

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

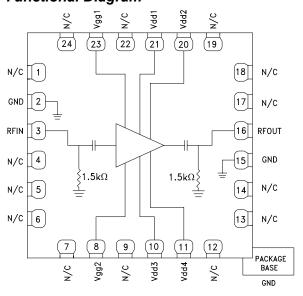
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


GaAs pHEMT MMIC 2 WATT POWER AMPLIFIER, 5.5 - 8.5 GHz

Typical Applications

The HMC7357LP5GE is ideal for:

- Point-to-Point Radios
- Point-to-Multi-Point Radios
- VSAT & SATCOM

Functional Diagram

Features

+35 dBm Pout @ 34% PAE

High P1dB Output Power: +34 dBm

High Output IP3: +41.5 dBm

High Gain: 29 dB

50 Ohm Matched Input/Output

Supply Voltage: Vdd = +8V @ 1200 mA

24-Lead 5x5 mm SMT Package

General Description

The HMC7357LP5GE is a three-stage GaAs pHEMT MMIC Medium Power Amplifier that operates between 5.5 and 8.5 GHz. The amplifier provides 29 dB of gain and +35 dBm of saturated output power at 34% PAE from a +8V supply. With an excellent Output IP3 of +41.5 dBm, the HMC7357LP5GE is ideal for linear applications such as high capacity point-to-point and point-to-multi-point radios or VSAT/SATCOM applications demanding +35 dBm of efficient saturated output power. The RF I/Os are internally matched to 50 Ohms for ease of use. The HMC7357LP5GE is packaged in a leadless 5x5 mm plastic surface mount package and is compatible with surface mount manufacturing techniques.

Electrical Specifications, $T_A = +25^{\circ}$ C Vdd1 = Vdd2 = Vdd3 = Vdd4 = 8V, Idd = 1200 mA [1]

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range	5.5 - 7		7 - 8.5			GHz	
Gain	26.5	29.5		28	31		dB
Gain Variation Over Temperature		0.0214			0.0234		dB/ °C
Input Return Loss		14			14		dB
Output Return Loss		22			15		dB
Output Power for 1 dB Compression (P1dB)	31.5	34.5		31.5	34.5		dBm
Saturated Output Power (Psat)		35			35		dBm
Output Third Order Intercept (IP3)[2]		41.5			41.5		dBm
Total Supply Current (Idd)		1200			1200		mA

^[1] Adjust Vgg between -2 to -0.4V to achieve Idd = 1200 mA typical.

^[2] Measurement taken at +8V @ 1200 mA, Pout / Tone = +20 dBm

HMC7357* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖵

View a parametric search of comparable parts.

EVALUATION KITS

HMC7357LP5G Evaluation Board

DOCUMENTATION

Application Notes

- AN-1363: Meeting Biasing Requirements of Externally Biased RF/Microwave Amplifiers with Active Bias Controllers
- Broadband Biasing of Amplifiers General Application Note
- MMIC Amplifier Biasing Procedure Application Note
- Thermal Management for Surface Mount Components General Application Note

Data Sheet

HMC7357 Data Sheet

REFERENCE MATERIALS 🖳

Quality Documentation

 Package/Assembly Qualification Test Report: LP3, LP4, LP5 & LP5G (QTR: 2014-00145)

DESIGN RESOURCES

- HMC7357 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC7357 EngineerZone Discussions.

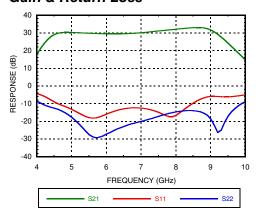
SAMPLE AND BUY 🖵

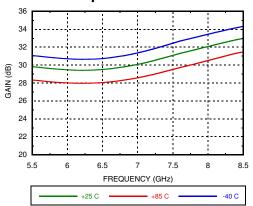
Visit the product page to see pricing options.

TECHNICAL SUPPORT

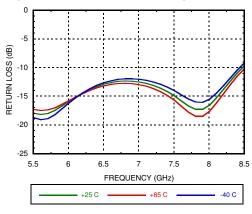
Submit a technical question or find your regional support number.

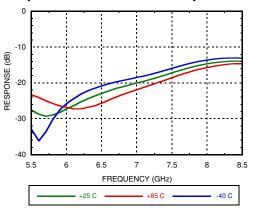
DOCUMENT FEEDBACK 🖳

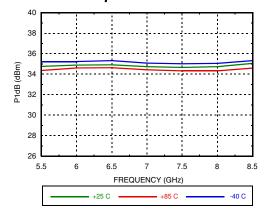

Submit feedback for this data sheet.

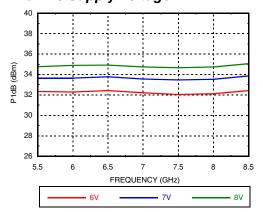


GaAs pHEMT MMIC 2 WATT POWER AMPLIFIER, 5.5 - 8.5 GHz


Gain & Return Loss

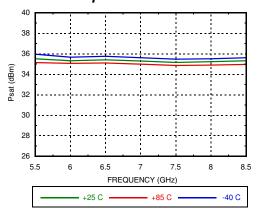

Gain vs. Temperature

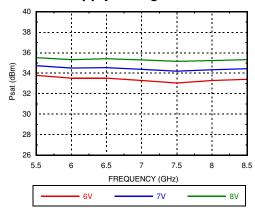

Input Return Loss vs. Temperature


Output Return Loss vs. Temperature

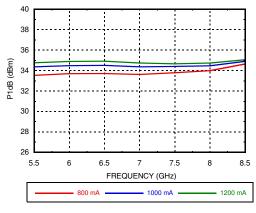
P1dB vs. Temperature

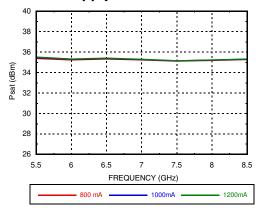
P1dB vs Supply Voltage

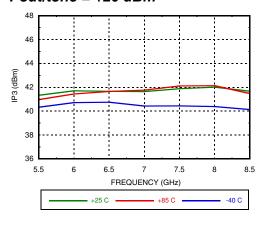


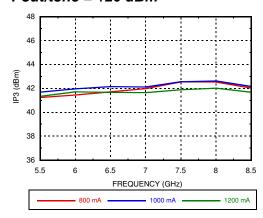


GaAs pHEMT MMIC 2 WATT POWER AMPLIFIER, 5.5 - 8.5 GHz


Psat vs. Temperature

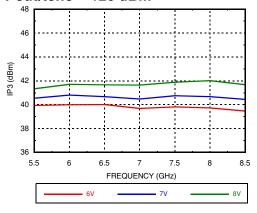

Psat vs. Supply Voltage

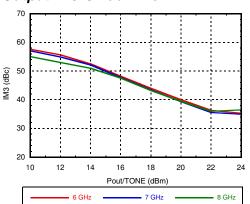

P1dB vs. Supply Current


Psat vs. Supply Current

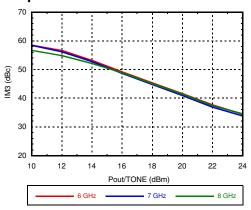
Output IP3 vs. Temperature, Pout/tone = +20 dBm

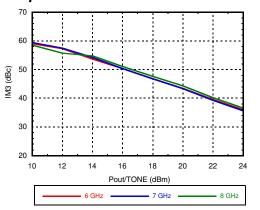
Output IP3 vs. Supply Current, Pout/tone = +20 dBm

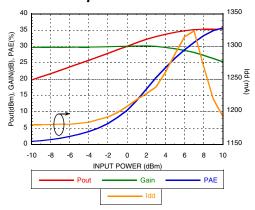


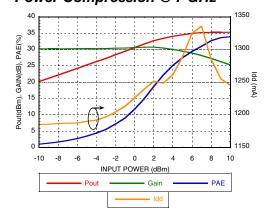


GaAs pHEMT MMIC 2 WATT POWER AMPLIFIER, 5.5 - 8.5 GHz


Output IP3 vs. Supply Voltage, Pout/tone = +20 dBm

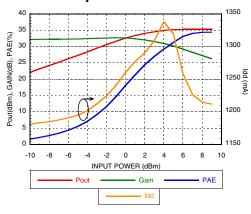

Output IM3 @ Vdd = +6V

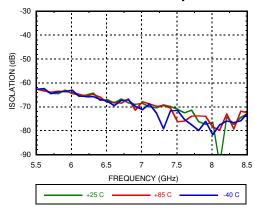

Output IM3 @ Vdd =+7V


Output IM3 @ Vdd = +8V

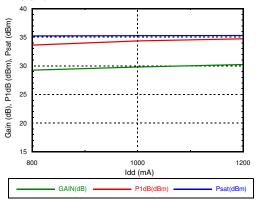
Power Compression @ 6 GHz

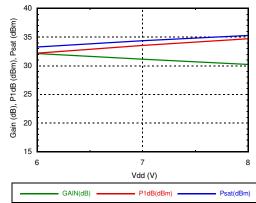
Power Compression @ 7 GHz

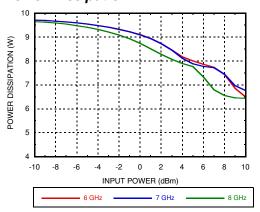




GaAs pHEMT MMIC 2 WATT POWER AMPLIFIER, 5.5 - 8.5 GHz


Power Compression @ 8 GHz


Reverse Isolation vs. Temperature


Gain & Power vs. Supply Current @ 7 GHz

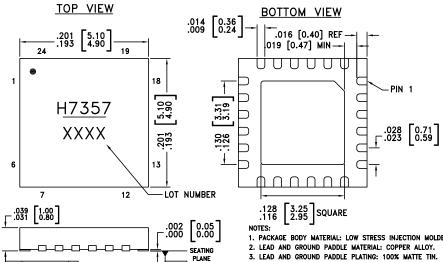
Gain & Power vs. Supply Voltage @ 7 GHz

Power Dissipation

GaAs pHEMT MMIC 2 WATT **POWER AMPLIFIER, 5.5 - 8.5 GHz**

Absolute Maximum Ratings

Drain Bias Voltage (Vdd)	+9 Vdc		
Gate Bias Voltage (Vgg)	-2 to -0.4 Vdc		
RF Input Power (RFIN)	+22 dBm		
Channel Temperature	175 °C		
Continuous Pdiss (T= 85 °C) (derate 133mW/°C above 85 °C)	12.6 W		
Thermal Resistance (channel to ground paddle)	7.5 °C/W		
Storage Temperature	-65 to 150°C		
Operating Temperature	-40 to 85 °C		
ESD Sensitivity (HBM)	Class 1A, passed 250V		


Typical Supply Current vs. Vdd

Vdd (V)	Idd (mA)
+6	1200
+7	1200
+8	1200

Adjust Vgg to achieve Idd = 1200 mA

Outline Drawing

- 1. PACKAGE BODY MATERIAL: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILICON IMPREGNATED.
- DIMENSIONS ARE IN INCHES [MILLIMETERS]. 5. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 6. CHARACTERS TO BE HELVETICA MEDIUM, .025 HIGH, WHITE INK, OR LASER MARK LOCATED APPROX. AS SHOWN.
- PAD BURR LENGTH SHALL BE 0.15mm MAX. PAD BURR HEIGHT SHALL BE 0.25mm MAX.
- 8. PACKAGE WARP SHALL NOT EXCEED 0.05mm
- 9. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 10. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED PCB LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating [2]	Package Marking [1]
HMC7357LP5GE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1	<u>H7357</u> XXXX

^{[1] 4-}Digit lot number XXXX

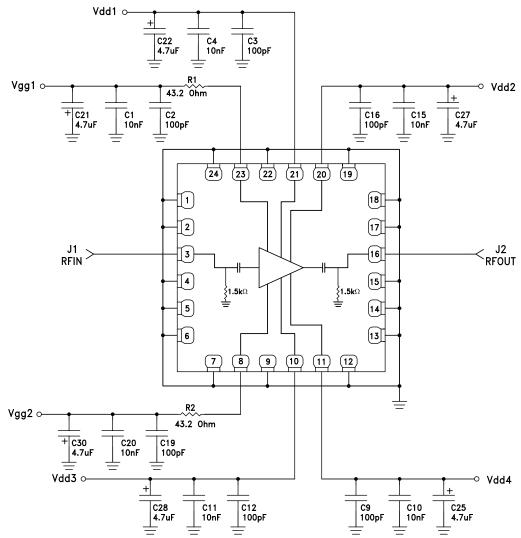
☐ .003[0.08] C

-C-

^[2] Max peak reflow temperature of 260 °C

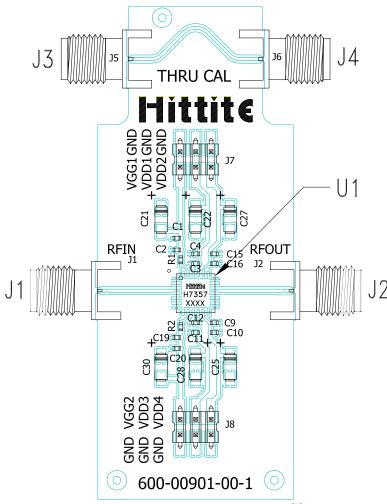
GaAs pHEMT MMIC 2 WATT POWER AMPLIFIER, 5.5 - 8.5 GHz

Pin Descriptions


Pad Number	Function	Description	Interface Schematic
1, 4, 5, 6, 7, 9, 12, 13, 14, 17, 18, 19, 22, 24	N/C	These pins are not connected internally; however all data shown herein was measured with these pins connected to RF/DC ground externally.	
2, 15	GND	These pins and exposed ground paddle must be connected to RF/DC ground.	○ GND =
3	RFIN	This pin is DC coupled and matched to 50 Ohms.	RFINΟ
8, 23	Vgg2, Vgg1	Gate control for PA. Adjust Vgg to achieve recommended bias current. External bypass capacitors of 100 pF, 10 nF, and 4.7 μF are required. Apply Vgg bias to either pin 8 or pin 23.	Vgg1,2 0
10, 11, 20, 21	Vdd3, Vdd4, Vdd2, Vdd1	Drain bias voltage for the amplifier. External bypass capacitors of 100 pF, 10 nF, and 4.7 μF are required.	○Vdd1−4
16	RFOUT	This pin is DC coupled and matched to 50 Ohms.	$ \begin{array}{c c} \hline \\ \uparrow \\ 1.5k\Omega \end{array} $

GaAs pHEMT MMIC 2 WATT POWER AMPLIFIER, 5.5 - 8.5 GHz

Application Circuit



GaAs pHEMT MMIC 2 WATT POWER AMPLIFIER, 5.5 - 8.5 GHz

Evaluation PCB

List of Materials for Evaluation PCB EV1HMC7357LP5 [1]

Item	Description
J1 - J4	"K" Connector, SRI
J7, J8	DC Pin
C2, C3, C9, C12, C16, C19	100 pF Capacitor, 0402 Pkg.
C1, C4, C10, C11, C15, C20	10000 pF Capacitor, 0402 Pkg.
C21, C22, C25, C27, C28, C30	4.7 uF Capacitor, Case A Pkg.
R1, R2	43.2 Ohm Resistor, 0402 Pkg
U1	HMC7357LP5GE Amplifier
PCB [2]	600-00901-00 Eval Board

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

ANALOGDEVICES

GaAs pHEMT MMIC 2 WATT POWER AMPLIFIER, 5.5 - 8.5 GHz

Notes: