

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

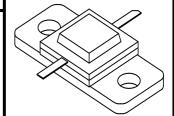
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MPA201

0.5 Watts, 12.5 Volts, Class A Linear to 500MHz Hybrid Amplifier

GENERAL DESCRIPTION

The MPA201 is a common emitter amplifier device designed for broadband performance to 500MHz in a format suitable for microstrip assembly and high reliability applications. Its wide dynamic rage and flexibility make it suitable for a broad spectrum of instrumentation, receiver, and transmitter applications. It utilizes gold metalization and diffused ballasting to provide high reliability and supreme ruggedness.


CASE OUTLINE 55AU, Style 2

ABSOLUTE MAXIMUM RATINGS

Maximum Power Dissipation @ 25°C 6.0 Watts

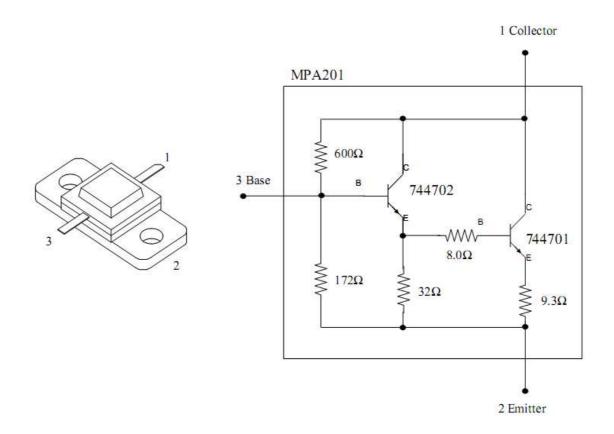
 $\begin{array}{lll} BV_{CES} & Collector \ to \ Emitter \ Voltage & 40 \ Volts \\ BV_{EBO} & Emitter \ to \ Base \ Voltage & 3.5 \ Volts \\ I_C & Collector \ Current & 300 \ mA \end{array}$

Storage Temperature $-55 \text{ to } +150 \text{ }^{\circ}\text{C}$ Operating Junction Temperature $+200 \text{ }^{\circ}\text{C}$

FUNCTIONAL CHARACTERISTICS @ 25°C

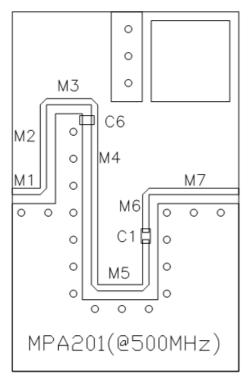
SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
P _{OUT}	Power Out		0.5	-	-	W
P _{IN}	Power Input	F = 500 MHz	-	-	0.032	W
G_{P}	Power Gain	$V_{CE} = 12.5V$	12	13	-	dB
F_T	Transition Frequency	$I_C = 140 \text{mA}$	2.0			GHz
VSWR	Load Mismatch Tolerance		-	-	30:1	-
I_{CQ}	Quiescent Collector Current	$V_{CE} = 12.5V$		140		mA
θjc ¹	Junction-Case Thermal Resistance				33	°C/W

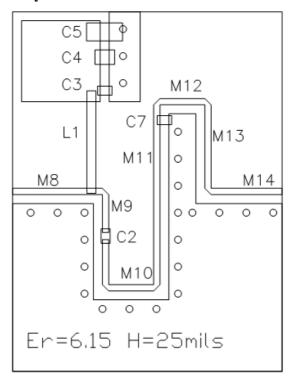
NOTES: 1. At rated output power with MSC fixture. Rev. A: May. 2010



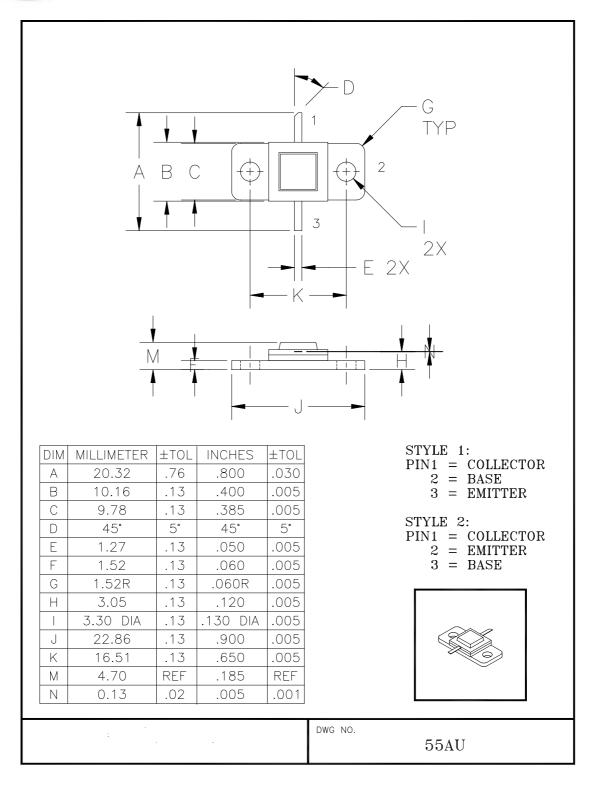
ELECTRICAL CHARACTERISTICS OF SINGLE DIE² @ 25°C

SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{BV}_{\mathrm{EBO}}$	Emitter to Base Breakdown	$I_E = 1 \text{ mA}$	3.5	-	-	V
BV_{CES}	Collector to Emitter Breakdown	$I_C = 10 \text{ mA}$	50	-	-	V
BV_{CEO}	Collector to Emitter Breakdown	$I_C = 10 \text{ mA}$	22	-	-	V
h_{FE}	DC – Current Gain	$I_C = 100 \text{ mA}, V_{CE} = 5 \text{ V}$	20	-	-	-
C _{OB}	Output Capacitance	$F = 1MHz$, $V_{CB} = 28V$	-	2.0	3.0	pF


NOTES: 2. Electrical characteristics are valid only with the single die inside of MPA201, the final unit is not capable of being tested.


Internal Schematic of MPA201

MPA201 Test Circuit Layout @ 500MHz



MPA201 Test Circuit Component Designations and Values @ 500MHz

Part	Description	Part	Description
C1, C2,	100pF Chip Capacitor (ATC 600F)	C4	10000pF Chip Capacitor (ATC 200B)
C3			
C5	47uF 63V Electrolytic Capacitor	C6, C7	5.6pF Chip Capacitor (ATC 600F)
L1	18AWG, 10Turns, Dia: 0.5"	PCB	RT6006, ε_r =6.15, 25mils, 1oz
M1	35 x 155 mils (W x L)	M2	35 x 465 mils (W x L)
M3	35 x 250 mils (W x L)	M4	35 x 1000 mils (W x L)
M5	35 x 250 mils (W x L)	M6	35 x 500 mils (W x L)
M7	35 x 500 mils (W x L)	M8	35 x 500 mils (W x L)
M9	35 x 500 mils (W x L)	M10	35 x 250 mils (W x L)
M11	35 x 1000 mils (W x L)	M12	35 x 250 mils (W x L)
M13	35 x 465 mils (W x L)	M14	35 x 395 mils (W x L)

