PART NUMBER: KXTJ3-1057 Rev. 3.0 27-Sep-2017 ## **Product Description** The KXTJ3-1057 is a tri-axis ±2g, ±4g, ±8g, or ±16g silicon micromachined accelerometer. The sense element is fabricated using Kionix's proprietary plasma micromachining process technology. Acceleration sensing is based on the principle of a differential capacitance arising from acceleration-induced motion of the sense element, which further utilizes common mode cancellation to decrease errors from process variation, temperature, and environmental stress. The sense element is hermetically sealed at the wafer level by bonding a second silicon lid wafer to the device using a glass frit. A separate ASIC device packaged with the sense element provides signal conditioning and digital communications. The accelerometer is delivered in a 2 x 2 x 0.9 mm LGA plastic package operating from a 1.71V - 3.6V DC supply. Voltage regulators are used to maintain constant internal operating voltages over the range of input supply voltages. This results in stable operating characteristics over the range of input supply voltages and virtually undetectable ratiometric error. The I^2C digital protocol is used to communicate with the chip to configure the part and monitor outputs. ### **Features** - Small footprint: 2 x 2 x 0.9 mm LGA 12-pin package (pin-to-pin compatible with KXTJ2) - Low current consumption: 0.9 μA in standby, 10 μA in Low Power, and 155 μA in High Resolution modes - Extended user-configurable g-ranges: ±2g, ±4g, ±8g, ±16g - 8-bit, 12-bit, and 14-bit resolution modes - Wide supply voltage range: 1.71V 3.6V with internal voltage regulator - High resolution Wake-Up function with threshold configurable down to 3.9 mg - User-configurable Output Data Rates from 0.781Hz to 1600Hz - I²C digital communication interface up to 3.4MHz - Highly configurable interrupt control - Embedded Low Pass filter - Improved design to virtually eliminate post reflow offset and sensitivity shifts - Improved noise performance - Stable performance over temperature - High shock survivability - Self-test function - RoHS / REACH compliant PART NUMBER: KXTJ3-1057 Rev. 3.0 27-Sep-2017 ## **Table of Contents** | PRODUCT DESCRIPTION | | |------------------------------------|----| | FEATURES | 1 | | TABLE OF CONTENTS | 2 | | FUNCTIONAL DIAGRAM | 4 | | PRODUCT SPECIFICATIONS | 5 | | MECHANICAL | 5 | | ELECTRICAL | | | Start Up Time Profile | | | Current Profile | 8 | | Power-On Procedure | 9 | | ENVIRONMENTAL | | | Soldering | 11 | | Floor Life | 11 | | TERMINOLOGY | 12 | | g | | | Sensitivity | 12 | | Zero-g offset | 12 | | Self-test | 12 | | FUNCTIONALITY | 13 | | Sense element | 13 | | ASIC interface | 13 | | Factory calibration | | | APPLICATION SCHEMATIC | | | PIN DESCRIPTION | | | PACKAGE DIMENSIONS AND ORIENTATION | | | Dimensions | | | Orientation | 16 | | DIGITAL INTERFACE | 20 | | I ² C SERIAL INTERFACE | 20 | | I ² C OPERATION | 20 | | WRITING TO AN 8-BIT REGISTER | 22 | | READING FROM AN 8-BIT REGISTER | 22 | | DATA TRANSFER SEQUENCES | 23 | | HS-MODE | 24 | | I ² C TIMING DIAGRAM | 25 | | EMBEDDED REGISTERS | 26 | PART NUMBER: KXTJ3-1057 Rev. 3.0 27-Sep-2017 | REGISTER DESCRIPTIONS | 27 | |----------------------------|--| | ACCELEROMETER OUTPUTS | 2 | | XOUT L | 29 | | XOUT_H | 29 | | YOUT L | | | YOUT H | 29 | | ZOUT_L | 30 | | ZOUT H | | | DCST RESP | 30 | | WHO_AM_I | | | INTERRUPT SOURCE REGISTERS | | | INT_SOURCE1 | | | INT SOURCE2 | | | STATUS REG | 32 | | INT_REL | | | CTRL REG1 | | | CTRL REG2 | | | INT_CTRL_REG1 | 3! | | INT CTRL REG2 | | | DATA_CTRL_REG | 30 | | WAKEUP COUNTER | | | NA_COUNTER | 38 | | SELF TEST | 38 | | WAKEUP_THRESHOLD | 38 | | EMBEDDED WAKE UP FUNCTION | 24 | | ENIDEDDED WAKE UP FUNCTION | 5 | | REVISION HISTORY | 4 | | APPENDIX | A | | AFF LIVUIA | ······································ | PART NUMBER: KXTJ3-1057 Rev. 3.0 27-Sep-2017 # **Functional Diagram** **PART NUMBER:** KXTJ3-1057 Rev. 3.0 27-Sep-2017 ## **Product Specifications** ### Mechanical (specifications are for operation at 2.5V and T = 25C unless stated otherwise) | (0)0000 | Peremeters | | | | | |-------------------------------------|---------------------------------------|----------|----------|-----------------------|-----| | | Parameters | Units | Min | Typical | Max | | Operating Temperatur | re Range | °C | -40 | - | +85 | | Zero-g Offset | | mg | | ±25 | | | Zero-g Offset Variatio | n from RT over Temp. | mg/ºC | | 0.2 | | | Sensitivity (14-bit) ^{1,2} | ± 8g | acupto/a | | 1024 | | | Sensitivity (14-bit) | ± 16g | counts/g | | 512 | | | | ± 2g | | | 1024 | | | Consistivity (40 bis)1 | ± 4g | | | 512 | | | Sensitivity (12-bit) ¹ | ± 8g | counts/g | | 256 | | | | ± 16g | | | 128 | | | | ± 2g | | | 64 | | | O | ± 4g | | | 32 | | | Sensitivity (8-bit) ¹ | ± 8g | counts/g | | 16 | | | | ± 16g | | | 8 | | | Sensitivity Variation fr | om RT over Temp. | %/°C | | 0.01 | | | Positive Self-test Outp | out change on Activation ³ | g | | 0.5 | | | Signal Bandwidth (-3c | IB) | Hz | | 3500 (xy)
1800 (z) | | | Non-Linearity | | % of FS | | 0.6 | | | Cross Axis Sensitivity | | % | <u>-</u> | 2 | | | NI=:==4 | RMS Noise | mg | • | 0.7 | | | Noise ⁴ | Noise Density | μg / √Hz | | 150 | | Table 1: Mechanical Specifications ### Notes: - 1. Resolution and acceleration ranges are user selectable via I²C and via CTRL_REG1 register. - 2. 14-bit Resolution is only available for registers 0x06 0x0B in the 8g or 16g High Resolution mode - 3. Self-test can be exercised by setting STPOL bit = 1 in INT_CTRL_REG1, then writing 0xCA to the SELF_TEST register. - 4. Noise measured in High Resolution Mode (RES = 1) at 50Hz ODR. PART NUMBER: KXTJ3-1057 Rev. 3.0 27-Sep-2017 ### **Electrical** (specifications are for operation at 2.5V and T = 25C unless stated otherwise) | Р | arameters | Units | Min | Typical | Max | |-------------------------------------|-------------------------------------|-------|--------------|-------------|--------------| | Supply Voltage (VDD) | Operating | V | 1.71 | 2.5 | 3.6 | | I/O Pads Supply Voltage | ge (IO_VDD) | V | 1.7 | | 3.6 | | | High Resolution Mode (RES=1) | | | 155 | | | Current Consumption | Low Power Mode ¹ (RES=0) | μΑ | | 10 | | | | Disabled | | | 0.9 | | | Output Low Voltage (IC |)_VDD < 2V) ² | V | - | - | 0.2 * IO_VDD | | Output Low Voltage (IC |)_VDD ≥ 2V) ² | V | | | 0.4 | | Output High Voltage | | V | 0.8 * IO_VDD | - | - | | Input Low Voltage | | V | - | - | 0.2 * IO_VDD | | Input High Voltage | | V | 0.8 * IO_VDD | - | - | | Start Up Time ³ | | ms | | ~1/ODR | | | Power Up Time ⁴ | | ms | | 12 | 30 | | I ² C Communication Ra | te | MHz | | | 3.4 | | I ² C Slave Address (7-b | it) | | | 0x0E / 0x0F | | | Output Data Rate (ODI | R) ⁵ | Hz | 0.781 | 50 | 1600 | | Danadusidah (OdD)6 | RES = 0 | | | 800 | | | Bandwidth (-3dB) ⁶ | RES = 1 | | | ODR/2 | | Table 2: Electrical Specifications #### Notes: - 1. Current varies with Output Data Rate (ODR). See Current Profile section for details. - 2. For I²C communication, this assumes a minimum 1.5k Ω pull-up resistor on SCL and SDA pins. - 3. Start up time is from PC1 set to valid outputs. Time varies with Output Data Rate (ODR). See Table 3: Start Up Time for details. - 4. Power up time is from VDD and IO_VDD valid to device boot completion. - 5. User selectable through I²C - 6. User selectable and dependent on ODR and RES PART NUMBER: KXTJ3-1057 Rev. 3.0 27-Sep-2017 ## **Start Up Time Profile** | RES | Mode | ODR (Hz) | Start up time (ms) | |-----|------------|----------|--------------------| | 0 | Low-power | 0.781 | 2 | | 0 | Low-power | 1.563 | 2 | | 0 | Low-power | 3.125 | 2 | | 0 | Low-power | 6.25 | 2 | | 0 | Low-power | 12.5 | 2 | | 0 | Low-power | 25 | 2 | | 0 | Low-power | 50 | 2 | | 0 | Low-power | 100 | 2 | | 0 | Low-power | 200 | 2 | | 0 | Full-power | 400 | 4 | | 0 | Full-power | 800 | 3 | | 0 | Full-power | 1600 | 2 | | 1 | Full-power | 0.781 | 1281 | | 1 | Full-power | 1.563 | 641 | | 1 | Full-power | 3.125 | 321 | | 1 | Full-power | 6.25 | 161 | | 1 | Full-power | 12.5 | 81 | | 1 | Full-power | 25 | 41 | | 1 | Full-power | 50 | 21 | | 1 | Full-power | 100 | 11 | | 1 | Full-power | 200 | 6 | | 1 | Full-power | 400 | 4 | | 1 | Full-power | 800 | 3 | | 1 | Full-power | 1600 | 2 | Table 3: Start Up Time PART NUMBER: KXTJ3-1057 Rev. 3.0 27-Sep-2017 ### **Current Profile** Figure 1: Current Profile PART NUMBER: KXTJ3-1057 Rev. 3.0 27-Sep-2017 ### **Power-On Procedure** Proper functioning of power-on reset (POR) is dependent on the specific **VDD**, **VDD**_{LOW}, **T**_{VDD} (rise time), and **T**_{VDD_OFF} profile of individual applications. It is recommended to minimize **VDD**_{LOW}, and **T**_{VDD}, and maximize **T**_{VDD_OFF}. It is also advised that the **VDD** ramp up time **T**_{VDD} be monotonic. Note that the outputs will not be stable until **VDD** has reached its final value. To assure proper POR, the application should be evaluated over the customer specified range of VDD, VDD_{LOW} , T_{VDD_OFF} and temperature as POR performance can vary depending on these parameters. Please refer to Technical Note <u>TN017 KXTJ3 Accelerometer Power-On Procedure</u> for more information. PART NUMBER: KXTJ3-1057 Rev. 3.0 27-Sep-2017 ### **Environmental** | Paran | neters | Units | Min | Typical | Max | |----------------------|------------------|-------|------|---------|-----------------------------------| | Supply Voltage (VDD) | Absolute Limits | V | -0.5 | - | 3.63 | | Operating Temperatur | e Range | ٥C | -40 | - | 85 | | Storage Temperature | Range | ٥C | -55 | - | 150 | | Mech. Shock (powered | d and unpowered) | g | - | - | 5000 for 0.5ms
10000 for 0.2ms | | ESD | НВМ | V | - | - | 2000 | Table 4: Environmental Specifications Caution: ESD Sensitive and Mechanical Shock Sensitive Component, improper handling can cause permanent damage to the device. These products conform to RoHS Directive 2011/65/EU of the European Parliament and of the
Council of the European Union that was issued June 8, 2011. Specifically, these products do not contain any non-exempted amounts of lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) or polybrominated diphenyl ethers (PBDE) above the maximum concentration values (MCV) by weight in any of its homogenous materials. Homogenous materials are "of uniform composition throughout". The MCV for lead, mercury, hexavalent chromium, PBB, and PBDE is 0.10%. The MCV for cadmium is 0.010%. Applicable Exemption: 7C-I - Electrical and electronic components containing lead in a glass or ceramic other than dielectric ceramic in capacitors (piezoelectronic devices) or in a glass or ceramic matrix compound. These products are also in conformance with REACH Regulation No 1907/2006 of the European Parliament and of the Council that was issued Dec. 30, 2011. They do not contain any Substances of Very High Concern (SVHC-174) as identified by the European Chemicals Agency as of 12 July 2017. This product is halogen-free per IEC 61249-2-21. Specifically, the materials used in this product contain a maximum total halogen content of 1500 ppm with less than 900-ppm bromine and less than 900-ppm chlorine. **PART NUMBER:** KXTJ3-1057 Rev. 3.0 27-Sep-2017 ## **Soldering** Soldering recommendations are available upon request or from www.kionix.com. ### Floor Life Factory floor life exposure of the KXTJ3 reels removed from the moisture barrier bag should not exceed a maximum of 168 hours at 30C/60%RH. If this floor life is exceeded, the parts should be dried per the IPC/JEDEC J-STD-033A standard. PART NUMBER: KXTJ3-1057 Rev. 3.0 27-Sep-2017 ## **Terminology** g A unit of acceleration equal to the acceleration of gravity at the earth's surface. $$1g = 9.8 \frac{m}{s^2}$$ One thousandth of a g (0.0098 m/ s²) is referred to as 1 milli-g (1 mg). ### Sensitivity The sensitivity of an accelerometer is the change in output per unit of input acceleration at nominal VDD and temperature. The term is essentially the gain of the sensor expressed in counts per g (counts/g) or LSB's per g (LSB/g). Occasionally, sensitivity is expressed as a resolution, i.e. milli-g per LSB (mg/LSB) or milli-g per count (mg/count). Sensitivity for a given axis is determined by measurements of the formula: $$Sensitivity = \frac{\left(Output @+1g - Output @-1g\right)}{2g}$$ The sensitivity tolerance describes the range of sensitivities that can be expected from a large population of sensors at room temperature and over life. When the temperature deviates from room temperature (25°C), the sensitivity will vary by the amount shown in Table 1. ### Zero-g offset Zero-g offset or 0-g offset describes the actual output of the accelerometer when no acceleration is applied. Ideally, the output would always be in the middle of the dynamic range of the sensor (content of the OUTX, OUTY, OUTZ registers = 00h, expressed as a 2's complement number). However, because of mismatches in the sensor, calibration errors, and mechanical stress, the output can deviate from 00h. This deviation from the ideal value is called 0-g offset. The zero-g offset tolerance describes the range of 0-g offsets of a population of sensors over the operating temperature range. #### Self-test Self-test allows a functional test of the sensor without applying a physical acceleration to it. When activated, an electrostatic force is applied to the sensor, simulating an input acceleration. The sensor outputs respond accordingly. If the output signals change within the amplitude specified in Table 1, then the sensor is working properly and the parameters of the interface chip are within the defined specifications. PART NUMBER: KXTJ3-1057 Rev. 3.0 27-Sep-2017 ## **Functionality** ### Sense element The sense element is fabricated using Kionix's proprietary plasma micromachining process technology. This process technology allows Kionix to create mechanical silicon structures which are essentially mass-spring systems that move in the direction of the applied acceleration. Acceleration sensing is based on the principle of a differential capacitance arising from the acceleration-induced motion. Capacitive plates on the moving mass move relative to fixed capacitive plates anchored to the substrate. The sense element is hermetically sealed at the wafer level by bonding a second silicon lid wafer to the device using a glass frit. #### **ASIC** interface A separate ASIC device packaged with the sense element provides all of the signal conditioning and communication with the sensor. The complete measurement chain is composed by a low-noise capacitance to voltage amplifier which converts the differential capacitance of the MEMS sensor into an analog voltage that is sent through an analog-to-digital converter. The acceleration data may be accessed through the I²C digital communications provided by the ASIC. In addition, the ASIC contains all of the logic to allow the user to choose data rates, g-ranges, filter settings, and interrupt logic. Plus, there are two programmable state machines which allow the user to create unique embedded functions based on changes in acceleration. ### **Factory calibration** Kionix trims the offset and sensitivity of each accelerometer by adjusting gain (sensitivity) and 0-g offset trim codes stored in non-volatile memory (OTP). Additionally, all functional register default values are also programmed into the nonvolatile memory. Every time the device is turned on or a software reset command is issued, the trimming parameters and default register values are downloaded into the volatile registers to be used during active operation. This allows the device to function without further calibration. PART NUMBER: KXTJ3-1057 Rev. 3.0 27-Sep-2017 ## **Application Schematic** # **Pin Description** | Pin | Name | Description | |-----|--------|---| | 1 | ADDR | I2C programmable address bit. Must be connected to IO_VDD or GND. (see Note 5) | | 2 | SDA | I2C Serial Data | | 3 | IO_VDD | The power supply input for the digital communication bus. Optionally decouple this pin to ground with a 0.1uF ceramic capacitor. (see Note 1) | | 4 | RES | Reserved. Connect to GND. Do not leave floating if not used. (see Note 4) | | 5 | INT | Physical Interrupt pin (Push-Pull). Leave floating if not used. | | 6 | GND | Ground (see Note 2) | | 7 | VDD | The power supply input. Decouple this pin to ground with a 0.1uF ceramic capacitor. (see Note 3) | | 8 | GND | Ground (see Note 2) | | 9 | GND | Ground (see Note 2) | | 10 | VDD | The power supply input. Decouple this pin to ground with a 0.1uF ceramic capacitor. (see Note 3) | | 11 | IO_VDD | The power supply input for the digital communication bus. Optionally decouple this pin to ground with a 0.1uF ceramic capacitor. (see Note 1) | | 12 | SCL | I2C Serial Clock | ## Table 5: Pin Description ### Notes: - 1. IO_VDD Pins 3, and 11 are internally tied together. For backwards compatibility with other parts, one of the two pins may be left floating. - 2. GND Pins 6, 8, and 9 are internally tied together. For backwards compatibility with other parts, any two of the three pins may be left floating. - 3. VDD Pins 7, and 10 are internally tied together. For backwards compatibility with other parts, one of the two pins may be left floating. - 4. RES Pin 4 can be optionally tied to IO_VDD or VDD instead. - 5. See Digital Interface section for connection details. 36 Thornwood Dr. – Ithaca, NY 14850 tel: 607-257-1080 – fax:607-257-1146 www.kionix.com - info@kionix.com **PART NUMBER:** KXTJ3-1057 Rev. 3.0 27-Sep-2017 # **Package Dimensions and Orientation** ## **Dimensions** 2 x 2 x 0.9 mm LGA | 0.100 - | 0.250 - | 00 | 1 | řυ | |--------------|---------|------------------|---------|-----------------| | 5 | | | 5 | 0.250 | | 0.125 | € | \triangleright | 0.125 | A | | <u> </u> | ₩ 4.1 | \triangleright | 0.125 | t: | | 0.100 - | A & A | | | 0.075 | | 22 DIN | 0.750 | | - 0.100 | 0.180 - - 1 | | 0.125
NIA | | VIEW | | 0.1 | | SYMBOL | MILLIMETER | | | | | | | | | | | |--------|------------|--------|------|--|--|--|--|--|--|--|--| | | MIN | NOR | MAX | | | | | | | | | | Α | 0.88 | 0.93 | 1.00 | | | | | | | | | | A2 | 0.10 | 0.13 | 0.16 | | | | | | | | | | A3 | 0.78 | 0.80 | 0.84 | | | | | | | | | | D | 1.95 | 2.00 | 2.05 | | | | | | | | | | E | 1.95 | 2.00 | 2.05 | | | | | | | | | | е | 0. | 50 BSC | | | | | | | | | | | aaa | | 0.10 | | | | | | | | | | | ccc | | 0.05 | | | | | | | | | | All dimensions and tolerances conform to ASME Y14.5M-1994 PART NUMBER: KXTJ3-1057 Rev. 3.0 27-Sep-2017 ## Orientation When device is accelerated in +X, +Y or +Z direction, the corresponding output will increase. ## Static X/Y/Z Output Response versus Orientation to Earth's surface (1g): GSEL1=0, GSEL0=0, EN16G=0 (± 2g) | Position | 1 | | 2 | | 3 | 3 4 | | 5 | | 6 | | | | |-------------------|------|----|-------|-----|-------|-----|------|----|------|----|------------|-----|--| | Diagram | | | | | | | | | Bott | | Bottom Top | | | | Resolution (bits) | 12 | 8 | 12 | 8 | 12 | 8 | 12 | 8 | 12 | 8 | 12 | 8 | | | X (counts) | 1024 | 64 | 0 | 0 | -1024 | -64 | 0 | 0 | 0 | 0 | 0 | 0 | | | Y (counts) | 0 | 0 | -1024 | -64 | 0 | 0 | 1024 | 64 | 0 | 0 | 0 | 0 | | | Z (counts) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1024 | 64 | -1024 | -64 | | | | | | | | | • | | | | | | | | | X-Polarity | + | - | 0 |) | - | | O | 0 | |) | 0 | | | | Y-Polarity | 0 |) | _ | - | |) | + | + | |) | 0 | | | | Z-Polarity | O |) | O | 0 | | 0 | | 0 | | + | | - | | PART NUMBER: KXTJ3-1057 Rev. 3.0 27-Sep-2017 ## Static X/Y/Z Output Response versus Orientation to Earth's surface (1g): GSEL1=0, GSEL0=1, EN16G =0 (± 4g) | Position | 1 | | 2 | 2 | | 3 | | | 5 |) | 6 | | | |-------------------|-----|----|------|-----|------|-----|-----|----|------|----|------------|-----|--| | Diagram | | |
 | | | | | Bott | | Bottom Top | | | | Resolution (bits) | 12 | 8 | 12 | 8 | 12 | 8 | 12 | 8 | 12 | 8 | 12 | 8 | | | X (counts) | 512 | 32 | 0 | 0 | -512 | -32 | 0 | 0 | 0 | 0 | 0 | 0 | | | Y (counts) | 0 | 0 | -512 | -32 | 0 | 0 | 512 | 32 | 0 | 0 | 0 | 0 | | | Z (counts) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 512 | 32 | -512 | -32 | | | | | | | | | | | | | | | | | | X-Polarity | + | - | C |) | - | • | 0 | 0 | | | 0 |) | | | Y-Polarity | C |) | - | - | |) | + | | 0 | | 0 | | | | Z-Polarity | C |) | C | 0 | | 0 | | 0 | | + | | - | | Earth's Surface **PART NUMBER:** KXTJ3-1057 Rev. 3.0 27-Sep-2017 ## Static X/Y/Z Output Response versus Orientation to Earth's surface (1g): GSEL1=1, GSEL0=0, EN16G =0 (± 8g) GSEL1=1, GSEL0=1, EN16G=0 (± 8g)¹ | Position | 1 2 | | | 2 | | 3 | | | 4 | | | 5 | | | 6 | | | | |-------------------|------|-----|----|-----------|----------|---------|-----------|----------|---------|------|------------|----|------|------------|----|-----------|----------|---------| | Diagram | | | | | | | | | | | Top Bottom | | | Bottom Top | | | | | | Resolution (bits) | 14 | 12 | 8 | 14 | 12 | 8 | 14 | 12 | 8 | 14 | 12 | 8 | 14 | 12 | 8 | 14 | 12 | 8 | | X(counts) | 1024 | 256 | 16 | 0 | 0 | 0 | -
1024 | -
256 | -
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Y (counts) | 0 | 0 | 0 | -
1024 | -
256 | -
16 | 0 | 0 | 0 | 1024 | 256 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | | Z(counts) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1024 | 256 | 16 | -
1024 | -
256 | -
16 | X-Polarity | | + | | | 0 | | | - | | 0 | | | 0 | | | 0 | | | | Y-Polarity | | 0 | | | - | | | 0 | | | + | | | 0 | | | 0 | | | Z-Polarity | | 0 | | | 0 | | | 0 | | 0 | | + | | - | | | | | | ↓ (1g) | | | | | | | | | | | | | | | | | | | Earth's Surface PART NUMBER: KXTJ3-1057 Rev. 3.0 27-Sep-2017 ### Static X/Y/Z Output Response versus Orientation to Earth's surface (1g): GSEL1=0, GSEL0=0, EN16G =1 (± 16g) GSEL1=0, GSEL0=1, EN16G =1 (± 16g) GSEL1=1, GSEL0=0, EN16G =1 (± 16g) GSEL1=1, GSEL0=1, EN16G =1 (± 16g) | Position | | 1 | | | 2 | | | 3 | | | 4 | | | 5 | | | 6 | | |-------------------|---------------------|---------|---|------|------|----|------|------|------|-----|-----|---|-----|--------------|--------|------------|------|----| | Diagram | | 11 10 0 | | | | | | | | | | | | Top
ottom |]
1 | Bottom Top | |] | | Resolution (bits) | 14 | 12 | 8 | 14 | 12 | 8 | 14 | 12 | 8 | 14 | 12 | 8 | 14 | 12 | 8 | 14 | 12 | 8 | | X(counts) | 512 | 128 | 8 | 0 | 0 | 0 | -512 | -128 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Y (counts) | 0 | 0 | 0 | -512 | -128 | -8 | 0 | 0 | 0 | 512 | 128 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | | Z(counts) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 512 | 128 | 8 | -512 | -128 | -8 | X-Polarity | X-Polarity + | | | | 0 | | | - | | 0 | | 0 | | | 0 | | | | | Y-Polarity | Y-Polarity 0 | | | | - | | | 0 | | | + | | | 0 | | | 0 | | | Z-Polarity | | 0 | | | 0 | | | 0 | | | 0 | | | + | | | - | | | | | | | | | | 1 | ļ | (1g) |) | | | | | | | | | Earth's Surface ### Notes: 1. This is applicable for 14-bit mode only in High Resolution mode PART NUMBER: KXTJ3-1057 Rev. 3.0 27-Sep-2017 ## **Digital Interface** The Kionix KXTJ3 digital accelerometer has the ability to communicate on the I²C digital serial interface bus. This allows for easy system integration by eliminating analog-to-digital converter requirements and by providing direct communication with system micro-controllers. The serial interface terms and descriptions as indicated in Table 6 will be observed throughout this document. | Term | Description | |-------------|---| | Transmitter | The device that transmits data to the bus. | | Receiver | The device that receives data from the bus. | | Master | The device that initiates a transfer, generates clock signals, and terminates a transfer. | | Slave | The device addressed by the Master. | **Table 6:** Serial Interface Terminologies ### I²C Serial Interface As previously mentioned, the KXTJ3 has the ability to communicate on an I²C bus. I²C is primarily used for synchronous serial communication between a Master device and one or more Slave devices. The Master, typically a micro controller, provides the serial clock signal and addresses Slave devices on the bus. The KXTJ3 always operates as a Slave device during standard Master-Slave I²C operation. I²C is a two-wire serial interface that contains a Serial Clock (SCL) line and a Serial Data (SDA) line. SCL is a serial clock that is provided by the Master, but can be held low by any Slave device, putting the Master into a wait condition. SDA is a bi-directional line used to transmit and receive data to and from the interface. Data is transmitted MSB (Most Significant Bit) first in 8-bit per byte format, and the number of bytes transmitted per transfer is unlimited. The I²C bus is considered free when both lines are high. The I²C interface is compliant with high-speed mode, fast mode and standard mode I²C standards. ## I²C Operation Transactions on the I²C bus begin after the Master transmits a start condition (S), which is defined as a high-to-low transition on the data line while the SCL line is held high. The bus is considered busy after this condition. The next byte of data transmitted after the start condition contains the Slave Address (SAD) in the seven MSBs (Most Significant Bits), and the LSB (Least Significant Bit) tells whether the Master will be receiving data '1' from the Slave or transmitting data '0' to the Slave. When a Slave Address is sent, each device on the bus compares the seven MSBs with its internally stored address. If they match, the device considers itself addressed by the Master. The KXTJ3's Slave Address is comprised of a programmable part and a fixed part, which allows for connection of multiple KXTJ3's to **PART NUMBER:** KXTJ3-1057 Rev. 3.0 27-Sep-2017 the same I²C bus. The Slave Address associated with the KXTJ3 is 000111X, where the programmable bit X is determined by the assignment of ADDR (pin 1) to GND or IO_VDD (Table 7). Also, Figure 2 shows how two KXTJ3's would be implemented on the same I²C bus. It is mandatory that receiving devices acknowledge (ACK) each transaction. Therefore, the transmitter must release the SDA line during this ACK pulse. The receiver then pulls the data line low so that it remains stable low during the high period of the ACK clock pulse. A receiver that has been addressed, whether it is Master or Slave, is obliged to generate an ACK after each byte of data has been received. To conclude a transaction, the Master must transmit a stop condition (P) by transitioning the SDA line from low to high while SCL is high. The I²C bus is now free. Note that if the KXTJ3 is accessed through I²C protocol before the startup is finished a NACK signal is sent. Figure 2: Multiple KXTJ3 I²C Connection | | | | | | | | | | Υ | X | | |-------------|----------------|------------------|---------|-----|-----|-----|-----|-----|-----|-----|-----| | Description | Address
Pad | 7-bit
Address | Address | <7> | <6> | <5> | <4> | <3> | <2> | <1> | <0> | | I2C Wr | GND | 0x0E | 0x1C | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | | I2C Rd | GND | 0x0E | 0x1D | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | | I2C Wr | IO_VDD | 0x0F | 0x1E | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | | I2C Rd | IO VDD | 0x0F | 0x1F | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | Table 7: I2C Slave Addresses for KXTJ3-1057 PART NUMBER: KXTJ3-1057 Rev. 3.0 27-Sep-2017 ## Writing to an 8-bit Register Upon power up, the Master must write to the KXTJ3's control registers to set its operational mode. Therefore, when writing to a control register on the I²C bus, as shown Sequence 1 below, the following protocol must be observed: After a start condition, SAD+W transmission, and the KXTJ3 ACK has been returned, an 8-bit Register Address (RA) command is transmitted by the Master. This command is telling the KXTJ3 to which 8-bit register the Master will be writing the data. Since this is I²C mode, the MSB of the RA command should always be zero (0). The KXTJ3 acknowledges the RA and the Master transmits the data to be stored in the 8-bit register. The KXTJ3 acknowledges that it has received the data and the Master transmits a stop condition (P) to end the data transfer. The data sent to the KXTJ3 is now stored in the appropriate register. The KXTJ3 automatically increments the received RA commands and, therefore, multiple bytes of data can be written to sequential registers after each Slave ACK as shown in Sequence 2 on the following page. Note** If a STOP condition is sent on the least significant bit of write data or the following master acknowledge cycle, the last write operation is not guaranteed and it may alter the content of the affected registers. ## Reading from an 8-bit Register When reading data from a KXTJ3 8-bit register on the I²C bus, as shown in Sequence 3 on the next page, the following protocol must be observed: The Master first transmits a start condition (S) and the appropriate Slave Address (SAD) with the LSB set at '0' to write. The KXTJ3 acknowledges and the Master transmits the 8-bit RA of the register it wants to read. The KXTJ3 again acknowledges, and the Master transmits a repeated start condition (Sr). After the repeated start condition, the Master addresses the KXTJ3 with a '1' in the LSB (SAD+R) to read from the previously selected register. The Slave then acknowledges and transmits the data from the requested register. The Master does not acknowledge (NACK) it received the transmitted data, but transmits a stop condition to end the data transfer. Note that the KXTJ3 automatically increments through its sequential registers, allowing data to be read from multiple registers following a single SAD+R command as shown below in Sequence 4. The 8-bit register data is transmitted using a
left-most format, first bit shifted/clocked out being the MSB bit. If a receiver cannot transmit or receive another complete byte of data until it has performed some other function, it can hold SCL low to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases SCL. Note** Accelerometer's output data should be read in a single transaction using the auto-increment feature to prevent output data from being updated prior to intended completion of the read transaction. PART NUMBER: KXTJ3-1057 Rev. 3.0 27-Sep-2017 ## **Data Transfer Sequences** The following information clearly illustrates the variety of data transfers that can occur on the I²C bus and how the Master and Slave interact during these transfers. Table 8 defines the I²C terms used during the data transfers. | Term | Definition | |------|---------------------------| | S | Start Condition | | Sr | Repeated Start Condition | | SAD | Slave Address | | W | Write Bit | | R | Read Bit | | ACK | Acknowledge | | NACK | Not Acknowledge | | RA | Register Address | | Data | Transmitted/Received Data | | Р | Stop Condition | Table 8: I²C Terms ## **Sequence 1:** The Master is writing one byte to the Slave. | | Master | S | SAD + W | | RA | | DATA | | Р | |---|--------|---|---------|-----|----|------------|------|-----|---| | ĺ | Slave | | | ACK | | ACK | | ACK | | ## **Sequence 2:** The Master is writing multiple bytes to the Slave. | Maste | ·S | ; | SAD + W | | RA | | DATA | | DATA | | Р | |-------|----|---|---------|-----|----|-----|------|-----|------|-----|---| | Slave | | | | ACK | | ACK | | ACK | | ACK | | ## **Sequence 3:** The Master is receiving one byte of data from the Slave. | Master | S | SAD + W | | RA | | Sr | SAD + R | | | NACK | Р | |--------|---|---------|-----|----|-----|----|---------|-----|------|------|---| | Slave | | | ACK | | ACK | | | ACK | DATA | | | ## **Sequence 4:** The Master is receiving multiple bytes of data from the Slave. | Master | S | SAD + W | | RA | | Sr | SAD + R | | | ACK | | NACK | Р | |--------|---|---------|-----|----|------------|----|---------|-----|------|-----|------|------|---| | Slave | | | ACK | | ACK | | | ACK | DATA | | DATA | | | **PART NUMBER:** KXTJ3-1057 Rev. 3.0 27-Sep-2017 ### **HS-mode** To enter the 3.4MHz high speed mode of communication, the device must receive the following sequence of conditions from the master: a Start condition followed by a Master code (00001XXX) and a Master Non-acknowledge. Once recognized, the device switches to HS-mode communication. Read/write data transfers then proceed as described in the sequences above. Devices return to the FS-mode after a STOP occurrence on the bus. **Sequence 5:** HS-mode data transfer of the Master writing multiple bytes to the Slave. | Speed | | FS-mode |) | | HS-mode | | | | | | | | |--------|---|---------|------|----|---------|-----|----|-----|------|-----|---|--| | Master | S | M-code | NACK | Sr | SAD + W | | RA | | DATA | | Р | | | Slave | | | | | | ACK | | ACK | | ACK | | | n bytes + ack. **Sequence 6:** HS-mode data transfer of the Master receiving multiple bytes of data from the Slave. | Speed | | FS-mode | 9 | | H | S-mod | de | | |--------|---|---------|------|----|---------|-------|----|-----| | Master | S | M-code | NACK | Sr | SAD + W | | RA | | | Slave | | | | | | ACK | | ACK | | Speed | | | | HS-mo | ode | | | | FS-mode | |--------|----|---------|-----|-------|-----|------|------|---|---------| | Master | Sr | SAD + R | | | | | NACK | Ρ | | | Slave | | | ACK | DATA | ACK | DATA | | | | (n-1) bytes + ack. **PART NUMBER:** KXTJ3-1057 Rev. 3.0 27-Sep-2017 # I²C Timing Diagram | Number | Description | MIN | MAX | Units | |-----------------------|--|-----|-----|-------| | t_0 | SDA low to SCL low transition (Start event) | 50 | - | ns | | t_1 | SDA low to first SCL rising edge | 100 | - | ns | | t_2 | SCL pulse width: high | 100 | - | ns | | t ₃ | SCL pulse width: low | 100 | - | ns | | t_4 | SCL high before SDA falling edge (Start Repeated) | 50 | - | ns | | t ₅ | SCL pulse width: high during a S/Sr/P event | 100 | - | ns | | t ₆ | SCL high before SDA rising edge (Stop) | 50 | - | ns | | t_7 | SDA pulse width: high | 25 | - | ns | | t ₈ | SDA valid to SCL rising edge | 50 | - | ns | | t_9 | SCL rising edge to SDA invalid | 50 | - | ns | | t ₁₀ | SCL falling edge to SDA valid (when slave is transmitting) | - | 100 | ns | | t ₁₁ | SCL falling edge to SDA invalid (when slave is transmitting) | 0 | - | ns | | Note | Recommended I ² C CLK | 2.5 | - | us | Table 9: I²C Timing (Fast Mode) PART NUMBER: KXTJ3-1057 Rev. 3.0 27-Sep-2017 ## **Embedded Registers** The KXTJ3 has 20 embedded 8-bit registers that are accessible by the user. This section contains the addresses for all embedded registers and also describes bit functions of each register. | Register Name | Type (R/W) | Register Address (Hex) | |---------------------|------------|------------------------| | Kionix Reserved | - | 0x00 - 0x05 | | XOUT_L | R | 0x06 | | XOUT_H | R | 0x07 | | YOUT_L | R | 0x08 | | YOUT_H | R | 0x09 | | ZOUT_L | R | 0x0A | | ZOUT_H | R | 0x0B | | DCST_RESP | R | 0x0C | | Kionix Reserved | - | 0x0D - 0x0E | | WHO_AM_I | R | 0x0F | | Kionix Reserved | - | 0x10 - 0 x15 | | INT_SOURCE1 | R | 0x16 | | INT_SOURCE2 | R | 0x17 | | STATUS_REG | R | 0x18 | | Kionix Reserved | - | 0x19 | | INT_REL | R | 0x1A | | CTRL_REG1* | R/W | 0x1B | | Kionix Reserved | - | 0x1C | | CTRL_REG2* | R/W | 0x1D | | INT_CTRL_REG1* | R/W | 0x1E | | INT_CTRL_REG2* | R/W | 0x1F | | Kionix Reserved | - | 0x20 | | DATA_CTRL_REG* | R/W | 0x21 | | Kionix Reserved | - | 0x22 - 0x28 | | WAKEUP_COUNTER* | R/W | 0x29 | | NA_COUNTER* | R/W | 0x2A | | Kionix Reserved | - | 0x2B - 0x39 | | SELF_TEST* | W | 0x3A | | Kionix Reserved | - | 0x3B - 0x69 | | WAKEUP_THRESHOLD_H* | R/W | 0x6A | | WAKEUP_THRESHOLD_H* | R/W | 0x6B | Table 10: Register Map ^{*} Note: When changing the contents of these registers, the PC1 bit in CTRL_REG1 must first be set to "0" PART NUMBER: KXTJ3-1057 Rev. 3.0 27-Sep-2017 # **Register Descriptions** ## **Accelerometer Outputs** These registers contain up to 14-bits of valid acceleration data for each. The data is updated every user-defined ODR period, is protected from overwrite during each read, and can be converted from digital counts to acceleration (g) per Table 11 below. The register acceleration output binary data is represented in 2's complement format. For example, if N = 14 bits, then the Counts range is from -8192 to 8191, if N = 12 bits, then the Counts range is from -2048 to 2047, and if N = 8 bits, then the Counts range is from -128 to 127. | 14-bit
Register Data
(2's complement) | Equivalent
Counts in decimal | Range = ±2g | Range = ±4g | Range = ±8g | Range = ±16g | |---|---------------------------------|---------------|---------------|-------------|--------------| | 00011111111111 | 8191 | Not available | Not available | +7.999g | +15.998g | | 00011111111110 | 8190 | Not available | Not available | +7.998g | +15.996g | | | | ••• | | | | | 00000000000001 | 1 | Not available | Not available | +0.00098g | +0.00195g | | 0000000000000 | 0 | Not available | Not available | 0.000g | 0.000g | | 11111111111111 | -1 | Not available | Not available | -0.00098g | -0.00195g | | | | | | | | | 11100000000001 | -8191 | Not available | Not available | -7.999g | -15.998g | | 11100000000000 | -8192 | Not available | Not available | -8.000g | -16.000g | | 12-bit
Register Data
(2's complement) | Equivalent
Counts in decimal | Range = ±2g | Range = ±4g | Range = ±8g | Range = ±16g | |---|---------------------------------|-------------|-------------|-------------|--------------| | 0111 1111 1111 | 2047 | +1.999g | +3.998g | +7.996g | +15.992g | | 0111 1111 1110 | 2046 | +1.998g | +3.996g | +7.992g | +15.984g | | | | | | | | | 0000 0000 0001 | 1 | +0.001g | +0.002g | +0.0039g | +0.0078g | | 0000 0000 0000 | 0 | 0.000g | 0.000g | 0.0000g | 0.0000g | | 1111 1111 1111 | -1 | -0.001g | -0.002g | -0.0039g | -0.0078g | | | | | | | | | 1000 0000 0001 | -2047 | -1.999g | -3.998g | -7.996g | -15.992g | | 1000 0000 0000 | -2048 | -2.000g | -4.000g | -8.000g | -16.000g | 36 Thornwood Dr. – Ithaca, NY 14850 tel: 607-257-1080 – fax:607-257-1146 www.kionix.com - info@kionix.com PART NUMBER: KXTJ3-1057 Rev. 3.0 27-Sep-2017 | 8-bit
Register Data
(2's complement) | Equivalent
Counts in decimal | Range = ±2g | Range = ±4g | Range = ±8g | Range = ±16g | |--|---------------------------------|-------------|-------------|-------------|--------------| | 0111 1111 | 127 | +1.984g | +3.969g | +7.938g | +15.875g | | 0111 1110 | 126 | +1.969g | +3.938g | +7.875g | +15.75g | | | | | | | | | 0000 0001 | 1 | +0.016g | +0.031g | +0.0625g | +0.125g | | 0000 0000 | 0 | 0.000g | 0.000g | 0.000g | 0.000g | | 1111 1111 | -1 | -0.016g | -0.031g | -0.0625g | -0.125g | | | | ••• | | | | | 1000 0001 | -127 | -1.984g | -3.969g | -7.938g | -15.875g | | 1000 0000 | -128 | -2.000g | -4.000g | -8.000g | -16.000g | Table 11: Acceleration (g) Calculation **PART NUMBER:** KXTJ3-1057 Rev. 3.0 27-Sep-2017 ## **XOUT L** X-axis accelerometer output least significant byte | R | R | R | R | R | R | R | R | Resolution | |--------|--------|--------|--------|-----------------------|------------|------|------|------------| | XOUTD5 | XOUTD4 | XOUTD3 | XOUTD2 | XOUTD1 | XOUTD0 | Χ | Χ | 14-bit | | XOUTD3 | XOUTD2 | XOUTD1 | XOUTD0 | Χ | Х | Χ | Χ | 12-bit | | Χ | Χ | Χ | Χ | Χ | Χ | Χ | Χ | 8-bit | | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | | | | | | | l ² | C Address: | 0x06 | | | ## XOUT_H X-axis accelerometer output most significant byte | R | R | R | R | R | Ŕ | R | R | Resolution | |---------|---------
---------|---------|--------|------------|------------|--------|------------| | XOUTD13 | XOUTD12 | XOUTD11 | XOUTD10 | XOUTD9 | XOUTD8 | XOUTD7 | XOUTD6 | 14-bit | | XOUTD11 | XOUTD10 | XOUTD9 | XOUTD8 | XOUTD7 | XOUTD6 | XOUTD5 | XOUTD4 | 12-bit | | XOUTD7 | XOUTD6 | XOUTD5 | XOUTD4 | XOUTD3 | XOUTD2 | XOUTD1 | XOUTD0 | 8-bit | | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | | | | | | | | 2 | C Address: | 0x07 | | # YOUT_L Y-axis accelerometer output least significant byte | R | R | R | R | R | R | R | R | Resolution | |--------|--------|--------|--------|--------|------------|------------|------|------------| | YOUTD5 | YOUTD4 | YOUTD3 | YOUTD2 | YOUTD1 | YOUTD0 | Υ | Υ | 14-bit | | YOUTD3 | YOUTD2 | YOUTD1 | YOUTD0 | Χ | Χ | Χ | Х | 12-bit | | Х | Χ | Χ | Χ | Χ | Χ | Χ | Х | 8-bit | | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | | | | | | | | 2 | C Address: | 0x08 | | ## YOUT H Y-axis accelerometer output most significant byte | R | R | R | R | R | R | R | R | Resolution | |---------|---------|---------|---------|--------|--------|------------|--------|------------| | YOUTD13 | YOUTD12 | YOUTD11 | YOUTD10 | YOUTD9 | YOUTD8 | YOUTD7 | YOUTD6 | 14-bit | | YOUTD11 | YOUTD10 | YOUTD9 | YOUTD8 | YOUTD7 | YOUTD6 | YOUTD5 | YOUTD4 | 12-bit | | YOUTD7 | YOUTD6 | YOUTD5 | YOUTD4 | YOUTD3 | YOUTD2 | YOUTD1 | YOUTD0 | 8-bit | | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | | | | | | | | [2 | C Address: | 0x09 | | **PART NUMBER:** KXTJ3-1057 Rev. 3.0 27-Sep-2017 ## **ZOUT L** Z-axis accelerometer output least significant byte | R | R | R | R | R | R | R | R | Resolution | |--------|--------|--------|--------|------------|------------|------|------|------------| | ZOUTD5 | ZOUTD4 | ZOUTD3 | ZOUTD2 | ZOUTD1 | ZOUTD0 | Υ | Υ | 14-bit | | ZOUTD3 | ZOUTD2 | ZOUTD1 | ZOUTD0 | Х | Χ | Χ | Х | 12-bit | | Х | Х | Х | Х | Х | Χ | Χ | Х | 8-bit | | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | | | | | | | 2 | C Address: | 0x0A | | | # ZOUT_H Z-axis accelerometer output most significant byte | R | R | R | R | R | R | R | R | Resolution | |---------|---------|---------|---------|--------|--------|------------|--------|------------| | ZOUTD13 | ZOUTD12 | ZOUTD11 | ZOUTD10 | ZOUTD9 | ZOUTD8 | ZOUTD7 | ZOUTD6 | 14-bit | | ZOUTD11 | ZOUTD10 | ZOUTD9 | ZOUTD8 | ZOUTD7 | ZOUTD6 | ZOUTD5 | ZOUTD4 | 12-bit | | ZOUTD7 | ZOUTD6 | ZOUTD5 | ZOUTD4 | ZOUTD3 | ZOUTD2 | ZOUTD1 | ZOUTD0 | 8-bit | | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | | | | | | | | [2 | C Address: | 0x0B | | ## DCST RESP This register can be used to verify proper integrated circuit functionality. It always has a byte value of 0x55 unless the DCST bit in CTRL_REG2 is set. At that point this value is set to 0xAA. The byte value is returned to 0x55 after reading this register. | R | R | R | R | R | R | R | R | | |--------|--------|--------|--------|--------|------------|------------|--------|-------------| | DCSTR7 | DCSTR6 | DCSTR5 | DCSTR4 | DCSTR3 | DCSTR2 | DCSTR1 | DCSTR0 | Reset Value | | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | 01010101 | | | | | | | 2 | C Address: | 0x0C | | ### WHO AM I This register can be used for supplier recognition, as it can be factory written to a known byte value. The default value is 0x35. | R | R | R | R | R | R | R | R | | |------|------|------|------|------|------|-------------------------|------|-------------| | WIA7 | WIA6 | WIA5 | WIA4 | WIA3 | WIA2 | WIA1 | WIA0 | Reset Value | | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | 00110101 | | | | | | | 2 | ² C Address: | 0x0F | | **PART NUMBER:** KXTJ3-1057 Rev. 3.0 27-Sep-2017 ## **Interrupt Source Registers** These two registers report interrupt state changes. This data is updated when a new interrupt event occurs and each application's result is latched until the interrupt release register is read. The programmable interrupt engine can be configured to report data in an unlatched manner via the interrupt control registers. ### **INT SOURCE1** This register reports which function caused an interrupt. Reading from the interrupt release register (INT_REL, 0x1A) will clear the entire contents of this register. | R | R | R | R | R | R | R | R | |------|------|------|------------|------------|------|------|------| | 0 | 0 | 0 | DRDY | 0 | 0 | WUFS | 0 | | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | | | | | 2 | C Address: | 0x16 | | | **DRDY** - indicates that new acceleration data (at Reg Addr 0x06 to 0x0B) is available. This bit is cleared when acceleration data is read or the interrupt release register (INT REL, 0x1A) is read. 0 = New acceleration data not available 1 = New acceleration data available **WUFS** - Wake up has occurred. This bit is cleared when the interrupt source latch register (INT_REL, 0x1A) is read. 0 = No motion 1 = Motion has activated the interrupt ## **INT SOURCE2** This register reports the axis and direction of detected motion per Table 12. This register is cleared when the interrupt source latch register (INT_REL, 0x1A is read. | R | R | R | R | R | R | R | R | |------|------|------|------------|------------|------|------|------| | 0 | 0 | XNWU | XPWU | YNWU | YPWU | ZNWU | ZPWU | | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | | | | | 2 | C Address: | 0x17 | | | 36 Thornwood Dr. – Ithaca, NY 14850 tel: 607-257-1080 – fax:607-257-1146 www.kionix.com - info@kionix.com PART NUMBER: KXTJ3-1057 Rev. 3.0 27-Sep-2017 | Bit | Description | |------|--------------------------| | XNWU | X Negative (X-) Reported | | XPWU | X Positive (X+) Reported | | YNWU | Y Negative (Y-) Reported | | YPWU | Y Positive (Y+) Reported | | ZNWU | Z Negative (Z-) Reported | | ZPWU | Z Positive (Z+) Reported | Table 12: Motion Reporting ## STATUS REG This register reports the status of the interrupt. | R | R | R | R | R | R | R | R | |------|------|------|------|------|------|------------|------| | 0 | 0 | 0 | INT | 0 | 0 | 0 | 0 | | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | | | | | | | 2 | C Address: | 0x18 | INT reports the combined (OR) interrupt information of DRDY and WUFS in the interrupt source register (INT_SOURCE1, 0x16). This bit is cleared when acceleration data is read or the interrupt release register (INT_REL, 1A) is read. 0 = no interrupt event 1 = interrupt event has occurred ## INT REL Latched interrupt source information (INT_SOURCE1, 0x16 and INT_SOURCE2, 0x17) is cleared and physical interrupt latched pin (5) is changed to its inactive state when this register is read. | R | R | R | R | R | R | R | R | |------|------|------|------|------------|------|------|------| | Х | Χ | Χ | Χ | Χ | Χ | Χ | Х | | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | | | | | 2 | C Address: | 0x1A | | | **PART NUMBER:** KXTJ3-1057 Rev. 3.0 27-Sep-2017 ### CTRL REG1 Read/write control register that controls the main feature set. | R/W | |------|------|-------|-------|-------|-------|-------------------------|------|-------------| | PC1 | RES | DRDYE | GSEL1 | GSEL0 | EN16G | WUFE | 0 | Reset Value | | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | 00000000 | | | • | • | • | • | 2 | ² C Address: | | | PC1 controls the operating mode of the KXTJ3. 0 = stand-by mode 1 = operating mode **RES** determines the performance mode of the KXTJ3. Note that to change the value of this bit, the PC1 bit must first be set to "0". 0 = Low current, 8-bit valid. Only available for ODR ≤ 200 Hz. Bandwidth (Hz) = 800 1 = High Resolution, 12-bit or 14-bit valid. Bandwidth (Hz) = ODR/2 **DRDYE** enables the reporting of the availability of new acceleration data as an interrupt. Note that to change the value of this bit, the PC1 bit must first be set to "0". 0 = availability of new acceleration data is not reflected as an interrupt 1 = availability of new acceleration data is reflected as an interrupt **GSEL1, GSEL0, EN16G** selects the acceleration range of the accelerometer outputs per Table 13. Note that to change the value of this bit, the PC1 bit must first be set to "0". | GSEL1 | GSEL0 | EN16G | Range | |-------|-------|-------|---------------| | 0 | 0 | 0 | ±2g | | 0 | 1 | 0 | ±4g | | 1 | 0 | 0 | ±8g | | 1 | 1 | 0 | ±8g¹ | | 0 | 0 | 1 | ±16g | | 0 | 1 | 1 | ±16g | | 1 | 0 | 1 | ±16g | | 1 | 1 | 1 | ±16g
±16g¹ | Table 13: Selected Acceleration Range ¹ This is a 14-bit mode available only in High Resolution mode and only for Registers 0x06h-0x0Bh PART NUMBER: KXTJ3-1057 Rev. 3.0 27-Sep-2017 **WUFE** enables the Wake Up (motion detect) function. 0=disabled, 1=enabled. Note that to change the value of this bit, the PC1 bit must first be set to "0". 0 = Wake Up function disabled 1 = Wake Up function enabled ### CTRL REG2 Read/write control register that provides more feature set control. Note that to properly change the value of this register, the PC1 bit in CTRL REG1 must first be set to "0". | | R/W | |---|------|----------|----------|------|----------|------------|------------|-------|-------------| | | SRST | Reserved | Reserved | DCST | Reserved | OWUFA | OWUFB | OWUFC | Reset Value | | ſ | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | 00000000 | | | | | | | | 2 | C Address: | | | **SRST** initiates software reset, which performs the RAM reboot routine. This bit will remain 1 until the RAM reboot routine is finished. SRST = 0 - no action SRST = 1 - start RAM reboot routine #### Reserved Care must be taken to not overwrite Reset Value of reserved bit(s) **DCST** initiates the digital communication self-test function. DCST = 0 - no action DCST = 1 – sets DCST_RESP register to 0xAA and when DCST_RESP is read, sets this bit to 0 and sets DCST_RESP to 0x55 **OWUFA, OWUFB, OWUFC** sets the Output Data Rate for the Wake Up function (motion detection) per Table 14 below **PART NUMBER:** KXTJ3-1057 Rev. 3.0 27-Sep-2017 | OWUFA | OWUFB | OWUFC | Wake Up function
Output Data Rate | |-------|-------|-------
--------------------------------------| | 0 | 0 | 0 | 0.781Hz | | 0 | 0 | 1 | 1.563Hz | | 0 | 1 | 0 | 3.125Hz | | 0 | 1 | 1 | 6.25Hz | | 1 | 0 | 0 | 12.5Hz | | 1 | 0 | 1 | 25Hz | | 1 | 1 | 0 | 50Hz | | 1 | 1 | 1 | 100Hz | **Table 14:** Output Data Rate for Wake Up Function ### **INT CTRL REG1** This register controls the settings for the physical interrupt pin (5). Note that to properly change the value of this register, the PC1 bit in CTRL_REG1 must first be set to "0". | R/W | |--------------------------------|------|------|------|------|------|-------|------|-------------| | 0 | 0 | IEN | IEA | IEL | 0 | STPOL | 0 | Reset Value | | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | 00010000 | | I ² C Address: 0x1E | | | | | | | | | **IEN** enables/disables the physical interrupt pin (5) IEN = 0 – physical interrupt pin (5) is disabled IEN = 1 - physical interrupt pin (5) is enabled **IEA** sets the polarity of the physical interrupt pin (5) IEA = 0 – polarity of the physical interrupt pin (5) is active low IEA = 1 - polarity of the physical interrupt pin (5) is active high **IEL** sets the response of the physical interrupt pin (5) IEL = 0 – the physical interrupt pin (5) latches until it is cleared by reading INT_REL IEL = 1 – the physical interrupt pin (5) will transmit one pulse with a period of 0.03 - 0.05ms STPOL - Self-test polarity. 0=negative polarity (unsupported) 1=positive polarity (supported) PART NUMBER: KXTJ3-1057 Rev. 3.0 27-Sep-2017 ### **INT CTRL REG2** This register controls which axis and direction of detected motion can cause an interrupt. Note that to properly change the value of this register, the PC1 bit in CTRL_REG1 must first be set to "0". | R/W | |--------|------|-------|-------|-------|-------|-------------------------|-------|-------------| | ULMODE | 0 | XNWUE | XPWUE | YNWUE | YPWUE | ZNWUE | ZPWUE | Reset Value | | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | 00111111 | | | | | | | 2 | ² C Address: | | | **ULMODE** – Unlatched mode motion interrupt, 0=disable, 1=enable **XNWU** - x negative (x-): 0 = disabled, 1 = enabled **XPWU** - x positive (x+): 0 = disabled, 1 = enabled **YNWU** - y negative (y-): 0 = disabled, 1 = enabled **YPWU** - y positive (y+): 0 = disabled, 1 = enabled **ZNWU** - z negative (z-): 0 = disabled, 1 = enabled **ZPWU** - z positive (z+): 0 = disabled, 1 = enabled ### DATA CTRL REG Read/write control register that configures the acceleration outputs. Note that to properly change the value of this register, the PC1 bit in CTRL_REG1 must first be set to "0". | R/W | |------|------|------|------|------|----------------|-------------------------|------|-------------| | 0 | 0 | 0 | 0 | OSAA | OSAB | OSAC | OSAD | Reset Value | | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | 0000010 | | | | | | | l ₂ | ² C Address: | | | **OSAA, OSAB, OSAC, OSAD** sets the output data rate (ODR) for the low-pass filtered acceleration outputs per Table 15. **PART NUMBER:** KXTJ3-1057 Rev. 3.0 27-Sep-2017 | OSAA | OSAB | OSAC | OSAD | Output Data Rate | LPF Roll-Off | |------|------|------|------|------------------|--------------| | 1 | 0 | 0 | 0 | 0.781Hz | 0.3905Hz | | 1 | 0 | 0 | 1 | 1.563Hz | 0.781Hz | | 1 | 0 | 1 | 0 | 3.125Hz | 1.563Hz | | 1 | 0 | 1 | 1 | 6.25Hz | 3.125Hz | | 0 | 0 | 0 | 0 | 12.5Hz | 6.25Hz | | 0 | 0 | 0 | 1 | 25Hz | 12.5Hz | | 0 | 0 | 1 | 0 | 50Hz | 25Hz | | 0 | 0 | 1 | 1 | 100Hz | 50Hz | | 0 | 1 | 0 | 0 | 200Hz | 100Hz | | 0 | 1 | 0 | 1 | 400Hz | 200Hz | | 0 | 1 | 1 | 0 | 800Hz | 400Hz | | 0 | 1 | 1 | 1 | 1600Hz | 800Hz | Table 15: Acceleration Output Data Rate (ODR) and LPF Roll-Off Note: Output Data Rates ≥ 400Hz will force device into High Resolution mode ## WAKEUP_COUNTER This register sets the time motion must be present before a wake-up interrupt is set. Every count is calculated as 1/OWUF delay period. Note that to properly change the value of this register, the PC1 bit in CTRL REG1 must first be set to "0". Valid entries are from 1 to 255, excluding the zero value. | R/W | |-------|-------|-------|-------|-------|-------|------------|-------|-------------| | WUFC7 | WUFC6 | WUFC5 | WUFC4 | WUFC3 | WUFC2 | WUFC1 | WUFC0 | Reset Value | | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | 00000000 | | | | | | | [2 | C Address: | 0x29 | | PART NUMBER: KXTJ3-1057 Rev. 3.0 27-Sep-2017 ### **NA COUNTER** This register sets the non-activity time required before another wake-up interrupt can be set. Every count is calculated as 1/OWUF delay period. Note that to properly change the value of this register, the PC1 bit in CTRL_REG1 must first be set to "0". Valid entries are from 1 to 255, excluding the zero value. | R/W | |-------|-------|-------|-------|-------|------------|-------|-------|-------------| | NAFC7 | NAFC6 | NAFC5 | NAFC4 | NAFC3 | NAFC2 | NAFC1 | NAFC0 | Reset Value | | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | 00000000 | | | | | | 2 | C Address: | 0x2A | | | ## SELF_TEST When 0xCA is written to this register, the MEMS self-test function is enabled. Electrostatic-actuation of the accelerometer, results in a DC shift of the X, Y and Z axis outputs. Writing 0x00 to this register will return the accelerometer to normal operation. | | W | W | W | W | W | W | W | W | | |--|------|------|------|------|------|------|-------------------------|------|-------------| | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Reset Value | | | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | 00000000 | | | | | | | | 2 | ² C Address: | 0x3A | | ### WAKEUP THRESHOLD This register sets the threshold for wake-up (motion detect) interrupt is set. Data bytes are WAKEUP_THRESHOLD_H, WAKEUP_THRESHOLD_L. The KXTJ3 will be shipped from the factory with this value set to correspond to a change in acceleration of 0.5g (3.9mg/count). Note that to properly change the value of this register, the PC1 bit in CTRL REG1 must first be set to "0". | | R/W Reset Value | |---|--------|--------|-------|-------|-------|-------|------------|------------|-------------| | W | /UTH11 | WUTH10 | WUTH9 | WUTH8 | WUTH7 | WUTH6 | WUTH5 | WUTH4 | 00001000 | | ٧ | VUTH3 | WUTH2 | WUTH1 | WUTH0 | 0 | 0 | 0 | 0 | 00000000 | | | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | | | | | | | | | 2 | C Address: | 0x6A - 0x6 | SB . | PART NUMBER: KXTJ3-1057 Rev. 3.0 27-Sep-2017 ## **Embedded Wake Up Function** The motion interrupt feature of the KXTJ3 reports qualified changes in the high-pass filtered acceleration based on the WAKEUP_THRESHOLD. If the high-pass filtered acceleration on any axis is greater than the user-defined WAKEUP_THRESHOLD, the device has transitioned from an inactive state to an active state. Equation 1 and Equation 2 show how to calculate the engine threshold (WAKEUP_THRESHOLD) and delay time (WAKEUP_COUNTER) register values for the desired result. WAKEUP_THRESHOLD (counts) = Desired Threshold (g) x 256 (counts/g) Equation 1: Wake Up Threshold An 8-bit raw unsigned value represents a counter that permits the user to qualify each active/inactive state change. Note that each WAKEUP_COUNTER count qualifies 1 (one) user-defined ODR period (OWUF). Equation 2 shows how to calculate the WAKEUP_COUNTER register value for a desired wake up delay time. WAKEUP COUNTER (counts) = Desired Delay Time (sec) x OWUF (Hz) Equation 2: Wake Up Delay Time The latched motion interrupt response algorithm works as following: while the part is in inactive state, the algorithm evaluates differential measurement between each new acceleration data point with the preceding one and evaluates it against the WAKEUP_THRESHOLD threshold. When the differential measurement is greater than WAKEUP_THRESHOLD threshold, the wakeup counter starts the count. Differential measurements are now calculated based on the difference between the current acceleration and the acceleration when the counter started. The part will report that motion has occurred at the end of the count assuming each differential measurement has remained above the threshold. If at any moment during the count the differential measurement falls below the threshold, the counter will stop the count and the part will remain in inactive state. To illustrate how the algorithm works, consider the Figure 3 below that shows the latched response of the motion detection algorithm with WAKEUP_COUNTER set to 10 counts. Note how the difference between the acceleration sample marked in red and the one marked in green resulted in a differential measurements represented with orange bar being above the WAKEUP_THRESHOLD. At this point, the counter begins to count number of counts stored in WAKEUP_COUNTER register and the wakeup algorithm will evaluate the difference between each new acceleration measurement and the measurement marked in green that will remain a reference measurement for the duration of the counter count. At the end of the count, assuming all differential measurements were larger than WAKEUP_THRESHOLD, as is the case in the example showed in Figure 3, a motion event will be reported. **PART NUMBER:** KXTJ3-1057 Rev. 3.0 27-Sep-2017 Figure 3 below shows the latched response of the Wake Up Function with WUF counter = 10 counts. Figure 3: Latched Motion Interrupt Response The KXTJ3 wake-up function is always latched unless ULMODE = 1. If ULMODE = 0 and if the INT_CTRL_REG1 is set with IEL = 1, then upon a wake-up event the WUF interrupt signal will pulse and return low, but only once. The WUF interrupt output will not reset until a read of the INT_REL latch reset register. **PART NUMBER:** KXTJ3-1057 Rev. 3.0 27-Sep-2017 ## **Revision History** | Revision | Description | Date | |----------|---|-------------| | 1.0 | Initial Release | 08-Nov-2016 | | 2.0 | Clarified 14bit/12bit/8bit operation thoughout document. | 10-Nov-2016 | | | Updated Notice section. | | | | Clarified WakeUp register naming. | | | 3.0 | Fixed Pin number of physical
interrupt pin in INT_CTRL_REG1 and INT_REL | 27-Sep-2017 | | | registers to (5) from (7). | | | | Added Appendix section. | | | | Added drive type for INT pin in Pin Description Table. | | | | Updated IO_VDD max value in Electrical Specifications. | | "Kionix" is a registered trademark of Kionix, Inc. Products described herein are protected by patents issued or pending. No license is granted by implication or otherwise under any patent or other rights of Kionix. The information contained herein is believed to be accurate and reliable but is not guaranteed. Kionix does not assume responsibility for its use or distribution. Kionix also reserves the right to change product specifications or discontinue this product at any time without prior notice. This publication supersedes and replaces all information previously supplied. **PART NUMBER:** KXTJ3-1057 Rev. 3.0 27-Sep-2017 # **Appendix** The following Notice is included to guide the use of Kionix products in its application and manufacturing processes. Kionix, Inc., is a ROHM Group company. For purposes of this Notice, the name "ROHM" would also imply Kionix, Inc. # **Notice** ### **Precaution on using ROHM Products** 1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications. (Note1) Medical Equipment Classification of the Specific Applications | JÁPAN | USA | EU | CHINA | |---------|-----------|------------|-----------| | CLASSⅢ | CL ACCIII | CLASS II b | CL ACCIII | | CLASSIV | CLASSⅢ | CLASSⅢ | CLASSⅢ | - 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures: - [a] Installation of protection circuits or other protective devices to improve system safety - [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure - 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary: - [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents - [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust - [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂ - [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves - [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items - [f] Sealing or coating our Products with resin or other coating materials - [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering - [h] Use of the Products in places subject to dew condensation - 4. The Products are not subject to radiation-proof design. - 5. Please verify and confirm characteristics of the final or mounted products in using the Products. - 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability. - 7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in the range that does not exceed the maximum junction temperature. - 8. Confirm that operation temperature is within the specified range described in the product specification. - 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document. ### Precaution for Mounting / Circuit board design - 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability. - 2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance. For details, please refer to ROHM Mounting specification ### **Precautions Regarding Application Examples and External Circuits** - 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics. - You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information. #### **Precaution for Electrostatic** This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of lonizer, friction prevention and temperature / humidity control). ### **Precaution for Storage / Transportation** - 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where: - [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 - [b] the temperature or humidity exceeds those recommended by ROHM - [c] the Products are exposed to direct sunshine or condensation - [d] the Products are exposed to high Electrostatic - 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period. - 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton. - 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period. ### **Precaution for Product Label** A two-dimensional barcode printed on ROHM Products label is for ROHM's internal use only. #### **Precaution for Disposition** When disposing Products please dispose them properly using an authorized industry waste company. ### **Precaution for Foreign Exchange and Foreign Trade act** Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export. ### **Precaution Regarding Intellectual Property Rights** - 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. - 2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software). - 3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its
intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein. #### Other Precaution - 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM. - 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM. - In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons. - The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties. Notice-PGA-E Rev.003