7-4 lists the bytes required on the data bus for read cycles that are
cachable. The entries shown as OPn are portions of the requested operand
that are read or written during that bus cycle and are defined by SIZ0, SIZ1,
AQ, and A1 for the bus cycle. The PRn and the Nn bytes correspond to the
previous and next bytes in memory, respectively, that must be valid on the
data bus for the specified port size (long word or word) so that the internal
caches operate correctly. (For cachable accesses, the MC68030 assumes that
all portions of the data bus for a given port size are valid.) This same table
applies to noncachable read cycles except that the bytes labeled PRn and Nn

are not required and can be replaced by “don’t cares”’.

Table 7-2. Size Signal

Encoding
SiZ1 SiZ20 Size
0 1 Byte
1 0 Word
1 1 3 Bytes
0 0 Long Word

MOTOROLA

MC68030 USER'S MANUAL

Table 7-3. Address Offset

Encodings
A1 A0 Offset
0 0 +0 Bytes
[0} 1 +1 Byte
1 0 +2 Bytes
1 1 +3 Bytes

7-9

h -

Table 7-4. Data Bus Requirements for Read Cycles

Byte Port
I s | adres | plmntedten | e Dty | b byes
equired Required
siz1 [siz0 | A1 | Ao | D31:D24 D23:D16 D15:08 D7:00 | D31:D24 D23:D16 | D31:D24
Byte o | 1 o | o fJos] n I N[ne] | [ors [N]| [ors]
o |1 o | v | [prmJors] N T Nt || [PR | ors | OP3
0o | 1 1o | [PrJora] N || [ors [~ || [ors]
0o {1 1| 1 | [pre]pri] pr Jops] | [pr | ops | OP3
Word 1 o | oo for2fors] N [N]| [o2 [ops || [oP2]
1o | of 1t | [prRJora]ops] ~ || [P | orz | | [Lop2]
1] o0 1| o | [pri] P Jorafors] | [op2 | ors || [or2]
1] o 1| 1 | [pre e[pr Jorz] [[PR [opz || [Lopr2]
3 Byte 1| o | o | [omJoraJors| ~n || [o [or2 || [op]
1| o | 1 | [PR JorJora]ops] | [PR [op1 || [Lop1]
O 1o { PR pr JorrJopa]| | [opt [o2 || [oP]
1] 11 | [ere]eri [e Jorr | | [PR [o | OP1
Long o | o o | o | [oro Topt JTopza]ors | | [opo [op1 | | [opo]
Word oo o | v+ | [pr JTorolopt Jora] | [pr [oro || [opo]
o] o 1| o | [pri] pr JoroJori] | [oro | ori | | [opo]
o | o 11 | [Pra]eri [pr Joro | | | Pr [oPo | OoPo

NOTE: The bytes labeled as Nn (Next n) and PRn (Previous n) are only required to be valid for cachable read cycles. They
can be interpreted as don't cares for noncachable read cycles.

Table 7-5 lists the combinations of SIZ0, SIZ1, A0, and A1 and the corre-
sponding pattern of the data transfer for write cycles from the internal mul-
tiplexer of the MC68030 to the external data bus.

Figure 7-5 shows the transfer of a long-word operand to a word port. In the
first bus cycle, the MC68030 places the four operand bytes on the external
bus. Since the address is long-word aligned in this example, the multiplexer
follows the pattern in the entry of Table 7-5 corresponding to
SIZ0_SIZ1_A0_A1=0000. The port latches the data on bits D16-D31 of the
data bus, asserts DSACK1 (DSACKO remains negated), and the processor

7-10 MC68030 USER'S MANUAL MOTOROLA

h -
P]

Table 7-5. MC68030 Internal to External Data Bus
Multiplexer — Write Cycles

Transfer Size Address External Data Bus Connection
Size SIZ1 | Slzo | At | A0 | D31:D24 D23:D16 D15:D8 D7:D0
Byte 0 1 x x | [ops | ops | ops [oprs |
Word 1 o | x | o | [or2]ors] or2] oprs|
1 {0 [x | 1 | [ora]or]oprs [or |
3 Byte 1 1 o | o | [op [ora] ors] opor|
1 1 o | 1 | [Lor1 Jorm Jop2 | ors |
1 1 1 o | {opr [or2] orr] or2 |
1 1 1 1 | [orr] o Topr | or |
Long Word o | o | o | o | {oro]or | or2] ors|
o | o) o | 1 | [oro]oro] opri] opr2|
o | o 1 o | [opo [orr | opo | or1 |

0 0 1 1 | [Loro [opo [or1+ [opo |

*Due to the current implementation, this byte is output but never used.

x=don't care

NOTE: The OP tables on the external data bus refer to a particular byte of the operand
that is written on that section of the data bus.

3t LONG WORD OPERAND 0

| oro o1 | o2 | o3|
A

031 DATA BUS D16

L il

!

WORD MEMORY MC68030 MEMORY CONTROL
MSB LsB sizt 81zZo Al AD DSACK1 DSACKD
oPo oP1 4 0 0 0 L H
0P2 0P3 1 0 1 0 L H

Figure 7-5. Example of Long-Word Transfer to Word Port

MOTOROLA MIC68030 USER'S MANUAL 7-11

h -

P]

A2-A31 x
Al \

s _/

m™ T\

s\

. __/

016-D023 oP1 0P3

[e——— WORD WRITE —Pl‘* WORD WRITE ————»

[&—— LONG WORD OPERAND WRITE TQ 16-BIT PORT ————»

Figure 7-6. Long-Word Operand Write Timing {16-Bit Data Port)

7-12 MC68030 USER'S MANUAL MOTOROLA

h -

terminates the bus cycle. It then starts a new bus cycle with
SIZ0-SIZ1-A0_A1=1010 to transfer the remaining 16 bits. SIZ0 and SiZ1
indicate that a word remains to be transferred; A0 and A1 indicate that the
word corresponds to an offset of two from the base address. The multiplexer
follows the pattern corresponding to this configuration of the size and address
signals and places the two least significant bytes of the long word on the
word portion of the bus (D16-D31). The bus cycle transfers the remaining
bytes to the word-size port. Figure 7-6 shows the timing of the bus transfer
signals for this operation.

Figure 7-7 shows a word transfer to an 8-bit bus port. Like the preceding
example, this example requires two bus cycles. Each bus cycle transfers a
single byte. The size signals for the first cycle specify two bytes; for the
second cycle, one byte. Figure 7-8 shows the associated bus transfer signal
timing.

15 WORD OPERAND [}

[o2 | o3]
!

03t DATABUS D24

E;I

BYTE MEMORY MC68030 MEMORY CONTROL
siz1 sizo Al AD DSACK1 DSACKO

oP2 1 0 0 [H L

0P3 0 1 0 1 H L

Figure 7-7. Example of Word Transfer to Byte Port

7.2.2 Misaligned Operands

Since operands may reside at any byte boundaries, they may be misaligned.
A byte operand is properly aligned at any address; a word operand is mis-
aligned at an odd address; a long word is misaligned at an address that is
not evenly divisible by four. The MC68000, MC68008, and MC68010 imple-
mentations allow long-word transfers on odd-word boundaries but force
exceptions if word or long-word operand transfers are attempted at odd-byte
addresses. Although the MC68030 does not enforce any alignment restric-
tions for data operands (including PC relative data addresses), some per-
formance degradation occurs when additional bus cycles are required for

MOTOROLA MC68030 USER'S MANUAL 7-13

h -

P]

[Z5 __/

o _/

B\ /[

o8 _/ __/
DSACTKI __/

D24-D31 :>_< 0p2 < 0p3
D16-023 }(oP3 D o3
psots > oP2 S o
00-07 :>-———< s >—< 0P3

[&——— BYTE WRITE —P‘d—— BYTE WRITE ————»

[——————————— WORD OPERAND WRITE ——————————

Figure 7-8. Word Operand Write Timing (8-Bit Data Port)

7-14 MC68030 USER'S MANUAL

h -

long-word or word operands that are misaligned. For maximum performance,
data items should be aligned on their natural boundaries. All instruction
words and extension words must reside on word boundaries. Attempting to
prefetch an instruction word at an odd address causes an address error
exception.

Figure 7-9 shows the transfer of a iong-word operand to an odd address in
word-organized memory, which requires three bus cycles. For the first cycle,
the size signals specify a long-word transfer, and the address offset (A2:A0Q)
is 001. Since the port width is 16 bits, only the first byte of the long word is
transferred. The slave device latches the byte and acknowledges the data
transfer, indicating that the port is 16 bits wide. When the processor starts
the second cycle, the size signals specify that three bytes remain to be trans-
ferred with an address offset (A2:A0) of 010. The next two bytes are trans-
ferred during this cycle. The processor then initiates the third cycle, with the
size signals indicating one byte remaining to be transferred. The address
offset (A2:A0) is now 100; the port latches the final byte; and the operation
is complete. Figure 7-10 shows the associated bus transfer signal timing.

Figure 7-11 shows the equivalent opération for a cachable data read cycle.

Figures 7-12 and 7-13 show a word transfer to an odd address in word-
organized memory. This example is similar to the one shown in Figures 7-9
and 7-10 except that the operand is word sized and the transfer requires only
two bus cycles.

Figure 7-14 shows the equivalent operation for a cachable data read cycle.

31 LONG WORD OPERAND 0

[0P0 oP1 | P2 0P3 j

\

031 DATA BUS D18
WORD MEMORY MC58030 MEMORY CONTROL
MSB LS8 SiZl SiZ0 Az Al AD DSACKI DSACKD

XXX 0P0 0 0 0 0 1 L H

0P op2 1 : 0 1 0 L H

0P3 XXX 0 ; 1 00 L H

Figure 7-9. Misaligned Long-Word Transfer to Word Port Example

MOTOROLA MC68030 USER'S MANUAL 7-15

h -

P]

S0

w
N
w
~
%]
S
w
N

S4 S0 S2 sS4

ClK

A2-A31 x
Al \

><

~

~

L
*(\x

08-D15 0P1 C o > 0P3
———— BYTE WRITE ‘>L— WORD WRITE *»lq—— BYTE WRITE ——»~

- LONG WORD OPERAND WRITE -

Figure 7-10. Misaligned Long-Word Transfer to Word Port

7-16 MC68030 USER'S MANUAL MOTOROLA

h -
P]

31 LONG WORD OPERAND {REGISTER)
[omo 0P P2 | oP3
]
3 CACHE ENTRIES 0
| PR 0PO 0P | 0P2 |
31 0
| 0P3 N N | |
. DATA BUS o
L i
WORD MEMORY MC68030 MEMORY CONTROL
MSB LSB Sizi SiZo A2 Al AO DSACKi DSACKD
PR 0P0 6 o 0 0 1 L H
01 P2 1 10 1 o L H
0P3 N 0 i 170 0 L H
N1 N2 1 0 1 1 0 L H

Figure 7-11. Misaligned Cachable Long-Word Transfer from Word Port Example

15 WORD OPERAND 0
| P2 0P3 |
Y
D31 DATA BUS D16

!

WORD MEMORY

MSB LS8
XXX 0pP2
oP3 XXX

MC68030

MEMORY CONTROL

SizZ1 S1ze
1 0
1} 1

Al A0
0 1

DSACKT DSACKO
L H
L H

Figure 7-12. Misaligned Word Transfer to Word Port Example

MOTOROLA

MC68030 USER'S MANUAL

7-17

h -

P]

[%]
=]
2]
3¢
[/
~
173
S

S2 S4

o
2
=

A2-A31

Al

AD

FCO-FC2

SIZ1

SIZ0

N S N PS

C

JIUpPyHypY

E

§E
s

/\

D24-D31 0P2 0P3

D0-D7 0P2 0P3

r——— WORD WRITE 4)41— BYTE WRITE ———»1

[&——————— WORD OPERAND WRITE T0 A1/A0=01 ——————»

g

Figure 7-13. Misaligned Word Transfer to Word Port

7-18 MC68030 USER'S MANUAL MOTOROLA

h -

P

Figures 7-15 and 7-16 show an example of a long-word transfer to an odd
address in long-word-organized memory. In this example, a long-word access
is attempted beginning at the least significant byte of a long-word-organized
memory. Only one byte can be transferred in the first bus cycle. The second
bus cycle then consists of a three-byte access to a long-word boundary. Since
the memory is long-word organized, no further bus cycles are necessary.

Figure 7-17 shows the equivalent operation for a cachable data read cycle.

7.2.3 Effects of Dynamic Bus Sizing and Operand Misalignment

The combination of operand size, operand alignment, and port size deter-
mines the number of bus cycles required to perform a particular memory
access. Table 7-6 shows the number of bus cycles required for different
operand sizes to different port sizes with all possible alignment conditions
for write cycles and noncachable read cycles.

Table 7-6. Memory Alignment and Port Size Influence
on Write Bus Cycles

Number of Bus Cycles
A1/A0
00 01 10 1
Instruction® 1:2:4 N/A N/A N/A
Byte Operand 1:1:1 1:1:1 1:1:1 1:1:1
Word Operand 1:1:2 1:2:2 1:1:2 2:2:2
Long-Word Operand 1:2:4 2:3:4 2:2:4 2:3:4

Data Port Size — 32 Bits:16 Bits:8 Bits
*Instruction prefetches are always two words from a long-word boundary.

This table shows that bus cycle throughput is significantly affected by port
size and alignment. The MC68030 system designer and programmer shouid
be aware of and account for these effects, particularly in time-critical appli-
cations.

MOTOROLA MC68030 USER'S MANUAL 7-18

h -

P]

7-20

15 WORD OPERAND (REGISTER) 0 31 CACHE ENTRY 0
[0p2 o3 | [0P2 0P3 N |
A . [
031 DATA BUS 576
WORD MEMORY MC68030 MEMORY CONTROL
MsB LSB Szt SIZ6 A2 Al AD DSACKT DSACKD
PR 0pP2 1 0 0 0 i L H
op3 N 0 1 0 ! 0 L H

Figure 7-14. Example of Misaligned Cachable Word Transfer from Word Bus

31 LONG WORD OPERAND 0
| o | oP1 0r2 0P3 |
031 DATA BUS 00

C]
!

LONG WORD MEMORY MC68030 MEMORY CONTROL
msB UMB LMB LSB SiZl Sz Az Al AD DSACKT DSATKO
XXX XXX XXX OPC 1] 1] 0 1 1 L L
0P1 0P2 oP3 XXX 1 1 1 0 0 L L

Figure 7-15. Misaligned Long-Word Transfer to Long-Word Port

Table 7-6 shows that the processor always prefetches instructions by reading
a long word from a long-word address (A1:A0=00), regardless of port size
or alignment. When the required instruction begins at an odd-word boundary,
the processor attempts to fetch the entire 32 bits and loads both words into
the instruction cache, if possible, although the second one is the required
word. Even if the instruction access is not cached, the entire 32 bits are latched
into an internal cache holding register from which the two instructions words
can subsequently be referenced. Refer to SECTION 11 INSTRUCTION EXE-
CUTION TIMING for a complete description of the cache holding register and
pipeline operation.

MC68030 USER'S MANUAL MOTOROLA

h -
P]

MOTOROLA

S0 S2 S4 S0 $2 S4
A2-A31 x

v 7
nof
FCO-FC2
sz T\
s\
AW\

-
\L><//><

3}
Dl

BBEN 7\ /\
003 el 0PO D G
o023 > 070 Sl 0P2
D8-D15 :}-—-—(oP1 < o
o1~ > 0P0 > o

[~———— BYTE WRITE t—bldi 3-BYTE WRITE ———

e | ONG WORD OPERAND WRITE ————————»]

Figure 7-16. Misaligned Write Cycles to Long-Word Port

MC68030 USER’S MANUAL

7-21

h -

P

3t LONG WORD OPERAND (REGISTER) 0
| oro | 0Pl 0P2 | o3 |
3t CACHE ENTRIES 0
| PR2 | PRI | PR | o0 |
31 0
| oP1 | 0P2 oP3 | N 1
A
031 DATA BUS 5
LONG WORD MEMORY MC68030 MEMORY CONTROL
MSB UmB LMB LSB SiZ1 8iZ0 A2 A1 AD DSACKT DSACKD

PR2 PR1 PR 0P0 0 Q 0 1 1 L L
oPl 0P2 0P3 N 1 1 1 0 0 L L

Figure 7-17. Misaligned Cachable Long-Word Transfer from Long-Word Bus

7.2.4 Address, Size, and Data Bus Relationships

7-22

The data transfer examples show how the MC68030 drives data onto or
receives data from the correct byte sections of the data bus. Table 7-7 shows
the combinations of the size signals and address signals that are used to
generate byte enable signals for each of the four sections of the data bus for
noncachable read cycles and all write cycles if the addressed device requires
them. The port size also affects the generation of these enable signals as
shown in the table. The four columns on the right correspond to the four
byte enable signals. Letters B, W, and L refer to port sizes: B for 8-bit ports,
W for 16-bit ports, and L for 32-bit ports. The letters B, W, and L imply that
the byte enable signal should be true for that port size. A dash {—) implies
that the byte enable signal does not apply.

The MC68030 always drives all sections of the data bus because, at the start
of a write cycle, the bus controller does not know the port size. The byte
enable signals in the table apply only to read operations that are not to be
internally cached and to write operations. For cachable read cycles, during
which the data is cached, the addressed port must drive all sections of the
bus on which it resides.

MC68030 USER'S MANUAL MOTOROLA

h -

Table 7-7..Data Bus Write Enable Signals for
Byte, Word, and Long-Word Ports

' Data Bus Active Sections
ngvsfer sizi | sizo Al A0 Byte-(B) - Word {W) - Long-Word (L) Ports
1ze
D31:D24 | D23:D16 | D15:D8 | D7:DO

Byte 0 1 0 0 BWL — — _

0 1 0 1 B WL - -

0 1 1 0 BW - L —

0 1 1 1 B w - L
Word 1 0 0 0 BWL WL — -

1 0 0 1 B wt L -

1 0 1 0 BW w L t

1 0 1 1 B w - L
3 Byte 1 1 0 0 BWL WL L —

1 1 0 1 B wi L L

1 1 1 0 BW w L L

1 1 1 1 B w - L
Long Word| 0 0 0 0 BWL wL L L

0 0 0 1 B WL L L

0 0 1 0 BW w L L

0 0 1 1].B w — L

The table shows that the MC68030 transfers the number of bytes specified
by the size signals to or from the specified address unless the operand is
misaligned or the number of bytes is greater than the port width. In these
cases, the device transfers the greatest number of bytes possible for the port.
For example, if the size is four bytes and the address offset (A1:AQ) is 01, a
32-bit slave can only receive three bytes in the current bus cycle. A 16- or
8-bit slave can only receive one byte. The table defines the byte enables for
all port sizes. Byte data strobes can be obtained by combining the enable
signals with the data strobe signal. Devices residing on 8-bit ports can use
the data strobe by itself since there is only one valid byte for every transfer.
These enable or strobe signals select only the bytes required for write cycles
or for noncachable read cycles. The other bytes are not selected, which
prevents incorrect accesses in sensitive areas such as I/0.

Figure 7-18 shows a logic diagram for one method for generating byte data
enable signals for 16- and 32-bit ports from the size and address encodings
and the read/write signal.

MOTOROLA MC68030 USER'S MANUAL 7-23

N\
y

y

1.2.5

7.2.6

7-24

MC68030 versus MC68020 Dynamic Bus Sizing

The MC68030 supports the dynamic bus sizing mechanism of the MC68020
for asynchronous bus cycles (terminated with DSACKx) with two restrictions.
First, for a cachable access within the boundaries of an aligned long word,
the port size must be consistent throughout the transfer of each long word.
For example, when a byte port resides at address $00, addresses $01, $02,
and $03 must also correspond to byte ports. Second, the port must supply
as much data as it signals as port size, regardless of the transfer size indicated
with the size signals and the address offset indicated by A0 and At for
cachable accesses. Otherwise, dynamic bus sizing is identical in the two
processors.

Cache Filling

The on-chip data and instruction caches, described in SECTION 6 ON-CHIP
CACHE MEMORIES, are each organized as 16 lines of four long-word entries
each. For each line, a tag contains the most significant bits of the logical
address, FC2 (instruction cache) or FCO-FC2 (data cache), and a valid bit for
each entry in the line. An entry fill operation loads an entire long word
accessed from memory into a cache entry. This type of fill operation is per-
formed when one entry of a line is not valid and an access is cachable. A
burst fill operation is requested when a tag miss occurs for the current cycle
or when all four entires in the cache line are invalid (provided the cache is
enabled and burst filling for the cache is enabled). The burst fill operation
attempts to fill all four entries in the line. To support burst filling, the slave
device must have a 32-bit port and must have a burst mode capability; that
is, it must acknowledge a burst request with the cache burst acknowledge
(CBACK) signal. It must also terminate the burst accesses with STERM and
place a long word on the data bus for each transfer. The device may continue
to supply successive long words, asserting STERM with each one, until the
cache line is full. For further information about filling the cache, both entry
fills and burst mode fills, refer to 6.1.3 Cache Filling, 7.3.4 Synchronous Read
Cycle, 7.3.5 Synchronous Write Cycle, and 7.3.7 Burst Operation Cycles, which
discuss in detail the required bus cycles.

MC68030 USER'S MANUAL MOTOROLA

h -
P]

u]
—1
LMD
1
|
VR
1/
=
LLD
D
—
—) LD
Al *
De UUD = UPPER UPPER DATA (32-BIT PORT}
sizo * UMD=UPPER MIDDLE DATA {32-BIT PORT)
]' LMD = LOWER MIDDLE DATA (32-BIT PORT)
LLD = LOWER LOWER DATA {32-BIT PORT)
siz1 UD = UPPER DATA (16-BIT PORT)
T—D‘F LD = LOWER DATA (16-BIT PORT)
R/W

NOTE: These select lines can be combined with the address decode circuitry, or all
can be generated within the same programmed array logic unit.

Figure 7-18. Byte Data Select Generation for 16- and 32-Bit Ports

MOTOROLA MC68030 USER'S MANUAL 7-25

N\
y

y

/.2./ Cache Interactions

7-26

The organization and requirements of the on-chip instruction and data caches
affect the interpretation of the DSACKx and STERM signals. Since the MC68030
attempts to load all data operands and instructions that are cachable into
the on-chip caches, the bus may operate differently when caching is enabled.
Specifically, on cachable read cycles that terminate normally, the low-order
address signals (A0 and A1) and the size signals do not apply.

The slave device must supply as much aligned data on the data bus as its
port size allows, regardless of the requested operand size. This means that
an 8-bit port must supply a byte, a 16-bit port must supply a word, and a
32-bit port must supply an entire long word. This data is loaded into the
cache. For a 32-bit port, the slave device ignores A0 and AT and supplies the
long word beginning at the long-word boundary on the data bus. For a
16-bit port, the device ignores A0 and supplies the entire word beginning at
the lower word boundary on D16-D31 of the data bus. For a byte port, the
device supplies the addressed byte on D24-D31.

If the addressed device cannot supply port-sized data or if the data should
not be cached, the device must assert cache inhibit in (CIIN) as it terminates
the read cycle. If the bus cycle terminates abnormally, the MC68030 does not
cache the data. For details of interactions of port sizes, misalignments, and
cache filling, refer to 6.1.3 Cache Filling.

The caches can also affect the assertion of AS and the operation of a read
cycle. The search of the appropriate cache by the processor begins when the
microsequencer requires an instruction or a data item. At this time, the bus
controller may also initiate an external bus cycle in case the requested item
is not resident in the instruction or data cache. If the bus is not occupied with
another read or write cycle, the bus controller asserts the ECS signal (and
the OCS signal, if appropriate). If an internal cache hit occurs, the external
cycle aborts, and AS is not asserted. This makes it possible to have ECS
asserted on multiple consecutive clock cycles. Notice that there is a minimum
time specified from the negation of ECS to the next assertion of ECS (refer
to MCB8030EC/D, MC68030 Electrical Specifications.

Instruction prefetches can occur every other clock so that if, after an aborted
cycle due to an instruction cache hit, the bus controller asserts ECS on the
next clock, this second cycle is for a data fetch. However, data accesses that
hit in the data cache can also cause the assertion of ECS and an aborted
cycle. Therefore, since instruction and data accesses are mixed, it is possible
to see multiple successive ECS assertions on the external bus if the processor

MC68030 USER'S MANUAL MOTOROLA

h -

P

is hitting in both caches and if the bus controller is free. Note that, if the bus
controller is executing other cycles, these aborted cycles due to cache hits
may not be seen externally. Also, OCS is asserted for the first external cycle
of an operand transfer. Therefore, in the case of a misaligned data transfer
where the first portion of the operand results in a cache hit (but the bus
controller did not begin an external cycle and then abort it) and the second
portion in a cache miss, OCS is asserted for the second portion of the operand.

7.2.8 Asynchronous Operation

The MC68030 bus may be used in an asynchonous manner. In that case, the
external devices connected to the bus can operate at clock frequencies dif-
ferent from the clock for the MC68030. Asynchronous operation requires
using only the handshake line (AS, DS, DSACK1, DSACKO, BERR, and HALT)
to control data transfers. Using this method, AS signals the start of a bus
cycle, and DS is used as a condition for valid data on a write cycle. Decoding
the size outputs and lower address lines (A0 and A1) provides strobes that
select the active portion of the data bus. The slave device (memory or pe-
ripheral) then responds by placing the requested data on the correct portion
of the data bus for a read cycle or latching the data on a write cycle, and
asserting the DSACK1/DSACKO combination that corresponds to the port size
to terminate the cycle. If no slave responds or the access is invalid, external
control logic asserts the BERR or BERR and HALT signal(s) to abort or retry
the bus cycle, respectively.

The DSACKXx signals can be asserted before the data from a slave device is
valid on a read cycle. The length of time that DSACKx may precede data is
given by parameter #31, and it must be met in any asynchronous system to
insure that valid data is latched into the processor. (Refer to MC68030EC/D,
MCE8030 Electrical Specifications for timing parameters.) Notice that no max-
imum time is specified from the assertion of AS to the assertion of DSACKx.
Although the processor can transfer data in a minimum of three clock cycles
when the cycle is terminated with DSACKx, the processor inserts wait cycles
in clock period increments until DSACKXx is recognized.

The BERR and/or HALT signals can be asserted after the DSACKx signal(s)
is asserted. BERR and/or HALT must be asserted within the time given as
parameter #48, after DSACKx is asserted in any asynchronous system. if this
maximum delay time is violated, the processor may exhibit erratic behavior.

MOTOROLA MC68030 USER'S MANUAL 7-27

h -

P

For asynchronous read cycles, the value of CIIN is internally latched on the
rising edge of bus cycle state 4. Refer to 7.3.1 Asynchronous Read Cycle for
more details on the states for asynchonous read cycles.

During any bus cycle terminated by DSACKx or BERR, the assertion of CBACK
is completely ignored.

7.2.9 Synchronous Operation with DSACKXx

7-28

Although cycles terminated with the DSACKXx signals are classified as asyn-
chronous and cycles terminated with STERM are classified as synchronous,
cycles terminated with DSACKx can also operate synchronously in that sig-
nals are interpreted relative to clock edges.

The devices that use these cycles must synchronize the responses to the
MC68030 clock to be synchronous. Since they terminate bus cycles with the
DSACKx signals, the dynamic bus sizing capabilities of the MC68030 are
available. In addition, the minimum cycle time for these cycles is also three
clocks.

To support those systems that use the system clock to generate DSACKx and
other asynchronous inputs, the asynchronous input setup time (parameter
#47A) and the asynchronous input hold time (parameter #47B) are given. If
the setup and hold times are met for the assertion or negation of a signal,
such as DSACKX, the processor can be guaranteed to recognize that signal
level on that specific falling edge of the system clock. If the assertion of
DSACKXx is recognized on a particular falling edge of the clock, valid data is
latched into the processor {for a read cycle) on the next falling clock edge
provided the data meets the data setup time (parameter #27). In this case,
parameter #31 for asynchronous operation can be ignored. The timing pa-
rameters referred to are described in MC68030EC/D, MC68030 Electrical Spec-
ifications. If a system asserts DSACKx for the required window around the
falling edge of S2 and obeys the proper bus protocol by maintaining DSACKx
(and/or BERR/HALT) until and throughout the clock edge that negates AS
(with the appropriate asynchronous input hold time specified by parameter
#47B), no wait states are inserted. The bus cycle runs at its maximum speed
(three clocks per cycle) for bus cycles terminated with DSACKXx.

MC68030 USER'S MANUAL MOTOROLA

h -

P

To assure proper operation in a synchronous system when BERR or BERR
and HALT is asserted after DSACKx, BERR (and HALT) must meet the ap-
propriate setup time (parameter #27A) prior to the falling clock edge one
clock cycle after DSACKx is recognized. This setup time is critical, and the
MC68030 may exhibit erratic behavior if it is violated.

When operating synchronously, the data-in setup and hold times for syn-
chronous cycles may be used instead of the timing requirements for data
relative to the DS signal.

The value of ClIN is latched on the rising edge of bus cycle state 4 for all
cycles terminated with DSACKx.

7.2.10 Synchronous Operation with STERM

The MC68030 supports synchronous bus cycles terminated with STERM.
These cycles, for 32-bit ports only, are similar to cycles terminated with
DSACKx. The main difference is that STERM can be asserted (and data can
be transferred) earlier than for a cycle terminated with DSACKx, causing the
processor to perform a minimum access time transfer in two clock periods.
However, wait cycles can be inserted by delaying the assertion of STERM
appropriately.

Using STERM instead of DSACKXx in any bus cycle makes the cycle synchron-
ous. Any bus cycle is synchronous if;

1. Neither DSACKx nor AVEC is recognized during the cycle.

2. The port size is 32 bits.

3. Synchronous input setup and hold time requirements (specifications
#60 and #61) for STERM are met.

Burst mode operation requires the use of STERM to terminate each of its
cycles. The first cycle of any burst transfer must be a synchronous cycle as
described in the preceding paragraph. The exact timing of this cycle is con-
trolled by the assertion of STERM, and wait cycles can be inserted as nec-
essary. However, the minimum cycle time is two clocks. If a burst operation
is initiated and allowed to terminate normally, the second, third, and fourth
cycles latch data on successive falling edges of the clock at a minimum.
Again, the exact timing for these subsequent cycles is controlled by the timing
of STERM for each of these cycles, and wait cycles can be inserted as nec-
essary.

MOTOROLA MC68030 USER'S MANUAL 7-29

h -

Although the synchronous input signals (STERM, CIIN, and CBACK) must be
stable for the appropriate setup and hold times relative to every rising edge
of the clock during which AS is asserted, the assertion or negation of CBACK
and CIIN is internally latched on the rising edge of the clock for which STERM
is asserted in a synchronous cycle.

The STERM signal can be generated from the address bus and function code
value and does not need to be qualified with the AS signal. If STERM is
asserted and no cycle is in progress (even if the cycle has begun, ECS is
asserted and then the cycle is aborted), STERM is ignored by the MC68030.

Similarly, CBACK can be asserted independently of the assertion of CBREQ.
if a cache burst is not requested, the assertion of CBACK is ignored.

The assertion of CIIN is ignored when the appropriate cache is not enabled
or when cache inhibit out (CIOUT) is asserted. It is also ignored during write
cycles or translation table searches.

NOTE

STERM and DSACKx should never be asserted during the same bus
cycle.

7.3 DATA TRANSFER CYCLES

7-30

The transfer of data between the processor and other devices involves the
following signals:

® Address Bus A0-A31
e Data Bus D0-D31
e Control Signals

The address and data buses are both parallel nonmultiplexed buses. The bus
master moves data on the bus by issuing control signals, and the asynchron-

" ous/synchronous bus uses a handshake protocol to insure correct movement

of the data. In all bus cycles, the bus master is responsible for de-skewing
all signals it issues at both the start and the end of the cycle. In addition, the
bus master is responsible for de-skewing the acknowledge and data signals
from the slave devices. The following paragraphs define read, write, and
read-modify-write cycle operations. An additional paragraph describes burst
mode transfers.

MC68030 USER’'S MANUAL MOTOROLA

N\
y

y

Each of the bus cycles is defined as a succession of states. These states apply
to the bus operation and are different from the processor states described
in SECTION 4 PROCESSING STATES. The clock cycles used in the descrip-
tions and timing diagrams of data transfer cycles are independent of the
clock frequency. Bus operations are described in terms of external bus states.

7.3.1 Asynchronous Read Cycle

During a read cycle, the processor receives data from a memory, coprocessor,
or peripheral device. If the instruction specifies a long-word operation, the
MC68030 attempts to read four bytes at once. For a word operation, it at-
tempts to read two bytes at once, and for a byte operation, one byte. For
some operations, the processor requests a three-byte transfer. The processor
properly positions each byte internally. The section of the data bus from
which each byte is read depends on the operand size, address signals (A0-A1),
CIIN and CIOUT, whether the internal caches are enabled, and the port size.
Refer to 7.2.1 Dynamic Bus Sizing, 7.2.2 Misaligned Operands, and 7.2.6
Cache Filling for more information on dynamic bus sizing, misaligned op-
erands, and cache interactions.

Figure 7-19 is a flowchart of an asynchronous long-word read cycle. Figure
7-20 is a flowchart of a byte read cycle. The following figures show functional
read cycle timing diagrams specified in terms of clock periods. Figure 7-21
corresponds to byte and word read cycles from a 32-bit port. Figure 7-22
corresponds to a long-word read cycle from an 8-bit port. Figure 7-23 also
applies to a long-word read cycle, but from a 16-bit port.

State 0

The read cycle starts in state 0 (S0). The processor drives ECS low, indi-
cating the beginning of an external cycle. When the cycle is the first external
cycle of a read operand operation, operand cycle start {(OCS) is driven fow
at the same time. During SO, the processor places a valid address on
A0-A31 and valid function codes on FCO-FC2. The function codes select
the address space for the cycle. The processor drives R'W high for a read
cycle and drives DBEN inactive to disable the data buffers. SIZ0-SiZ1 be-
come valid, indicating the number of bytes requested to be transferred.
CIOUT also becomes valid, indicating the state of the MMU Cl bit in the
address translation descriptor or in the appropriate TTx register.

MOTOROLA MC68030 USER'S MANUAL 7-31

7

h -

P]

PROCESSOR

ADDRESS DEVICE

1) ASSERT ECS/0CS FOR ONE-HALF CLOCK

2) SET R/W T0 READ

3) DRIVE ADDRESS ON AD-A31

4) DRIVE FUNCTION CODE ON FCO-FC2

5) DRIVE SIZE {$120-Si21) {FOUR BYTES)

6) CACHE INHIBIT OUT {TIOUT) BECOMES VALID
7} ASSERT ADDRESS STROBE {(AS)

8) ASSERT DATA STROBE (DS)

9) ASSERT DATA BUFFER ENABLE (DBEN)

EXTERNAL DEVICE

PRESENT DATA

ACQUIRE DATA

1} DECODE ADORESS
2} PLACE DATA ON D0-031
3) ASSERT DATA TRANSFER AND SIZE ACKNOWLEDGE (DSACKx)

1) SAMPLE CACHE INHIBIT IN (THIN)
2) LATCH DATA

3) NEGATE AS AND DS

4) NEGATE DBEN

TERMINATE CYCLE

'

START NEXT CYCLE

1) REMOVE DATA FROM DO-D31
2) NEGATE DSACKx

Figure 7-19. Asynchronous Long-Word Read Cycle Flowchart

PROCESSOR

ADDRESS DEVICE

1) ASSERT ECS/GCS FOR ONE-HALF CLOCK

2) SET R/W TO READ

3) DRIVE ADDRESS ON AD-A31

4) DRIVE FUNCTION CODE ON FC0-FC2

5) DRIVE SIZE ($120-5121) (ONE BYTE)

6) CACHE INHIBIT OUT (TI0UT) BECOMES VALID
7) ASSERT ADDRESS STROBE (AS)

8) ASSERT DATA STROBE (3S)

9) ASSERT DATA BUFFER ENABLE (DBEN)

EXTERNAL DEVICE

PRESENT DATA

ACQUIRE DATA

1} DECODE ADDRESS
2} PLACE DATA ON D31-D24 OR
023-016 OR
D15-08 OR
D700
{BASED ON AD,A1,CACHE, AND BUS WIDTH}
3) ASSERT DATA TRANSFER AND SIZE ACKNOWLEDGE (DSACKx}

1) SAMPLE CACHE INHIBIT IN (CTI}
2) LATCH DATA

3} NEGATE AS AND DS

4) NEGATE DBEN

TERMINATE CYCLE

'

START NEXT CYCLE

1) REMOVE DATA FROM DATA BUS
2) NEGATE DSACKx

Figure 7-20. Asynchronous Byte Read Cycle Flowchart

7-32

MC68030 USER'S MANUAL

MOTOROLA

h -
P]

S0 82 S4 SO §2 84 S0 S2 S4

aan X
n
AT\

rofcz X
w 77

WORD BYTE
sz \
R/W ____/
=\
=\
AS \
® O\
BSACKT
TSACK
DBEN
D24-031 oz >
D16-023 &z
08-D15 a»!
00-07 { o3

N
\1— WORD READ “Diﬁ— BYTE READ —’!17 BYTE READ —’l

Figure 7-21. Asynchronous Byte and Word Read Cycles — 32-Bit Port

MOTOROLA MC68030 USER'S MANUAL 7-33

h -

P]

CLK

A2-A31

Al

AD

FCO-FC2

Siz1

Sizo

R/W

5

D24-031

D16-D23

D8-D15

Do-07

7-34

»
S

S2 S4 S0 $2 sS4 S0 S2 $4 S0 S2 84

LONG WORD BYTE

NN oS N

C

JOUppHppU

I

— OP0 D= L 0P) < P2) — 0P3
N N—/ N—/ N

r<¢———— BYTE READ ——FL— BYTE READ ‘——PL—— BYTE READ 4>‘<—~ BYTE READ ————]

LONG WORD GPERAND READ FROM 8-BIT PORT

Figure 7-22. Long-Word Read — 8-Bit Port with CIOUT Asserted

MC68030 USER'S MANUAL MOTOROLA

h -
P]

" CLK

© A2-A%

Al

AC

FCO-FC2

SiZ1

Sizo

o
2
=

mj
(3]
A

MOTOROLA

w
S
1%
S
w
=~

S0 S2 S4 Se

§2 sS4

o

\ /
X X X
\ / _
) LONG WORD WORD LONG WORD
_/ N
%0 D oz 0P
) s) 0Pt
- < 0P2
— N
LONG WORD READ
[—— WORD READ —b'd—; WORD READ ——»ret—— FROM 32-BIT PORT a'
lag———— LONG WORD OPERAND READ FROM 16-BIT PORT g}
Figure 7-23. Long-Word Read — 16-Bit and 32-Bit Port
MC68030 USER'S MANUAL

7-35

h -

7-36

State 1
One-half clock later in state 1 (S1), the processor asserts AS indicating that
the address on the address bus is valid. The processor also asserts DS also
during S1. In addition, the ECS (and OCS, if asserted) signal is negated
during S1.

State 2
During state 2 (S2), the processor asserts DBEN to enable external data
buffers. The selected device uses R/W, SIZ0-SIZ1, A0-A1, CIOUT, and DS
to place its information on the data bus, and drives CIIN if appropriate.
Any or all of the bytes (D24-D31, D16-D23, D8-D15, and D0-D7) are se-
lected by SIZ0-S1Z1 and A0-A1. Concurrently, the selected device asserts
DSACKXx.

State 3

As long as at least one of the DSACKx signals is recognized by the end of
S2 (meeting the asynchronous input setup time requirement), data is latched
on the next falling edge of the clock, and the cycle terminates. If DSACKx
is not recognized by the start of state 3 (S3), the processor inserts wait
states instead of proceeding to states 4 and 5. To ensure that wait states
are inserted, both DSACKO and DSACK1 must remain negated throughout
the asynchronous input setup and hold times around the end of S2. If wait
states are added, the processor continues to sample the DSACKx signals
on the falling edges of the clock until one is recognized.

State 4
The processor samples CIIN at the beginning of state 4 (S4). Since CIIN is
defined as a synchronous input, whether asserted or negated, it must meet
the appropriate synchronous input setup and hold times on every rising
edge of the clock while AS is asserted. At the end of S4, the processor
latches the incoming data.

State 5
The processor negates AS, DS, and DBEN during state 5 (S5). It holds the
address valid during S5 to provide address hold time for memory systems.
R/W, SIZ0-SIZ1, and FCO-FC2 also remain valid throughout S5.

The external device keeps its data and DSACKx signals asserted until it
detects the negation of AS or DS (whichever it detects first). The device
must remove its data and negate DSACKx within approximately one clock
period after sensing the negation of AS or DS. DSACKx signals that remain
asserted beyond this limit may be prematurely detected for the next bus
cycle.

MC68030 USER'S MANUAL MOTOROLA

7.3.2 Asynchronous Write Cycle

During a write cycle, the processor transfers data to memory or a peripheral
device,

Figure 7-24 is a flowchart of a write cycle operation for a long-word transfer.
The following figures show the functional write cycle timing diagrams spec-
ified in terms of clock periods. Figure 7-25 shows two write cycles (between
two read cycles with no idle time) for a 32-bit port. Figure 7-26 shows byte
and word write cycles to a 32-bit port. Figure 7-27 shows a long-word write

. ¢ycle to an 8-bit port. Figure 7-28 shows a long-word write cycle to a 16-bit
port.

PROCESSOR EXTERNAL DEVICE

ADDRESS DEVICE

1) ASSERT ECS/GTS FOR ONE-HALF CLOCK
2) DRIVE ADDRESS ON AD-A31
3) DRIVE FUNCTION CODE ON FCO-FC2
4) DRIVE SIZE (SI20-$121) (FOUR BYTES)
5 SET R/W TO WRITE
6) CACHE INHIBIT OUT (CIOUT) BECOMES VALID
7) ASSERT ADDRESS STROBE (AS)
8} ASSERT DATA BUFFER ENABLE (DBEN)
8) DRIVE DATA LINES D0-031
10} ASSERT DATA STROBE (DS} . ACCEPT DATA

1) DECODE ADDRESS
2} STORE DATA FROM DO-D31
TERMINATE OUTPUT TRANSFER -t 3) ASSERT DATA TRANSFER AND SIZE ACKNOWLEDGE (DSACKx)

1) NEGATE AS AND DS
2) REMOVE DATA FROM DO-D31
3) NEGATE DBEN 3 TERMINATE CYCLE

i 1} NEGATE DSACKx

[. START NEXT CYCLE j

Figure 7-24. Asynchronous Write Cycle Flowchart

MOTOROLA MC68030 USER'S MANUAL 7-37

h -

P]

ou 82 sS4 S0 82 54 S0 §2 54 $0 §2 Sw Sw s4

wars X X X X
a1\
T\
o T\
s T\
rW_/

><
><
<

LONG WORD

DBEN

00-D31

READ WRITE WRITE

DSACKO \
I

<
READ WITH WAIT STATES ——‘

Figure 7-25. Asynchronous Read-Write-Read Cycles — 32-Bit Port

State 0

The write cycle starts in S0. The processor drives ECS low, indicating the
beginning of an external cycle. When the cycle is the first external cycle
of a write operation, OCS is driven low at the same time. During SO, the
processor places a valid address on A0-A31 and valid function codes on
FCO-FC2. The function codes select the address space for the cycle. The
processor drives RW low for a write cycle. SIZ0-SIZ1 become valid, in-
dicating the number of bytes to be transferred. CIOUT also becomes valid,
indicating the state of the MMU CI bit in the address translation descriptor
or in the appropriate TTx register.

7-38 MC68030 USER'S MANUAL MOTOROLA

h -

P]

A2A31 j X X
Al _/

N

g
><

WORD BYTE

NN

\/ \/
/ —/

024-031 D—-() > 0p3 0p3
o028 >—— w3 >—X 0p3 0P3
08-015 D—(o0P2 >l 0P3 o
D G P oP3

T

WORD WRITE BYTE WRITE 4—'4— BYTE WRITE —b{

Figure 7-26. Asynchrbnbus Byte and Word Write Cycles — 32-Bit Port

MOTOROLA MC68030 USER'S MANUAL 7-39

h -

P]

S0 82 sS4 §0 S2 S4 80 s2 $4 S0 $2 84

b
S
><

<N PS

LONG WORD 3-BYTE WORD BYTE

~NON PSS
~
N PSS

C
C
C

|
|

(
E

AN
v2epst — >l 0P0 > v >— e >—
D16-023 D——(oPi < 0P1 > 0p3 — 0p3
08015 >l 02 Sl 2 >— 72 "
wor > w3 > > > o

[—— BYTE WRITE BYTE WRITE BYTE WRITE BYTE WRITE —————

P
1
+

- LONG WORB OPERAND READ TO 8-BIT PORT -

Figure 7-27. Long-Word Operand Write — 8-Bit Port

7-40 MC68030 USER'S MANUAL MOTOROLA

h -
P]

CLK

A2-A31

Al

AD

FCO-FC2

SiZ1

JJIPPPHPPH

[]d

o
)|
%21

024-031

016-D23

D8-D15

DO-D7

MOTOROLA

A D
/ __

LONG WORD WORD LONG WORD

W

5

0P2 0pP2 oP2

0P3 0P3 0P3

LONG WORD WRITE
re&—— WORD WRITE 4—"4— WORD WRITE ——P(—— T0 32-BIT PORT ‘PI

[——— LONG WORD OPERAND WRITE TO 16-BIT PORT ~————

Figure 7-28. Long-Word Operand Write — 16-Bit Port

MC68030 USER'S MANUAL 7-41

h -

P

State 1 o
One-half clock later in S1, the processor asserts AS, indicating that the
address on the address bus is valid. The processor also asserts DBEN
during S1, which can enable external data buffers. In addition, the ECS
(and OCS, if asserted) signal is negated during S1.

State 2
During S2, the processor places the data to be written onto the D0-D31,
and samples DSACKx at the end of S2.

State 3

The processor asserts DS during S3, indicating that the data is stable on
the data bus. As long as at least one of the DSACKXx signals is recognized
by the end of S2 (meeting the asynchronous input setup time requirement),
the cycle terminates one clock later. If DSACKx is not recognized by the
start of S3, the processor inserts wait states instead of proceeding to S4
and S5. To ensure that wait states are inserted, both DSACKO and DSACK1
must remain negated throughout the asynchronous input setup and hold
times around the end of S2. If wait states are added, the processor con-
tinues to sample the DSACKx signals on the falling edges of the clock until
one is recognized. The selected device uses R/W, DS, SIZ0-SIZ1, and A0-A1
to latch data from the appropriate byte(s) of the data bus (D24-D31, D16-D23,
D8-D15, and D0-D7). SIZ0-SIZ1 and A0-A1 select the bytes of the data
bus. If it has not already done so, the device asserts DSACKx to signal that
it has successfully stored the data.

State 4 _
The processor issues no new control signals during S4.

State 5
The processor negates AS and DS during S5. It holds the address and data
valid during S5 to provide address hold time for memory systems. R/W,
SIZ0-S1Z1, FCO-FC2, and DBEN also remain valid throughout S5.

The external device must keep DSACKx asserted until it detects the ne-
gation of AS or DS (whichever it detects first). The device must negate
DSACKx within approximately one clock period after sensing the negation
of AS or DS. DSACKXx signals that remain asserted beyond this limit may
be prematurely detected for the next bus cycle.

7-42 MC68030 USER'S MANUAL MOTOROLA

7.3.3 Asynchronous Read-Modify-Write Cycle

The read-modify-write cycle performs a read, conditionally modifies the data
in the arithmetic logic unit, and may write the data out to memory. In the
MC68030 processor, this operation is indivisible, providing semaphore ca-
pabilities for muitiprocessor systems. During the entire read-modify-write
sequence, the MC68030 asserts the RMC signal to indicate that an indivisible
operation is occurring. The MC68030 does not issue a bus grant (BG) signal
in response to a bus request (BR) signal during this operation. The read
portion of a read-modify-write operation is forced to miss in the data cache
because the data in the cache would not be valid if another processor had
altered the value being read. However, read-modify-write cycles may alter
the contents of the data cache as described in 6.1.2. Data Cache.

No burst filling of the data cache occurs during a read-modify-write operation.

The test and set (TAS) and compare and swap (CAS and CAS2) instructions
are the only MC68030 instructions that utilize read-modify-write operations.
Depending on the compare results of the CAS and CAS2 instructions, the
‘write cycle(s) may not occur. Table search accesses required for the MMU
are always read-modify-write cycles to the supervisor data space. During

~ these cycles, a write does not occur unless a descriptor is updated. No data
is internally cached for table search accesses since the MMU uses physical
addresses to access the tables. Refer to SECTION 9 MEMORY MANAGEMENT
UNIT for information about the MMU.

Figure 7-29 is a flowchart of the asynchronous read-modify-write cycle op-
eration. Figure 7-30 is an example of a functional timing diagram of a TAS
instruction specified in terms of clock periods.

State 0

The processor asserts ECS and OCS in S0 to indicate the beginning of an
external operand cycle. The processor also asserts RMC in SO to identify
a read-modify-write cycle. The processor places a valid address on A0-A31
and valid function codes on FC0-FC2. The function codes select the address
space for the operation. SIZ0-SIZ1 become valid in SO to indicate the
operand size. The processor drives RAW high for the read cycle and sets
CIOUT according to the value of the MMU ClI bit in the address translation
descriptor or in the appropriate TTx register.

State 1
One-half clock later in S1, the processor asserts AS, indicating that the
address on the address bus is valid. The processor asserts DS during S1.
In addition, the ECS {and OCS, if asserted) signal is negated during S1.

MOTOROLA MC68030 USER'S MANUAL 7-43

h -

P]

PROCESSOR

LOCK BUS

1) ASSERT READ-MODIFY-WRITE CYCLE (RMC)

'

AQDRESS DEVICE

1) ASSERT ECS/0ST FOR ONE-HALF CLOCK

2) SET R/W TO READ

3) DRIVE ADDRESS ON A0-A31

4) DRIVE FUNCTION CODE ON FCO-FC2

5) DRIVE SIZE (S120-81Z1)

6) CACHE INHIBIT QUT (CTOUT) BECOMES VALID
7) ASSERT ADDRESS STROBE (AS)

8) ASSERT DATA STROBE (03}

9} ASSERT DATA BUFFER ENABLE {DBEN)

EXTERNAL DEVICE

PRESENT DATA

ACQUIRE DATA

1) DECODE ADDRESS
2) PLACE DATA ON DO-D31
3) ASSERT DATA TRANSFER
AND SIZE ACKNOWLEDGE (DSACKx)

1) SAMPLE CACHE INHIBIT IN (CTIN)
2) LATCH DATA

3) NEGATE AS AND DS

4} NEGATE DBEN

5) START DATA MODIFICATION

TERMINATE CYCLE

®

IF CAS2 INSTRUCTION AND
ONLY ONE OPERAND READ,
THEN 6O T0 (B); IF
OPERANDS DO NOT MATCH,
THEN 6O T0 (©); ELSE

TERMINATE OUTPUT TRANSFER

6070 (B)
1) REMOVE DATA FROM D0-D3!
START QUTPUT TRANSFER 2) NEGATE DSACKx ©®©f

1) ASSERT ECS/0CS FOR ONE-HALF CLOCK
2) DRIVE ADDRESS ON A0-A31 (IF DIFFERENT)
3) DRIVE SIZE (SI20-SIZ1) ‘
4} SET R/W T0 WRITE
5) CIOUT BECOMES VALID
6) ASSERT AS
7) ASSERT DBEN
8) PLACE DATA ON D0-D31
9) ASSERT DS ACCEPT DATA

1) DECODE ADDRESS -

2) STORE DATA FROM DG-D31 ®

3} ASSERT DSACKx

1) NEGATE AS AND DS
2} REMOVE DATA FROM DO-D31
3) NEGATE DBEN

TERMINATE CYCLE

1) NEGATE DSACKx

IF CAS2 INSTRUCTION AND
ONLY ONE OPERAND
WRITTEN, THEN GO TO @:
ELSE GO T0

®

UNLOCK BUS

1) NEGATE RMC

!

r START NEXT CYCLE

il

Figure 7-29. Asynchronous Read-Modify-Write Cycle Flowchart

7-44

MC68030 USER'S MANUAL

MOTOROLA

s X - S
Al _/ - T =~

AD —-\ ..
am X - B—
szt T\ e
soo [e "
w 7 |
AT\ . ST
= T\ S A
s/ TN /A
=T\ / - N e
o\ - [T
o T\ B i
DSACKT ‘ / \ / - \ //___"'"‘
TSACKD / \ / - \ //_____
w7\ T A
b2003 > - Lo e ——
016-023 3 - < o3 e
D8-015 0p3 _— L w —————
007 > < T e
wR o/ - 0
mr [T ==
86 ___“_//

INDIVISIBLE CYCLE

Y O

‘4- NEXT CYCLE

Figure 7-30. Asynchronous Byte Read-Modify-Write Cycle — 32-Bit Port

(TAS Instruction with CIOUT or CIIN Asserted)

MOTOROLA MC68030 USER'S MANUAL

7-45

o
<

7-46

State 2

During state 2 (S2), the processor drives DBEN active to enable external
data buffers. The selected device uses R/W, SI1Z0-SIZ1, A0O-A1, and DS to
place information on the data bus. Any or all of the bytes (D24-D31, D16-D23,
D8-D15, and D0-D7) are selected by SIZ0-SiZ1 and A0-A1. Concurrently,
the selected device may assert the DSACKx signals.

State 3

As long as at least one of the DSACKx signals is recognized by the end of
S2 {meeting the asynchronous input setup time requirement), data is latched
on the next falling edge of the clock, and the cycle terminates. If DSACKx
is not recognized by the start of S3, the processor inserts wait states instead
of proceeding to S4 and S5. To ensure that wait states are inserted, both
DSACKO and DSACK1 must remain negated throughout the asynchronous
input setup and hold times around the end of S2. If wait states are added,
the processor continues to sample the DSACKx signals on the falling edges
of the clock until one is recognized.

State 4

The processor samples the level of CIIN at the beginning of S4. At the end
of 54, the processor latches the incoming data.

State 5

The processor negates AS, DS, and DBEN during S5. If more than one read
cycle is required to read in the operand(s), SO-S5 are repeated for each
read cycle. When finished reading, the processor holds the address, R/W,
and FCO-FC2 valid in preparation for the write portion of the cycle.

The external device keeps its data and DSACKx signals asserted until it
detects the negation of AS or DS.(whichever it detects first). The device
must remove the data and negate DSACKx within approximately one clock
period after sensing the negation of AS or DS. DSACKXx signals that remain
asserted beyond this limit may be prematurely detected for the next portion
of the operation.

Idle States

The processor does not assert any new control signals during the idle
states, but it may internally begin the modify portion of the cycle at this
time. S6-S11 are omitted if no write cycle is required. If a write cycle is
required, the R/W signal remains in the read mode until S6 to prevent bus
conflicts with the preceding read portion of the cycle; the data bus is not
driven until S8.

MC68030 USER'S MANUAL MOTOROLA

h -

State 6

The processor asserts ECS and OCS in S6 to indicate that another external
cycle is beginning. The processor drives R/W low for a write cycle. CIOUT
also becomes valid, indicating the state of the MMU Cl bit in the address
translation descriptor or in a relevant TTx register. Depending on the write
operation to be performed, the address lines may change during S6.

State 7

In S7, the processor asserts AS, indicating that the address on the address
bus is valid. The processor also asserts DBEN, which can be used to enable
data buffers during S7. In addition, the ECS (and OCS, if asserted) signal
is negated during S7.

State 8

During S8, the processor places the data to be written onto D0-D31.

State 9

The processor asserts DS during S9 indicating that the data is stable on
the data bus. As long as at least one of the DSACKXx signals is recognized
by the end of S8 (meeting the asynchronous input setup time requirement),
the cycle terminates one clock later. If DSACKx is not recognized by the
start of S9, the processor inserts wait states instead of proceeding to S10
and S11. To ensure that wait states are inserted, both DSACKO and DSACK1
must remain negated throughout the asynchronous input setup and hald
times around the end of S8. If wait states are added, the processor con-
tinues to sample DSACKx signals on the falling edges of the clock until
one is recognized.

The selected device uses R/W, DS, SIZ0-SIZ1, and A0-A1 to latch data from
the appropriate section(s) of the data bus (D24-D31, D16-D23, D8-D15,
and D0-D7). SIZ0-SIZ1. and A0O-A1 select the data bus sections. If it has
not already done so, the device asserts DSACKx when it has successfully
stored the data.

State 10

The processor issues no new control signals during S10.

MOTOROLA MC68030 USER'S MANUAL 7-47

h -

P

State 11
The processor negates AS and DS during S11. It holds the address and
data valid during S11 to provide address hold time for memory systems.
R/W and FCO-FC2 also remain valid throughout S11.

If more than one write cycle is required, S6-S11 are repeated for each write
cycle.

The external device keeps DSACKx asserted until it detects the negation
of AS or DS (whichever it detects first). The device must remove its data
and negate DSACKx within approximately one clock period after sensing
the negation of AS or DS.

7.3.4 Synchronous Read Cycle

7-48

A synchronous read cycle is terminated differently from an asynchronous
read cycle; otherwise, the cycles assert and respond to the same signals, in
the same sequence. STERM rather than DSACKx is asserted by the addressed
external device to terminate a synchronous read cycle. Since STERM must
meet the synchronous setup and hold times with respect to all rising edges
of the clock while AS is asserted, it does not need to be synchronized by the
processor. Only devices with 32-bit ports may assert STERM. STERM is also
used with the CBREQ and CBACK signals during burst mode operation. It
provides a two-clock (minimum) bus cycle for 32-bit ports and single-clock
{minimum) burst accesses, although wait states can be inserted for these
cycles as well. Therefore, a synchronous cycle terminated with STERM with
one wait cycle is a three-clock bus cycle. However, note that STERM is as-
serted one-half clock later than DSACKx would be for a similar asynchronous
cycle with zero wait cycles (also three clocks). Thus, if dynamic bus sizing is
not needed, STERM can be used to provide more decision time in an external
cache design than is available with DSACKXx for three-clock accesses.

Figure 7-31 is a flowchart of a synchronous long-word read cycle. Byte and
word operations are similar. Figure 7-32 is a functional timing diagram of a
synchronous long-word read cycle.

MC68030 USER’S MANUAL MOTOROLA

h -

P

PROCESSOR

ADDRESS DEVICE

1) ASSERT ECS/0CS FOR ONE-HALF CLOCK

2) SET R/W 10 READ

3) DRIVE ADDRESS ON AQ-A31

4) DRIVE FUNCTION CODE ON FCO-FC2

5) DRIVE SIZE {S120-SIZ1) (FOUR BYTES)

6) CACHE INHIBIT QUT (CIOUT) BECOMES VALID

7) ASSERT ADDRESS STROBE (AS)

) ASSERT CACHE BURST REQUEST {CBRE) (If BURST POSSIBLE)
9) ASSERT DATA STROBE (DS}
10) ASSERT DATA BUFFER ENABLE (DBEN)

EXTERNAL DEVICE

PRESENT DATA

ACQUIRE DATA

1) DECODE ADDRESS
2) PLACE DATA ON DO0-D3t
3) ASSERT SYNCHRONOUS TERMINATION {STERM}

1) SAMPLE CACHE INHIBIT IN (CTIN)
AND CACHE BURST ACKNOWLEDGE (CBACK)
2) LATCH DATA
3) NEGATE AS AND 0S
4) NEGATE DBEN

TERMINATE CYCLE

!

START NEXT CYCLE

1) REMOVE DATA FROM D0-D31
2) NEGATE STERM

MOTOROLA

Figure 7-31. Synchronous Long-Word Read Cycle Flowchart —
No Burst Allowed

State 0

The read cycle starts with SO. The processor drives ECS low, indicating the
beginning of an external cycle. When the cycle is the first cycle of a read
operand operation, OCS is driven low at the same time. During SO, the
processor places a valid address on A0-A31 and valid function codes on
FCO-FC2. The function codes select the address space for the cycle. The
processor drives R/W high for a read cycle and drives DBEN inactive to
disable the data buffers. SIZ1-SiZ0 become valid, indicating the number
of bytes to be transferred. CIOUT also becomes valid, indicating the state
of the MMU ClI bit in the address translation descriptor or in the appropriate
TTx register.

State 1

One-half clock later in S1, the processor asserts AS, indicating that the
address on the address bus is valid. The processor also asserts DS during
S1. If the burst mode is enabled for the appropriate on-chip cache and all
four long words of the cache entry are invalid, (i.e., four long words can
be read in), CBREQ is asserted. In addition, the ECS (and OCS, if asserted)
signal is negated during S1.

MC68030 USER'S MANUAL 7-49

h -

P]

siz1 j——
sizo \

Figure 7-32. Synchronous Read with CIIN Asserted and CBACK Negated

7-50 MC68030 USER'S MANUAL MOTOROLA

N\
y

y

State 2

The selected device uses R/W, SIZ0-SIZ1, A0-A1, and CIOUT to place its
information on the data bus. Any or ali of the byte sections of the data bus
{D24-D31, D16-D23, D8-D15, and D0~D7) are selected by SIZ0-SI1Z21 and
A0-A1. During S2, the processor drives DBEN active to enable external
data buffers. In systems that use two-clock synchronous bus cycles, the
timing of DBEN may prevent its use. At the beginning of S2, the processor
samples the level of STERM. if STERM is recognized, the processor latches
the incoming data at the end of S2. If the selected data is not to be cached
for the current cycle or if the device cannot supply 32 bits, CIIN must be
asserted at the same time as STERM. In addition, the state of CBACK is
latched when STERM is recognized.

Since CIIN, CBACK, and STERM are synchronous signals, they must meet
the synchronous input setup and hold times for all rising edges of the clock
while AS is asserted. If STERM is negated at the beginning of S2, wait
states are inserted after S2, and STERM is sampled on every rising edge
thereafter until it is recognized. Once STERM is recognized, data is latched
on the next falling edge of the clock (corresponding to the beginning of
S3).

State 3 ,
The processor negates AS, DS, and DBEN during S3. It holds the address
valid during S3 to simplify memory interfaces. R/W, S1Z0-S1Z1, and FCO-FC2
also remain valid throughout S3.

The external device must keep its data asserted throughout the synchron-
ous hold time for data from the beginning of S3. The device must remove
its data within one clock after asserting STERM and negate STERM within
two clocks after asserting STERM; otherwise, the processor may inad-
vertently use STERM for the next bus cycle.

7.3.5 Synchronous Write Cycle

A synchronous write cycle is terminated differently from an asynchronous
write cycle and the data strobe may not be useful. Otherwise, the cycles
assert and respond to the same signal, in the same sequence. STERM is
asserted by the external device to terminate a synchronous write cycle. The
discussion of STERM in the preceding section applies to write cycles as well
as to read cycles.

DS is not asserted for two-clock synchronous write cycles; therefore, the
clock {CLK) may be used as the timing signal for latching the data. In addition,
there is.no time from the latest assertion of AS and the required assertion

MOTOROLA MC68030 USER'S MANUAL 7-51

h -

<

7-52

of STERM for any two-clock synchronous bus cycle. The system must qualify
a memory write with the assertion of AS to ensure that the write is not aborted
by internal conditions within the MC68030.

Figure 7-33 is a flowchart of a synchronous write cycle. Figure 7-34 is a
functional timing diagram of this operation with wait states.

PROCESSOR EXTERNAL DEVICE

ADDRESS DEVICE

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) DRIVE ADDRESS ON A0-A31
3) DRIVE FUNCTION CODE ON FCO-FC2
4) DRIVE $IZE (SIZ0-S121) (FOUR BYTES)
5) SET R/W TO WRITE
6) CACHE INHIBIT OUT (CTOUT) BECOMES VALID
7) ASSERT ADDRESS STROBE (AS)
8) ASSERT DATA BUFFER ENABLE (DBEN)
9) DRIVE DATA LINES D0-D31
10) ASSERT DATA STROBE (DS) (IF WAIT STATES) o ACCEPT DATA

1) DECODE ADDRESS
2) STORE DATA FROM DO-D31
TERMINATE OUTPUT TRANSFER 3} ASSERT SYNCHRONOUS TERMINATION (STERM)

1) NEGATE AS {AND DSy
2) REMOVE DATA FROM D0-D31
3} NEGATE DBEN TERMINATE CYCLE

l 1) NEGATE STERM

[START NEXT CYCLE 7

Figure 7-33. Synchronous Write Cycle Flowchart

State 0

The write cycle starts with SO. The processor drives ECS low, indicating
the beginning of an external cycle. When the cycle is the first cycle of a
write operation, OCS is driven low at the same time. During S0, the pro-
cessor places a valid address on A0-A31 and valid function codes on
FCO-FC2. The function codes select the address space for the cycle. The
processor drives R/W low for a write cycle. SIZ0-SIZ1 become valid, in-
dicating the number of bytes to be transferred. CIOUT also becomes valid,
indicating the state of the MMU Cl bit in the address translation descriptor
or in the appropriate TTx register.

State 1

One-half clock later in S1, the processor asserts AS, indicating that the
address on the address bus is valid. The processor also asserts DBEN
during S1, which may be used to enable the external data buffers. In ad-
dition, the ECS (and OCS, if asserted) signal is negated during S1.

MC68030 USER'S MANUAL MOTOROLA

h -
P]

80 8§ 82 Sw Sw S3

CLK I | I l I l
AQ-A31 x

FCO-FC2 x
Siz1 \

120 \

Figure 7-34. Synchronous Write Cycle with Wait States — CIOUT Asserted

MOTOROLA MC68030 USER’S MANUAL 7-63

h -

P]

State 2

During S2, the processor places the data to be written onto D0-D31. The
selected device uses R/W, CLK, SI1Z0-SiZ1, and A0-A1 to latch data from
the appropriate section(s) of the data bus {D24-D31, D16-D23, D8-D15,
and D0-D7). SIZ0-Si1Z1 and AO-A1 select the data bus sections. The device
asserts STERM when it has successfully stored the data. If the device does
not assert STERM by the rising edge of S2, the processor inserts wait states
until it is recognized. The processor asserts DS at the end of S2 if wait
states are inserted. For zero-wait-state synchronous write cycles, DS is not
asserted. '

State 3
The processor negates AS (and DS, if necessary) during S3. It holds the
address and data valid during S3 to simplify memory interfaces. R/W,
SiZ0-SiZ1, FCO-FC2, and DBEN also remain valid throughout S3.

The addressed device must negate STERM within two clock periods after
asserting it, or the processor may use STERM for the next bus cycle.

7.3.6 Synchronous Read-Modify-Write Cycle

7-54

A synchronous read-modify-write operation differs from an asynchronous
read-modify-write operation only in the terminating signal of the read and
write cycles and in the use of CLK instead of DS latching data in the write
cycle. Like the asynchronous operation, the synchronous read-modify-write
operation is indivisible. Although the operation is synchronous, the burst
mode is never used during read-modify-write cycles.

Figure 7-35 is a flowchart of the synchronous read-modify-write operation.
Timing for the cycle is shown in Figure 7-36.

MC68030 USER'S MANUAL MOTOROLA

h -
P]

PROCESSOR

LOCK 8US

1) ASSERT READ-MODIFY-WRITE CYCLE (RMC)

!

START INPUT TRANSFER

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK

2} DRIVE R/W T0 READ

3) DRIVE FUNCTION CODE ON FCO-FC2

4} DRIVE ADDRESS ON AC-A31

5) DRIVE SIZE (S1Z0-SZ1)

6) CACHE INHIBIT OUT (EIBUT) BECOMES VALID
7) ASSERT ADDRESS STROBE (AS)

8) ASSERT DATA STROBE (DS)

9) ASSERT DATA BUFFER ENABLE (DBEN)

EXTERNAL DEVICE

PRESENT DATA

TERMINATE INPUT TRANSFER

1} DECODE ADDRESS

2) PLACE DATA DN D0-D31 .-

3) ASSERT SYNCHRONDUS TERMINATION
(STER)

1) SAMPLE CACHE INHIBIT IN (CI)
2) LATCH DATA)
3) NEGATE AS AND 03

4) NEGATE DBEN

5) START DATA MODIFICATION

TERMINATE CYCLE

®

IF CAS2 INSTRUCTION AND
ONLY ONE OPERAND READ,
THEN 60 T0 (B); IF
OPERANDS DO NOT MATCH,
THEN 60 T0 (©): ELSE

h TERMINATE OUTPUT TRANSFER

3) ASSERT STERM

1) NEGATE AS (AND T5)
2) REMOVE DATA FROM DO-D31
3) NEGATE DBEN

TERMINATE CYCLE

1) NEGATE STERM

GOT
1) REMOVE DATA FROM 00-D31 0
START QUTPUT TRANSFER Z) NEGATE STERM ©
1) ASSERT ECS/DCS FOR ONE-HALF CLOCK
2) SETR/W TO WRITE
3} DRIVE ADDRESS ON AD-A31 (IF DIFFERENT)
4) DRIVE SIZE (SI20-SI21)
5) TIOUT BECOMES VALID
6) ASSERT AS
7) ASSERT DBEN
8) PLACE DATA ON D0-D31
8) ASSERT DS (IF WAIT STATES) ACCEPT DATA
1) DECODE ADDRESS
2) STORE DATA FROM DO-D31 ®

IF CAS2 INSTRUCTION AND
ONLY ONE OPERAND
WRITTEN, THEN GO T0 (©):
ELSE 60 TO (B)

®

UNLOCK BUS

1) NEGATE RMC

!

START NEXT CYCLE

]

Figure 7-35. Synchronous Read-Modify-Write Cycle Flowchart

MOTOROLA

MC68030 USER'S MANUAL

7-55

h -

P]

S0 St §2 83 S Si sS4 S5 S6 87

w_ [T T

w7
o 7
w7 __/

Figure 7-36. Synchronous Read-Modify-Write Cycle Timing — CIIN Asserted

7-56 MC68030 USER’'S MANUAL MOTOROLA

N\
y

y

State 0

The processor asserts ECS and OCS in SO to indicate the beginning of an
external operand cycle. The processor also asserts RMC in SO to identify
a read-modify-write cycle. The processor places a valid address on A0-A31
and valid function codes on FCO-FC2. The function codes select the address
space for the operation. SIZ0-SIZ1 become valid in SO to indicate the
operand size. The processor drives RW high for a read cycle and sets
CIOUT to the value of the MMU Cl bit in the address translation descriptor
or in the appropriate TTx register. The processor drives DBEN inactive to
disable the data buffers.

State 1

One-half clock later in S1, the processor asserts AS, indicating that the
address on the address bus is valid. The processor also asserts DS during
S1. In addition, the ECS {and OCS, if asserted) signal is negated during S1.

State 2

The selected device uses R/W, SIZ0-SIZ1, A0-A1, and CIOUT to place its
information on the data bus. Any or all of the byte sections (D24-D31,
D16-D23, D8-D15, and D0-D7) are selected by SIZ0-SI1Z1 and A0-A1. Dur-
ing S2, the processor drives DBEN active to enable external data buffers.
In systems that use two-clock synchronous bus cycles, the timing of DBEN
may prevent its use. At the beginning of S2, the processor samples the
level of STERM. If STERM is recognized, the processor latches the incoming
data. If the selected data is not to be cached for the current cycle or if the
device cannot supply 32 bits, CIIN must be asserted at the same time as
STERM.

Since CIIN and STERM are synchronous signals, they must meet the syn-
chronous input setup and hold times for all rising edges of the clock while
AS is asserted. If STERM is negated at the beginning of S2, wait states are
inserted after S2, and STERM is sampled on every rising edge thereafter
until it is recognized. Once STERM is recognized, data is latched on the
next falling edge of the clock (corresponding to the beginning of S3).

MOTOROLA MC68030 USER'S MANUAL 7-57

h -

7-58

State 3
The processor negates AS, DS, and DBEN during S3. If more than one read
cycle is required to read in the operand(s}, S0-S3 are repeated accordingly.
When finished with the read cycle, the processor holds the address, R/W,
and FCO-FC2 valid in preparation for the write portion of the cycle.

The external device must keep its data asserted throughout the synchron-
ous hold time for data from the beginning of S3. The device must remove
the data within one-clock cycle after asserting STERM to avoid bus con-
tention. It must also negate STERM within two clocks after asserting STERM;
otherwise, the processor may inadvertently use STERM for the next bus
cycle.

Idle States
The processor does not assert any new control signals during the idle
states, but it may begin the modify portion of the cycle at this time. The
R/W signal remains in the read mode until $4 to prevent bus conflicts with
the preceding read portion of the cycle; the data bus is not driven until S6.

State 4
The processor asserts ECS and OCS in S4 to indicate that an external cycle
is beginning. The processor drives R/W low for a write cycle. CIOUT also
becomes valid, indicating the state of the MMU Cl bit in the address trans-
lation descriptor or in the appropriate TTx register. Depending on the write
operation to be performed, the address lines may change during S4.

State 5
In state 5 (S5), the processor asserts AS to indicate that the address on the
address bus is valid. The processor also asserts DBEN during S5, which
can be used to enable external data buffers.

State 6 :
During S6, the processor places the data to be written onto the D0-D31.

The selected device uses R/W, CLK, SIZ0-SiZ1, and A0-AT1 to latch data
from the appropriate byte(s) of the data bus (D24-D31, D16-D23, D8-D15,
and D0-D7). SIZ0-SIZ1 and A0-A1 select the data bus sections. The device
asserts STERM when it has successfully stored the data. If the device does
not assert STERM by the rising edge of S6, the processor inserts wait states
until it is recognized. The processor asserts DS at the end of S6 if wait
states are inserted. Note that for zero-wait-state synchronous write cycles,
DS is not asserted.

MC68030 USER’S MANUAL ‘MOTOROLA

N\
y

y

State 7
The processor negates AS (and DS, if necessary) during S7. It holds the
address and data valid during S7 to simplify memory interfaces. R/W and
FCO-FC2 also remain valid throughout S7.

If more than one write cycle is required, S8-S11 are repeated for each write
cycle.

The external device must negate STERM within two clock periods after
asserting it, or the processor may inadvertently use STERM for the next
bus cycle.

7.3.7 Burst Operation Cycles

The MC68030 supports a burst mode for filling the on-chip instruction and

. data caches.

~ The MC68030 provides a set of handshéke control signals for the burst mode.

When a miss occurs in one of the caches, the MC68030 initiates a bus cycle
to obtain the required data or instruction stream fetch. If the data or instruc-
tion can be cached, the MC68030 attempts to fill a cache entry. Depending

.on the alignment for a data access, the MC68030 may attempt to fill two

cache entries. The processor may also assert CBREQ to request a burst fill
operation. That is, the processor can fill additional entries in the line. The
MC68030 allows a burst of as many as four long words.

The mechanism that asserts the CBREQ signal for burstable cache entries is
enabled by the data burst enable (DBE) and instruction burst enable {IBE)
bits of the cache control register (CACR) for the data and instruction caches,
respectively. Either of the following conditions cause the MC68030 to initiate
a cache burst request (and assert CBREQ) for a cachable read cycle:

® The logical address and function code signals of the current instruction
or data fetch do not match the indexed tag field in the respective in-
struction or data cache.

® All four long words corresponding to the indexed tag in the appropriate
cache are marked invalid.

However, the MC88030 does not assert CBREQ during the first portion of a
misaligned access if the remainder of the access does not correspond to the
same cache line. Refer to 6.1.3.1 SINGLE ENTRY MODE for details.

MOTOROLA MC68030 USER'S MANUAL 7-59

h -

P

7-60

ft the appropriate cache is not enabled or if the cache freeze bit for the cache
is set, the processor does not assert CBREQ. CBREQ is not asserted during
the read or write cycles of any read-modify-write operation.

The MC68030 allows burst filling only from 32-bit ports that terminate bus
cycles with STERM and respond to CBREQ by asserting CBACK. When the
MC68030 recognizes STERM and CBACK and it has asserted CBREQ, it main-
tains AS, DS, R'W, A0-A31, FCO-FC2, SIZ0-SIZ1 in their current state through-
out the burst operation. The processor continues to accept data on every
clock during which STERM is asserted until the burst is complete or an
abnormal termination occurs.

CBACK indicates that the addressed device can respond to a cache burst
request by supplying one more fong word of data in the burst mode. It can
be asserted independently of the CBREQ signal, and burst mode is only
initiated if both of these signals are asserted for a synchronous cycle. If the
MC68030 executes a full burst operation and fetches four long words, CBREQ
is negated after STERM is asserted for the third cycle, indicating that the
MC68030 only requests one more long word (the fourth cycle). CBACK can
then be negated, and the MC68030 latches the data for the fourth cycle and
completes the cache line fill.

The following conditions can abort a burst fill:
e CIIN asserted,
® BERR asserted, or

o CBACK negated prematurely.

The processing of a bus error during a burst fill operation is described in
7.5.1 Bus Errors.

For the purposes of halting the processor or arbitrating the bus away from
the processor with BR, a burst operation is a single cycle since AS remains
asserted during the entire operation. If the HALT signal is asserted during a
burst operation, the processor halts at the end of the operation. Refer to 7.5.3
Halt Operation for more information about the halt operation. An alternate
bus master requesting the bus with BR may become bus master at the end
of the operation provided BR is asserted early enough to be internally syn-
chronized before another processor cycle begins. Refer to 7.7 BUS ARBI-
TRATION for more information about bus arbitration.

MC68030 USER'S MANUAL MOTOROLA

h -

P

The simultaneous assertion of BERR and HALT during a bus cycie normally
indicates that the cycle should be retried. However, during the second, third,
or fourth cycle of a burst operation, this signal combination indicates a bus
error condition, which aborts the burst operation. In addition, the processor
remains in the halted state until HALT is negated. For information about bus
error processing, refer to 7.5.1. Bus Errors.

Figure 7-37 is a flowchart of the burst operation. The following timing dia-
grams show various burst operations. Figure 7-38 shows burst operations
for long-word requests with two wait states inserted in the first access and
one wait cycle inserted in the subsequent accesses. Figure 7-39 shows a burst
operation that fails to complete normally due to CBACK negating prema-
turely. Figure 7-40 shows a burst operation that is deferred because the entire
operand does not correspond to the same cache line. Figure 7-41.shows a
burst operation aborted by CIIN. Because CBACK corresponds to the next
cycle, three long words are transferred even though CBACK is only asserted

“for two clock periods.

The burst operation sequence begins with states S0-S3, which are very sim-
ilar to those states for a synchronous read cycle except that CBREQ is as-
serted. S4-S9 perform the final three reads for a complete burst operation.

State 0

The burst operation starts with S0. The processor drives ECS low, indicating
the beginning of an external cycle. When the cycle is the first cycle of a
read operation, OCS is driven low at the same time. During S0, the pro-
cessor places a valid address on A0-A31 and valid function codes on
FCO-FC2. The function codes select the address space for the cycle. The
processor drives R/W high, indicating a read cycle, and drives DBEN in-
active to disable the data buffers. SIZ0-S1Z1 become valid, indicating the
number of operand bytes to be transferred. CIOUT also becomes valid,
indicating the state of the MMU ClI bit in the address translation descriptor
or in the appropriate TTx register.

State 1
One-half clock later in S1, the processor asserts AS to indicate that the
address on the address bus is valid. The processor also asserts DS during
S1. CBREQ is also asserted, indicating that the MC68030 can perform a
burst operation into one of its caches and can read in four long words. in
addition, ECS (and OCS, if asserted) is negated during S1.

MOTOROLA MC68030 USER'S MANUAL 7-61

h -

P

7-62

PROCESSOR

ADODRESS DEVICE

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) SET R/W TO READ
3) DRIVE ADDRESS ON AQ-A31
4) DRIVE FUNCTION CODE ON FCO-FC2
5) DRIVE SIZE (SI20-S121) (FOUR BYTES)
6) CACHE INHIBIT QUT (CIOUT) BECOMES VALID
7) ASSERT ADDRESS STROBE (AS)
8) ASSERT CACHE BURST REQUEST {TERED)
9) ASSERT DATA STROBE (D)
10) ASSERT DATA BUFFER ENABLE (DBEN)

EXTERNAL DEVICE

PRESENT DATA

ACQUIRE DATA

1) DECODE ADDRESS

2) PLACE DATA ON D0-D31

3) ASSERT SYNCHRONOUS TERMINATION (STERM)
4) ASSERT CACHE BURST ACKNOWLEDGE (CBACK)

1) SAMPLE CACHE INHIBIT IN (CIIN)
AND CACHE BURST ACKNOWLEDGE (TBACK)
2) LATCH DATA

TERMINATE CYCLE

END OF BURST

1) REMOVE DATA FROM D0-D31
2) NEGATE STERM (IF NECESSARY)
3) NEGATE CBACK (IF NECESSARY)

WHEN 4 LONG WORDS TRANSFERRED

1) NEGATE AS AND DS
2) NEGATE DBEN

!

UNTIL 4 LONG WORDS TRANSFERRED

START NEXT CYCLE]

Figure 7-37. Burst Operation Flowchart — Four Long Words Transferred

State 2

The selected device uses R/W, S1Z0-S1Z1, A0-A1, and CIOUT to place the
data on the data bus. (The first cycle must supply the long word at the
corresponding long-word boundary.) All of the byte sections (D24-D31,
D16-D23, D8-D15, and D0-D7) of the data bus must be driven since the
burst operation latches 32 bits on every cycle. During S2, the processor
drives DBEN active to enable external data buffers. In systems that use
two-clock synchronous bus cycles, the timing of DBEN may prevent its
use. At the beginning of S2, the processor tests the level of STERM. If
STERM is recognized, the processor latches the incoming data at the end
of S2. For the burst operation to proceed, CBACK must be asserted when
STERM is recognized. If the data for the current cycle is not to be cached,
CIIN must be asserted at the same time as STERM. The assertion of CIIN
also has the effect of aborting the burst operation.

MC68030 USER'S MANUAL MOTOROLA

h -

P]

S0 81 S2 Sw Sw Sw Sw Sw S« S3 Sw Sw S4 S5 Sw Sw S6 S7 Sw Sw S8 §9

L)
o
=

A4-A31

A3

AD-A2

FCO-FC2

8120-8i21

RAW

Pral
)
&

&l
&l

&l

|

o)
=
m
=|
=

|

o
=

l

I Jkkkﬂé& NN

2
Q
1=
=

1 00

VALUE OF A3 A2 :NCREMENTED BY THE SYSTEM HARDWARE

Figure 7-38. Long-Word Operand Request from $07 with
Burst Request and Wait Cycle

MOTOROLA MC68030 USER'S MANUAL 7-63

h -

P]

CLK

|

A4-A31

A3

AD-A2

FCO-FC2

S81Z0-SIZ1

=
2
=l

JjgéLJQLJu

|

o
)
ol

&l

N

AR/ \ vy VALUE OF CBACK
: CONTROL NEXT CYCLE
00-031 >——(ba-67 DTos08 P bCbF H-
]
w7\ OO

0 l 10 | 11
VALUE OF A3:A2 INCREMENTED BY THE SYSTEM HARDWARE

NOTES:
1. Assertion of CBACK causes data to be placed on D0-D31.
2. Continued assertion of CBACK causes data to be ptaced on D0-D31.
3. Negation of CBACK cause AS to be negated.

[=)

Figure 7-39. Long-Word Operand Request from $07 with
Burst Request — CBACK Negated Early

7-64 MC68030 USER'S MANUAL MOTOROLA

h -
P]

S0 S1 82 Sw Sw S3 SO S1 S2 Ss 3« S3 Sw Sw S4 S5 Sw Sw S6 ST Sw Sw S8 S8

=]
j=4
=

J
N

=
S
—~

=T/ Vs

s\ /\ e
STERM j——_/ \ / \ / \ / \ /
o -

PREVIOUS CACHE BLOCK ‘,\-7 NEXT CACHE BLOCK — START BUARST CYCLE

Figure 7-40. Long-Word Operand Request from SOE — Burst Fill Deferred

MOTOROLA MC68030 USER'S MANUAL 7-65

h -
P]

CLK

AD-A3

FCO-FC2

BURST MODE ENDS,
OATA NOT CACHED
10 1

VALUE OF A3:A2 INCREMENTED BY THE SYSTEM HARDWARE

01

Figure 7-41. Long-Word Operand Request from $07 with
Burst Request — CBACK and CIIN Asserted

7-66 MC68030 USER'S MANUAL MOTOROLA

h -

P

Since CIIN, CBACK, and STERM are synchronous signals, they must meet
the synchronous input setup and hold times for all rising edges of the clock
while AS is asserted. If STERM is negated at the beginning of S2, wait
states are inserted after S2, and STERM is sampled on every rising edge
of the clock thereafter until it is recognized. Once STERM is recognized,
data is latched on the next falling edge of the clock {corresponding to the
beginning of S3).

State 3

The processor maintains AS, DS, and DBEN asserted during S3. It also
holds the address valid during S3 for continuation of the burst. R/W,
S1Z0-S1Z1, and FCO-FC2 also remain valid throughout S3.

The external device must keep the data driven throughout the synchronous
hold time for data from the beginning of $3. The device must negate STERM
within one clock after asserting STERM; otherwise, the processor may
inadvertently use STERM prematurely for the next burst access. STERM
need not be negated if subsequent accesses do not require wait cycles.

State 4

At the beginning of S4, the processor tests the level of STERM. This state
signifies the beginning of burst mode, and the remaining states correspond
to burst fill cycles. If STERM is recognized, the processor latches the in-
coming data at the end of S4. This data corresponds to the second long
word of the burst. If STERM is negated at the beginning of S4, wait states
are inserted instead of S4 and S5, and STERM is sampled on every rising
edge of the clock thereafter until it is recognized. As for synchronous cycles,
the states of CBACK and CIIN are latched at the time STERM is recognized.
The assertion of CBACK at this time indicates that the burst operation
should continue, and the assertion of CIIN indicates that the data latched
at the end of S4 should not be cached and that the burst should abort.

State 5

The processor maintains all the signals on the bus driven throughout S5
for continuation of the burst. The same hold times for STERM and data
described for S3 apply here.

State 6

This state is identica'l to S4 except that once STERM is recognized, the third
long word of data for the burst is latched at the end of S6.

MOTOROLA MC68030 USER'S MANUAL 7-67

h -

P

otate 7
During this state, the processor negates CBREQ, and the memory device
may negate CBACK. Aside from this, all other bus signals driven by the
processor remain driven. The same hold times for STERM and data de-
scribed for S3 apply here.

State 8
This state is identical to S4 except that CBREQ is negated, indicating that
the processor cannot continue to accept more data after this. The data
latched at the end of S8 corresponds to the fourth long word of the burst.

State 9
The processor negates AS, DS, and DBEN during S9. It holds the address,
R/W, SIZ0-SiZ1, and FCO-FC2 valid throughout S9. The same hold times
for data described for S3 apply here.

Note that the address bus of the MC68030 remains driven to a constant value
for the duration of a burst transfer operation {including the first transfer before
burst mode is entered). If an external memory system requires incrementing
of the long-word base address to supply successive long words of infor-
mation, this function must be performed by external hardware. Additionally,
in the case of burst transfers that cross a 16-byte boundary (i.e., the first long
word transferred is not located at A3/A2=00), the external hardware must
correctly control the continuation or termination of the burst transfer as
desired. The burst may be terminated by negating CBACK during the transfer
of the most significant long word of the 16-byte image (A3/A2=11) or may
be continued {with CBACK asserted) by providing the long word located at
A3/A2=00 (i.e., the count sequence wraps back to zero and continues as
necessary). The MC68030 caches assume the higher order address lines
(A4-A31) remain unchanged as the long-word accesses wrap back around
to A3/A2=00.

7.4 CPU SPACE CYCLES

7-68

FCO-FC2 select user and supervisor program and data areas as listed in Table
4-1. The area selected by FCO-FC2=%$7 is classified as the CPU space. The
interrupt acknowledge, breakpoint acknowledge, and coprocessor commu-
nication cycles described in the following sections utilize CPU space.

MC68030 USER'S MANUAL MOTOROLA

o
<

The CPU space type is encoded on A16-A19 during a CPU space operation
and indicates the function that the processor is performing. On the MC68030,
three of the encodings are implemented as shown in Figure 7-42. All unused
values are reserved by Motorola for future additional CPU space types.

FUNCTION ADDRESS BUS
coDE
20 3 ‘23 lw 161 4 2 0
BREAKPOINT
acknowense |11 1] {o 0 000060000 0foooofooooooooooofaers|oof
2 i} 3 ‘ 15 13 4 I}
COPROCESSOR
com L' 1 '] fooooooooooooloo o] co [oo0o0o0000] cers |
2 0 @ l ‘ 3 1o

INTERRUPT

il [111][1111111111111!111|111111111111ILEVELIII

—

CPU SPACE
TYPE FIELD

Figure 7-42. MIC68030 CPU Space Address Encoding

7.4.1 Interrupt Acknowledge Bus Cycles

When a peripheral device signals the processor (with the IPLO-IPL2 signals)
that the device requires service, and the internally synchronized value on
these signals indicates a higher priority than the interrupt mask in the status
register (or that a transition has occurred in the case of a level 7 interrupt),
the processor makes the interrupt a pending interrupt. Refer to 8.1.9 Interrupt
Exceptions for details on the recognition of interrupts.

The MC68030 takes an interrupt exception for a pending interrupt within one
instruction boundary (after processing any other pending exception with a
higher priority). The following paragraphs describe the various kinds of in-
terrupt acknowledge bus cycles that can be executed as part of interrupt
exception processing.

MOTOROLA MC68030 USER'S MANUAL 7-69

7.4.1.1 INTERRUPT ACKNOWLEDGE CYCLE — TERMINATED NORMALLY. When

7-10

the MC68030 processes an interrupt exception, it performs an interrupt ac-
knowledge cycle to obtain the number of the vector that contains the starting
location of the interrupt service routine. ' :

Some interrupting devices have programmable vector registers that contain
the interrupt vectors for the routines they use. The following paragraphs
describe the interrupt acknowledge cycle for these devices. Other interrupting
conditions or devices cannot supply a vector number and use the autovector
cycle described in 7.4.1.2 AUTOVECTOR INTERRUPT ACKNOWLEDGE CYCLE.

The interrupt acknowledge cycle is a read cycle. It differs from the asyn-
chronous read cycle described in 7.3.1 Asynchronous Read Cycle or the syn-
chronous read cycle described in 7.3.4 Synchronous Read Cycle in that it
accesses the CPU address space. Specifically, the differences are:

1. FCO-FC2 are set to seven (FCO/FC1/FC2=111) for. CPU address space.

2. A1, A2, and A3 are set to the interrupt request level (the inverted values
of IPLO, IPL1, and IPL2, respectively).

3. The CPU space type field (A16-A19) is set to $F, the interrupt acknowl-
edge code. :

4, A20-A31, A4-A15, and A0 are set to one.

The responding device places the vector number on the data bus during the
interrupt acknowiedge cycle. Beyond this, the cycle is terminated normally
with either STERM or DSACKXx. Figure 7-43 is the flowchart of the interrupt
acknowledge cycle.

MC68030 USER'S MANUAL MOTOROLA

h -

PROCESSCR INTERRUPTING DEVICE

ACKNOWLEDGE INTERRUPT 4——' REQUEST INTERRUPT J

1) INTERRUPT PENDING {TPEND} RECGGNIZED BY CURRENT INSTRUCTICN -
WAIT FOR INSTRUCTION BOUNDARY

2) SET R/W TD READ

3) SET FUNCTION CODE T CPU SPACE

4} PLACE INTERRUPT LEVEL ON A1, A2, AND A3.
TYPE FIELD = INTERRUPT ACKNOWLEDGE {IATK)

5) SET SIZE T0 BYTE

6) NEGATE IPEND

7) ASSERT ADDRESS STROBE (AS) AND DATA STROBE (3) PROVIDE VECTOR INFORMATION

1) PLACE VECTOR NUMBER ON LEAST SIGNIFICANT BYTE
OF DATA PORT (DEPENDS ON PORT SIZE}
2) ASSERT DATA TRANSFER AND SIZE ACKNOWLEDGE (DSACKx)

~0OR -
ACQUIRE VECTOR NUMBER ASSERT SYNCHRONOUS TERMINATION {STERM)
1} LATCH VECTOR NUMBER
2} NEGATE AS AND DS RELEASE
¢ 1) REMOVE VECTOR NUMBER FROM DATA BUS

ATE DSACKx
r CONTINUE iNTERRUPT EXCEPTION PROCESSING J a NEG

Figure 7-43. Interrupt Acknowledge Cycle Flowchart

Figure 7-44 shows the timing for an interrupt acknowledge cycle terminated
with DSACKXx.

7.4.1.2 AUTOVECTOR INTERRUPT ACKNOWLEDGE CYCLE. When the interrupt-
ing device cannot supply a vector number, it requests an automatically gen-
erated vector or autovector. Instead of placing a vector number on the data
bus and asserting DSACKx or STERM, the device asserts the autovector signal
(AVEC]) to terminate the cycle. Neither STERM nor DSACKx may be asserted
during an interrupt acknowledge cycle terminated by AVEC.

The vector number supplied in an autovector operation is derived from the
interrupt level of the current interrupt. When AVEC is asserted instead of
DSACK or STERM during an interrupt acknowledge cycle, the MC68030 ig-
nores the state of the data bus and internally generates the vector number,
the sum of the interrupt level plus 24 ($18). There are seven distinct auto-
vectors that can be used, corresponding to the seven levels of interrupt

available with signals IPLO-IPL2, Figure 7-45 shows the timing for an auto-
vector operation.

MOTOROLA MC68030 USER'S MANUAL 7-71

h -

P]

NY 82 S4 N s2 $4 S0 S2

INTERRUPT LEVEL T x

[
fd
=

Ad-A31

AG

StZ1

/
X
/
/
A\
/

SIZ0

X
—
X
X
X
=7

\/
\/

=
I3
[

026031 el > CT0R = R BT PORD— -

S G S —
D16-023 < > VECTOR # FR16-BIT PORT>—

00-07 :>————< >——VECTOR # FR 3281 PORD—— ———C

PIO-PT2 \ ¥ "

INTERRUPT
‘4—'— READ CYCLE —~+—— ACKNOWLEDGE ‘b‘ "— WRITE STACK

Figure 7-44. Interrupt Acknowledge Cycie Timing

7-72 MC68030 USER'S MANUAL . MOTOROLA

h -
P]

R/W __/ \
= T\
s T\ TN

INTERRUPT I
READ CYCLE ACKNOWLEDGE — WRITE STACK
AUTOVECTGRED :

Figure 7-45. Autovector Operation Timing

MOTOROLA . MC68030 USER'S MANUAL

7-73

N\
y

y

r.+.1.0 SPURIOUS INTERRUPT CYCLE. When a device does not respond to an

interrupt acknowledge cycle with AVEC, STERM, or DSACKx, the external
logic typically returns BERR. The MC68030 automatically generates the spu-
rious interrupt vector number, 24, instead of the interrupt vector number in
this case. If HALT is also asserted, the processor retries the cycle.

7.4.2 Breakpoint Acknowledge Cycle

The breakpoint acknowledge cycle is generated by the execution of a break-
point instruction (BKPT). The breakpoint acknowledge cycle allows the ex-
ternal hardware to provide an instruction word directly into the instruction
pipeline as the program executes. This cycle accesses the CPU space with a
type field of zero and provides the breakpoint number specified by the in-
struction on address lines A2-A4. If the external hardware terminates the
cycle with DSACKx or STERM, the data on the bus {(an instruction.word) is
inserted into the instruction pipe, replacing the breakpoint opcode, and is
executed after the breakpoint acknowledge cycle completes. The breakpoint
instruction requires a word to be transferred so that if the first bus cycle
accesses an 8-bit port, a second cycle is required. If the external logic ter-
minates the breakpoint acknowledge cycle with BERR (i.e., no instruction
word available), the processor takes an illegal instruction exception. Figure
7-46 is a flowchart of the breakpoint acknowledge cycle. Figure 7-47 shows
the timing for a breakpoint acknowledge cycle that returns an instruction
word. Figure 7-48 shows the timing for a breakpoint acknowledge cycle that
signals an exception. ’

7.4.3 Coprocessor Communication Cycles

7-74

The MC68030 coprocessor interface provides instruction-oriented commu-
nication between the processor and as many as seven coprocessors. The bus
communication required to support coprocessor operations uses the MC68030
CPU space with a type field of $2.

Coprocessor accesses use the MC68030 bus protocol except that the address
bus supplies access information rather than a 32-bit address. The CPU space
type field (A16-A19) for a coprocessor operation is $2. A13-A15 contain the
coprocessor identification number (CplD), and A0-A4 specify the coprocessor
interface register to be accessed. Coprocessor accesses to a CplD of zero
correspond to MMU instructions and are not generated by the MC68030 as
a result of the coprocessor interface. These cycles can ohly be generated by
the MOVES 'instruction. Refer to SECTION 10 COPROCESSOR INTERFACE
DESCRIPTION for further information. '

MC68030 USER'S MANUAL MOTOROLA

h -

P

PROCESSOR

BREAKPOINT ACKNOWLEDGE

1} SET R/W TO READ

2) SET FUNCTION CODE TO CPU SPACE

3) PLACE CPU SPACE TYPE 0 ON A16-A19

4) PLACE BREAKPOINT NUMBER ON A2-A4

5) SET SIZE TO WORD

6) ASSERT ADDRESS STROBE (AS) AND DATA STROBE (DS)

EXTERNAL DEVICE

IF DSACKx OR STERM ASSERTED:
1) LATCH DATA
2) NEGATE AS AND 35
3) 60T0@®)

IF BERR ASSERTED:
1) NEGATE AS AND TS

2 60T0®) ®

1+ PLACE REPLACEMENT OPCODE ON DATA BUS

21 ASSERT DATA TRANSFER AND SIZE ACKNOWLEDGE (DSACKx)

OR SYNCHRONOUS TERMINATION (STERM}
SOR-

11 ASSERT BUS ERROR (BERR) TO INITIATE EXCEPTION PROCESSING

'

1) PLACE LATCHED DATA IN INSTRUCTION PIPELINE
2) CONTINUE PROCESSING

SLAVE NEGATES DSACKx, STERM OR BERR

r 1} INITIATE ILLEGAL INSTRUCTION PROCESSING

Figure 7-46. Breakpoint Operation Flow

7.5 BUS EXCEPTION CONTROL CYCLES

MOTOROLA

The MC68030 bus architecture requires assertion of either DSACKx or STERM
from an external device to signal that a bus cycle is complete. DSACKx,
STERM, or AVEC is not asserted if:

® The external device does not respond.

® No interrupt vector is provided.

® Various other application-dependent errors occur.

External circuitry can provide BERR when no device responds by asserting
DSACKx, STERM, or AVEC within an appropriate period of time after the
processor asserts AS. This allows the cycle to terminate and the processor
to enter exception processing for the error condition.

The MMU can also detect an internal bus error. This occurs when the pro-
cessor attempts to access an address in a protected area of memory (a user
program attempts to access supervisor data, for example) or after the MMU
receives-a bus error while searching the address table for an address trans-
lation description.

MC68030 USER'S MANUAL 7-75

h -

P]

CLK

A20-A31

A1B-A19

A2-A15

A0, A1

FCO-FC2

Siz1

Sizd

024-D31

D16-D23

08-D15

7-76

(0000)

BREAKPOINT ENCODING

—

ni

BREAKPOINT NUMBER T x

CPU SPACE

N

WORD

SRV

|

I

— —_— o
— T N— N——
— — L

- T N N

BREAKPOINT
ACKNOWLEOGE
READ CYCLE INSTRUCTION WORD
FETCH

FETCHED INSTRUCTION
EXECUTION

Figure 7-47. Breakpoint Acknowledge Cycle Timing

MC68030 USER'S MANUAL

MOTOROLA

h -

|

2
&
[
[
Vo
LJ

FCO-FC2

S1Z0-S1Z1

m
[
<Al

z 2
i ol

IRAIEARPREER Y
|

INTERNAL
BEAD WITH BUS ERROR ASSERTED ————PF PROCESSING ‘+— STACK WRITE

Figure 7-48. Breakpoint Acknowledge Cycle Timing (Exception Signaled)

Another signal that is used for bus exception control is HALT. This signal
can be asserted by an external device for debugging purposes to cause single
bus cycle operation or {in combination with BERR) a retry of a bus cycle in
error.

MOTOROLA ‘ MC68030 USER'S MANUAL 7-77

h -

P]

1u properly control termination of a bus cycle for a retry or a bus error
condition, DSACKX, BERR, and HALT can be asserted and negated with the
rising edge of the MC68030 clock. This assures that when two signals are
asserted simultaneously, the required setup time (#47A) and hold time (#47B)
for both of them is met for the same falling edge of the processor clock.
{Refer to MCB8030EC/D, MC68030 Electrical Specifications for timing require-
ments.) This or some equivalent precaution should be designed into the
external circuitry that provides these signals.

The acceptable bus cycle terminations for asynchronous cycles are sum-
marized in relation to DSACKx assertion as follows (case numbers refer to
Table 7-8):

Normal Termination:
DSACKx is asserted; BERR and HALT remain negated (case 1).

Halt Termination:
HALT is asserted at same time or before DSACKx, and BERR remains
negated {(case 2).

Bus Error Termination:
BERR is asserted in lieu of, at the same time, or before DSACKx (case
3) or after DSACKx (case 4), and HALT remains negated; BERR is
negated at the same time or after DSACKx.

Retry Termination:
HALT and BERR are asserted in lieu of, at the same time, or before
DSACKXx (case 5) or after DSACKx (case 6); BERR is negated at the
same time or after DSACKx; HALT may be negated at the same time
or after BERR.

7-78 MC68030 USER'S MANUAL MOTOROLA

h -

Table 7-8. DSACK, BERR, and HALT Assertion Results

Asserted on Rising
Case Control Edge of State Result
No. Signal N N2
1 DSACKXx A S Normal cycle terminate and continue.
BERR NA NA
HALT NA X
2 DSACKx A S Normal cycle terminate and halt. Continue when HALT
BERR NA NA negated.
HALT A/S S
3 DSACKx NA/A X Terminate and take bus error exception, possibly
BERR A S deferred.
HALT NA NA
4 DSACKx A X Terminate and take bus error exception, possibly
BERR NA A deferred.
HALT NA NA
5 DSACKx NA/A X Terminate and retry when HALT negated.
BERR A S
HALT A/S S
6 DSACKx A X Terminate and retry when HALT negated.
BERR NA A
HALT NA A
LEGEND:
N -— The number of current even bus state (e.g., S2, S4, etc.)
A — Signal is asserted in this bus state
NA — Signal is not asserted in this state
X — Don't care .
S — Signal was asserted in previous state and remains asserted in this state

Table 7-8 shows various combinations of control signal sequences and the
resulting bus cycle terminations. To ensure predictable operation, BERR and
HALT should be negated according to the specifications in MC68030EC/D,
MC68030 Electrical Specifications. DSACKx, BERR, and HALT may be negated
after AS, If DSACKx or BERR remain asserted into S2 of the next bus cycle,
that cycle may be terminated prematurely.

The termination signal for a synchronous cycle is STERM. An analogous set
of bus cycle termination cases exists in relationship to STERM assertion.
Note that STERM and DSACKx must never both be asserted in the same
cycle. STERM has setup time (#60) and hold time (#61) requirements relative
to each rising edge of the processor clock while AS is asserted. Bus error
and retry terminations during burst cycles operate as described in 6.1.3.2
BURST MODE FILLING, 7.5.1 Bus Error, and 7.5.2 Retry Operation.

MOTOROLA MC68030 USER’'S MANUAL 7-79

h -

P]

7-80

1 ur STERM, the bus cycle terminations are summarized as follows (case
numbers refer to Table 7-9):

Normal Termination:
STERM is asserted; BERR and HALT remain negated (case 1).

Halt Termination:
HALT is asserted before STERM, and BERR remains negated (case
2).

Bus Error Termination:
BERR is asserted in lieu of, at the same time, or before STERM (case
3} or after STERM (case 4), and HALT remains negated; BERR is
negated at the same time or after STERM.

Retry Termination:
HALT and BERR are asserted in lieu of, at the same time, or before
STERM {case 5) or after STERM (case 6); BERR is negated at the
same time or after STERM; HALT may be negated at the same time
or after BERR.

MC68030 USER'S MANUAL MOTOROLA

h -
P]

Table 7-9. STERM, BERR, and HALT Assertion Results

Asserted on Rising
Case Control Edge of State Result
No. Signal N N.2
1 STERM A — \ormal cycle terminate and continue.
BERR NA —
HALT NA —
2 STERM NA A \ormal cycle terminate and halt. Continue when HALT
BERR NA NA negated.
HALT A/S S
3 STERM NA A Terminate and take bus error exception, possibly
BERR A/S S deferred.
HALT NA NA
4 STERM A — Terminate and take bus error exception, possibly
BERR A — deferred.
HALT NA —
5 STERM NA A Terminate and retry when HALT negated.
BERR A S
HALT A/S S
6 STERM A — Terminate and retry when HALT negated.
BERR A —
HALT A —
LEGEND:
N — The number of current even bus state (e.g., $S2, S4, etc.)
A — Signal is asserted in this bus state
NA — Signal is