GenX3 ${ }^{\text {TM }} 1200 \mathrm{~V}$ IGBT w/ Diode

(Electrically Isolated Tab)

Ultra-Low-Vsat PT IGBTs for up to 3 kHz Switching

IXGR55N120A3H1

Symbol	Test Conditions	Maximum	
$\mathrm{V}_{\text {ces }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	1200	V
$\mathrm{V}_{\text {cGR }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{GE}}=1 \mathrm{M} \Omega$	1200	V
$\mathrm{V}_{\text {GES }}$	Continuous	± 20	V
$\mathrm{V}_{\text {GEM }}$	Transient	± 30	V
$\mathrm{I}_{\mathrm{C} 25}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ (Chip Capability)	70	A
$\mathrm{I}_{\mathrm{C} 110}$	$\mathrm{T}_{\mathrm{c}}=110^{\circ} \mathrm{C}$	30	A
$\mathrm{I}_{\text {F110 }}$	$\mathrm{T}_{\mathrm{C}}=110^{\circ} \mathrm{C}$	44	A
I_{CM}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, 1 \mathrm{~ms}$	330	A
SSOA (RBSOA)	$\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=3 \Omega$ Clamped Inductive Load	$\mathrm{I}_{\mathrm{CM}}=110$ @ $0.8 \cdot \mathrm{~V}_{\text {CES }}$	A
P_{c}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	200	W
T_{J}		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {JM }}$		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
T_{L}	Maximum Lead Temperature for Soldering	300	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SOLD }}$	1.6 mm (0.062 in.) from Case for 10	260	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ISOL }}$	$50 / 60 \mathrm{~Hz}, 1$ minute	2500	V
F_{c}	Mounting Force	20..120/4.5.. 27	N/lb.
Weight		5	g

ISOPLUS 247 ${ }^{\text {™ }}$

G = Gate
C = Collector

Features

- Silicon Chip on Direct-Copper Bond (DCB) Substrate
- Isolated Mounting Surface
- 2500V~Electrical Isolation
- Anti-Parallel Ultra Fast Diode
- Optimized for Low Conduction Losses

Advantages

- High Power Density
- Low Gate Drive Requirement

Applications

- Power Inverters
- UPS
- Motor Drives
- SMPS
- PFC Circuits
- Battery Chargers
- Welding Machines
- Lamp Ballasts
- Inrush Current Protection Circuits

Symbol Test Conditions ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified)		Characteristic Values		
		Min.	Typ.	Max.
$\mathrm{g}_{\text {f }}$	$\mathrm{I}_{\mathrm{C}}=55 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$, Note 2	30	45	S
$\begin{aligned} & \mathrm{C}_{\text {ies }} \\ & \mathrm{C}_{\text {oes }} \\ & \mathrm{C}_{\text {res }} \end{aligned}$	$\mathrm{V}_{\text {CE }}=25 \mathrm{~V}, \mathrm{~V}_{\text {GE }}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		$\begin{array}{r} 4340 \\ 300 \\ 115 \end{array}$	pF pF pF
$\begin{aligned} & \overline{\mathbf{Q}_{\mathrm{g}(0 n)}} \\ & \mathbf{Q}_{\mathrm{ge}} \\ & \mathrm{Q}_{\mathrm{gc}} \end{aligned}$	$\mathrm{I}_{\mathrm{C}}=55 \mathrm{~A}, \mathrm{~V}_{\text {GE }}=15 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0.5 \cdot \mathrm{~V}_{\text {CES }}$		185 25 75	nC nC nC
$\mathrm{t}_{\mathrm{d}(\mathrm{On})}$ t_{ri} $\mathrm{E}_{\text {on }}$ $\mathrm{t}_{\mathrm{d} \text { (off) }}$ $t_{\text {fi }}$ $\mathrm{E}_{\mathrm{off}}$	Inductive load, $\mathrm{T}_{\mathrm{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=55 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=0.8 \cdot \mathrm{~V}_{\mathrm{CE} 5}, \mathrm{R}_{\mathrm{G}}=3 \Omega \end{aligned}$ Note 3		23 42 5.1 365 282 13.3	mJ
$\mathrm{t}_{\mathrm{d}(\mathrm{On})}$ $t_{\text {ri }}$ $\mathrm{E}_{\text {on }}$ $\mathrm{t}_{\mathrm{d}(\text { (ff) }}$ $t_{\text {fi }}$ $\mathrm{E}_{\mathrm{off}}$	Inductive load, $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=55 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=0.8 \cdot \mathrm{~V}_{\mathrm{CES}}, \mathrm{R}_{\mathrm{G}}=3 \Omega \end{aligned}$ Note 3		24 46 9.5 618 635 29.0	ns ns mJ ns ns mJ
$\begin{aligned} & \overline{\mathbf{R}_{\mathrm{thuc}}} \\ & \mathbf{R}_{\mathrm{thck}} \\ & \hline \end{aligned}$			0.15	$\begin{array}{r} 0.62^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{array}$

Reverse Diode (FRED)

Notes:

1. Part must be heatsunk for high-temp Ices measurement.
2. Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle, $\mathrm{d} \leq 2 \%$.
3. Switching times \& energy losses may increase for higher $V_{C E}$ (Clamp), T_{J} or R_{G}.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

IXYS MOSFETs and IGBTs are covered	4,835,592	4,931,844	5,049,961	5,237,481	6,162,665	6,404,065 B1	6,683,344	6,727,585	7,005,734 B2	7,157,338B2
by one or more of the following U.S. patents:	4,850,072	5,017,508	5,063,307	5,381,025	6,259,123 B1	6,534,343	6,710,405 B2	6,759,692	7,063,975 B2	
	4,881,106	5,034,796	5,187,117	5,486,715	6,306,728 B1	6,583,505	6,710,463	6,771,478 B2	7,071,537	

