DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

101 Innovation Drive
San Jose, CA 95134
www.altera.com

HB_DSPB_STD-16.0 Document last updated for Altera Complete Design Suite version: 16.0
Document publication date: August 2016

L4

Feedback

http://www.altera.com
mailto:TechDocFeedback@altera.com?subject=Feedback on HB_DSPB_STD-2.0 (DSP Builder Handbook Volume 2: DSP Builder Standard Blockset)

©2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
are trademarks OF Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identifie

trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and
services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service

described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

QA | |:| _E 5Y/A ® Contents

Section 1. DSP Builder Standard Blockset User Guide

Chapter 1. About DSP Builder Standard Blockset

Device Family Support 1-1
Features 1-1
General Description 1-2
High-Speed DSP with FPGAS 1-2
Interoperability with the Advanced Blockset L. 1-3

Chapter 2. Getting Started

Creating a Designin DSP Builder i 2-1
Design Flow 2-2
Creating an Amplitude Modulation Design Example 2-4
CreatingaNew Model 2-4
Adding the Sine Wave Block 2-4
Adding theSinIn Block 2-6
Adding the Delay Block 2-7
Adding the SinDelay and SinIn2 Blocks o o o i i 2-8
AddingtheMuxBlock 2-9
Adding the Random Bitstream Block 2-10
Adding the Noise Block 2-10
Adding the Bus Builder Block 2-11
Addingthe GND Block 2-11
Adding the Product Block 2-11
Adding the StreamMod and StreamBit Blocks o oo 2-12
Adding the Scope Block 2-13
AddingaClock Block 2-14
Simulating the Model in Simulink 2-15
Compiling the Design 2-17
Performing RTL Simulation 2-18
Adding the Design to a Quartus Prime Project 2-21
Creating a Quartus Prime Project 2-21
Adding the DSP Builder Design to the Project......... 2-22
Chapter 3. Design Rules and Procedures
DSP Builder Naming Conventions 3-1
MATLAB Variables e e e 3-2
Fixed-Point Notation oot e e e e e 3-2
Binary Point Location in Signed Binary Fractional Format 3-3
Bit Width Design Rule 34
Data Width Propagation 34
Tapped Delay Line 3-6
Arithmetic Operation 3-6
Frequency Design Rules 3-8
Single Clock Domain 3-8
Multiple Clock Domains 3-9
Using Clock and Clock_Derived Blocks oo i i i i i 3-10
Clock ASSIGNMENt 3-11
August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

iv Contents
Usingthe PLL Block o 3-14
Using Advanced PLL Features i, 3-15
About Timing Semantics Between Simulink and HDL Simulation 3-16
Simulink Simulation Model 3-16
HDL Simulation Models 3-16
Startup and Initial Conditions 3-17
Initial Reset of HDL Import Blocks and MegaCore Functions in Simulink Simulations 3-17
DSP Builder Global Reset Circuitryo i e 3-17
Reference Timing Diagram 3-18
Signal Compiler and TestBench Blocks 3-19
Design Flows for Synthesis, Compilation and Simulation 3-19
Hierarchical Design o i 3-20
Goto and From Block Support 3-21
Black Boxand HDL Import 3-22
Using a MATLAB Array or .hex File to InitializeaBlock 3-23
Comparison Utility 3-23
Adding Commentsto Blocks 3-24
Adding Quartus Il Constraints 3-24
Displaying Port Data Types 3-25
Displaying the Pipeline Depth 3-25
Updating HDL Import Blocks 3-26
Analyzing the Hardware Resource Usage i iiiiiiiia, 3-26
Loading Additional ModelSim Commands i 3-28
About Quartus II Assignments and Block Entity Names 3-28
Chapter 4. Using MegaCore Functions
Installing MegaCore Functions i 4-1
Updating MegaCore Function VariationBlocks oo o oo oo 4-2
Design Flow Using MegaCore Functions o .. 4-2
Adding the MegaCore Function in the Simulink Model 4-2
Parameterizing the MegaCore Function Variation 4-3
Generating the MegaCore Function Variation o o L. 4-3
Connecting the MegaCore Function Variation Block to the Design 4-3
Simulating the MegaCore Function Variationinthe Model 4-3
MegaCore Functions DesignIssues ool 4-3
Simulink Files Associated with a MegaCore Function 4-3
About Simulating MegaCore Functions That Havea ResetPort 4-4
About Setting the Device Family for MegaCore Functions 4-4
Chapter 5. Using HIL
HIL Design FIow o 5-1
HIL Requirements i 5-2
HIL Design Example 5-2
Burst Mode 5-6
Using Burst Mode 5-6
Troubleshooting HIL Designs i i 5-7
Fails to Load the Specified Quartus Prime Project 5-7
No Inputs Found From the Quartus Prime Project, 5-7
No Outputs Found From the Quartus Prime Project 5-7
HIL Design Stays in Reset During Simulation 5-7
HIL Compilation Appearsto Hang 5-8
Scan JTAG Fails to Find Correct Cable or Deviceiiiiniii ... 5-8
DSP Builder Handbook August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Contents v

Chapter 6. SignalTap Il Logic Analysis

SignalTap Il Design Flow 6-1
SignalTap IINodes 62
SignalTap II Trigger Conditions i, 62
SignalTap II Design Examples 6-3
Opening the Design Example 6-3
Adding the Configuration and Connector Blocks 6—4
Specifying the Nodes to Analyze 6-5
Turning On the SignalTap II Option in Signal Compiler 6-5
Specifying the Trigger Levels 6-6
Performing SignalTap Il Analysis i 6-6
Chapter 7. Using the Interfaces Library

Avalon-MM Interface 7-1
Avalon-MM Interface Blocks 7-1
Avalon-MM Slave Block 7-2
Avalon-MM Master Block 7-3
Wrapped Blocks 7-4
Looking at the Avalon-MM Write FIFO o oo i 7-4
Looking at the Avalon-MM Read FIFO Buffer 7-5
Avalon-MM Interface Blocks Design Example o i il 7-6
Adding Avalon-MM Blocks to the Design Example 7-6
Verifying the Design 7-9
Running Signal Compiler 7-9
Instantiating the Designin Qsys 7-10
Compiling the Quartus Prime Project 7-12
Testing the DSP Builder Block from Software 7-12
Avalon-MM FIFO Design Example i 7-14
Opening the Design Example 7-14
Compiling the Design 7-15
Instantiating the Designin Qsys 7-16
Avalon-ST Interface 7-17
Avalon-ST Packet Formats 7-19

Chapter 8. Using Black Boxes for HDL Subsystems

Black Box Interfaces 8-1
Implicit Black Box Interface 8-1
Explicit Black-Box Interface 8-1

HDL Import Design Example 8-1
Importing Existing HDL Files 8-2
Simulating the HDL Import Model using Simulink 84

Subsystem Builder Design Example 8-6
Creating a Black Box System 8-6
Building the Black-Box SubSystem Simulation Model 8-8
Simulating the Subsystem Builder Model 8-11
Adding VHDL Dependencies to the Quartus Prime Project and ModelSim 8-11
Simulate the Designin ModelSim 8-12

Chapter 9. Using Custom Library Blocks

Creating a Custom Library Block 9-1
Creating a Library Model File 9-2
Building the HDL Subsystem Functionality 9-2
Defining Parameters Using the Mask Editor 9-3

August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

vi Contents

Linking the Mask Parameters to the Block Parameters 9-4
Making the Library Block Read Only i i 9-5
Adding the Library to the Simulink Library Browser 9-5
Synchronizing a Custom Library 9-6

Chapter 10. Adding a Board Library

Creating a New Board Description 10-1
Predefined Components 10-1
Component Types e 10-1
Component Description File 10-2
Example Component Description File o 10-3
Board Description File 10-3
Header Section 10-3
Board Description Section 10-3
Building the Board Library 10-6

Chapter 11. Using the State Machine Library
Using the State Machine Editor Block 11-2

Chapter 12. Managing Projects and Files

Integrating with Source Control Systems i 12-1
HDLImport ... 12-2
MegaCore FuUNctions 12-2
Memory Initialization Files 122
About Exporting HDL 12-3

Using Exported HDL 124
Moving Standard Blockset Files to a New Location 124
Multiple Models in a Top-Level Quartus Prime Project 12-5

Theipx File Contents 12-6

Integrating Multiple Designs into a Top-Level Quartus Prime Project 12-6

Chapter 13. Troubleshooting

Signal Compiler Cannot Checkout a Valid License 13-1
Verifying That Your DSP Builder Licensing Functions Properly 13-2
Verifying That the LM_LICENSE_FILE Variable Is Set Correctly 13-3
Verifying the Quartus Prime Path o o 13-3
If You Still Cannot Get a LiCenSeottt e e e 13-4

Loop Detected While Propagating Bit Widths 13-4

The MegaCore Functions Library Does Not Appear in Simulink, 13-4

The Synthesis Flow Does Not Run Properly i 13-5
Check the Software Paths e 13-5

DSP Development Board Troubleshooting, 13-5

SignalTap II Analysis AppearstoHang 13-5

Error if Output Block Connected to an Altera Synthesis Block 13-5

Warning if Input/Output Blocks Conflict with clock or aclrPorts 13-6

Wiring the Asynchronous Clear Signal o il 13-6

Error Issues when a Design Includes Pre-v7.1 Blocks oo il 13-6

Creating an Input Terminator for DebuggingaDesign 13-6

A Specified Path Cannot be Found or a File Nameis TooLong 13-7

Incorrect Interpretation of Number Format in Output from MegaCore Functions 13-7

Simulation Mismatch For FIR Compiler MegaCore Function 13-7

Simulation Mismatch After Changing Signals or Parameters 13-7

Unexpected Exception Error when Generating Blocks 13-7

DSP Builder Handbook August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Contents vii

VHDL Entity Names Change if a Model is Modified 13-8
Algebraic Loop Causes Simulationto Fail 13-8
Parameter Entry Problems in the DSP Block Dialog Box 13-9
DSP Builder System Not Detected in Qsys e 13-9
MATLAB Runs Out of Java Virtual Machine Heap Memory 13-9
ModelSim Fails to Invoke From DSP Builder i i 13-10
Unexpected End of File Error When Comparing Simulation Results 13-10

Section II. DSP Builder Standard Blockset Libraries

Chapter 14. AltLab Library

HDL Import Parameters 14-5
HDL Import Example 14-6
HDL Import Supported Megafunctions i 14-6

Chapter 15. Arithmetic Library
Parameters e 15-39

Chapter 16. Boards Library
Board Configuration 16-1
Adding PLL Output Clocks e 16-1
Chapter 17. Complex Type Library
Chapter 18. Gate & Control Library

Chapter 19. Interfaces Library

PEC Data FIow i 19-13
Packet Format Description i 19-13
Packet Mapping i 19-15

Multi-Packet Mapping i 19-16
Error Handling o 19-16

Chapter 20. 10 & Bus Library

Chapter 21. MegaCore Functions Library
Chapter 22. Rate Change Library

Chapter 23. Simulation Library

Chapter 24. State Machine Functions Library
Chapter 25. Storage Library

Chapter 26. Design Examples

Viewing the Design Examples 26-2

DisplayingaModel 26-2
Additional Information

Document Revision History Info-1
August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

viii Contents

How to Contact Alterat Info-2
Typographic Conventions Info-2
DSP Builder Handbook August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

fAN IERA Section I. DSP Builder Standard Blockset
= © User Guide

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

-2 Section I: DSP Builder Standard Blockset User Guide

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

/ANOTS R

1. Ahout DSP Builder Standard Blockset

"=~ Note: DSP Builder standard blockset is a legacy product and Altera recommends you
do not use it for new designs, except as a wrapper for advanced blockset designs.

Device Family Support

DSP Builder supports the following Altera® device families:

ArriaV

Arria V GZ
Arria 10
Cyclone IV GX
Cyclone IV E
Cyclone V
Stratix® IV

Stratix V

Features

DSP Builder standard blockset supports the following features:

m Altera DSP MegaCore® functions in a DSP Builder design model.

m Fixed-point arithmetic and logical operators for use with the Simulink software.

m Avalon® Memory-Mapped (Avalon-MM) interfaces including user configurable
blocks, which you can use to build custom logic that works with the Nios® II
processor and other Qsys designs.

m Avalon Streaming (Avalon-ST) interfaces including an Packet Format Converter
block and configurable Avalon-ST sink and Avalon-ST source blocks.

m VHDL testbench.

m Rapid prototyping using Altera development boards.

m The SignalTap® Il logic analyzer—an embedded signal analyzer that probes
signals from the Altera device on the DSP board and imports the data into the
MATLAB workspace to ease visual analysis.

m HDL import of VHDL or Verilog HDL design entities and HDL defined in a
Quartus Prime project file.

m Hardware-in-the loop (HIL) to enable FPGA hardware accelerated cosimulation
with Simulink.

m Tabular and graphical state machine editing.

August 2016 Altera Gorporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

Chapter 1: About DSP Builder Standard Blockset
General Description

“% e Forinformation about new features and errata in this release, refer to the DSP Builder

Release Notes.

General Description

Digital signal processing (DSP) system design in Altera FPGAs requires both
high-level algorithm and hardware description language (HDL) development tools.

Altera’s DSP Builder integrates these tools by combining the algorithm development,
simulation, and verification capabilities of The MathWorks MATLAB and Simulink
system-level design tools with VHDL and Verilog HDL design flows, including the
Altera Quartus Prime software.

DSP Builder shortens DSP design cycles by helping you create the hardware
representation of a DSP design in an algorithm-friendly development environment.

You can combine existing MATLAB functions and Simulink blocks with Altera
DSP Builder blocks and Altera intellectual property (IP) MegaCore functions to link
system-level design and implementation with DSP algorithm development. In this
way, DSP Builder allows system, algorithm, and hardware designers to share a
common development platform.

The DSP Builder Signal Compiler block reads Simulink Model Files (.mdl) that
contain other DSP Builder blocks and MegaCore functions. Signal Compiler then
generates the VHDL files and Tcl scripts for synthesis, hardware implementation, and
simulation.

You can use blocks from the standard blockset to create a hardware implementation of
a system modeled in Simulink. DSP Builder contains bit- and cycle-accurate Simulink
blocks—which cover basic operations such as arithmetic or storage functions—and
takes advantage of key device features such as built-in PLLs, DSP blocks, and
embedded memory.

You can integrate complex functions by including IP cores in your DSP Builder model.
You can also use the faster performance and richer instrumentation of hardware
cosimulation by implementing parts of your design in an FPGA.

The standard blockset supports imported HDL subsystems including HDL defined in
a Quartus Prime project file.

High-Speed DSP with FPGAs

DSP Builder Handbook

FPGAs give compelling performance advantage over dedicated DSP devices. You can
configure FPGA's element arrays as complex processor routine.

You can link these routines together in serial (the same way that a DSP processor
executes them), or connect them in parallel. When connected in parallel, they give
many times better performance than standard DSP devices by executing hundreds of
instructions at the same time.

Algorithms that benefit from this improved performance include forward-error
correction (FEC), modulation and demodulation, and encryption.

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/rn/rn_dsp_builder.pdf
http://www.altera.com/literature/rn/rn_dsp_builder.pdf

Chapter 1: About DSP Builder Standard Blockset 1-3
General Description

Interoperability with the Advanced Blockset

Any standard blockset design can include an advanced blockset design as a single
hierarchical entity.
“%e For more information about the advanced blockset, refer to Volume 3: DSP Builder
Advanced Blockset in the DSP Builder Handbook.
“ e For more information about the differences between the standard and advanced
blocksets and about design flows that combine both blocksets, refer to Volume 1:
Introduction to DSP Builder in the DSP Builder Handbook.

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/hb/dspb/hb_dspb_adv.pdf
http://www.altera.com/literature/hb/dspb/hb_dspb_adv.pdf
http://www.altera.com/literature/hb/dspb/hb_dspb_intro.pdf
http://www.altera.com/literature/hb/dspb/hb_dspb_intro.pdf

1-4 Chapter 1: About DSP Builder Standard Blockset
General Description

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

2. Getting Started
/ANO[S YA !

This chapter describes the design flow and a getting started tutorial.

Creating a Design in DSP Builder
1. Create a Simulink design model in the MATLAB software.
2. Compile directly in the Quartus Prime software.
3. Output VHDL files for synthesis and Quartus II compilation or generate files for
VHDL simulation.
I[l=~ DSP Builder generates VHDL and does not generate Verilog HDL.

4. Use the quartus_map command in the Quartus Prime software to run a simulation
netlist flow that generates files for Verilog HDL simulation.

“ e Forinformation about this flow, refer to the Quartus Prime help.

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

2-2 Chapter 2: Getting Started
Design Flow

Design Flow

Figure 2-1 shows the system-level design flow using DSP Builder.

Figure 2-1. System-Level Design Flow

" MATLAB
Sirnulink
I
Y
Automated Flow SignalCompiler Manual Flow
(Within Simulink) | [Outside Simulink)
! l Y L
ModelSim Synthesis
Co-Simulati A +
o ::?LT&E‘ lon Quartus 11 Synthesis A
Hardware ATOM
in the Loop Netlist
ATOM Netlist + Y
Cuartus |1 Fitter — Cuartus Il Fitter —» VHDL

[| Simulator

)

Programmar

|Object File ﬂ.poﬂ!
* Hardwara

The design flow involves the following steps:

1. Use the MathWorks software to create a model with a combination of Simulink
and DSP Builder blocks.

L= Separate The DSP Builder blocks in your design from the Simulink blocks
by Input and Output blocks from the DSP Builder IO and Bus library.

2. Include a Clock block from the DSP Builder AltLab library to specify the base clock
for your design, which must have a period greater than 1ps but less than 2.1 ms.

"=~ 1If no base clock exists in your design, DSP Builder creates a default clock
with a 20ns real-world period and a Simulink sample time of 1. You can
derive additional clocks from the base clock by adding Clock Derived
blocks.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 2: Getting Started
Design Flow

2-3

3. Seta discrete (no continuous states) solver in Simulink. Choose a Fixed-step solver
type if you are using a single clock domain or a Variable-step type if you use
multiple clock domains.

To set the solver options, click Configuration Parameters on the Simulation menu
to open the Configuration Parameters dialog box and select the Solver page
(Figure 2-2).

Figure 2-2. Configuration Parameters for Simulation

-
% Configuration Parameters: fir3tap/Configuration (Active)
. Select: Sirnulation time
| -Balver
: Start kime: | 0.0 Stop kime:
- Data Import/Export Al optme: |10.0
-~ Optirnization -
5] Diagrostics Solver options
E----Sample Time Type: |Fixed-step |%| Solver: |Discrete (no conbinuous states) |
Data Yalidity
Type Conversion Fixed-step size (fundamental sample time): | auto
Zonnectivity
Compatibilty Tasking and sample time options
i~ Model Referencing
‘e Saving Periodic sample time conskraint: Unconstrained R
- Hardware Implementation : b . - : —
- Madel Referencing Tasking mode For periodic sample times: SingleTasking ~
E Sil:nulation Target [] automatically handle rate transition For data transfer
& Symbols
“eCustom Code [] Higher priority value indicates higher task priarity
[+-Real-Time Workshop
_) [ok l I Cancel I [Help I Apply

August 2016 Altera Corporation

8.
9.

e For detailed information about solver options, refer to the description of the

“Solver Pane” in the Simulink Help.
Simulate your model in Simulink using a Scope block to monitor the results.
Run Signal Compiler to setup RTL simulation and synthesis.

Perform RTL simulation. DSP Builder supports an automated flow for the
ModelSim software (using the TestBench block). You can also use the generated
VHDL for manual simulation in other simulation tools.

Use the output files generated by the DSP Builder Signal Compiler block to
perform RTL synthesis. Alternatively, you can synthesize the VHDL files manually
using other synthesis tools.

Compile your design in the Quartus II software.

Download to a hardware development board and test.

For an automated design flow, the Signal Compiler block generates VHDL and Tcl
scripts for synthesis in the Quartus II software. The Tcl scripts let you perform
synthesis and compilation automatically in the MATLAB and Simulink environment.
You can synthesize and simulate the output files in other software tools without the
Tcl scripts. In addition, the Testbench block generates a testbench and supporting files
for VHDL simulation.

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

2-4 Chapter 2: Getting Started
Creating an Amplitude Modulation Design Example

“ e TFor information about controlling the DSP Builder design flow using Signal

Compiler, refer to “Design Flows for Synthesis, Compilation and Simulation” on
page 3-19.

-« For more information about the blocks in the DSP Builder blockset, refer to the DSP
Builder Standard Blockset Libraries section in volume 2 of the DSP Builder Handbook.

Creating an Amplitude Modulation Design Example

The amplitude modulation design example, singen.mdl, demonstrates the
DSP Builder design flow.

The amplitude modulation design example is a modulator that has a sine wave
generator, a quadrature multiplier, and a delay element. Each block in the model is
parameterizable. When you double-click a block in the model, a dialog box displays
where you can enter the parameters for the block. Click the Help button in these
dialog boxes to view help for a specific block.

This tutorial assumes the following points:
®m You are using a PC running Windows.

B You are familiar with the MATLAB, Simulink, Quartus II, and ModelSim®
software and the software is installed on your PC in the default locations.

B You have basic knowledge of the Simulink software.

“ e For information about using the Simulink software, refer to the Simulink
Help.

You can use the singen.mdl model file in <DSP Builder install
path>\DesignExamples\Tutorials\ GettingStartedSinMd]l or you can create your
own amplitude modulation model.

Creating a New Model

To create a new model:

1. Start the MATLAB software.

2. On the File menu, point to New, and click Model to create a new model window.
3. In the new model window, on the File menu click Save.
4

. Browse to a directory, your working directory, to save the file. This tutorial uses
the working directory <DSP Builder install
path>\DesignExamples\Tutorials\ GettingStartedSinMdl\my_SinMdl.

5. Type the file name into the File name box. This tutorial uses the name singen.mdl.
6. Click Save.
7. Click the MATLAB Start button. Point to Simulink and click Library Browser.

Adding the Sine Wave Block

To add the Sine wWave block:

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/hb/dspb/hb_dspb_std_lib.pdf
http://www.altera.com/literature/hb/dspb/hb_dspb_std_lib.pdf

Chapter 2: Getting Started 2-5
Creating an Amplitude Modulation Design Example

1. Inthe Simulink Library Browser, click Simulink and Sources to view the blocks in
the Sources library.

2. Drag and drop a Sine Wave block into your model.
3. Double-click the Sine Wave block in your model to display the Block Parameters
dialog box (Figure 2-3).

Figure 2-3. 500-kHz, 16-Bit Sine Wave Specified in the Sine Wave Dialog Box

GI Source Block Parameters: Sine Wave

Sine 'Wave
Output & sine wave:
0t = Amp*SinlFreqt+Phase] + Biaz

Sine twpe determines the computational technique used. The parameters in the two
types are related through:

Samples per period = 2%pi # [Frequency * S ample time)
Murnber of offset samples = Phaze * Samples per period / [2%pi1]

Use the zample-based sine type if numerical problems due ta running for large times
[e.g. overflow in abzolute time)] occur.

Farameters

Sine type: Sample bazed
Time [t]:|Use simulation time
Amplitude;

12151

Bias:

ia

Samples per penod:
a0

Murnber of offset samples:
i

Sample time:

| 25e-3

Interpret vector parameters az 1-0

[(.8 ” Cancel ” Help

4. Set the Sine Wave block parameters (Table 2-1).

Table 2-1. Parameters for the Sine Wave Block

Parameter Value

Sine type Sample based
Time simulation time
Amplitude 2"15-1

Bias 0

Samples per period 80

Number of offset examples 0

Sample time 25e-9

Interpret vector parameters a 1-D On

5. Click OK.

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

2-6 Chapter 2: Getting Started
Creating an Amplitude Modulation Design Example

L=~ For information about how you can calculate the frequency., refer to the
equation in “Frequency Design Rules” on page 3-8.

Adding the Sinin Block
To add the SinIn block:

1. In the Simulink Library Browser, expand the Altera DSP Builder Blockset folder
to display the DSP Builder libraries (Figure 2—4).

Figure 2-4. Altera DSP Builder Folder in the Simulink Library Browser

" B Simulink Library Browser E]@

||| Fie Edt View Help l
: S o | |Enter search term £
H| Dw = v/ 4

Libraries Library: Altera DSP Builder BlocksetIO & Bus i >J

-] Simulink
[+ Wk Attera DSP Builder Advanced Blockset

e
&1 8| Attera DSP Builder Blockset > T8 L AtBus

- All Blocks

- Alllab :I[s;[B; [!':JjﬁjL Binary Point Casting
- Arithmetic

[+]- Boards

- Complex Type E’ Bus Builder
- Gate & Control "_r

[+ Interfaces

10 & Bus

- MegaCore Functions
- Hate Change

- Simulation Blocks Library (7)) (6:3i% B Corvedsion
- State Machine Functions

- Stora i
o= ._Jl(Bus Splitter

Yural
Bus Conecatenation

~‘ideo and Image Processing
E 1J Communications Blockset
E Control System Toolbox } e
- gl EDA Simulator Link MQ .
E Image Acquisition Toolbox -
E 1J Real-Time Workshop ,]_, Esxtract Bit

[+ ¥ Real-Time Workshop Embedded Coder

E Report Generator
- ¥l RF Blockset [5cR > olobal Rest
E 1J Signal Processing Blockset
- 1@ Simulink Cantrol Design
L_I--E Simulink Extras E) GH)
E Simulink Verification and Validation
- gl Stateflow

L'!--J Video and Image Processing Blockset

[70 3> Input

E J--E irtual Reality Toolbox |Z|
Block Description x
Input: Input Port b]

In zimulation, thiz block casts a Simulink =ignal to a DSP Builder internal signal.
Choose from signed integer, unsigned integer or signed fractional representation. The Simulink value |\i|

2. Select the IO & Bus library.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 2: Getting Started
Creating an Amplitude Modulation Design Example

2-7

3. Drag and drop the Input block from the Simulink Library Browser into your
model. Position the block to the right of the Sine Wave block.

If you are unsure how to position the blocks or draw connection lines, refer to the
completed design (Figure 2-7 on page 2-14).

=" You can use the Up, Down, Right, and Left arrow keys to adjust the position

of a block.

4. Click the text under the block icon in your model. Delete the text Input and type
the text SinIn to change the name of the block instance.

5. Double-click the SinIn block in your model to display the Block Parameters

dialog box.

6. Set the SinIn block parameters (Table 2-2).

Table 2-2. Parameters for the Sinin Block

Parameter Value
Bus Type Signed Integer
[number of bits].[] 16
Specify Clock Off
7. Click OK.

8. Draw a connection line from the right side of the Sine Wave block to the left side of
the sinIn block by holding down the left mouse button and dragging the cursor

between the blocks.

Il Alternatively, you can select a block, hold down the Ctrl key and click the
destination block to automatically make a connection between the two

blocks.

Adding the Delay Block

To add the Delay block:

1. Select the Storage library from the Altera DSP Builder Blockset folder in the

Simulink Library Browser.

2. Drag and drop the Delay block into your model and position it to the right of the

SinIn block.

3. Double-click the Delay block in your model to display the Block Parameters

dialog box (Figure 2-5).

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

Chapter 2: Getting Started

2-8
Creating an Amplitude Modulation Design Example

4. Type 1 as the Number of Pipeline Stages for the Delay block.

Figure 2-5. Setting the Downsampling Delay

EJ Function Block Parameters: Delay
Drelay AlteraBlockzet [maszk) [link]

Dielay

Implements a parametenized delay.

The 'Mumber of Pipeline Levels' :pecifies the delay length of the black. The delay
must be greater than or equal to 1.

The 'Clock Phaze Selection’ i a binary stiing which gets the phases in which the

block iz enabled.

Far example;
0100 - The delay block iz enabled only on the 2nd phase of 4.

Use the 'Optional Ports’ tab to select uze of the additional clock enable and reset
cantrol inputs.

Usze the Initialization’ tab to select uze of an optional non-zero rezet value [uze of
which will increase the hardware resources used).

M n Optiohal Ports | Initialization

Murnber of Pipeline Stages
1

I 0K l [Cancel] ’ Help] Apply

5. Click the Optional Ports tab and set the parameters (Table 2-3).

Table 2-3. Parameters for the Delay Block.

Parameter Value
Clock Phase Selection 01
Use Enable Port Off
Use Synchronous Clear port Off
6. Click OK.
7. Draw a connection line from the right side of the SinIn block to the left side of the
Delay block.

Adding the SinDelay and Sinin2 Blocks

To add the SinDelay and SinIn2 blocks:

1. Select the IO & Bus library from the Altera DSP Builder Blockset folder in the
Simulink Library Browser.

2. Drag and drop two Output blocks into your model, positioning them to the right of
the Delay block.

3. Click the text under the block symbols in your model. Change the block instance
names from Output and Outputl to SinDelay and SinIn2.

4. Double-click the sinDelay block in your model to display the Block Parameters
dialog box.

DSP Builder Handbook August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 2: Getting Started 2-9
Creating an Amplitude Modulation Design Example

5. Set the sinDelay block parameters (Table 2—4).

Table 2-4. Parameters for the SinDelay Block

Parameter Value
Bus Type Signed Integer
[number of bits].[] 16
External Type Inferred
6. Click OK.

7. Repeat steps 4 to 6 for the SinIn2 block setting the parameters (Table 2-5).

Table 2-5. Parameters for the Sinln2 Block

Parameter Value

Bus Type Signed Integer
[number of bits].[] 16

External Type Inferred

8. Draw a connection line from the right side of the Delay block to the left side of the
SinDelay block.

Adding the Mux Block
To add the Mux block, follow these steps:
1. Select the Simulink Signal Routing library in the Simulink Library Browser.

2. Drag and drop a Mux block into your design, positioning it to the right of the
SinDelay block.

3. Double-click the Mux block in your model to display the Block Parameters dialog
box.

4. Set the Mux block parameters (Table 2-6).

Table 2-6. Parameters for the Mux Block

Parameter Value

Number of Inputs 2

Display Options bar
5. Click OK.

6. Draw a connection line from the bottom left of the Mux block to the right side of the
SinDelay block.

7. Draw a connection line from the top left of the Mux block to the line between the
SinIn2 block.

8. Draw a connection line from the SinIn2 block to the line between the SinIn and
Delay blocks.

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

2-10 Chapter 2: Getting Started
Creating an Amplitude Modulation Design Example

Adding the Random Bitstream Block
To add the Random Bitstream block, follow these steps:
1. Select the Simulink Sources library in the Simulink Library Browser.

2. Drag and drop a Random Number block into your model, positioning it underneath
the Sine Wave block.

3. Double-click the Random Number block in your model to display the Block
Parameters dialog box.

4. Set the Random Number block parameters (Table 2-7).

Table 2-7. Parameters for the Random number Block

Parameter Value
Mean 0
Variance 1
Initial seed 0
Sample time 25e-9
Interpret vector parameters as 1-D On

5. Click OK.

6. Rename the Random Noise block Random Bitstream.

Adding the Noise Block

To add the Noise block, follow these steps:

1. Select the IO & Bus library from the Altera DSP Builder Blockset folder in the
Simulink Library Browser.

2. Drag and drop an Input block into your model, positioning it to the right of the
Random Bitstream block.

3. Click the text under the block icon in your model. Rename the block Noise.
4. Double-click the Noise block to display the Block Parameters dialog box.
5. Set the Noise block parameters (Table 2-8).

Table 2-8. Parameters for the Noise Block

Parameter Value
Bus Type Single Bit
Specify Clock Off

& The dialog box options change to display only the relevant options when
you select a new bus type.

6. Click OK.

7. Draw a connection line from the right side of the Random Bitstreamblock to the
left side of the Noise block.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 2: Getting Started 2-11
Creating an Amplitude Modulation Design Example

Adding the Bus Builder Block

The Bus Builder block converts a bit to a signed bus. To add the Bus Builder block,
follow these steps:

1. Select the IO & Bus library from the Altera DSP Builder Blockset folder in the
Simulink Library Browser.

2. Drag and drop a Bus Builder block into your model, positioning it to the right of
the Noise block.

3. Double-click the Bus Builder block in your model to display the Block
Parameters dialog box.

4. Set the Bus Builder block parameters (Table 2-9).

Table 2-9. Parameters for the Bus Builder Block

Parameter Value
Bus Type Signer Integer
[number of bits].[] 2

5. Click OK.

6. Draw a connection line from the right side of the Noise block to the top left side of
the Bus Builder block.

Adding the GND Block

To add the GND block, follow these steps:

1. Select the IO & Bus library from the Altera DSP Builder Blockset folder in the
Simulink Library Browser.

2. Drag and drop a GND block into your model, positioning it underneath the Noise
block.

3. Draw a connection line from the right side of the GND block to the bottom left side
of the Bus Builder block.

Adding the Product Block

To add the Product block, follow these steps:

1. Select the Arithmetic library from the Altera DSP Builder Blockset folder in the
Simulink Library Browser.

2. Drag and drop a Product block into your model, positioning it to the right of the
Bus Builder block and slightly above it. Leave enough space so that you can draw
a connection line under the Product block.

3. Double-click the Product block to display the Block Parameters dialog box.

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

2-12 Chapter 2: Getting Started
Creating an Amplitude Modulation Design Example

4. Set the Product block parameters (Table 2-10).

Table 2-10. Parameters for the Product Block

Parameter Value
Bus Type Inferred
Number of Pipeline Stages 0

=~ The bit width parameters are set automatically when you select Inferred
bus type. The parameters in the Optional Ports and Settings tab of this
dialog box can be left with their default values.

5. Click OK.

6. Draw a connection line from the top left of the Product block to the line between
the Delay and SinDelay blocks.

Adding the StreamMod and StreamBit Blocks

To add the StreamMod and StreamBit blocks, follow these steps:

1. Select the IO & Bus library from the Altera DSP Builder Blockset folder in the
Simulink Library Browser.

2. Drag and drop two Output blocks into your model, positioning them to the right of
the Product block.

3. Click the text under the block symbols in your model. Change the block instance
names from Output and Outputl to StreamMod and StreamBit.

4. Double-click the StreamMod block to display the Block Parameters dialog box.
5. Set the StreamMod block parameters (Table 2-11).

Table 2-11. Parameters for the StreamMod Block

Parameter Value
Bus Type Signed Integer
[number of bits].[] 19
External Type Inferred
6. Click OK.
DSP Builder Handbook August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 2: Getting Started 2-13
Creating an Amplitude Modulation Design Example

7. Double-click the StreamBit block to display the Block Parameters dialog box
(Figure 2-6).

Figure 2-6. Set a Single-Bit Output Bus

E Function Block Parameters: StreamBit
Output AlteraBlockset [maszk] (link]
Olutput Port

In gimulation, thiz block casts a DSP Builder internal zignal to a Simulink signal.
Choose from signed integer, unsigned integer, signed fractional representation or allow
the type to be inferred fram the previous block.

When generating hardware, thiz block gensrates an output part,

Paramesters

Bus Type|Single Bit w
[Murnber OF Bitz].[]

ls]

[1.[Mumber OF Bitz]

a

Estemal Type Inferred w

[ak. H Cancel H Help Apply

8. Set the StreamBit block parameters (Table 2-12).

Table 2-12. Parameters for the StreamBit Block

Parameter Value
Bus Type Single Bit
External Type Inferred

9. Draw connection lines from the right side of the Product block to the left side of
the StreamMod block, and from the right side of the Bus Builder block to the left
side of the StreamBit block.

Adding the Scope Block
To add the Scope block, follow these steps:
1. Select the Simulink Sinks library in the Simulink Library Browser.

2. Drag and drop a Scope block into your model and position it to the right of the
StreamMod block.

3. Double-click the Scope block and click the Parameters icon to display the ‘Scope’
parameters dialog box.

4. Set the Scope parameters (Table 2-13).

Table 2-13. Parameters for the Scope Block

Parameter Value
Number of axes 3
Time range auto
August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

2-14

Chapter 2: Getting Started
Creating an Amplitude Modulation Design Example

Table 2-13. Parameters for the Scope Block

Parameter Value
Tick labels bottom axis only
Sampling Decimation 1

5. Click OK.

6. Close the Scope.

7. Make connections to connect the complete your design as follows:

a. From the right side of the Mux block to the top left side of the Scope block.

b. From the right side of the StreamMod block to the middle left side of the Scope
block.

c. From the right side of the StreamBit block to the bottom left of the Scope block.

d. From the bottom left of the Product block to the line between the Bus Builder
block and the StreamBit block.

Figure 2-7 shows the required connections.

Figure 2-7. Amplitude Modulation Design Example

Randa
Bitstream

T Sinln2
—+ —»
++
et Sinln SinDelay
Sine Wawve
L lay

N oo T
= [dl=1="

Sina Wave
[]

Streamiod -

Preduct
u] Soope
1r+ — < abit |———
0 —m1

StreamBit

GND Bus Buikler

Adding a Clock Block

To add a Clock block, follow these steps:

1.

2.
3.
4.

Select the AltLab library from the Altera DSP Builder Blockset folder in the
Simulink Library Browser.

Drag and drop a Clock block into your model.
Double-click on the Clock block to display the Block Parameters dialog box.
Set the Clock parameters (Table 2-14).

Table 2-14. Parameters for the Clock Block

Parameter Value
Real-World Clock Period 20
Period Unit: ns

DSP Builder Handbook

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 2: Getting Started
Simulating the Model in Simulink

2-15

Table 2-14. Parameters for the Clock Block

Parameter Value
Simulink Sample Time 2.5e-008
Reset Name aclr

Reset Type Active Low
Export As Qutput Pin Off

"=~ A clock block is required to set a Simulink sample time that matches the
sample time specified on the Sine Wave and Random Bitstreamblocks. If no
base clock exists in your design, a default clock with a 20ns real-world
period and a Simulink sample time of 1 is automatically created.

5. Save your model.

Simulating the Model in Simulink

To simulate your model in the Simulink software, follow these steps:

1. Click Configuration Parameters on the Simulation menu to display the
Configuration Parameters dialog box and select the Solver page (Figure 2-8 on

page 2-16).

2. Set the parameters (Table 2-15).

Table 2-15. Configuration Parameters for the singen Model

Parameter Value

Start time 0.0

Stop time 4e-6

Type Fixed-step

Solver discrete (no continuous states)

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

2-16

Chapter 2: Getting Started

Simulating the Model in Simulink

Solver Pane in the Simulink Help.

Figure 2-8. Configuration Parameters

For detailed information about solver options, refer to the description of the

5 Configuration Parameters: singen/Configuration {Active)
[Select: | sirlation tirme
| - Bafver
. Stark bime: | 0.0 Stop time: | de-6
-~ Data Import/Export AT AL g
- Optirnization -
E1-Diagnostics Solver options
Saliiple. Tire Type: |Fixed-step |»| Solver: |Discrete (no continuous states) | sl
Fixed-step size (fundamental sample time): | auto
Tasking and sample time options
i~-Model Referencing
LSaving Petiodic sample time constraint: Unconstrained v
-Hardware Implementation ’ o . - - T
- Model Referencing Tasking mode for periodic sample fimes: SingleTasking w|
5—‘--Si|_'nulati0'|31 'll'arget [] automatically handle rate transition for data transfer
wmbols
Custam Code [] Higher priority value indicates higher task priority
[#-Real-Time Warkshop
J Ok l ’ Cancel] [Help Apply

DSP B

3. Click OK.

4. Start simulation by clicking Start on the Simulation menu.

5. Double-click the Scope block to view the simulation results.

uilder Handbook

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 2: Getting Started 2-17
Compiling the Design

6. Click the Autoscale icon (binoculars) to auto-scale the waveforms.

Figure 2-9 shows the scaled waveforms.

Figure 2-9. Scope Simulation Results

n Scope [Z]@
SH PLPL AHEBEBEF -
4

Compiling the Design

To create and compile a Quartus Prime project for your DSP Builder design, and to
program your design onto an Altera FPGA, add a Signal Compiler block by
following these steps:

1. Select the AltLab library from the Altera DSP Builder Blockset folder in the
Simulink Library Browser.

2. Dragand drop a Signal Compiler block into your model.

3. Double-click the Signal Compiler block in your model to display the Signal
Compiler dialog box (Figure 2-10).

The dialog box allows you to set the target device family. For this tutorial, you can
use the default Stratix device family.

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

2-18 Chapter 2: Getting Started
Performing RTL Simulation

4. Click Compile.

Figure 2-10. Signal Compiler Block Dialog Box

SPBuilder - Signal Compiler - |EI|5|

~Description

This block controls the compilation of the design.

~Parametet

Quartus II Project: singen_dspbuilderisingen.qpf

1. I Skratizx - |
Family: [Use Board Block ko Specify Device

Dewice: aUTO

Simple | ndvan:ed' SignalTap II| Export'
~Step 1 - Compile Design

~Step & - Select Device to Program

Scan Jtag I ;II LI
—Skep 3 - Program Device
Program |

~Messages
Info: associated documentation or information are expressly subject ﬂ
Info: tothe terms and conditions of the Altera Program License
Info; Subscription Agreement, Altera Megaore Function License
Infa: Agreement, or ather applicable license agreement, including,
Info without limitation, that your use is for the sole purpose of
Info: programming logic devices manufactured by Alkera and sold by
Info: Altera or its authorized distribukors, Please refer to the
Info: applicable agreement For Further details,
Infa: Processing started: Wed Mar 18 14:56:24 2009
Info: Cormrmand: quartus_asm singesn
Info: Assembler is generating device programming files
Info: Quartus 1T Assembler was successhul, O ervors, 0 warnings
Info: Peak virtual memory; 224 megabytes
Infa: Processing ended: Wed Mar 18 14:56:30 2009
Infa: Elapsed time: 00:00:06
Info: Total CPU time {on all processors): 00:00:03 j
-

oK | Cancel |

5. When the compilation completes successfully, click OK.

6. Click Save on the File menu to save your model.

Performing RTL Simulation

To perform RTL simulation with the ModelSim software, add a TestBench block, by
following these steps:

1. Select the AltLab library from the Altera DSP Builder BlockSet folder in the
Simulink Library Browser.

2. Drag and drop a TestBench block into your model.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 2: Getting Started 2-19
Performing RTL Simulation

3. Double-click on the new TestBench block.

The Testbench Generator dialog box appears (Figure 2-11).

Figure 2-11. Testhench Generator Dialog Box

EA bspBuilder - Testbench Generator - singen 10| =l
—Description
This block controls automatic generation of the test bench, Enabling kestbench generation may show
simulation as all input and output values are stored to file,
~Parameters
[+ Enable Test Bench generation.
Sirnple: I Advanced | Configuration |
Compare against HOL | Compare Simulink simulation against ModelSim
~Messages
=
[
oK | Cancel |
4. Ensure that Enable Test Bench generation is on.
August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

2-20 Chapter 2: Getting Started
Performing RTL Simulation

5. Click the Advanced tab (Figure 2-12).

Figure 2-12. Testhench Generator Dialog Box Advanced Tah
1ol x|

~Description

This block controls automatic generation of the test bench. Enabling testbench generation may slow
simulation as all input and output values are stored to file,

~Parameters
[v Enable Test Bench generation,

Simple Advanced | Configuration

Generate WHOL Test Bench From simulink model.
Run Simulink. Rerun Sirmulink Simulation,
Run Modelsirm Launch Test Bench in MadelSim. W Launch GlUI
Compare Results Compare Simulink and MadelSim results.
—Messages
E RS (= N LC L PE= [N R [R - [N W R RN (0| gy W~ N Pl Bl s s DY - 1A d

Info: Elaborating entity "alt_dspbuilder_SBF" For hierarchy
"singen_GM:auta_inst|alt_dspbuilder_cast_GMDEESC7H:castl |alk_dspbuilder _SEF:Oubput”
Info: Elaborating entity "alt_dspbuilder _cast_GMRGISTEMM" For hierarchy
"singen_GM:auto_inst|alt_dspbuilder _cast_GMRGISTENM:castz"
Info: Elaborating entity "alt_dspbuilder_SBF" For hierarchy
"singen_GM:auta_inst|alt_dspbuilder _cast_GMRGISTEMM:castz|alk_dspbuilder _SEFOutput”
Info: Elaborating entity "alt_dspbuilder_saltrPropagate” For hisrarchy
"singen_GM:auto_inst|alt_dspbuilder _cast_GMRGISTENMicastZ|alk_dspbuilder _SEF:Outputi]alt
_dspbuilder_saltrPropagate:ud”
Info: Quartus II Analysis & Elaboration was successful, O errors, 7 warnings

Info: Peak virtual memory; 220 megabytes

Infa: Processing ended: Wed Mar 18 15:04:12 2009

Info: Elapsed time: 00:00:10

Info: Total CPU time {on all processors): 00:00:03
Info: Creating ModelSim testbench script,
Info: Generating simulation models, j

-

oK | Cancel |

6. Turn on the Launch GUI option. This option causes the ModelSim GUI to launch
when you invoke the ModelSim simulation.

7. Click Generate HDL to generate a VDHL-based testbench from your model.
8. Click Run Simulink to generate Simulink simulation results for the testbench.
9. Click Run ModelSim to load your design into ModelSim.

Your design simulates with the output displaying in the ModelSim Wave window.
The testbench initializes all your design registers with a pulse on the aclr input
signal.

10. All waveforms initially show using digital format in the ModelSim Wave window.
Change the format of the sinin, sindelay and streammod signals to analog.

=~ InModelSim 6.4a, you can right-click to display the popup menu, point to
Format and click on Analog (Automatic). The user interface commands
may be different in other versions of ModelSim.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 2: Getting Started 2-21
Adding the Design to a Quartus Prime Project

11. Click Zoom Full on the right button pop-up menu in the ModelSim Wave window.
The simulation results display as an analog waveform (Figure 2-13).

Figure 2-13. Analog Display

M wave - default

File Edit Wiew Insert Format Tools Window

1=SHS s B2@00 #E

4R e ELEEE BT || RA || (X mfa)| QQ R34

& cock |1 Mlmnmmmmmnm"mumunmnnnmwmmumnmmwmwmmmmnmmmmmmmmmmmmmmnmm
'* aclr 0 |

1;" =inin2 fataaltud R)

=4 sindelay | 000000

T e’
=y I [I\Lﬂ’\\xiﬁ
e >l >

I [

=4 stresmmod | 000000

L£
i a0 |||
o PE I Tus 2us Juz
Cursor 1 | Ops i
o B3 B B3 | N P
| 0 ps to 3369508 ps | Mow: 3300 ns Delta: 6 b

The introductory DSP Builder tutorial is complete. The next section shows how you
can add a DSP Builder design to a new or existing Quartus Prime project.

Subsequent chapters in this user guide provide examples that illustrate some of the
additional design features supported by DSP Builder.

Adding the Design to a Quartus Prime Project

DSP Builder uses the Quartus Prime project created by the Signal Compiler block.
You can add your design to a new or existing Quartus Prime project.

Creating a Quartus Prime Project
To create a new Quartus Prime project:
1. Start the Quartus Prime software.

2. Click New Project Wizard on the File menu in the Quartus Prime software and
specify the working directory for your project. For example,
D:\MyQuartusProject.

3. Specify the name of the project. For example, NewProject and the name of the

top-level design entity for the project.

= The name of the top-level design entity typically has the same name as the
project.

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

2-22

Chapter 2: Getting Started
Adding the Design to a Quartus Prime Project

Click Next to display the Add Files page. There are no files to add for this tutorial.

Click Next to display the Family & Device Settings page and check that the
required device family is selected. This should normally be the same device family
as specified for Signal Compiler in “Compiling the Design” on page 2-17.

Click Finish to close the wizard and create the new project.

"=~ When you specify a directory that does not already exist, a message asks if
the specified directory should be created. Click Yes to create the directory.

Adding the DSP Builder Design to the Project

To add your DSP Builder design to the project in the Quartus Prime software:

DSP Builder Handbook

1.

On the View menu in the Quartus Prime software, point to Utility Windows and
click Tel Console to display the Tcl Console.

Run the singen_add.tcl script that can be found in the <DSP Builder install
path>\DesignExamples\ Tutorials\ GettingStartedSinMd]l directory by typing
the following command in the Tcl Console window:

source <install path>/DesignExamples/Tutorials/GettingStartedSinMdl/s
ingen add.tcl

& Youmust use / separators instead of \ separators in the command path
name used in the Tcl console window. You can use a relative path if you
organize your design data with the DSP Builder and Quartus Prime designs
in subdirectories of the same design hierarchy.

An example instantiation is added to your Quartus Prime project.

Click the Files tab in the Quartus Prime software.

Right-click singen.mdl and click Select Set as Top-Level Entity.
Compile the Quartus Prime design by clicking Start Compilation on the

Processing menu.

"= You can copy the component declaration from the example file for your
own code.

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

3. Design Rules and Procedures

This chapter discusses the following topics:

“DSP Builder Naming Conventions”

“MATLAB Variables”

“Fixed-Point Notation”

“Bit Width Design Rule”

“Frequency Design Rules”

“About Timing Semantics Between Simulink and HDL Simulation”
“Signal Compiler and TestBench Blocks”

“Hierarchical Design”

“Goto and From Block Support”

“Black Box and HDL Import”

“Using a MATLAB Array or .hex File to Initialize a Block”
“Comparison Utility”

“Adding Comments to Blocks”

“Adding Quartus II Constraints”

“Displaying Port Data Types”

“Displaying the Pipeline Depth”

“Updating HDL Import Blocks”

“Analyzing the Hardware Resource Usage”

“Loading Additional ModelSim Commands”

“About Quartus II Assignments and Block Entity Names”

DSP Builder Naming Conventions

DSP Builder generates VHDL files for simulation and synthesis. When blocks or ports
in your model share the same VHDL name, DSP Builder assigns them unique names
in the VHDL to avoid name clashes. However, clock and reset ports are never
renamed, and you see an error if they do not have unique names. Avoid name clashes
on other ports, to avoid renaming of the top-level ports in the VHDL.

All DSP Builder port names must comply with the following naming conventions:

Remember VHDL is not case sensitive. For example, the input port MyInput and
MYINPUT is the same VHDL entity.

Avoid using VHDL keywords for DSP Builder port names.

Do not use illegal characters. VHDL identifier names can contain only a-z,0-9,
and underscore (_) characters.

August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

3-2

Chapter 3: Design Rules and Procedures
MATLAB Variables

I =
i=

m Begin all port names with a letter (a - z). VHDL does not allow identifiers to begin
with non-alphabetic characters or end with an underscore.

m Do not use two underscores in succession (__) in port names because it is illegal in
VHDL.

White spaces in the names for the blocks, components, and signals are converted to an
underscore when DSP Builder converts the Simulink model file (.mdl) into VHDL.

MATLAB Variables

I =
i=

You can specify many block parameters (such as bit widths and pipeline depth) by
entering a MATLAB base workspace or masked subsystem variable. You can then set
these variables on the MATLAB command line or from a script. DSP Builder evaluates
the variable and passes its value to the simulation model files. DSP Builder ensures
that the parameters are in the required range.

Although DSP Builder no longer restricts parameters to 51 bits, MATLAB evaluates
parameter values to doubles, which restricts the possible values to 51-bit numbers
expressible by a double.

For information about which values are parameterizable, refer to the DSP Builder
Standard Blockset Libraries section in volume 2 of the DSP Builder Handbook or to the
block descriptions, which you can access with the Help command in the right button
pop-up menu for each block.

Fixed-Point Notation

Figure 3-1 describes the fixed-point notation that I/O formats use in the DSP Builder
block descriptions.

Table 3-1. Fixed-Point Notation

Description

Notation SlmuImk-to{-})il]%z')l'ranslatlon

Signed binary:
fractional (SBF)
representation; a
fractional number

[L].[R] where: sign bit

[L] is the number of bits to the left of

the binary point and the MSB is the o))
A Simulink SBF signal A[L].[R] maps in VHDL to

, , , STD_LOGIC_VECTOR(L + R - 1} DOWNTO 0)
[R] is the number of bits to the right

of the binary point

Signed binary;
integer (INT)

[L] where: signed bus and the MSB is the sign

[L] is the number of bits of the A Simulink signed binary signal A[L] maps to

STD_LOGIC_VECTOR({L - 1} DOWNTO 0)

bit
Unsigned binary; (L] where: [L] is the number of bits of the A Simulink unsigned binary signal A[L] maps to
integer (UINT) ' unsigned bus STD_LOGIC_VECTOR({L - 1} DOWNTO 0)

DSP Builder Handbook

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/hb/dsp_builder/hb_dspb_std_lib.pdf
http://www.altera.com/literature/hb/dsp_builder/hb_dspb_std_lib.pdf

Chapter 3: Design Rules and Procedures 3-3

Fixed-Point Notation

Table 3-1. Fixed-Point Notation

Description Notation Simll|i“k-tll(-1|)|IJI(-Z')I'ransIatiun
Single bit integer . . . A Simulink single bit integer signal maps to
(BIT) [1] where: the single bit can have values 1 or 0 STD._LOGIC

Notes to Table 3-1:

(1) STD_LOGIC_VECTOR and STD_LOGIC are VHDL signal types defined in the (ieee.std_logic_1164.all and ieee.std_logic_signed.all |[EEE

library packages).

(2) For designs in which unsigned integer signals are used in Simulink, DSP Builder translates the Simulink unsigned bus type with width winto a
VHDL signed bus of width w + 1 where the MSB bit is set to 0.

Figure 3-1 graphically compares the signed binary fractional, signed binary, and
unsigned binary number formats.

Figure 3-1. Number Format Gomparison

[4].[4] Signed Binary Fractional Notation

AOnbuono

2

8-Bit Signed Integer

L? G 5 4 3 2 1 o

1— Sign Bit

8-Bit Unsigned Integer

7 G 5 4 3 2 1 0

Binary Point Location in Signed Binary Fractional Format

For hardware implementation, you must cast Simulink signals into the desired
hardware bus format. Therefore, convert floating-point values to fixed-point values.

This conversion is a critical step for hardware implementation because the number of
bits required to represent a fixed-point value. The location of the binary point affects
both the hardware resources and the system accuracy.

Choosing a large number of bits gives excellent accuracy—the fixed-point result is
almost identical to the floating-point result—but consumes a large amount of
hardware. You must design for the optimum size and accuracy trade-off. DSP Builder
speeds up your design cycle by enabling simulation with fixed-point and
floating-point signals in the same environment.

The Input block casts floating-point Simulink signals of type double into fixed-point
signals. DSP Builder represents the fixed-point signals in the following signed binary
fractional (SBF) format:

B [number of bits].[[—represents the number of bits to the left of the binary point
including the sign bit.

August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

3-4 Chapter 3: Design Rules and Procedures
Bit Width Design Rule

m [].[number of bits]—represents the number of bits to the right of the binary point.
In VHDL, DSP Builder types the signals as STD_LOGIC_VECTOR.
For example, DSP Builder represents the 4-bit binary number 1101 as:
SimulinkThis signed integer is interpreted as -3
VHDLThis signed STD_LOGIC_VECTOR is interpreted as -3

If you change the location of the binary point to 11.01, that is, two bits on the left side
of the binary point and two bits on the right side, DSP Builder represents the numbers
as:

SimulinkThis signed fraction is interpreted as —0.75
VHDLThis signed STD_LOGIC_VECTOR is interpreted as -3

From a system-level analysis point of view, multiplying a number by —-0.75 or -3 is
very different, especially when looking at the bit width growth. In the first case, the
multiplier output bus grows on the most significant bit (MSB), in the second case, the
multiplier output bus grows on the least significant bit (LSB).

In both cases, the binary numbers are identical. However, the location of the binary
point affects how a simulator formats the representation of the signal. For complex
systems, you can adjust the binary point location to define the signal range and the
area of interest.
“ e For more information about number systems, refer to AN 83: Binary Numbering
Systems.

Bit Width Design Rule

You must specify the bit width at the source of the datapath. DSP Builder propagates
this bit width from the source to the destination through all intermediate blocks. Some
intermediate DSP Builder blocks must have a bit width specified, while others have
specific bit width growth rules which are described in the documentation for each
block.

Some blocks which allow bit widths to be specified optionally, have an Inferred type
setting that allows a growth rule to be used. For example, in the amplitude
modulation tutorial design (Chapter 2, Getting Started) the SinIn and SinDelay
blocks have a bit width of 16. Therefore, a bit width of 16 is automatically assigned to
the intermediate Delay block.

Data Width Propagation

You can specify the bit width of many Altera blocks in the Simulink design. However,
you do not need to specify the bit width for all blocks. If you do not specify explicitly
the bit width, DSP Builder assigns a bit width during the Simulink-to-VHDL
conversion by propagating the bit width from the source of a datapath to its
destination.

Some intermediate DSP Builder blocks must have a specified bit width, while others
have specific bit width growth rules that the documentation for each block describes.
Some blocks, which allow bit widths to be specified optionally, allow use of a growth
rule—the Inferred type setting.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/an/an083_01.pdf
http://www.altera.com/literature/an/an083_01.pdf

Chapter 3: Design Rules and Procedures 3-5
Bit Width Design Rule

Figure 3-2 illustrates bit-width propagation.

Figure 3-2. 3-Tap FIR Filter

(O —» 7o ® 3

In1 Input

s B
D lay1
2 S
Lelay2 GHain2

The fir3tapsub.mdl design is a 3-tap finite impulse response (FIR) filter and has the
following attributes:

m The input data signal is an 8-bit signed integer bus
m The output data signal is a 20-bit signed integer bus
m Three Delay blocks build the tapped delay line

m The coefficient values are {1.0000, -5.0000, 1.0000}, a Gain block performs the
coefficient multiplication

Figure 3-3 shows the RTL representation of fir3tapsub.mdl created by Signal
Compiler.

Figure 3-3. 3-Tap FIR Filter in Quartus Il RTL View

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

3-6

Chapter 3: Design Rules and Procedures
Bit Width Design Rule

Tapped Delay Line

The bit width propagation mechanism starts at the source of the datapath, in this case
at the Input block, which is an 8-bit input bus. This bus feeds the register U0, which
feeds U1, which feeds U2. DSP Builder propagates the 8-bit bus in this register chain

where each register is eight bits wide (Figure 3—4).

Figure 3-4. Tap Delay Line in Quartus Il Version RTL Viewer

SDslay Dalay2
.
lock b clock
1 |#na
- result]7, O fm—
o - scir
SOelay Delay] i dataar 0]
SDlay Dolayl clock
ena e
clock - e result]7 .0 AliMult Gaint
<
14 [ena el
i I’ resul[7 . — dataa[7 0] 0 [clock
et |SClF
g7 9] 4 1o |ena
npts]7 (] —|dataalr . 0] ’
Inputs{7..0) {7.0] o |scir resull{15 0]
ofar
i .

Arithmetic Operation

Figure 3-5 shows the arithmetic section of the filter, that computes the output yout:

youtlk] = Z x[k —i]c[i]
i=0
where c[i] are the coefficients and x[k - i] are the data.

Figure 3-5. 3-Tap FIR Filter Arithmetic Operation in Quartus Il Version RTL Viewer

sPaddAlir Paralsladderbublracion
ANl G50 21 -
S0l Delay2i a—\l clock 1 1] [ona |
| 1 |ens o [schr o
clock | L] Ui]| —
1] Lo . <I stir result]15. o) —— datas[47_0]
= e resus(? o) | [semstr. 0 -
SO8isyOstart gataai? 01 - et |datzof7.)
1™ resuM7. 0] AltiMutt Gain1 |
— lucl
et |dataal?. o) clock 1
oir s o
AMylL Gini datas(7. 0]
ol [= [Aatab(7 0]
1= |ena
o= [selr resultf15.0)
b |dataa(7 0}
— |datab(7..0)

DSP Builder Handbook

This design requires three multipliers and one parallel adder. The arithmetic
operations increase the bus width in the following ways:

m Multiplying a x b in SBF format (where [is left and r is right) is equal to:
[la].[ra] x [Ib].[rb]
The bus width of the resulting signal is:
([la] + [I0])-([ra] + [rB])

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 3: Design Rules and Procedures 3-7
Bit Width Design Rule

m Addinga + b + c in SBF format (where [is left and r is right) is equal to:
[la].[ra] + [ID].[rb] + [lc].[rc]
The bus width of the resulting signal is:
(max([la], [Ib], [Ic]) + 2).(max([ral, [rb], [rc]))

The parallel adder has three input buses of 14, 16, and 14 bits. To perform this
addition in binary, DSP Builder automatically sign extends the 14-bit busses to 16 bits.
The output bit width of the parallel adder is 18 bits, which covers the full resolution.

The following options can change the internal bit width resolution and therefore
change the size of the hardware required to perform the function that Simulink
describes:

m Change the bit width of the input data.

m Change the bit width of the output data. The VHDL synthesis tool removes any
unused logic.

m InsertaBus Conversion block to change the internal signal bit width.

Figure 3-6 shows how you can use Bus Conversion blocks to control internal bit
widths.

Figure 3-6. 3-Tap Filter with BusConversion to Control Bit Widths

'

Ini

Input

Bus Conversion

Bus Conversion 1

Bus Conversion2

Celay2 Gain2

I =
=

In Figure 3-6, the output of the Gain block has 4 bits removed. Port data type display
is enabled in this example and shows that the inputs to the Delay blocks are of type
INT_8 but the outputs from the Bus Conversion blocks are of type INT 6.

You can also achieve bus conversion by inserting an A1tBus, Round, or Saturate block.

August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

3-8

Chapter 3: Design Rules and Procedures
Frequency Design Rules

The RTL view illustrates the effect of this truncation. The parallel adder required has a
smaller bit width and the synthesis tool reduces the size of the multiplier to have a
9-bit output (Figure 3-7).

Figure 3-7. 3-Tap Filter with BusGonversion to Control Bit Widths in Quartus Il RTL Viewer

SDelay:Delay2i

sPacldlatrParalleladdersubtr acton

Alivut: Gain2i

0~ |clock

SRED-BusConversion2i
0 |elock 1 |ena

lclock

1o fena o Jecir s
resul[10.0]| f—t—
0 |scir

leria
scir

resul[7_0]

detaal7. 0]
dstabl7_0]

FesU15..0]| —— i .]

you[5.]

liataa[26.0]

.
e iataa7.0]

Aibult. Gainti

SRED-BusConversionti

0 [clock
1— |era
0— |zcir
o etas7 0]
— |databl7 0]

P su15.0]| p————— 15 0]

youl[8..0]

SRED.BusConversioni

o in[15.0]

youl(s. 0]

e For more information, refer to “Fixed-Point Notation” on page 3-2.

Frequency Design Rules

This section describes the frequency design rules for single and multiple clock
domains.

Single Clock Domain

DSP Builder Handbook

If your design does not contain a PLL block or Clock Derived block, DSP Builder uses
synchronous design rules to convert a Simulink design into hardware. All DSP
Builder registered blocks (such as the Delay block) operate on the positive edge of the
single clock domain, which runs at the system sampling frequency.

The clock pin is not graphically displayed in Simulink unless you use the Clock block.
However, when DSP Builder converts your design to VHDL it automatically connects
the clock pin of the registered blocks (such as the Delay block) to the single clock
domain of the system.

The default clock pin is named clock and there is also a default active-low reset pin
named aclr.

By default, Simulink does not graphically display the clock enable and reset input
pins of the DSP Builder registered blocks. When DSP Builder converts a design to
VHDL, it automatically connects these pins. You can access and drive these optional
ports by checking the appropriate option in the Block Parameters dialog box.

Simulink issues a warning if you are using an inappropriate solver for your model.

You should set the solver options to fixed-step discrete when you are using a single
clock domain.

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 3: Design Rules and Procedures 3-9

Frequency Design Rules

For Simulink simulation, all DSP Builder blocks (including registered DSP Builder
blocks) use the sampling period specified in the Clock block. If there is no Clock block
in your design, the DSP Builder blocks use a sampling frequency of 1. You can use the
Clock block to change the Simulink sample period and the hardware clock period.

Multiple Clock Domains

A DSP Builder model can operate using multiple Simulink sampling periods. You can
specify the clock domain in some DSP Builder block sources, such as the Counter
block. You can also specify the clock domain in DSP Builder rate change blocks such
as Tsamp.

When using multiple sampling periods, DSP Builder must associate each sampling
period to a physical clock domain that can be available from an FPGA PLL or a clock
input pin. Therefore, the top-level DSP Builder model must contain DSP Builder rate
change blocks such as PLL or Clock_Derived.

You can use a PLL block to synthesize additional clock signals from a reference clock
signal. These internal clock signals are multiples of the system clock frequency.

Refer to “Using the PLL Block” on page 3-14 for more information.

If your design contains the PLL block, Clock or Clock Derived blocks, the DSP Builder
registered blocks operate on the positive edge of one of the block’s output clocks.

You must set a variable-step discrete solver in Simulink when you are using multiple
clock domains.

To ensure a proper hardware implementation of a DSP Builder design using multiple
clock domains, consider the following points:

B Do not use DSP Builder combinational blocks for rate transitions to ensure that the
behavior of the DSP Builder Simulink model is identical to the generated RTL
representation.

Figure 3-8 illustrates an incorrect use of the DSP Builder Logical Bit Operator
(NOT) block.

Figure 3-8. Example of Incorrect Usage: Mixed Sampling Rate on a NOT Block

20 n= | | x21
Clock Clhek2
Input Fuks -
»| INFER | »‘ [Clock \—t_obit i
T=amp Lonical Bit One e Sl Scope
EfGE RIS ogal Bit Qpe@lor
August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

3-10 Chapter 3: Design Rules and Procedures
Frequency Design Rules

m Two DSP Builder blocks can operate with two different sampling periods.
However for most DSP Builder blocks, the sampling period of each input port and
each output port must be identical.

Although this rule applies most of the DSP Builder blocks, there are some
exceptions such as the Dual-Clock FIFO block where the sampling period of the
read input port is expected to be different than the sampling period of the write
input port.

m For a datapath using mixed clock domains, the design may require additional
register decoupling around the register that is between the domains.

This requirement is especially true when the source data rate is higher than the
destination register, in other words, when the data of a register is toggling at the
higher rate than the register’s clock pin (Figure 3-9).

Figure 3-9. Data Toggling Faster than Clock

Toeswll [0

Fast Show

E _...m—l- z! I:l

Tzaimp Cutpul

3 Scope
Increment Decement Cirlay Cierlay 1
Figure 3-10 shows a stable hardware implementation.
Figure 3—-10. Stahle Hardware Implementation
| 1.0E-8 n= %21
Fast Skw
T — 2! =

Increment Decement Delay
Pattem T=amp Clutput 0 -
Delay i ok

SCLR —————=ch
Global Resat
Dby

Using Clock and Clock_Derived Blocks

DSP Builder maps the Clock and Clock Derived blocks to two hardware device input
pins; one for the clock input, and one for the reset input for the clock domain. A
design may contain zero or one Clock block and zero or more Clock Derived blocks.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 3: Design Rules and Procedures 3-11
Frequency Design Rules

If you use Clock Derived blocks, and there is only one system clock, you must
generate an appropriate clock signal for connection to the hardware device input pins
for the derived clocks.

The Clock block defines the base clock domain, and Clock Derived blocks define
other clock domains. DSP Builder specifies sample times in terms of the base clock
sample time. If there is no Clock block, DSP Builder uses a default base clock, with a
Simulink sample time of 1, and a hardware clock period of 20 ps.

This feature is available across all device families that DSP Builder supports. If no
Clock block is present, the design uses a default clock pin named clock and a default
active-low reset pin named aclr.

The signal Compiler block assigns a clock buffer and a dedicated clock-tree to
clock-signal input pin automatically to maintain minimum clock skew. If your design
contains more Clock and Clock Derived blocks than there are clock buffers available,
non dedicated routing resources route the clock signals.

Clock Assignment

DSP Builder identifies registered DSP Builder blocks such as the Delay block and
implicitly connects the clock, clock enable, and reset signals in the VHDL design for
synthesis. When your design does not contain a Clock block, Clock_Derived block, or
PLL block, all the registered DSP Builder block clock pins connect to a single clock
domain (signal clock in VHDL).

Define clock domains by the clock source blocks: the Clock block, the Clock Derived
block and the PLL block.

The Clock block defines the base clock domain. You can specify its Simulink sample
time and hardware clock period directly. If there is no Clock block, there is a default
base clock with a Simulink sample time of 1. You can use the Clock_Derived block to
define clock domains in terms of the base clock. DSP Builder specifies the sample time
of a derived clock as a multiple and divisor of the base clock sample time.

The PLL block maps to a hardware PLL. You can use it to define multiple clock
domains with sample times specified in terms of the PLL input clock. Use the PLL
input clock either as the base clock or a derived clock.

Each clock domain has an associated reset pin. The Clock block and each of the
Clock_Derived blocks have their own reset pin, the name of which is in the block's
parameter dialog box. The clock domains of the PLL block share the reset pin of the
PLL block's input clock.

When your design contains clock source blocks, DSP Builder implicitly connects the
clock pins of all the registered blocks to the appropriate clock pin or PLL output. DSP
Builder also connects the reset pins of the registered blocks to the top-level reset port
for the block's clock domain.

DSP Builder blocks fall into the following clocking categories:

m Combinational blocks—the output always changes at the same sample time slot as

the input.
m Registered blocks—the output changes after a variable number of sample time
slots.
August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

312

Chapter 3: Design Rules and Procedures
Frequency Design Rules

Figure 3-11 illustrates DSP Builder block combinational behavior.

Figure 3-11. Magnitude Block: Combinational Behavior

mfl|

»

X

blockdemo

RPLABEE B

[riput

L]

Scope

Cutputl

Output

Cutpul

Magnitucle OQutputz

| Ready ilEIEI% EFixedStepDiscrete o

The Magnitude block translates as a combinational signal in VHDL. DSP Builder does
not add clock pins to this function.

Figure 3-12 illustrates the behavior of a registered DSP block. In the VHDL netlist,
DSP Builder adds clock pin inputs to this function. The Delay block, with the Clock
Phase Selection parameter equal to 100, is converted into a VHDL shift register with a

decimation of three and an initial value of zero.

Figure 3-12. Delay Block: Registered Behavior

B blockdemo *

File Edit WYew Simulation Format Tools Help

e

n 3

S

- 0 R - e
% S | Ko [ioon [Nomal |
0O Bn@l £ f“"‘..' |’ armal v||:|—> o
"' > «{UE‘]:UG] I dala g,
SignalCompiker
i|1§]:[16> e 10 [15]:[16] delyed cals
Sine Wave sine
Samples = 400 Cielay 100
Amplitude = (241541
g 210) UE‘]'UE'] =na_delyed dala »
AT s TV ena —
Period = 400 ena : R
el e EnabledDelay - =
cope
Ready 100% | \VariableStepDiscrete A

W= %<
s

B LRL ABE B A F -

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 3: Design Rules and Procedures
Frequency Design Rules

3-13

For feedback circuitry (the output of a block fed back into the input of a block), a
registered block must be in the feedback loop. Otherwise, DSP Builder creates an
unresolved combinational loop (Figure 3-13).

Figure 3-13. Feedback Loop

¥ demofb [Z]@
File Edit “iew Simulation Format Tools Help
== B == 4|9 » =fioo [Noma =z 2wk
Signal Compikr D
o Hstiz| seE
ﬁU I] e Bus Conversian Qutpul Scope
I — iy
Sine Wave L Gain Parmaliel Adder Subtmctor
Ready 100 odedS

Use the PLL block and assign different sampling periods on registered DSP Builder
blocks to design multirate designs.

Alternatively, use a single clock domain with clock enable and the following design
rules to design multirate designs without the DSP Builder PLL block:

m The fastest sample rate is an integer multiple of the slower sample rates. The Clock
Phase Selection field in the Block Parameters dialog box specifies the values for

the Delay block.

The Clock Phase Selection box accepts a binary pattern string to describe the
clock phase selection. DSP Builder processes each digit or bit of this string
sequentially on every cycle of the fastest clock. When a bit is equal to one, DSP
Builder enables the block; when a bit is equal to zero, DSP Builder disables the
block.

Table 3-2 shows some examples of typical clock phase selections.

Table 3-2. Clock Phase Selection Example

Phase Description

1 The Delay block is always enabled and captures all data passing through the block
(sampled at the rate 1).

10 The Delay block is enabled every other phase and every other data (sampled at the
rate 1) passes through.
The Delay block is enabled on the 2nd phase out of 4 and only the 2nd data out of 4

0100 (sampled at the rate 1) passes through. The data on phases 1, 3, and 4 does not pass
through the Delay block.

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

3-14

Chapter 3: Design Rules and Procedures
Frequency Design Rules

Figure 3-14 compares the scopes for the Delay block operating at a one quarter rate on
the 1000 and 0100 phases, respectively.

Figure 3-14. 1000 as Opposed to 0100 Phase Delay

=10l x|

|lemocrp BB EE H

IripLt

|

sEPP L AEE DA =

=10l x|

Diatput

Using the PLL Block

DSP Builder maps the PLL block to the hardware device PLL. The number of PLL
internal clock outputs that each device family supports depends on the specific device

packaging.
am

family you are targeting.

e« For information about the built-in PLLs, refer to the device handbook for the device

Figure 3-15 shows an example of multiple-clock domain support using the PLL block.

Figure 3-15. MultipleClockDelay.mdl

H-
i+ :
Sine Miave a 1R
Cralay_A
H
s —
Sine Miave b e
delay_B

—na
out_a
out_b
E—a
Scope

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 3: Design Rules and Procedures 3-15
Frequency Design Rules

Figure 3-16 shows the clock setting configuration for the PLL block in the design
example MultipleClockDelay.mdl. Output clock PLL_c1k0 is set to 800 ns, and output
clock PLL clk1 is set to 100 ns.

Figure 3-16. PLL Setting

;vé: PLL configuration g@@

Description
PLL

The PLL block is used ko generate derived clocks from.an input clock. pin,

Parametars
futput periods:
BO0 ne, 100 ns

Input Clack: | <o | se Base Clock
Mumber of Dutput Clocks: | 2 [5 |
Cukput Clocks
FLL okt |s| Period Multiplier: | 5

Perind Divider: 1
[JExpott as Cutput Pin

[QK]l Cancel H Apply I

Datapath A (green in Figure 3-15) operates on output clock PLL_c1k0 and datapath B
(red in Figure 3-15) operates on output clock PLL_c1k1. Specify these clocks by setting
the Specify Clock option and enter the clock name in the Block Parameter dialog box
for each input block.

In this design, the Sample time parameters for the Sine Wave ablock and Sine Wave
b block are set explicitly to 1e-006 and 1e-007, so that DSP Builder provides data to the
input blocks at the rate at which they sample.

Using Advanced PLL Features

The DSP Builder PLL block supports the fundamental multiplication and division
factor for the PLL. If you want to use other PLL features (such as phase shift, duty
cycle), use a separate Quartus Prime project with the following method:

m Create a new Quartus Prime project and use the MegaWizard™ Plug-In to
configure the ALTPLL block.

m Add the DSP Builder .mdl file to the Quartus Prime project as a source file.

m Create a top-level design that instantiates your ALTPLL variation and your DSP
Builder design.

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

3-16

Chapter 3: Design Rules and Procedures
About Timing Semantics Between Simulink and HDL Simulation

About Timing Semantics Between Simulink and HDL Simulation

DSP Builder uses Simulink to simulate the behavior of hardware components.
However, there are some fundamental differences between the step-based simulation
in Simulink and the event-driven simulation that VHDL and Verilog HDL designs
use.

This section describes the timing semantics that DSP Builder uses for translating
between the Simulink and HDL environments.

Simulink Simulation Model

To ensure correlation between the HDL and Simulink simulation, you must use a
discrete fixed or variable-step solver in Simulink.

Use a fixed-step solver for a single clock domain design or a variable-step solver for
multiple-clock domain designs.

Configure the solver timing mode in the Configuration Parameters dialog box from
the Simulation menu in Simulink. Each step is a discrete unit of simulation. DSP
Builder quantizes the clock in an idealized manner as a cycle counter.

At the beginning of each step, Simulink provides each block with inputs that you
know. DSP Builder evaluates functions and propagates the resultant outputs in the
current step. The outputs of your model are the results of all these computations.

For all steps, Simulink blocks produce output signals. Outputs varying based on
inputs received in the same step are referred to as direct feedthrough. Some DSP
Builder blocks may include direct feedthrough outputs, depending on the
parameterization of each block.

HDL Simulation Models

I =
i=

DSP Builder Handbook

DSP Builder drives hardware simulation with a clock signal and the available input
stimuli. The TestBench block” s testbench script feeds input signals to the HDL
simulator that maintain correlation between the HDL and Simulink simulation.

Simulation models in the DSP Builder libraries evaluate their logic on positive clock
edges. To avoid any timing conflicts, external inputs transition on negative clock
edges. DSP Builder updates registered outputs on positive clock edges. The TestBench
block-generated inputs arrive on negative clock edges, causing an apparent half-cycle
delay in the arrival of output (Figure 3-17 on page 3-18).

The HDL simulation in ModelSim should run over the same time as the Simulink
simulation. Generally DSP Builder aligns the timing so that ModelSim simulation
finishes at the end of the stimulus data. However, occasionally when using multiple
clocks, the rounding calculation that aligns the clock signals may set ModelSim
simulation to run for one additional clock cycle (on the fastest clock). You may receive
an unexpected end of file error message because there is no stimulus data for this
extra cycle.

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 3: Design Rules and Procedures 3-17
About Timing Semantics Between Simulink and HDL Simulation

Startup and Initial Conditions

i

The testbench includes a global reset for each clock domain. All blocks (except the HDL
Import and MegaCore function blocks) automatically connect any reset on the
hardware to the global asynchronous reset for the clock domain.

When a block explicitly declares an asynchronous reset, this reset is ORed with the
global reset.

A Global Reset block (SCLR), which corresponds to this hardware signal is in the
Altera DSP Builder Blockset IO & Bus library.

The global reset signal is reset before meaningful simulation. When converting from
the Simulink domain to the hardware domain, the reset period is before the Simulink
simulation begins. Therefore, in Simulink simulation, the Global Reset block outputs
only a constant zero and has no simulation behavior. Connect the hardware to reset,
and thus reset at the start of a ModelSim testbench simulation.

DSP blocks or MegaCore functions may have additional initial conditions or startup
states that are not automatically reset by the global reset signal.

Initial Reset of HDL Import Blocks and MegaCore Functions in Simulink
Simulations

The ModelSim testbenches have an initial reset cycle, which ModelSim performs,
before simulation. The first 200 cycles are reset, then the testbench puts the test vectors
through. The reset sets the intial state of registers, which may otherwise have X'
(unknown) outputs. In Simulink simulations, there is no explicit reset signal—the
Simulink simulation models for DSP Builder blocks assume there is a reset. HDL
import blocks and MegaCore functions do not provide explicit models, but use a
generic HDL simulator. Simulink does not have a way to represent 'X' in its numeric
types— it writes an unknown 'X' as a 0. The HDL import block or MegaCore function
may have registers that require a reset to avoid unknown outputs. Unknown states
may be initially propagating through your imported HDL import block or MegaCore
function. For some imported HDL import blocks or MegaCore functions, these initial
unknown outputs may result in outputs that are different to the ModelSim simulation
(which is reset).

Altera recommends that you must first explicitly reset HDL import blocks and
MegaCore functions in Simulink simulation. If you have any such registers with
unknown outputs in a feedback loop, the Simulink simulation always gives X' (zero
in Simulink's numeric types) until reset and the unknown states continue to
propagate.

If a block in one clock domain drives a block in another clock domain with an
asynchronous clear port, Simulink may not model the system. An asynchronous clear
only takes full effect if you assert it at the end of a sample; if it is asserted then cleared,
DSP Builder ignores it.

DSP Builder Global Reset Circuitry

By default, Simulink does not graphically display the clock enable and reset input
pins on DSP Builder registered blocks. When DSP Builder converts a design to HDL, it
automatically connects the implied clock enable and reset pins.

August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

3-18 Chapter 3: Design Rules and Procedures
About Timing Semantics Between Simulink and HDL Simulation

If you turn on the optional ports in the Block Parameters dialog box for each of the
DSP Builder registered blocks, you can access and drive the clock enable and reset
input pins graphically in the Simulink software.

In the HDL domain, the registered DSP Builder blocks uses an asynchronous reset, as
this behavioral VHDL code example shows:

process (CLOCK, RESET)

begin
if RESET = '1l' then
dout <= (others => '0');
else if CLOCK'event and CLOCK = '1l' then
dout <= din;
end if;
end

In addition, when targeting a development board, the Block Parameters dialog box
for the DSP Board configuration block typically includes a Global Reset Pin selection
box where you can choose from a list of pins that correspond to the DIP and
push-button switches.

The reset logic polarity can be either active-high or active-low. When you select
active-low, the value of the reset signal in Simulink simulation is still O for inactive
and 1 for active. However, DSP Builder inserts a NOT gate on the input pin in the
generated hardware. The value of the reset signal in simulation is therefore the value
as it exists across the internal design, rather then the value at the input pin.

Quartus® II synthesis interprets this reset as an asynchronous reset, and uses an input
of the logic element look-up table to instantiate the function. The HDL simulates
correctly in this case because the testbench produces the reset input as required.

Reference Timing Diagram

Figure 3-17 shows the timing relationships in a hypothetical case where a register is
fed by the output of a counter. The counter output begins at 10—the value is 10 during
the first Simulink clock step.

Figure 3-17. Single-Clock Timing Relationships

Simulink Step: step 1 step 2 step 3

Simulink Timing Registered Block Input: | 10 1 12

Registered Block Output: | 0 10 11

clock ﬁ_l—m‘_ii

|

aclr g | . . |
HDL Timing | ! § |
input ; 110 R X 12
output i i 0 X 10 DX 11
DSP Builder Handbook August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 3: Design Rules and Procedures 3-19
Signal Compiler and TestBench Blocks

This timing is not true when crossing clock domains. For example, Figure 3-18 shows
the timing delays in a design with a derived clock that has half the base clock period.
In general, DSP Builder is not cycle-accurate when crossing clock domains.

Figure 3-18. Multiple-Clock Timing Relationships

Simulink Step: step 1 step 2 step 3

Simulink Timing Registered Block Input: ! 10 i 11 12

Registered Block Output; | 0 10 11

clock I i] i]q]
clock |||[i|i|é-—1 F—l [—|

HDL Timing e
| L

input : < 10 X 11 X 1

output ; : 5 10 X 1 >

Signal Compiler and TestBench Blocks

The Signal Compiler block uses Quartus Prime synthesis to convert a Simulink
design into synthesizable VHDL including generation of a VHDL testbench and other
supporting files for simulation and synthesis.

Signal Compiler assumes that your design complies with the Simulink rules and that
any variables and inherited variables propagate through the whole design.

You should always run a simulation in Simulink before running Signal Compiler.
The simulation updates all variables in your design (including workspace variables
and inherited parameters), sets up certain blocks (such as the memory blocks, and
inputs from and outputs to workspace blocks), and also traps any design errors that
do not comply with Simulink rules.

The Input and Output blocks map to input and output ports in VHDL and mark the
edge of the generated system. Typically, you connect these blocks to the Simulink
simulation blocks for your testbench. An Output block should not connect to another
Altera block. If you connect more Altera blocks (that map to HDL), empty ports are
created and the HDL does not compile for synthesis.
“ e For more information about the Input and Output blocks, refer to the IO & Bus Library
chapter of the DSP Builder Reference Manual.

Design Flows for Synthesis, Compilation and Simulation

You can use the Signal Compiler and Testbench blocks to control your design flow
for synthesis, compilation, and simulation. DSP Builder supports the following flows:

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/manual/mnl_dsp_builder.pdf

3-20

Chapter 3: Design Rules and Procedures
Hierarchical Design

B Automatic flow—allows you to control the entire design process in the MATLAB

or Simulink environment with the Signal Compiler block. With this flow, your
design compiles inside a temporary Quartus Prime project. The results of the
synthesis and compilation display in the Signal Compiler Messages box. You can
also use the automatic flow to download your design into supported development
boards.

Manual flow—you can also add the .mdl file to an existing Quartus Prime project
using the <model name>_add.tcl script. This script is generated whenever the
Signal Compiler or TestBench block is run. You can use the script to add the .mdl
file and any imported HDL to your project. You can then instantiate your design in
HDL.

Simulation flow—if the ModelSim executable (vsim.exe) is on your path, you can
use the TestBench block to compile your design for ModelSim simulation. You can
then automatically compare the Simulink and ModelSim simulation results.

For an example that uses the Signal Compiler blocker, refer to page 2-14 of the
“Getting Started”.

For information about the parameters for the Signal Compiler and TestBench blocks,
refer to the AltLab Library chapter of the DSP Builder Reference Manual.

DSP Builder supports the Simulink Bus Creator, Bus Selector, and Bus Assignment
blocks but you must only use them for routing.

Hierarchical Design

DSP Builder Handbook

DSP Builder supports hierarchical design using the Simulink Subsystem block.

DSP Builder preserves the hierarchy structure in a VHDL design and each hierarchical
level in a Simulink model file (.mdl) translates into one VHDL file.

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/manual/mnl_dsp_builder.pdf

Chapter 3: Design Rules and Procedures
Goto and From Block Support

3-21

For example, Figure 3-19 illustrates a hierarchy for a design fir3tap.mdl, which
implements two FIR filters.

Figure 3-19. Hierarchical Design Example

W fir3tap *

Lo

File Edit View Simulation Format Tools Help

DS HS b= f100 fNomal x| S | §
L z 1 In1 Outt Patem =ei2:0)
o Erarmek \—bt--mux
InData Ciutbata
Pulks= o
Gene@tor
’ B 2! I It oun Multiplexe:
%u@ CelayB ChannelB
Signal Cormpiker
< i B
Ready 100% [odeds
Wi
O =E& . § ’ __} Sl =]'ID.D INDrmaI _vJ @ F
CO—w ' >
e L
Iri Bus Conversion
Delay
= S = B
Bus Conversion | Qutl
Delay 1 Gaini
Famliel Adder Subtmctor
Hi- 2! g
Bus Convension2
Celay2 Gain2
Ready 100%: odedS

“ e For information about naming the Subsystem block instances, refer to “DSP Builder
Naming Conventions” on page 3-1.

Goto and From Block Support

DSP Builder supports the Goto and From blocks from the Signal Routing folder in the
generic Simulink library.

You can use these blocks for large fan-out signals and to enhance the diagram clarity.

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

3-22 Chapter 3: Design Rules and Procedures
Black Box and HDL Import

Figure 3-20 shows an example of the Goto and From blocks.

Figure 3-20. Goto & From Block Example

7 J_m " EGIZ':\"D."HIE-
e

[=3

Gene@lor [Readaddr] ol _addiG:0)
DPRARM
SinalCompier From (128 '-'-‘DI%'S"" {m
[WiriteAdc] wi_add G0} DataRead Teminato s
o7 i)
Hot
ReadZounter o From2
Dual-Port RAM
',_'J: [WiriteAdd] x
T Gotal CataWrite3
WritsCounter
[Readaddr] l_addiG:0}
DF RAR
[oo < Jwiite Enay Fioma (128 woeq W& o70 |

Pattem Golo? [WriteAcclr] wer_add g DataRead? Terminatod

From10
[Write Ena] W
Fromi11
Lual-Port RARM2
N = d p 70
L i
e Catawrite2
Puks Pulse
- [FReadaddr] el _add @) Genemio? [Readaddr] ol addiG:0)
Genamiar] — DFRAM = — CPRAM =
o (128 ol o | 128 waflep
[Write Addr] wi_addiG:0) DataRead1 Teminato2 [WiritenAdd] wr_add G0 DataRead2 Terminator
Fromd From?
WIEN [Write Ena] WEn
Froma Froma
Dual-Port RAKIT Dual-Port RAME
d PO
DataWrite4 DataWrite 5
[Readaddr wl_add G0 [Readaddr] ol_addiG:0)
DF Rk - DF RAR
Fromild (128 wo f=f FimiT (128 wo A [oT0 |
[Write Achdi] wi_addiz:0) DataRead4 Tominatord [WiriteAclclr] wr_addiod) DataRead Terminatart
Froml2 From13
[Wirite Ena] WIEn [Write Ena] W
From13 Fromila
Cual-Port RARE Lual-Port RAKMS

Use the Goto blocks ([ReadAddr], [WriteAddr], and [WriteEna] with the From blocks
([ReadAddr], [WriteAddr], and [WriteEna], which connect to the dual-port RAM blocks.

Black Box and HDL import

You can add your own VHDL or Verilog HDL code to your design and specify which
subsystem block(s) DSP Builder should translate into VHDL. You can implement this
process—creating a black box—implicitly or explicitly.

An explicit black box uses the HDL Input, HDL Output, HDL Entity, and Subsystem
Builder blocks. For information about using these blocks to create an explicit black
box, refer to “Subsystem Builder Design Example” in Chapter 8.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 3: Design Rules and Procedures 3-23
Using a MATLAB Array or .hex File to Initialize a Block

An implicit black box uses the HDL. Import block to instantiate the black-box
subsystem. For information about creating an implicit black box with your own HDL
code, refer to the “HDL Import Design Example” in Chapter 8.

Using a MATLAB Array or .hex File to Initialize a Block

Use a MATLARB array to specify the values entered in the LUT block or to initialize the
Dual-Port RAM, Single-Port RAM, True Dual-Port RAM, or ROM blocks. You can also
use an Intel format hexadecimal format (-hex) file to initialize a RAM or ROM block.

If the MATLAB array data values or the values in the .hex file do not represent exactly
in the selected data type, DSP Builder rounds them and issues a warning. DSP Builder
rounds the values by expressing the number in binary format, then truncates to the
specified width, which results in rounding towards minus infinity.

For example, if the input value is —0.25 (minimally expressed in signed binary
fractional two’s compliment format as 111) and the selected target data format is
signed fractional [1] . [1], DSP Builder truncates the value to 11 = —0.5. DSP Builder
rounds the value towards minus infinity to the nearest representable number.

Similarly, if you select unsigned integer data type and the value is 1.9, DSP Builder
rounds this value down to 1.

Comparison Utility

DSP Builder provides a simple utility that runs simulation comparison between
Simulink and ModelSim from the command line:

alt dspbuilder verifymodel ('modelname.mdl', 'logfile.txt')+#

A testbench GUI displays messages as DSP Builder performs the comparison. The
command returns true (1) or false (0) according to whether the simulation results
match and the output is recorded in the specified log file.

“ e For more information about running a comparison between Simulink and ModelSim,
refer to “Performing RTL Simulation” in Chapter 2.
August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

3-24 Chapter 3: Design Rules and Procedures
Adding Comments to Blocks

Adding Comments to Blocks

Add comments to any DSP Builder block by right-clicking on the block to display the
Block Properties dialog box and entering text in the Description field of the dialog
box (Figure 3-21 on page 3-24).

Figure 3-21. Adding Comments to a Block

B Block Properties: (link)Delay g = @

Genetal || Elack Annotation || Callhacks |

Usage

De=cription: Text saved with the block in the model file,

Priarity: Specifies the block's order of execution relative to ather blocks in
the same model.

Tag: Text that appears in the block label that Simulink generates.

Dezcription:

| Text added here iz included as comments next to the instantistion of [
the block in the generated HDL.

Priority:

Tag:

[0.4] [Cancel] [Help] [Apply]

DSP Builder includes the comment text next to the instantiation of the block in the
generated HDL.

Adding Quartus Il Constraints

1. Set Quartus Prime global project assignments in your Simulink model by adding
Quartus Prime Global Project Assignment blocks from the AltLab library. Each
block sets a single global assignment but you can use multiple blocks for multiple
assignments.

2. Use these assignments to set Quartus Prime compilation directives, such as target
device or timing requirements.
“%e Fora description of the Quartus Prime Global Project Assignment block, refer to
the DSP Builder Reference Manual.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/manual/mnl_dsp_builder.pdf

Chapter 3: Design Rules and Procedures 3-25
Displaying Port Data Types

3. Add additional Quartus Prime assignments or constraints that are not supported
in DSP Builder by creating a Tcl script in your design directory. Any file named

<model name>_add_user.tcl is automatically sourced when you run Signal
Compiler.

The Tcl file can include any number of Quartus Prime assignments with the syntax:

set global assignment -name <assignment> <value>

“ e Fordetailed information about Quartus Prime assignments, refer to the Quartus Prime
Settings File Reference Manual.

Displaying Port Data Types

1. Optionally show the Simulink and DSP Builder port data types for each of the

signals in your Simulink model by turning on Port Data Types in the Port/Signal
Displays section of the Simulink Format menu.

When you set this option, the DSP Builder internal signal type (SBF_L R, INT L,
UINT_L, or BIT where L, and R are the number of bit to the left and right of the binary
point) displays. For example, SBF 8 4 for a 12-bit signed binary fractional data type
with 4 fractional bits, or UINT 16 for a 16-bit unsigned integer.

Figure 3-22 shows the amplitude modulation example with port data type display
enabled.

Figure 3-22. Tutorial Example Showing Port Data Types and Pipeline Depth

double

——— WF 0150
Ty 1 Sinln2

. double INT_16 b L INT_185

o+
ek Sinln
Sil

ne Wawve
Sing Wave

0 Nt = —— double I:I
T BaUr il g ET MR

Mo == Product Streambdod
Random I_I—|E
Bilstream = i INT = Bils lrsam “ ok Scope
] _...E'IT Bilz tream
I |: 1 StreamBit
GHND

Clack Bu=sBuild

double

SinDelay

Cela W

Amplitude Modulation Example

Actual Sample Frequency = 40 Mhz
Actual Sine Wawve Frequency = 500 Khz

Fipeline Depth Display On %u@

Display Pipeline Cepth SignalZompiker

e For more information about the DSP Builder internal signal types, refer to
“Fixed-Point Notation” on page 3-2.

Displaying the Pipeline Depth

1. Optionally show the pipeline depth on the primitive blocks (such as the
Arithmetic library blocks) in your Simulink model by adding a Display Pipeline
Depth block from the AltLab library.

August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

3-26

Chapter 3: Design Rules and Procedures
Updating HDL Import Blocks

You can change the display mode by double-clicking on the block. When set, the
current pipeline depth displays at the top right corner of each block that adds latency
to your design (Figure 3-22). The selected mode shows on the Display Pipeline
Depth block symbol.

Updating HDL Import Blocks

The HDL Import blocks in your design may need updating if you upgrade from a
previous software version or move a design to a different workstation. Use the
alt_dspbuilder refresh hdlimport command to update these blocks. This
command checks that the referenced HDL files (or Quartus Prime project) exists. If it
finds the references, the HDL Import dialog box opens and a compilation is
automatically invokes to regenerate the Simulink model. If it finds neither, but there is
an existing simulation netlist, it uses this netlist for simulation.

To run the command, follow these steps:

1. Start the MATLAB or Simulink software.

2. Open a Simulink model that contains imported HDL.

3. Run the command by typing the following at the MATLAB prompt:
alt dspbuilder refresh hdlimport ¢

You can optionally select a HDL Import block to run the command on only the selected
subsystem.

Analyzing the Hardware Resource Usage

DSP Builder Handbook

To analyze the hardware resources required for your design with a Resource Usage
block, follow these steps:

1. Select the AltLab library from the Altera DSP Builder BlockSet folder in the
Simulink Library Browser.

2. Drag and drop a Resource Usage block into your model and double-click on the
block to open the Resource Usage dialog box.

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 3: Design Rules and Procedures 3-27
Analyzing the Hardware Resource Usage

3. Double-click on the Signal Compiler block and click Compile to recompile your
design in the Quartus Prime software.

The Resource Usage block updates to show a summary of the estimated logic,
RAM and DSP block usage (Figure 3-23).

Figure 3-23. Resource Usage Block

Logic: = 1 %
Elock RARK: O %%
DSP: 0%

Resoume Usage

The Resource Usage dialog box updates to show a detailed report of the resources
that each of the blocks require in your model that generate hardware.

For example, Figure 3-24 shows the hardware resources that the Product block
requires in the amplitude modulation example.

Figure 3-24. Resource Usage Dialog Box

<> DSPBuilder - Resource Usage x
<> DSPBuilder - R Usag =J=]

;_| singen
., Delal:l,l

o .

Combinational ALUTsS

aLMs

| Dedicated Logic Reqisters

1) Reqisters

| Block Memary Bits

M5 125

| M4k

| M-FAMs

| ISP Elements

| D3P 9:9

|DSP 18x18

| DSP 3636

| Pins

Wirtual Pins

Combinational with no regiskeraLUT fregister pair
| Reqister-OnlyALUT fregister pair

Combinational with a reqister8LUT freqister pair

—_
on

Lo e e e e e e e e e e e

—_
on

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

3-28 Chapter 3: Design Rules and Procedures

Loading Additional ModelSim Commands

“ @ The information depends on the selected device family. Refer to the device

documentation for more information.

You can also click the Timing tab and click Highlight path to highlight the critical
paths on your design.

"=~ When the source and destination in the dialog box are the same and a single
block is highlights, the critical path is due to the internal function or a
feedback loop. For a more complex example, the entire critical path through
your design may highlight.

Loading Additional ModelSim Commands

When you import HDL as a black box, DSP Builder creates a subdirectory
DSPBuilder<model name>_import. Any Tcl script *_add_msim.tcl in this subdirectory
automatically sources when you launch ModelSim.

1. You should not modify the generated scripts, but create you own scripts such as
<user name>_add_msim.tcl, which contain additional ModelSim commands that
you want to load into ModelSim.

About Quartus Il Assignments and Block Entity Names

The VHDL entity names of the blocks in a DSP Builder design are dependent on the
block’s parameter values. Blocks of the same type and same parameterization share a
common VHDL entity.

The entity names have the following format:

<block type name> GN<8 alphanumeric characterss>
For example, a Delay block entity name:

alt dspbuilder delay GNLVAGVO3B

Changing the parameterization of the block causes the entity name to change. If you
want to make an assignment to a block in the Quartus Prime project, and for the
assignment to remain when the block parameters change, you can use regular
expressions in the assignments.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 3: Design Rules and Procedures 3-29
About Quartus Il Assignments and Block Entity Names

For example, you may want to make a Preserve Registers assignment to the Delay
blocks in Figure 3-25 to prevent them from merging.

Figure 3-25. Entity Name Assignment Example

clk

G

qa

l

d

)/ 7 SGEEN
% qﬂ

Crelay

Signal Compiler

Using the Quartus Prime Assignment Editor and Node Finder tools, you can identify
the names of the registers and make the assignments to them. For example, if your
model is my model, the names may be:

my model GN:auto inst|alt dspbuilder delay GNLVAGVO3B:Delay|alt dsp
builder SDelay:Delayli|DelayLine

my model GN:auto inst|alt dspbuilder delay GNLVAGVO3B:Delayl|alt ds

pbuilder SDelay:Delayli|DelayLine
These assignments prevent merging of the registers. If you change the length of the
delay, the assignments are no longer valid. However, you can edit the To field of the
assignment and use a regular expression that is still valid if the entity name changes
due to a parameter change: Replace the eight alphanumeric characters following the
GN in the block entity name with . {8}, which is a regular expression that matches any
eight characters. The targets of the assignments then become:

my model GN:auto inst|alt dspbuilder delay GN.{8}:Delay|alt dspbuil
der SDelay:Delayli|DelayLine

my model GN:auto inst|alt dspbuilder delay GN.{8}:Delayl|alt dspbui
lder SDelay:Delayli|DelayLine

If you want the assignment to apply to the whole block, not just the specific nodes,
you can use the following code:

my model GN:auto inst|alt dspbuilder delay GN.{8}:Delay
my model GN:auto inst|alt dspbuilder delay GN.{8}:Delayl

Figure 3-26 shows this example in the Quartus Prime Assignment Editor.

Figure 3-26. Preserve Registers Assignment in the Quartus Prime Assignment Editor

Ta Assignment Mame |Value |Enabled
0 dk Clock Settings dlk Yes
0 preserve_regs_GM:auto_inst|alt_dspbuilder_delay_GM.{8k:Delay |Preserve Reaisters |On es
0 preserve_regs_GM:auto_inst|alt_dspbuilder_delay_GM.{8}:Delayl |Preserve Registers |On |Yes
CENEW T | <<news = <<new s>

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

3-30 Chapter 3: Design Rules and Procedures
About Quartus Il Assignments and Block Entity Names

This type of assignment can be useful for a complicated block that contains many
registers when you want the assignment to apply to all of the registers.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Q' 4. Using MegaCore Functions

s
L&

Note: DSP Builder standard blockset is a legacy product and Altera recommends you
do not use it for new designs, except as a wrapper for advanced blockset designs.

Altera provides a number of parameterizable intellectual property (IP) MegaCore
functions that you can integrate into the Simulink model of your DSP Builder designs.

The OpenCore Plus evaluation feature allows you to download and evaluate these
MegaCore functions in hardware and simulation prior to licensing.

Blocks represent these MegaCore functions in the MegaCore Functions library of the
Altera DSP Builder Blockset in the Simulink Library Browser.
You must parameterize and generate these MegaCore functions after you add one of

these blocks to your model.

Refer to “MegaCore Function Design Example” on page 4-3 for an example of the
design flow using these MegaCore functions.

Installing MegaCore Functions

Altera DSP MegaCore functions install with the Quartus® II software.

Refer to the MegaCore function user guides for information about each MegaCore
function.

You must run the DSP Builder MegaCore function setup command after installing
new MegaCore functions to update DSP Builder.

To run this setup command, follow these steps:

1. Start DSP Builder in MATLAB, on Windows OS, click on Start, point to All
Programs, click Altera <version>, click DSP Builder, and click Start in MATLAB
version XX. If MATLAB is already running, ensure you close the Simulink library
browser.

2. Use the cd command at the MATLAB prompt to change directory to the directory
where DSP Builder is installed.

3. Run the setup command by typing the following at the MATLAB prompt:

alt dspbuilder setup megacore +

The process of building the MegaCore function blocks may take several minutes. Do
not close MATLAB before the process completes. Expect and ignore any messages of

the form “Cannot find the declaration of element 'entity'.” when installing a
new MegaCore library.

Running this command, creates a MegaCore Functions subfolder below the Altera
DSP Builder Blockset in the Simulink Library Browser.

August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

4-2 Chapter 4: Using MegaCore Functions
Updating MegaCore Function Variation Blocks

In this folder, there is a blue block with a version name for each of the installed
MegaCore functions.

Updating MegaCore Function Variation Blocks

Although a DSP Builder design using MegaCore function blocks from the MegaCore
Functions library can be translated by Signal Compiler intoa VHDL or Verilog HDL
model, a MegaCore function variation block always uses an intermediate VHDL file
to record parameters.

These blocks may revert to their unconfigured appearance if the VHDL file that
describes the function variation is available but the simulation database (.simdb) file
is not.

Update a block if you change the version of the MegaCore function you are using. In
these cases, you can update the MegaCore function variation blocks in your design
using the alt_dspbuilder refresh megacore command. This command recreates the
simulation files based on the VHDL file for each MegaCore function block in the
current Simulink model.

"= A Quartus II license must be available on the machine for the command to execute
without errors.

Design Flow Using MegaCore Functions

Using MegaCore functions in the MATLAB or Simulink environment involves the
following steps:

1. Add the MegaCore function to the Simulink model and give the block a unique
name.

2. Parameterize the MegaCore function variation.

3. Generate the MegaCore function variation.

4. Connect your MegaCore function variation to the other blocks in your model.
5

. Simulate the MegaCore function variation in your model.
“ e Refer to the appropriate MegaCore function user guide for information about the
design flow used for each MegaCore function.

Adding the MegaCore Function in the Simulink Model

Add a MegaCore function to a Simulink model by dragging a copy of the block from
the Simulink Library Browser to your design workspace like any other Simulink
block.

The default name of a MegaCore function block includes its version number. If you
add more than one copy of a block in the same model, this number is automatically
incremented to make the name unique. The correct version number still shows on the
body of the block. Altera recommends that you rename all blocks representing
MegaCore functions with a name describing their use in your design. Using unique
block names ensures that all the generated entities for the same MegaCore function in
a hierarchical design also have unique names.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 4: Using MegaCore Functions 4-3
MegaCore Functions Design Issues

After adding the block and before parameterization, save your model file.

Parameterizing the MegaCore Function Variation
Double-click the MegaCore function block to open the IP Toolbench or MegaWizard

interface.

"=~ You can also double-click on a block to re-open and modify a previously
parameterized MegaCore function variation.

Generating the MegaCore Function Variation

Before you can connect the block to your design, generate a MegaCore function
variation after you have parameterized the MegaCore function.

Click Generate in IP Toolbench (or Finish in the MegaWizard interface) to generate
the necessary files for your MegaCore function variation.

DSP Builder also performs an additional step of optimizing your model for use in
Simulink.

Connecting the MegaCore Function Variation Block to the Design

The Simulink block now has the required input and output ports as parameterized in
IP Toolbench or the MegaWizard interface. You can connect these ports to other Altera
DSP Builder blocks in your Simulink design.

Simulating the MegaCore Function Variation in the Model

You can simulate the Simulink block representing the MegaCore function variation
like any other block from the Simulink Library Browser.

'~ Ensure that the Simulink simulation engine is set to use the discrete solver by
selecting fixed-step type under Solver Options in the Configuration Parameters
dialog box.

You should reset the MegaCore function at the start of the simulation to avoid any
functional discrepancy between RTL simulation and Simulink simulation (“Startup
and Initial Conditions” on page 3-17).

MegaCore Functions Design Issues

This section describes some of the design issues to consider when using MegaCore
functions in a DSP Builder design.

Simulink Files Associated with a MegaCore Function

DSP Builder stores the files that support the configuration and simulation of a
MegaCore function variation in a subdirectory of the directory containing your
Simulink MDL file DSPBuilder_<design name>_import. When copying a design from
one location to another, make sure that you also copy this subdirectory.

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

Chapter 4: Using MegaCore Functions
MegaCore Functions Design Issues

DSP Builder needs the following specific files to simulate a MegaCore function
variation:

m If your MegaCore function variation is my_function, and generates in VHDL, your
design variation is in a my_function.vhd file in your design directory.

m If your design is my_design, the simulation information is in a
DSPBuilder_my_design_import/my_function.vo.simdb file.

About Simulating MegaCore Functions That Have a Reset Port

MegaCores functions that have a reset port must have a reset cycle at the start of
Simulink simulation to produce correct simulation results. The length of this reset
cycle must be of sufficient length, and depends on the particular MegaCore function
and parameterization.

For example, in Figure 4-1, DSP Builder cannot tie the reset to a constant because the
simulation does not match hardware.

Figure 4-1. MegaCore Function Design With a Reset Port

Signal Compiler

¥
2

TesBench
an

TestBanch

Stepi

Scoped
i11:0 :} ast_gink_data(t1:3) a5t Stk ready _@ >
fir_rdy_to_lId
II}—F ast_sink_erron 0]
ast: source_datai16:0) —@ -
1 ———— el ast_zink_wvalid fir_compiler fir_result
ast_source_armond:0)
1 ——— e 3zt source_ready 3
fir_razult error
reset n ast_source_walid
fir_done
FIR. 3 hH= Seope

You must simulate an initial reset cycle (with the step input) to replicate hardware
behavior. As in hardware, this reset cycle must be sufficiently long to propagate
through the core, which may be 50 clock cycles or more for some MegaCore functions
such as the FIR Compiler.

Additional adjustment of the reset cycles may be necessary when a MegaCore
function receives data from other MegaCore functions, to ensure that the blocks leave
the reset state in the correct order and DSP Builder delays them by the appropriate
number of cycles.

About Setting the Device Family for MegaCore Functions

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

Most of the MegaCore functions available in DSP Builder use the IP Toolbench
interface.

August 2016 Altera Corporation

Chapter 4: Using MegaCore Functions 4-5
MegaCore Functions Design Issues

The CIC MegaCore function uses a MegaWizard user interface. This interface always
inherits the device family setting from the Signal Compiler block. If there is no
Signal Compiler block in your design, DSP Builder uses the Stratix device family by
default.

MegaCore functions that use IP Toolbench allow you to modify the device family
setting in the IP Toolbench interface.

[l=" The FFT, FIR Compiler, NCO, Reed Solomon Compiler, and Viterbi Compiler
MegaCore functions use IP Toolbench.

If you change the device family in Signal Compiler, you must check that any IP
Toolbench MegaCore functions have the correct device family set to ensure that the
simulation models and generated hardware are consistent.

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

4-6 Chapter 4: Using MegaCore Functions
MegaCore Functions Design Issues

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

==/ 5. Using HIL

Adding the HIL block to your Simulink model allows you to cosimulate a Quartus
Prime software design with a physical FPGA board implementing a portion of that
design. You define the contents and function of the FPGA by creating and compiling a
Quartus II project. A simple JTAG interface between Simulink and the FPGA board
links the two.

The main benefits of using the HIL block are faster simulation and richer
instrumentation. The Quartus Prime project you embed in an FPGA runs faster than a
software-only simulation. To further increase simulation speed, the HIL block offers
frame and burst modes of data transfer that are significantly faster than single-step
mode when you use it with suitable designs.

The HIL block also makes available to the hardware a large Simulink library of sinks
and sources, such as channel models and spectrum analyzers, which can give you
greater control and observability.

This chapter explains the HIL block design flow, walks through an example using the
HIL block, and discusses the optional burst and frame data transfer modes.

HIL Design Flow

The HIL block in AltLab library of the Altera DSP Builder Blockset enables the HIL
functionality. It represents the functions implemented on your FPGA, and works
smoothly with the normal DSP Builder work flow.

The HIL design flow comprises the following steps:

1. Create a Quartus Prime project that defines the functions you want to co-simulate
in hardware and use Signal Compiler block to compile the Quartus Prime project
through the Quartus Prime Fitter.

2. Add the HIL block to your Simulink model and import the compiled Quartus
Prime project into the HIL block. You can also connect instrumentation to your HIL
block by adding additional blocks from the Simulink Sinks and Sources libraries.

"= 1If the original design contains a Clock block that defines a period and
sample time that is different from the default values, you must add a Clock
block with the same values as the HIL block.

3. Specify parameters for the HIL block, including the following options:

m The Quartus Prime project to define its functionality

m The clock and reset pins

m The reset active level

m The input and output pin characteristics

m The use of single-step versus burst mode

4. Compile the HIL block to create a programming object file (.pof) for hardware
cosimulation.

August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

5-2 Chapter 5: Using HIL
HIL Requirements

5. Scan for JTAG cables and hardware devices connected to the local host or any
remotely enabled hosts.

6. Program the board that contains your target FPGA.

7. Simulate the combined software and hardware system in Simulink.

I'=" When using a HIL block in a Simulink model, set a fixed-step, single tasking
solver.

Figure 5-1 shows this system-level design flow using DSP Builder.

Figure 5-1. System-Level Design Flow

— : i B WA D
B e i ot 2 g e
D @RS SRR O%) b =g hRLE I |
gl |
; & Conpie e HIL detign S
' - TR Coneis wi Durts | |]
[e] ST O ronioe [T [mswnmu |
T GG T :
. | = FES—
TéGCase [TEDTam SR =]
III_ - 2! Coatig FPGA
Devzaindhan [EPZ60ILE03001 =] il
- ||; |
IS PRbint D rrpoverelst e AL st oesst o —
omviron il gl rad e
Fia IC4ES o S S [USE 1.
Froameg o et
= =
i ol | ;lJ
Bkt page 172 Chin

Compile/Program Simulate

Configure

HIL Requirements
The HIL block has the following requirements:
m An FPGA board with a JTAG interface

m A valid Quartus Prime project that contains a single clock domain from Simulink.
DSP Builder creates an internal Quartus Prime project when you run Signal
Compiler.

m A JTAG download cable (for example, a ByteBlasterMV™, ByteBlaster™ II,
ByteBlaster, MasterBlaster™, or USB-Blaster™ cable).

B A maximum of one HIL block for each JTAG download cable.

HIL Design Example

DSP Builder includes the following design examples in the <DSP Builder install
path>\DesignExamples\Tutorials\HIL directory that demonstrate the use and
effectiveness of HIL:

m Imaging edge detection

DSP Builder Handbook August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 5: Using HIL
HIL Design Example

5-3

m Export example

m Fast Fourier Transform (FFT)

m Frequency sweep

This section shows the frequency sweep design.

This tutorial uses the Stratix IV device on an Stratix IV EPSGX530 Development
Board. However, you can also use any other supported device and development

board.

To create a frequency sweep design, follow these steps:

1. Run MATLAB, and open the model FreqSweep.mdl in the <DSP Builder install
path>\DesignExamples\Tutorials\HIL\FreqSweep directory. Figure 5-2 shows
the model.

Figure 5-2. Frequency Sweep Model

Ramp

Signal Specification

E

Froduct

[T

Stepl

Input

Imt [20:0] Angle(=0:0]

Sine Wave Cordic

Dataln[1=:0]
Start1

Ol [za:0]

Round L

Inputl

Low PassFilker

CiutputFiler

- 200 '*—.’
e Cordic Sine

CutputCordic

D

SW_Scope

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

5-4 Chapter 5: Using HIL
HIL Design Example

2. Double-click the Signal Compiler block. In the dialog box that appears
(Figure 5-3 on page 5-4), click Compile.

This action creates a Quartus Prime project, FreqSweep.qpf, compiles your model
for synthesis, and runs the Quartus Prime Fitter.

Progress is indicated by status messages and a scrolling bar at the bottom of the
dialog box.

Figure 5-3. Signal Compiler Dialog Box, Simple Tab

< DSPBuilder - Signal Compiler E@

Description

Controls the compilation of the design in the Quartus O software.

Your model file must be saved before you can use the Signal Compiler block.

Parameters
Quartus O Project: FreqSweep_dspbuilder\FreqSweep.qpf

- Stratix IV -
Fam.l y: ' [[] Use Board Block to Specify Device
Device: EP4SGX530KHA0
c2

Simple | Advanced | SignalTap]]l Expor‘tl Options|

Step 2 - Select Device to Program

Scan Jtag | =
Step 3 - Program Device

Step 1 - Compile Design

Messages

’ OK ” Cancel

3. Review the Messages, then click OK to close the Signal Compiler dialog box.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 5: Using HIL 5-5
HIL Design Example

4. Replace the internal functions of the frequency sweep model with an HIL block.
Open the model FreqSweep_HIL.mdl from the FreqSweep directory (step 1).

Figure 5-4 shows this model, with the HIL block in place.

Figure 5-4. Frequency Sweep Design Model Using the HIL Block

_/ x Inputizo:o) = CutputCordic(20:20) |:|

Fiamp Signal Specification Froduct Input N CutpulCordic
Inpul1|'Z':C'| CrutputFilte 2807 029:'3
ﬂ; Inputi ; CutputFilter
HIL HIL_Scope
5. Double-click the frequency sweep HIL block to display the Hardware in the loop
dialog box.
6. Select the Quartus Prime project by browsing into the FreqSweep_dspbuilder
directory to locate the FreqSweep.qpf file.
=~ The full path to this file is visible in the dialog box when you select this file.
7. Select Clock from the list of available clock pins.

'~ HIL does not support multiple clock domains and only the specified signal
is the HIL clock signal. The HIL treats any other clocks in your design as
input signals.

8. Select aclr from the list of available reset pins.

9. Identify the signed ports:
m Select the Input port and click Unsigned.
m Select each output port (OutputCordic and OutputFilter) and click Signed.

10. Select the reset level to be Active_High.

11. Select the mode of operation by turning off Burst Mode.

12. Click Next page. to display the second page of the Hardware in the loop dialog
box.

13. Specify a value for the FPGA device and click Compile with Quartus Prime to
compile the HIL design.

[l If no output writes to the MATLAB command window, check that the
original Quartus Prime project is up-to-date and compiles with he same
version of the Quartus Prime software that compiles your Simulink model.

14. Click Scan Jtag to find available cables and hardware devices in the chain.
15. Select the JTAG download cable that references the required FPGA device and
click Configure FPGA to program the FPGA on the board.
August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

5-6 Chapter 5: Using HIL
Burst Mode

16. Click Close.

17. Simulate your design in Simulink. Figure 5-5 shows the scope display from the
finished design.

Figure 5-5. Scope Output from the FrequencySweep Model with HIL Block

.nHIL_Scnpe g@
86 OF P ABE 94w =

Time offzet; 0

Burst Mode

The Quartus Prime software infrastructure that communicates with the FPGA
through JTAG—system-level debugging (SLD)—uses a serial data transfer protocol.

To maximize the throughput of this data transfer, the HIL block offers a burst mode
that buffers the stimulus data and presents it in bursts to the hardware.

Table 5-1 shows the advantages and disadvantages of using burst mode compared
with the normal single-step mode.

Table 5-1. Comparing Single-Step and Burst Modes

Mode Advantages Disadvantages
Cycle accurate simulation.
Single step Feedback is possible outside of | High SLD overhead.
the HIL block.
m Low SLD overhead. Alatency is introduced on the output signals of
Burst w Fast HIL results. the HIL block making. feedback loop difficult
outside the FPGA device.
Using Burst Mode
To activate burst mode turn on the Burst Mode option in the Hardware in the loop
dialog box.
DSP Builder Handbook August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 5: Using HIL 5-7
Troubleshooting HIL Designs

When you set this option, you can specify the required number of data packets as the
Burst length. The HIL block sends data to the hardware in bursts of the size you
specify.

Il DSP Builder determines the size of the packet by the larger of the total input data
width or the total output data width. If the packet size multiplied by the Burst length
exceeds the preset data array, DSP Builder sets the Burst length to 1.

Simulation using burst mode works the same as single clock mode, but DSP Builder
introduces a latency of the specific packet size on the output signals of the HIL blocks.
As a consequence, feedback-loops may not work properly unless you enclose them in
the HIL block, and some intervention may be necessary when comparing or
visualizing HIL simulation results.

The HIL block uses software buffers to send and receive from the hardware, so you
can change these buffer sizes without recompiling the HIL function.

Troubleshooting HIL Designs

This section describes various problems that you may encounter when you are using
HIL designs.

L= 1f the top-level of your design changes, compile and reload the Quartus Prime project
into HIL to ensure that all information is up-to-date.

Fails to Load the Specified Quartus Prime Project

HIL reads design information, such as clock, reset, and input and output ports, from
the specified Quartus Prime project. However, it can fail to load your project if the
project is not compiled with the Quartus Prime Fitter, there is a Quartus Prime version
mismatch, or the Quartus Prime project file is not up-to-date.

No Inputs Found From the Quartus Prime Project

This problem occurs if the DSP Builder model file contains only the internally induced
signals, such as from a counter, and also does not produce any outputs. However, HIL
simulation works correctly.

No Outputs Found From the Quartus Prime Project

This problem occurs if your design does not have any outputs and makes the HIL
simulation meaningless.

HIL Design Stays in Reset During Simulation
An asynchronous reset is permanently asserted for a HIL design.

Check that the reset active level matches the setting in the original design. Recompile
the HIL design after you have changed the reset level.

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

5-8 Chapter 5: Using HIL
Troubleshooting HIL Designs

HIL Compilation Appears to Hang

After clicking Compile with Quartus Prime in the HIL Block Parameters dialog box,
no output writes to the MATLAB command window. This problem occurs if the
original Quartus Prime project is out-of-date or compiled by a different version of the
Quartus Prime software.

Scan JTAG Fails to Find Correct Cable or Device

This problem occurs if you connect the target DSP development board switch it on
after you open the HIL dialog box.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Ql 6. SignalTap Il Logic Analysis

This chapter describes how to set up and run the SignalTap® II logic analyzer. In this
chapter, you analyze three internal nodes in a simple switch controller design named
switch_control.mdl. This design flow works for any of the Altera development
boards that DSP Builder supports.
“ e For detailed information about the supported development boards, refer to the Boards
Library chapter in the DSP Builder Standard Blockset Libraries section in volume 2 of the
DSP Builder Handbook.

In this design, an LED on the development board turns on or off depending on the
state of user-controlled switches and the value of the incrementer. The design consists
of an incrementer function feeding a comparator, and four switches that feed into two
AND gates. The comparator and AND gate outputs feed an OR gate, which feeds an LED
on the DSP development board.

The SignalTap II logic analyzer captures the signal activity at the output of the two
AND gates and the incrementer of the design loads into the Altera device on the
development board. The logic analyzer retrieves the values and displays them in the
MATLAB work space.

“ e For more information about using the SignalTap II logic analyzer with the Quartus II

software, refer to the Quartus Prime Help.

A signalTap II Logic Analyzer block in DSP Builder includes the following

characteristics:

m Has a simple, easy-to-use interface

m Analyzes signals in the top-level design file

m Uses a single clock source

m Captures data around a trigger point. 88% of the data is pre-trigger and 12% of the
data is post-trigger

I'=" Alternatively, you can use the Quartus II software to instantiate of the SignalTap II
logic analyzer in your design. The Quartus II software supports additional features,
such as using multiple clock domains, and adjusting the percentage of data captured
around the trigger point.

SignalTap 1l Design Flow

Working with the SignalTap II logic analyzer in DSP Builder involves the following
flow:

1. Add asignalTap II Logic Analyzer block to your design.

2. Specify the signals (nodes) that you want to analyze by inserting SignalTap II
Node blocks.

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/hb/dspb/hb_dspb_std_lib.pdf

6-2

Chapter 6: SignalTap Il Logic Analysis
SignalTap Il Nodes

3. Turn on the Enable SignalTap option in the Signal Compiler dialog box.

4. Choose one of the JTAG cable ports in the Signal Compiler dialog box or the
SignalTap II Logic Analyzer dialog box.

5. Using Signal Compiler, synthesize your model, perform compilation in the
Quartus II software, and download your design into the DSP development board
(starter or professional).

6. Specify the required trigger conditions in the SignalTap II Logic Analyzer
block.

For details of the SignalTap II Logic Analyzer and SignalTap II Node blocks, refer
to the descriptions of these blocks in the AltLab Library chapter in the DSP Builder
Standard Blockset Libraries section in volume 2 of the DSP Builder Handbook.

SignalTap Il Nodes

A node represents a wire carrying a signal that travels between different logical
components of a design file. The SignalTap II logic analyzer can capture signals from
any internal device node in a design file, including I/O pins.

The SignalTap II logic analyzer can analyze up to 128 internal nodes or I/O elements.
As more it capture more signals, it uses more logic elements (LEs) or embedded
system blocks (ESBs).

Before capturing signals, assign each node to analyze to a SignalTap II logic analyzer
input channel. To assign a node to an input channel, you must connect it to a
SignalTap II Node block.

SignalTap Il Trigger Conditions

DSP Builder Handbook

The trigger pattern describes a logic event in terms of logic levels or edges. The
SignalTap II logic analyzer uses a comparison register to recognize the moment when
the input signals match the data specified in the trigger pattern.

The trigger pattern comprises a logic condition for each input signal. By default, all
signal conditions for the trigger pattern are set to Don’t Care, masking them from
trigger recognition. You can select one of the following logic conditions for each input
signal in the trigger pattern:

m Don’t care

® Low

m High

m Rising edge

m Falling edge
m Either edge

The SignalTap II logic analyzer triggers when it detects the trigger pattern on the
input signals.

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/hb/dspb/hb_dspb_std_lib.pdf
http://www.altera.com/literature/hb/dspb/hb_dspb_std_lib.pdf

Chapter 6: SignalTap Il Logic Analysis 6-3
SignalTap Il Design Examples

SignalTap Il Design Examples

Altera provides several examples (Figure 6-1).

Figure 6-1. SignalTap Il Design Example Directory Structure

[T DSPBuilder\DesignExamples\Tutorials\SignalTap

—{] starter

Contains example design files for SignalTap |l analysis using the Stratix EP1525 DSP development board.

("] original_design

Contains an example design that you can use as a starting point for the SignalTap 1l walkthrough.

—CI completed_walkthrough
Contains a functional example design and synthesized, compiled files that you can use to test SignalTap Il analysis.

_Ej professional
Contains example design files for SignalTap Il analysis using the Cyclone EP2C35 DSP development board.

D original_design

Contains an example design that you can use as a starting point for the SignalTap 1l walkthrough.

_D completed_walkthrough
Contains a functional example design and synthesized, compiled files that you can use to test SignalTap Il analysis.

You can start from the design example in the original_design directory.

Alternatively, you can use the design example in the completed_walkthrough
directory and go directly to “Turning On the SignalTap II Option in Signal Compiler”
on page 6-5.

Opening the Design Example

Open the template switch_control.mdl design in the <DSP Builder install path>\
DesignExamples\Tutorials\SignalTap \ professional\original_design directory.
(Figure 6-2).

Figure 6-2. Starting Point for the SignalTap Il Design Example

L = H

SignalCompiler AND_Gate1 = SignalTap Il Analsis
Foone- i
- ™, S
AND > =
e B »
g : AND_Gate2 OR_Gate
EightBit Countsr e Switch Control Example
b
Comparatar
4]
CHNST_GHND
August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

Chapter 6: SignalTap Il Logic Analysis
SignalTap Il Design Examples

Adding the Configuration and Connector Blocks

Add the board configuration block and connector blocks for the board that you want
to use. This tutorial uses the Stratix IV GX EP4SGX530 development board.

1.

6.

Select the Boards library from the Altera DSP Builder Blockset folder in the
Simulink library browser.

Open the StratixIVEP4SGX530 folder. Drag and drop the Stratix IV GX
EP4SGX530 FPGA Development Kit configuration block into your model.

Drag and drop the Dip switch block close to the AND Gate2 block in your model. .

Drag and drop the LEDO block close to the OR_Gate block in your model. Connect
this block to the OR_Gate output.

Select the Simulink Sources library. Drag and drop a Pulse Generator block near
to the DIP Switch.

Connect the new blocks as in Figure 6-3.

Figure 6-3. Switch Control Example with Board, Pulse Generator and Terminator Blocks

[T v ¥
Statix|V GX 456520 |_
o . B
FPGA Development K, 530 Edtion YT AND_Gatel Lizil_)

1
%

SignalCompilr

SignalTep Il Analis

>

<

Kl
3

Puke Dip Switch
Generabor

f'lstsn:uut<'z>
S L »
L {5

El—_' —* LECO

Terminator
econdandaut
AND_Gake2 i OR_Gate

EightBit Counter o Switch Control Example
b

Comparator

CNST_GND

7. Use the Block Parameters dialog box to set the parameters (Table 6-1) for both

pulse generator blocks.

Table 6-1. Parameters for the Pulse Generator Blocks

Parameter Value

Pulse type Time based

Time Use Simulation time
Amplitude 1

Period 2

DSP Builder Handbook

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 6: SignalTap Il Logic Analysis 6-5

SignalTap Il Design Examples

Table 6-1. Parameters for the Pulse Generator Blocks

Parameter Value
Pulse Width 50
Phase delay 0
Interpret vector parameters as 1-D On
8. Select the Simulink Sinks library. Drag and drop a Terminator block near to the

OR_Gate block and connect it to this block.

Specifying the Nodes to Analyze

To add SignalTap II Node blocks to the signals (also called nodes) that you want to
analyze (in this tutorial they are the output of each AND gate and the output of the
incrementer), follow these steps:

1.

Open the AltLab library in the Simulink Library Browser. Drag a SignalTap II
Node block into your design. Position the block so that it is on top of the connection
line between the AND Gatel block and the OR_Gate block.

L=~ If you position the block with this method, the Simulink software inserts
the block and joins connection lines on both sides.

Click the text under the block icon in your model and change the block instance
name by deleting the text and typing the new text firstandout.

Add a SignalTap II Node block between the AND Gate2 block and the OR_Gate
block and name it secondandout.

Add a SignalTap II Node block between the Eightbit Counter block and the
Comparator block and name it cntout.

Click Save on the File menu.

Turning On the SignalTap Il Option in Signal Compiler

When you add node blocks to signals, each block implicitly connects to the
SignalTap II logic analyzer. This connection is a functional change to your model and
you must recompile your design before you can use the SignalTap II logic analyzer.

To compile your design, follow these steps:

1.

Double-click the Signal Compiler block and click the SignalTap II tab in the
Signal Compiler dialog box.

Verify that the Enable SignalTap II option is on.

When this option is on, Signal Compiler inserts an instance of the SignalTap II
logic analyzer into your design.

Select a depth of 128 for the SignalTap II sample buffer (that is, the number of
samples stored for each input signal) in the SignalTap II depth list.

Verify that the Use Base Clock option is on.

Click the Simple tab and verify that the Use Board Block to Specify Device
option is on.

August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

6-6

Chapter 6: SignalTap Il Logic Analysis
SignalTap Il Design Examples

Click the Compile button.
When the conversion is complete, information messages in the dialog box display

the memory allocated during processing.

I'=" Youmust compile your design before you open the SignalTap II Analyzer
block because the block relies on data files that create during compilation.

Click Scan Jtag and select the appropriate download cable and device (for
example, USB-Blaster cable and EP2C35 device).
Click Program to download your design to the development board.

Click OK.

Specifying the Trigger Levels

To specify the trigger levels, follow these steps:

1.

Double-click the SignalTap II Logic Analyzer block. The dialog box displays all
the nodes connected to SignalTap II Node blocks as signals to be analyzed.

Specify the following trigger condition settings for the firstandout block:
a. Click firstandout under Signal Tap II Nodes.

b. Select Falling Edge in the Set Trigger Level list.

c. Click Change. The condition is updated.

Repeat these steps to specify the trigger condition High for the secondandout
block.

The SignalTap II logic analyzer captures data for analysis when it detects all trigger
patterns simultaneously on the input signals. For example, because you specify
Falling Edge for firstandout and High for secondandout, the SignalTap II logic
analyzer only triggers when it detects a falling edge on firstandout and a logic level
high on secondandout.

Performing SignalTap Il Analysis

You are now ready to run the analyzer and display the results in a MATLAB plot.
After you click Acquire, the SignalTap Il logic analyzer begins analyzing the data and
waits for the trigger conditions to occur. To perform analysis, follow these steps:

DSP Builder Handbook

1.

Click Scan Jtag in the SignalTap II Logic Analyzer dialog box and select the
appropriate download cable and device.

Click Acquire.
Press switch SW4 on the DSP development board to trigger the SignalTap II logic

analyzer.

= If you press and hold switch SW2 or SW3 while pressing switch SW4, the
trigger condition is not met and acquisition does not occur.

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 6: SignalTap Il Logic Analysis 6-7
SignalTap Il Design Examples

4. Click OK in the SignalTap II Logic Analyzer dialog box when you finish.

DSP Builder interprets the captured data as unsigned values and displays them in
MATLAB plots. It stores the values in MATLAB .mat files in the working directory.

Figure 6-4 shows the MATLAB plot for the SignalTap Il node firstandout.

Figure 6-4. MATLAB Plot for SignalTap Il Node firstandout

) Figure 1: firstandout

File Edit Wew Insert Tools Desktop ‘Window Help N

NeEas RadMs € 08 =80

1
08+
0.6
0.4+
0.2F

1 1
0 20 40 50 50 100 120 140

Figure 6-5 shows the MATLARB plot for the SignalTap Il node secondandout.

Figure 6-5. MATLAB Plot for SignalTap Il Node secondandout

. Figure 2: secondandout [_j|E|rZ|

File Edit Wew Insert Tools Desktop ‘Window Help
Deds h RO € 08 5O
2
i B
1 =
05+ B
D 1 1 1 1 1 1
0 20 40 B0 a0 100 120 140

Figure 6-6 shows the MATLAB plot for the SignalTap Il node cntout.

Figure 6-6. MATLAB Plot for SignalTap Il Node cntout

) [Figure 3: cntout

File Edit Wiew Insert Tools Desktop Window Help £l
NedS e e | E 08 8O0
250
200 - B
150 g
100 g
SD 1 1 1 1 1 1
] 20 40 B0 a0 100 120 140
August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

6-8 Chapter 6: SignalTap Il Logic Analysis
SignalTap Il Design Examples

“ e For more information about the SignalTap II Logic Analyzer block, refer to the

SignalTap 1I Logic Analyzer block description in the AltLab Library chapter in the DSP
Builder Standard Blockset Libraries section in volume 2 of the DSP Builder Handbook.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/hb/dspb/hb_dspb_std_lib.pdf
http://www.altera.com/literature/hb/dspb/hb_dspb_std_lib.pdf

Q' 7. Using the Interfaces Librar

iy

This chapter describes how to use the Avalon-MM blocks in the Interfaces library to
create a design that functions as a custom peripheral to Qsys.

Qsys is a system development tool for creating systems that can contain processors,
peripherals, and memories. Qsys automates the task of integrating hardware
components into a larger system.

To integrate a DSP Builder design into your Qsys system, your peripheral must meet
the Avalon-MM interface or Avalon-ST interface specification.

The Interfaces library supports peripherals that use the Avalon-MM and Avalon-ST

interface specifications.

The correct version of MATLAB with DSP Builder must be available on your system
path to integrate DSP Builder .mdl files in Qsys.

Avalon-MM Interface

The Avalon Interface Specifications provide peripheral designers with a basis for
describing the address-based read and write interfaces on master (for example, a
microprocessor or DMA controller) and slave peripherals (for example, a memory,
UART, or timer).

The Avalon-MM Master and Avalon-MM Slave blocks in DSP Builder provide a
seamless flow for creating a DSP Builder block as a custom peripheral and integrating
the block into your Qsys system. These blocks provide you the following benefits:

B Automates the process of specifying Avalon-MM ports that are compatible with
the Avalon-MM bus

B Supports multiple Avalon-MM master and Avalon-MM slave instantiations
m Saves time spent hand coding glue logic that connects Avalon-MM ports to DSP
blocks

For more information about the Avalon-MM Interface, refer to the Avalon Interface
Specifications.

Avalon-MM Interface Blocks

A Qsys component is a design module that Qsys recognizes and can automatically
integrate into a system.

Qsys can recognize a DSP Builder design model if it is in the same working directory
as the Qsys project. With the Avalon-MM blocks in the Interfaces library, you can
design the DSP function and add an Avalon-MM block that makes it a custom
peripheral in the Simulink environment.

You can instantiate each Avalon-MM block multiple times in a design to implement
an SOPC component with multiple master or slave ports.

August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

7-2

Chapter 7: Using the Interfaces Library

Avalon-MM Interface Blocks

Figure 7-1. Avalon-MM Slave Block Signals

Avalon-MM Slave Block

Figure 7-1 shows a block that describes an Avalon-MM slave interface where all the
Avalon-MM signals are enabled.

E Function Block Parameters: Avalon-MM Slave

Addmess

1.0

Read

Read Data
15:0

Write

Write Data
15:0

BEvle Enable

1.0

Reacdy For Data

Data Availabk

End Of Packet

Read Data Valid

Wail Request

Beqgin Burst Tmnster

Burst Count
20

IR

Begin Tmansfer

Chip Select

Avalon-Mh Slave

SOFClInterface AlteraBlockSet [mazk) [link)

Lvalon Memory-apped Interface Slave

A collection of Avalon Memaory-t apped Interface partz to allow connection to an

SOPC system,

Farameters

Clock Mame
clock

Address Width
2

Address Alignment| Dynarmic
Accezs Type| Readdwrite

Data Type| Signed Integer

[rurmber of bitz].[]
16

[].Inumber of bitz]
]

Alow Byte Enable
Allovs Flaw Contral
Allows Pipefine Transfers
b ait-State Farmat Wariable

Read wait-State Cycles
]

Write W ait-State Cocles
]
Read Latency Format| Wanable

Fiead Latency Cycles
i

Allove Burst Transfers

M aximurn Eurst Size
4

Output IRD
Receive BeginT ransfer
Ise Chip Select

|| Cance]

Help

I Apply

Each of the input and output ports of the block correspond to the input and output
ports of the pin or bus that Figure 7-1 shows between the ports.

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 7: Using the Interfaces Library
Avalon-MM Interface Blocks

Inputs to the DSP Builder core display as right pointing bus or pins; outputs from the
core display as left pointing pins or busses.

You can use the opposite end of any pins to provide pass-through test data from the

Simulink domain.

Avalon-MM Master Block

You may want to use an Avalon-MM Master block (for example, to design a DMA
controller) in a design that functions as an Avalon-MM Master in your Qsys system.

Libraries section in volume 2 of the DSP Builder Handbook.

«o For more information about these signals, refer to the DSP Builder Standard Blockset

Figure 7-2 on page 7-3 shows a block that describes an Avalon-MM master interface
where all the Avalon-MM signals are enabled.

Figure 7-2. Avalon-MM Master Block Signals

¥ Function Block Parameters: Avalon-MM Master

Wail Request

Acdess
1:0

Read

Read Data
11:0

Write

Write Data
11:0

Bvle Enablke
1.0

End Of Packet

Read Data Validl

Flush

Burst Count
2:0

IRC Hurmber
50

Avakn-MK Master

SOPClnterface AlteraBlockSet [mask] [ink]

Lualon Memory-bMapped Interface Master

A collection of Avalon Memory-Mapped Interface partz to allow connection to an

SOPC system.

Farameters

Clock Mame
clock

Address width
2

Accezs Tupe Readfwrite
Data Tepe| Unsigned Integer
[humber of bits].[]

12
[1[nurnber of bits]
0

Allove Flows Control
Allow Pipeline Transfers
Iz Flush Signal

Allows Burst Transfers

b aximum Burst Size
4

Receive RO
IRQ Maode| Prioritized

il][Carcel ” Help

] [Apply

August 2016 Altera Corporation

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/hb/dspb/hb_dspb_std_lib.pdf
http://www.altera.com/literature/hb/dspb/hb_dspb_std_lib.pdf

-4

Chapter 7: Using the Interfaces Library
Avalon-MM Interface Blocks

Wrapped Blocks

The Avalon-MM Master and Avalon-MM Slave interface blocks allow you to generate a
Qsys component in DSP Builder, but they do little to mask the complexities of the
interface. The Avalon-MM read and write FIFO blocks in the Interfaces library
provide a higher level of abstraction.

You can implement a typical DSP core that handles data in a streaming manner, with
the signals Data, Valid, and Ready. To provide a high level view, DSP Builder
provides you with configurable Avalon-MM Write FIFO and Avalon-MM Read FIFO
blocks for you to map Avalon-MM interface signals to this protocol.

Figure 7-3 shows an example system with Avalon-MM Write FIFO and Avalon-MM
Read FIFO blocks.

Figure 7-3. Example System with Avalon-MM Write FIFO and Avalon-MM Read FIFO Blocks

i

Input [ata

[0

¥ ‘|l’i

Fepeating
Sequence?
Stall Tes=t Data Out
I TestData DataOut | Datalnf1].[7] Data Out[1]. [7] ploma TestDatavaiid
H_D_ | 52l Jp Dataalid Ready Scope
Repeating Feady Data'alid =il ol [7:0] Avalkn-M Read FIFO
Sequence]

¥
o

SignalCompiler

Avalon-Mk Write FIFD
—iiFeady

HWW core

oReady[7:0] —‘

DSP Builder Handbook

Looking at the Avalon-MM Write FIFO

1. Double-click on an Avalon-MM Write FIFO block to open the Block Parameters
dialog box so that you can set parameters for the data type, data width and FIFO
depth.

2. Open the hierarchy below the Avalon-MM Write FIFO block, by right-clicking the
block and click Look Under Mask on the pop-up menu.

You can use this design as a template to design new functionality (for example, when
you use an Avalon-MM address input to split incoming streams).

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 7: Using the Interfaces Library 7-5
Avalon-MM Interface Blocks
Figure 7—4 shows the internal content of an Avalon-MM Write FIFO buffer.
Figure 7-4. Avalon-MM Write FIFO Content
e 3 TR 4
Reaicly iReady _.'\.-_!.-1"555 ! ol q i 1)
— full R
TesiData Wrile P eq FIFD
TestData % ‘ 3 _.‘E@Emo_
Wribz - ibit L emply rolempty
{2 ——wsal ; e -
=] o Write Data | WE) uschw(3:0)
Stall P [‘Write Dala | Eive
| R=acly 7
— FIFC
Avalon-M Wiile Test 'Cfl:nh-aner= Feady For Cata
= > o A
E | End O Packedt Dataalid
GHD obif Calay
Avakn-Ih Wrile Slave
Ha
14 {1 notTull
FIFDSiza Compamton

The Avalon-MM Write Test Converter block handles caching and conversion of
Simulink or MATLAB data into accesses over the Avalon-MM interface. You can use
this block to test the functionality of your design. The Avalon-MM Write Test
Converter is simulation only and does not synthesize to HDL.

Looking at the Avalon-MM Read FIFO Buffer

1. Double-click on an Avalon-MM Write FIFO block to open the Block Parameters

dialog box that you can use to set parameters for the data type, data width and
FIFO depth.

2. Open the hierarchy below the Avalon-MM Read FIFO block by right-clicking on the
block and choosing Look Under Mask from the pop-up menu.

August 2016 Altera Corporation

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

7-6

Chapter 7: Using the Interfaces Library
Avalon-MM Interface Blocks Design Example

Figure 7-5 shows the internal content of an Avalon-MM Read FIFO.

Figure 7-5. Avalon-MM Read FIFO Content

1
Stall
Addmess 2;;
10
L Reed
ibril
Read Data
(2 P q B i | ReadData Fear H
Cala full
] (1= FIFD = o
mipty] HETT=G— Btz ;‘;‘:‘i'l"“"'”e P CalaAvailable TesiCata
'.'.'|E-c| T HOT TesDalaCul
Latalalid Enel O Packet
FIFCH [o }p{ i P Sl TesiDatavald
Conslanid TestDataValil
Avalon Read Slave Streaming Avalon Read Converar
a
2 notiull
=] b =@
FIFOSie Comparzio Heaty

The Avalon-MM Read Data Converter block handles caching and conversion of
Simulink or MATLAB data into accesses over the Avalon-MM interface. You can use
this block to test the functionality of your design. The Avalon-MM Read Data
Converter is simulation only and does not synthesize to HDL.

Avalon-MM Interface Blocks Design Example

This tutorial describes how to interface a design using the Avalon-MM blocks as a
custom peripheral to the Nios Il embedded processor in Qsys.

The design consists of a 4-tap FIR filter with variable coefficients. You load the
coefficients with the Nios Il embedded processor while an off-chip source supplies the
input data through an analog-to-digital converter. The design sends filtered output
data off-chip through a digital-to-analog converter.

Adding Avalon-MM Blocks to the Design Example
To complete the design example, follow these steps:
1. Click Open in the MATLAB software.

2. Browse to the <DSP Builder install path>\DesignExamples\Tutorials\
SOPCBuilder\SOPCBlock directory.

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 7: Using the Interfaces Library 17-71
Avalon-MM Interface Blocks Design Example

3. Select the new_topavalon.mdl file and click Open.

Figure 7-6 shows new_topavalon.mdl.

Figure 7-6. new_topavalon.mdl Design Example

Stope?
0 »lz 3
i [CosHT>—lo Register Enable Logic
o 4 tap: Product
4 [iwrite] —
SineWashy 1e1ic_A 14 Bit Sigred & 7 [3 E _.. o
address i
Frodus [addi] Comparator = Ty
Tap Delay —* -
Line CoelZ] D] _. 1 R
100 ns 1 Comparaior ant
o Product! Comparior Celzyd
B s D 2 | ompnne | 7 R
ol Prout o 2 |<E)
Stathc IV G 4SGKED g1 [ME e R
FPGA Detelopment Kit, 530 Edifon % it Comparer mih
O Adder
SignaiCompikr
AVALON INTERFACE EXAMPLE - SLAVE BLOCK Lty N/

This design consists of a 44ap FIR filter with variable coefficients. The D2A1_HSMC_A 14 Bit Unsigred Soope
coefficients are loaded using the Avalon_Write_Slave while the input is
supplied by an off-chip source through an analog-to-digital converter. The
filtered output is sent off-chip through & digital-to-analog converter.

4. Rename the file by clicking Save As on the File menu. Create a new folder
MySystem and save your new MDL file as topavalon.mdl in this folder.

5. Open the Simulink Library Browser. Expand the Altera DSP Builder Standard
Blockset and select Avalon Memory-Mapped in the Interfaces library.

6. Drag and drop an Avalon-MM Slave block into the top left of your model. Change
the block name to Avalon MM Write Slave.

7. Double-click on the Avalon MM Write Slave block to bring up the Block
Parameters dialog box.

8. Select Write for the address type, Signed Integer for the data type, and specify 8
bits for the data width. Turn off the Allow Byte Enable option.

9. Click OK.

The Avalon MM Write Slave block redraws with three ports: Address i1:0, Write
ibit, and Write Data 17:0.

10. Connect the ports (Figure 7-7).

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

7-8

Chapter 7: Using the Interfaces Library
Avalon-MM Interface Blocks Design Example

Figure 7-7. topavalon.mdl

You can re-size a block by dragging the resize handles at each corner.

&

Design Example

s
Registers Address
im0
Address -t 5
— g
Courter i o Delay
Limited Read
= ﬁ; ibit P
Write
E—> it B LR T
Step 2]
=z Resd Data
70 —’| :
a3 Delaya
Wirite Dats & Scopel
i7:0 sneton Demux =fe Avalon_IMl_Read_Sleve
Repeating =
L

‘Avslon MM Write_Slave

s

SneWave joni HshC_A
14 Bit Signed

Line

Stratix V GX 45GX530
FPGA Development Kit, 530 Edition

Scoped

AVALON INTERFACE EXAMPLE : SLAVE BLOCK

This design consists of a 4-tap FIR

coefficients are loaded using the Avalon_Write_Slave while the input is

supplied by an off-chip source throu

Tap Delay

" Register Enable Logic
Product3
o [Ewite]
i address 0
Froduct? Comparsbr adl Er
Froduct! [1oom | Comparatort and2 =
Clogk 2> & bl <]
adkiress 2 2
[Coer] Comparator2 and2 e
E) AND) ik 3
Frodic ¥ | R o D>—r D) <)
Q"ﬂ T ¥ £ o Comparatard ;T
TestBench
SignaiCompiler Adder E:

D2AT_HSMG_A Scapel
14 Bit Unsigned

filter with variable coefficients. The

gh an analog-to-digital converter The

11.

12.

13.

14.

15.

16.
17.
18.

DSP Builder Handbook
Volume 2: DSP Builder Standard

Drag and drop another Avalon-MM Slave block into the top right of your model
and change the name of this block instance to Avalon MM Read_Slave.

Double-click on the Avalon MM Read_Slave block to bring up the Block
Parameters dialog box.

Select Read for the address type, Signed Integer for the data type, and specify 8
bits for the data width.

Click OK and notice that the Avalon MM Read Slave block redraws with three
ports: Address i1:0, Read ibit, and Read Data 07:0.

Complete your design by connecting the Avalon MM Read Slave ports
(Figure 7-7).

“ =@ The default design example uses the Stratix IV Development Board. If you
have a different board, you must replace the board block and
analog-to-digital converter blocks by corresponding blocks for the

appropriate board.
Add oscilloscope probes to monitor the signals on the development board.

Click Save on the File menu in your model window to save your model.

Run a simulation and observe the results on the oscilloscope probes. Coefficient
values 1 0 0 0 load into the filter.

August 2016 Altera Corporation
Blockset

Chapter 7: Using the Interfaces Library 7-9
Avalon-MM Interface Blocks Design Example

Verifying the Design

Before using your design in Qsys, use the TestBench block to verify your design. To
verify your design, follow these steps:

1. Double-click the TestBench block to display the TestBench Generator dialog box
(Figure 7-8).

Figure 7-8. TestBench Dialog Box

=

DSPBuilder - Testbench Generator - topavalon E]

Descripkion

This block controls automatic generation of the test bench. Enabling testbench generation may
slow simulation as all input and output values are stored to File.

Parameters
Enable Test Bench generation.

Simple Advanced || Configuration |

¢ Compare against HOL J Compare Simulink simulation against ModelSim

Messages

o bt ot ghace b T e et e St [1

Jtb_topavalon/dut/topavalon_gn_0/inst_topavalon_gn_0/product2/praduct1i/gnest/analpmfn (%%

opipe

** Warning; There is an U2 'W'|'Z']-" in an arithmetic operand, the result will be H{es),

Time: 0ps Iteration: 8 Instance:

[tb_topavalon/dut/topavalon_gn_0finst_topavalon_gn_0/product1praductiifgnest/gnolpmin

opipe

** Warning: There is an U'[2'W'|'Z']'-" in an arithmetic operand, the result will be ¥{es),

Time: 0 ps Iteration: & Instance:

[tb_topavalon/dut/topavalon_gn_0finst_topavalon_gn_0fproductfproductli/gnestfgnolpm/ng

pipe

quit

Info: Comparing Simulink output against MadelSim simulation

Info: Exack Match topavalon_avalon-MM+5lave_readdata, capture, msim

Info: Exact Match topavalon_D2A%5F14%65FBit%sFUnsigned capture, msim =]
||

)

2. Click Compare against HDL.

This process generates HDL, runs Simulink and ModelSim, and then compares the
simulation results. Progress messages issue in the dialog box and completes with a
message “Exact Match”.

3. Click OK.

Running Signal Compiler

To generate all the hardware and files required by the Quartus Prime software, follow
these steps:

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

7-10

Chapter 7: Using the Interfaces Library
Avalon-MM Interface Blocks Design Example

Double-click on the Signal Compiler block to display the Signal Compiler dialog
box.

Verify that the Device is set to match your target development kit and click
Compile.

When the compilation has completed successfully, click OK.

Instantiating the Design in Qsys

To instantiate your design as a custom peripheral to the Nios II embedded processor
in Qsys, follow these steps:

1.
2.

DSP Builder Handbook

Start the Quartus® II software.
On the File menu in the Quartus II software, click New Project Wizard.

a. Specify the working directory for your project by browsing to <DSP Builder
install path>\DesignExamples\Tutorials\SOPCBuilder\SOPCBlock\
MySystem.

b. Specify a name for your project. This tutorial uses SOPC for the project name.
I'& The Quartus Prime software automatically specifies a top-level design

entity that has the same name as the project. This tutorial assumes that the
names are the same.

c. Click Next in the New Project Wizard, until you get to the Family and Device
Settings page. Verify that the selected device matches the FPGA on your DSP
development board (if applicable).

d. Click Finish to create the Quartus Prime project.
On the Tools menu, click Tel Scripts and follow these steps:
a. Select topavalon_add.tcl in the Project folder.

b. Click Run to load your .mdl file and other required files into the Quartus Prime
project.

On the Tools menu, click Qsys and save as SOPC.

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 7: Using the Interfaces Library

-1

Avalon-MM Interface Blocks Design Example

5. On the Libraries tab in Qsys, set the following options:

Expand Memories and Memory Controllers.

Expand On-Chip and double-click On-Chip Memory (RAM or ROM).
Specify 30 KBytes for the Total Memory size.

Click Finish to add an on-chip RAM device to the system.

Double-click Nios II Processor in the System Contents tab to display the
MegaWizard interface.

Set the reset and exception vectors to use onchip_mem and click Finish to add
the processor to your system with all other parameters set to their default
values.

Expand Peripherals and Debug and Performance. Double-click on System ID
Peripheral and click Finish to accept the default settings.

Expand Interface Protocols and Serial. Double-click on JTAG UART and click
Finish to accept the default settings.

Expand DSPBuilder Systems and double-click the topavalon_interface
module to include it in your Nios II system (Figure 7-9).

Figure 7-9. Including Your DSP Builder Design Module in Qsys

% Qsys - sope.qsys* (Chaltera\13.1\quartus\dsp_builder\DesignExamples\Tutorials\SOP CBuilder\ SOP CBlock\MySystemsopc.qsys) (=0 Ech =
File Edit System Generate View Tools Help
E Library &3 i i " System Contents 54 AddressMap &% | Project Settings &3 ‘ i]
Y x AP |Use Connections Name Description Export Clock
Project B x = dk_0 Clock Source
-1l New Component. T =) C dk_in (Clock Input clk -
[=-DSPBuilder Systems : = L gtJ"'JESEt E‘Ei::éﬂl;g:t reset -
ERn=v_topavalon_Interface] 3
@-System R A dk_reset Reset Output
Library — Bl onchip_memory2_0 (On-Chip Memory (RAM or ROM)
(- Bridges = dk1 Clock Input uncon,
[Bridges and Adapters = s1 Avalon Memory Mapped Slave [ck1]
[+-Clock and Reset T resetl Reset Input [ck1]
[+--Configuration & Programming ed] =} ni::zﬁqsvsﬁo 2;01111 PFOEESSW
lack Inpu uncon,
[-DsP
[Embedded Processors m reset_n Reset Input [ck]
- Interface Protocols data_master |Avalon Memory Mapped Master [ck]
[#]-Memories and Memory Controllers E‘gr ug::zg_mr::zrle : szzﬂol‘:zn:try Mapped Master EE
[#-Merlin Components S . e
[M.nnmmr::|9,. Perinheral 5 jtag_debug_module \Avalon Memory Mapped Slave [clk]
custom_instruction_m... [Custom Instruction Master
Edit... 4 Add... B sysid_gsys_0 System ID Peripheral
dk (Clock Tnput ancon
= reset Reset Input [ck]
t. Herarchy 22 izl (=) control_slave \Avalon Memery Mapped Slave [clk]
13 sopc =] El jtag_uart_0 ITAG UART
Gl -m= dk Clock Input uncon.
[]-m= reset reset Reset Input [clk]
EI=D= avalon_jtag_slave Avalon Memory Mapped Slave [ck]
[#)-0F jtag_uart_0
-k nios2_gsys_0
[#-5¢ onchip_memory2_0
[k sysid_gsys_0
[#-]_-| Connections < | [

= Messages g\

Descaription
=3 8 Errors
23 onchip_memory2_0.clk1 must be connected to a dock output

1
o,
i 1B

Path

[m] »

System.onchip_memory2_0

I£3 nios2_gsys_0.clk must be connected to a dock output System.nios2_gsys_0

1£) sysid_gsys_0.clk must be connected to a dock output System.sysid_gsys_0

£ jtag_uart_0.clk must be connected to a dock output
8 Errors, 4 Warnings

System.jtag_uart_0 =

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

7-12

Chapter 7: Using the Interfaces Library
Avalon-MM Interface Blocks Design Example

6.

"=~ If the memory device, Nios II processor, debug peripheral, interface
protocol, and DSP Builder system add in this order, you should not need to
set a base address. However, you can click Auto-Assign Base Addresses on
the System menu to automatically add a base address if necessary.

Click Generate to generate the Qsys system. The system generation may take
several minutes.

After the system generation in Qsys completes, you can design the rest of your Nios II
embedded processor system using the standard Nios Il embedded processor design
flow. Continue with this tutorial to run the system from software using the Nios II
processor.

Compiling the Quartus Prime Project

To compile the Quartus Prime project, follow these steps:

1.

On the Assignments menu in the Quartus Prime software, click Device to display
the Device page of the Settings dialog box and create the basic pin settings as
follows:

a. In the Settings dialog box, click Device and Pin Options.

b. Inthe Device and Pin Options dialog box, click the Unused Pins tab, select As
input tri-stated and click OK.

c. Click OK to close the Settings dialog box.

On the Assignments menu, click Pins to open the Pin Planner and make pin
assignments for clk and reset_n (depending on which development board you
are using).

L= If the Location column does not display, right-click in the pin assignments
table and click Customize Columns to change the table display.

You can ignore all other pin assignments for this tutorial.

Close the Pin Planner.

On the Processing menu, click Start Compilation to compile the Quartus Prime
project.

When the compilation completes, click Programmer on the Tools menu and click
Start in the Quartus Prime Programmer to program the FPGA device on your
development board.

Close the Quartus Prime Programmer window.

Testing the DSP Builder Block from Software

Altera provides a C program that loads a set of four coefficient into the filter, reads
them back, and then repeats the process. To use this program, follow these steps:

1. On the Nios II menu in Qsys, click Nios IT IDE.

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 7: Using the Interfaces Library 7-13
Avalon-MM Interface Blocks Design Example

2. Create a new Nios II C/C++ application as follows:

a. On the File menu in the Nios II IDE, point to New and click Project.

Nios II C/C++ Application.
In the New Project wizard, select Nios II C/C++ Application and click Next.

Type test_DSP_Block for the Name of the project and select the Blank Project
template.

Turn on Specify Location and browse to the directory <DSP Builder install
path>\DesignExamples\Tutorials\SOPCBuilder\SOPCBlock\MySystem.

Click on Make a New Folder and create a software subdirectory.
Click OK.

Browse to the System PTF file <DSP Builder install path>\DesignExamples\
Tutorials\SOPCBuilder\SOPCBlock\MySystem\SOPC.ptf

Click Finish in the New Project wizard.

Verify that the application project test_DSP_Block appears in the Nios II
C/C++ Projects list.

3. Add the test software to the new project as follows:

a.

Locate the file test_ DSP_Block.c in your file system. (<DSP Builder install
path>\DesignExamples\Tutorials\SOPCBuilder\ SOPCBlock\)

Right-click on the test_DSP_Block.c file and click Copy.

Select the test_DSP_Block project folder in the Nios II IDE and paste the
test_ DSP_Block.c file into the project.

4. Set some of the reduced code footprint options in the Nios II IDE as follows:

a.

b.
C.
d.

e.

Right-click on the Nios II IDE application project, test_ DSP_Block, and click
Properties.

In the Properties dialog box click System Library.
Turn on Reduced device drivers and Small C library.
Turn off Support C++.

Click OK.

5. Run the test_DSP_Block software project in the Nios II IDE by right-clicking on
test_ DSP_Block and clicking Run As Nios II Hardware.

The project compiles and the application code runs on the development board.
Observe the following results in the Nios II IDE Console:

LOADING. ..

Coefficient 1 =1

Coefficient 2 = 0

Coefficient 3 = 0

Coefficient 4 = 0

RELOADING. . .

Coefficient 1

August 2016 Altera Corporation

n
o

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

7-14 Chapter 7: Using the Interfaces Library
Avalon-MM FIFO Design Example

Coefficient 2 0

Coefficient 3 1

Coefficient 4 = 0

[l=~ Completed versions of the topavalon.mdl design for the Stratix IV development
boards are available in the <DSP Builder install
path>\DesignExamples\Tutorials\SOPCBuilder\SOPCBlock\Finished Examples
directory.

Avalon-MM FIFO Design Example

This tutorial describes how to interface a design built using the Avalon-MM FIFO block
as a custom peripheral to the Nios® Il embedded processor in Qsys.

The design consists of a Prewitt edge detector with one Avalon-MM write FIFO buffer
and one Avalon-MM read FIFO buffer. The design uses an additional slave port as a
control port.

o For a full description of the Prewitt edge detector design, refer to AN364: Edge
Detection Reference Design.

For this hardware implementation, DSP Builder stores the image in the compact flash
and loads it in DMA with a Nios Il embedded processor. DSP Builder outputs the
edge detected image through a VGA controller. The DSP Builder model uses Simulink
to read in the original image and to capture the edge detected result.

Opening the Design Example
To open the design example, follow these steps:
1. Click Open on the File menu in the MATLAB software.

2. Browse to the <DSP Builder install path>\DesignExamples\Tutorials\
SOPCBuilder\ AvalonFIFO directory.

3. Select the sopc_edge_detector.mdl file and click Open.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/an/an364.pdf
http://www.altera.com/literature/an/an364.pdf

Chapter 7: Using the Interfaces Library 7-15
Avalon-MM FIFO Design Example

Figure 7-10 shows sopc_edge_detector.mdl.

Figure 7-10. sopc_edge_detector.mdl Design Example

Edge Detection Co-Processor Thres hokd| 7:0] ffheshe i ,
with Avalon Interface ‘ o2
152 pre_lhres hl70] % @
II Avalon Contml Port sgfsionner
Clock

h 4

sirmin

SCLR

\,“.O’;Ep”‘ace - Sall TesiDalaOul e

: sl 5

TestGata oo postf7io] pelo. e SR gtpeta TestDatavald
Ll s : —
E—b Siall “ Dala'alid Ready clata_walid1
; e ook 2n :
RS Flendy i e o - Avakn-MM Read FIFO ToWolepaos]
S pref B
thresha kil Ihires hol[7:0] “
Aualkon MM Write FIFD [Eakiioes:
edge_prewitt n-io-1 Muliiplexear

Compiling the Design
In this example, you use the Signal Compiler block to verify that your design

generates valid HDL.

[l =~ Alternatively, use the TestBench block (“Avalon-MM Interface Blocks Design
Example” in “Verifying the Design” on page 7-9).
To verify your design, follow these steps:
1. Double-click the Signal Compiler block.

2. Select the family and device for the DSP Development board you are using. The
design example is configured for a Stratix 1525 board (Figure 7-11).

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

7-16

Chapter 7: Using the Interfaces Library

Avalon-MM FIFQ Design Example

5

3. Click Compile.

Figure 7-11. Signal Compiler Dialog Box

‘& DSPBuilder - Signal Compiler

B [=1%

Description

This block conkrols the compilation of the design,

Parameters

Quartus II Project: sopc_edge_detector_dspbuilder|\sopc_edage_detectaor.qpf

Family: | Stratix |

v
L — j [] Use Board Block ko Specify Device

Simple | Advanced | SignalTap 1 I I:prorEE

Step 1 - Compile Design

Step 2 - Seleck Device to Program

Scan Jtag “ | 1]

Step 3 - Program Device

Messages

Into: Subscription Agreement, Altera MegaCore Function License
Info: Agreement, or other applicable license agreement, including,
Info: without limitation, that vour use is for the sole purpose of
Info: programming logic devices manufactured by Altera and sold by
Infa: Alkera or its authorized distributors. Please refer to the
Info: applicable agreement For Further details,
Info: Processing started: Thu Oct 02 15:54:22 2008

Info: Command: quartus_asm sopc_edge_detector

Info: Assembler is generating device programming files

Info: Quartus II Assembler was successFul. 0 errars, 0 warnings
Info: Peak virtual memory: 191 megabytes
Info: Pracessing ended: Thu Oct 02 15:54:29 2008
Info: Elapsed time: 00:00:07
Info: Total CPU time (on all processors): 00:00:04

™

4. When the compilation completes successfully, click OK.

The Avalon-MM read and write converter is simulation only and does not synthesize

to HDL.

Instantiating the Design in Qsys

To instantiate your design as a custom peripheral to the Nios II embedded processor

DSP Builder Handbook

in Qsys, follow these steps:
1. Start the Quartus II software.

A

Volume 2: DSP Builder Standard Blockset

ugust 2016 Altera Corporation

Chapter 7: Using the Interfaces Library 7-17

Avalon-ST Interface

. On the File menu in the Quartus II software, click New Project Wizard and set the

following options:

a. Specify the working directory for your project by browsing to <DSP Builder
install path>\DesignExamples\Tutorials\ SOPCBuilder\ AvalonFIFO.

b. Specify a name for your project. This tutorial uses FIFO for the project name.

=" The Quartus Prime software automatically specifies a top-level design
entity that has the same name as the project. This tutorial assumes that the

names are the same.

c. Click Finish to create the Quartus Prime project.

. On the Tools menu, click Tcl Scripts and set the following options:

a. Load your design by selecting sopc_edge_detector_add.tcl in the Project
folder.

b. Click Run.

. On the Tools menu, click Qsys to display the Create New System dialog box.

a. Specify AvalonFIFO as the system name.
b. Select VHDL for the target HDL.
c. Click OK.

. Click the System Contents tab in Qsys and set the following options:

a. Expand Memories and Memory Controllers.
b. Expand On-Chip and double-click On Chip Memory (RAM or ROM).
c. Click Finish to add an on-chip RAM device with default parameters.

. Double-click the Nios II Processor module in the System Contents tab to display

the MegaWizard interface.

. Set the reset and exception vectors to use onchip_memory2_0 and click Finish to

add the processor to your system with all other parameters set to their default
values.

. Expand DSPBuilder Systems in the System Contents tab and double-click the

sopc_edge_detector_interface module to include it in your Nios II system.

You can now design the rest of your NIOS embedded processor with the standard
Qsys design flow.

For more detailed instructions, refer to “Instantiating the Design in Qsys” on
page 7-10 in the “Avalon-MM Interface Blocks Design Example”.

Avalon-ST Interface

All DSP MegaCore functions in the DSP Builder MegaCore Functions library have
interfaces that comply with the Avalon Interface Specifications. You can combine
multiple MegaCore functions easily because they use a common interface. This
section summarizes the features of the Avalon-ST interface.

August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

7-18

Chapter 7: Using the Interfaces Library
Avalon-ST Interface

DSP Builder Handbook

The Avalon Interface Specifications define how to convey data between a source
interface and a sink interface. The interface indicates the integrity of the data by a feed
forward signal, valid. The specification also defines how the MegaCore functions
may stall other blocks (backpressure) or regulate the rate at which you provide data
with a feedback sideband signal, ready.

You can configure the DSP Builder Avalon-ST Source and Avalon-ST Sink blocks
with a ready latency of 0 or 1. The ready latency is the number of cycles that a source
must wait after a sink asserts ready so that a data transfer is possible. The source
interface provides valid data at the earliest time possible, and it holds that data until
sink asserts ready. The ready signal notifies the source interface that it has sampled
the data on that clock cycle.

For the ready_latency = 0 mode, Figure 7-12 shows the interaction that occurs between
the source interface valid signal and the sink interface ready signal.

Figure 7-12. Avalon-ST Interface Timing for ready-latency=0

0o 1 2 3 4 5 6 7 8
e | || L)L L)L L L
ready ‘ ‘ ‘ | ‘
S
valid | ‘
— r ¥ — Yy v
data Dg Dy Do Dg

On cycle one, the source provides data and asserts valid even though the sink is not
ready. The source waits until cycle two and the sink acknowledges that it samples the
data by asserting ready. On cycle three, the source happens to provide data on the
same cycle that the sink is ready to receive it and so the transfer occurs immediately.
On the fourth cycle, the sink is ready but because the source does not provide any
valid data, the data bus is not sampled.

A beat is the transfer of one unit of data between a source and sink interface. This unit
of data may consist of one or more symbols, so it can support modules that convey
more than one piece of information on each valid cycle. Some modules have parallel
input interfaces and other instances require serial input interfaces. For example, when
conveying an in-phase and quadrature component on the same clock cycle. The choice
depends on the algorithm, optimization technique, and throughput requirements.

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 7: Using the Interfaces Library 7-19
Avalon-ST Interface

Figure 7-13 gives an example of a data transfer where two symbols are conveyed on
each beat—an in phase symbol I and a quadrature symbol Q. In this example, each
symbol is eight bits wide.

Figure 7-13. Packetized Data Transfer

a 10

et

ready

valid ‘ | |

slartolpacket

endofpacket

data [15:8]
[7-0]

Voo | b I g2

Qpg | Qo Qga Qg ©yq Qyp

The Avalon Interface Specifications also describe several mechanisms to support the
transfer of data associated with multiple channels. Altera recommends that you
achieve this mechanism with packet based transfers where each packet has a
deterministic format and each channel is allocated a specific field (time slot in a
packet).

Packet transfers require two additional signals that mark the start and the end of the
packet. The MegaCore functions have internal counters that count the samples in a
packet so they know which channel a particular sample is associated with and
synchronize appropriately with the start and end of packet signals. In Figure 7-13, the
in phase and quadrature components associated with three different channels convey
between two MegaCore functions.

Avalon-ST Packet Formats

You can allocate the data associated with each channel a field in a packet. To describe
the relationship between the input and the output interfaces of a MegaCore function,
you must define the packets associated with each interface.

Two parameters describe the basic format of a packet: SymbolsPerBeat, and
PacketDescription. The SymbolsPerBeat parameter defines the number of symbols
that DSP Builder presents in parallel on every valid cycle. The PacketDescriptionis a
string description of the fields in the packet.

A basic PacketDescription is a comma-separated list of field names, where a field
name starts with a letter and may include the characters a-zA-z0-9_. Typical field
names include Channell, Channel2, and Q. Field names are case sensitive and white
space is not permitted.

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

7-20 Chapter 7: Using the Interfaces Library

Avalon-ST Interface

Figure 7-14 shows an example of a generic function that has two input interfaces and
performs a transformation on the two input streams.

Figure 7-14. Generic Function

{A_Channell, A_Channel2)

i

7 p (Q_Channell, G_Channel2)

(B_Channel1, B_Channel2), ——

“ e Foracomplete description of the Avalon-ST interface, refer to the Avalon Interface

Specifications. For an example of a design that uses Avalon-ST interfaces and the

Packet Format Converter blocks, refer to AN442: Tool Flow for Design of Digital IF for
Wireless Systems.

DSP Builder Handbook

August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/an/an442.pdf
http://www.altera.com/literature/an/an442.pdf

fAhl |:| ==/ 8. Using Black Boxes for HDL Subsystems

Black Box Interfaces

The Signal Compiler block converts subsystems with blocks from the DSP Builder
block libraries into HDL code. Non-DSP Builder blocks, such as encapsulations of
your own pre-existing HDL code, require the Signal Compiler block to recognize
them as black boxes so that the conversion process does not alter them.

There are two types of black-box interface in DSP Builder: implicit and explicit.

Implicit Black Box Interface
Use the HDL Import block to infer the implicit black-box interface.

The Signal Compiler block recognizes the HDL Import block as a black box and
bypasses this block during the HDL translation.
“ e For information about the HDL Import block, refer to the block description in the
AltLab Library chapter of the DSP Builder Standard Blockset Libraries section in volume 2
of the DSP Builder Handbook.

Explicit Black-Box Interface

Use the HDL Input, HDL Output, HDL Entity, and Subsystem Builder blocks to specify
the explicit black-box interface.

Using the HDL Input, HDL Output, and HDL Entity blocks prevents Signal Compiler
from translating the subsystem into HDL. You can also use a Subsystem Builder
block to create a new subsystem and then automatically populate its ports using the
specified HDL.

Typically use the explicit black-box interface to encapsulate non-DSP Builder blocks
from the main Simulink blocksets.
“%e Forinformation about the HDL Input, HDL Output, HDL Entity, and Subsystem
Builder blocks, refer to the block descriptions in the AltLab Library chapter of the DSP
Builder Standard Blockset Libraries section in volume 2 of the DSP Builder Handbook.

HDL Import Design Example

The HDL Import block provides an interface to import a HDL module into your DSP
Builder design.

['=" To define imported VHDL use std_logic_1164 types. If your design uses any other
VHDL type definitions (such as arithmetic or numeric types), write a wrapper that
converts them to std_logic or std_logic_vector.

The following sections show an example of importing an existing VHDL design into
the DSP Builder environment with the HDL Import block.

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/hb/dspb/hb_dspb_std_lib.pdf
http://www.altera.com/literature/hb/dspb/hb_dspb_std_lib.pdf
http://www.altera.com/literature/hb/dspb/hb_dspb_std_lib.pdf

8-2 Chapter 8: Using Black Boxes for HDL Subsystems
HDL Import Design Example

Importing Existing HDL Files
To import existing HDL files into a DSP Builder design, follow these steps:

1. In MATLAB, change the current directory setting to: <DSP Builder install
path>\DesignExamples\Tutorials\BlackBox\HDLImport

2. On the File menu, click Open and select empty_MyFilter.mdl.

This design file has some of the peripheral blocks instantiated including the input
and output ports and source blocks that provide appropriate stimulus for
simulation. It is missing the main filter function, which you can import as HDL.

3. Rename the file by clicking Save As on the File menu. Name your new MDL file
MygFilter.mdl.

4. Open the Simulink Library Browser. Expand the Altera DSP Builder Blockset and
select the AltLab library.

5. Drag and drop a HDL Import block into your model.

6. Double-click on the HDL Import block to bring up the DSP Builder HDL Import
dialog box (Figure 8-1 on page 8-3).

7. In the HDL Import dialog box, enable the Import HDL radio button and click on
the Add button to select the HDL input files.

8. From the VHDL Black Box File dialog box, select the files fir_vhdl.vhd,
four_mult_add.vhd, and final_add.vhd, then click on Open.

9. Ensure that fir vhdl is specified as the name of the top-level design entity. The
fir_vhdLvhd file describes the top-level entity, which implements an 8-tap
low-pass FIR filter design.

10. Turn on the option to Sort top-level ports by name.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 8: Using Black Boxes for HDL Subsystems

HDL Import Design Example

8-3

11. Under Generate Simulink Model, click Compile to generate a Simulink

simulation model for the imported HDL design.

Figure 8-1. HDL Import Dialog Box

¥ DSP Builder HDL Import

mEX]

— =elect Design to Import
(%) Import HDL

Select the HDL input files

fir _whicll.vhd
four_mult_add.vhd
final_acdd.vhd

["" Add.
Remaove
Up

Down

illf

Enter name of top level design entity
fir_whl

(3 Import Quartus Il Project

Sort top-level ports by name

— Generate Simulink Model

Generating Simulink model........

>

Infa:
Info: Running Quartus || Analysis & Synthesis

i IIr1f0: applicable agreement for further details.
< 1l

Infa: Version 8.1 Internal Build 117 08/04/2008 SJ Full Version

Info: Copyright (C) 1991-2008 Altera Corporation. All rights reserved.
Infa: Your use of Altera Corporation's design tools,
Info: and other software and tools, and its AMPP partner logic

Infa: functions, and any output files from any of the foregoing

Info: (including device programming or simulation files), and any
Infa: associated documentation or information are expressly subject
Info: to the terms and conditions of the Altera Program License

Infa: Subscription Agreement, Altera MegaCore Function License
Info: Agreement, or ather applicable license agreement, including,
Infa: without limitation, that your use is for the sole purpose of

Info: programming logic devices manufactured by Altera and sold by
Infa: Altera or its authorized distributors. Please refer to the

logic functions

[

2]

Close

12. Progress messages issue in the HDL Import dialog box ending with the message:

Quartus Prime Analysis & Synthesis was successful.

13. The HDL Import block in the MyFilter.mdl model updates to show the ports

August 2016 Altera Corporation

defined in the imported HDL.

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

8-4 Chapter 8: Using Black Boxes for HDL Subsystems
HDL Import Design Example

14. Click OK to close the HDL Import dialog box.

15. Connect the input and output ports to the symbol (Figure 8-2). The code
generated for the HDL Import block automatically converts to a black box.

Figure 8-2. Completed Design

2
25

SignalCompiker

impuks_in o .
i1o:0 5 in= data_in(12:0} dala_in I:l
" . fir_data_in fir whdl s o
s B fir_mes Scope
s From —b-l it = Pl
Workspace

[1=1=E0

HOL Impoirt

16. Click Save on the File menu to save the MyFilter.mdl file.

Simulating the HDL Import Model using Simulink
Follow these steps to run simulation in Simulink:

1. Double-click on the manual switch connected to the Tsamp block which feeds into
the fir data_ininput port.

This toggles the switch and sets the impulse_in stimulus, which verifies the
impulse response of the low-pass filter.

2. Click Start on the Simulation menu in your model window.
3. Double-click on the Scope block to view the simulation results.

4. Click the Autoscale icon to resize the scope. This scales both axes to display all
stored simulation data until the end of the simulation (which is set to 500*Tsamp
for this model).

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 8: Using Black Boxes for HDL Subsystems 8-5
HDL Import Design Example

5. Click the Zoom X-axis icon and drag the cursor to zoom in on the first 70 X-axis
time units.

Figure 8-3 on page 8-5 shows the simulation results.

Figure 8-3. Simulink Simulation Results for the Impulse Stimulus

data_in

6. Double-click on the manual switch connected to the Tsamp block to select the
chirp_in stimulus—a sinusoidal signal the frequency of which increases at a linear
rate with time.

7. Click Start on the Simulation menu in your model window.
8. Double-click on the Scope block to view the simulation results.
9. Press the Autoscale icon to resize the scope.

Figure 8—4 shows the simulation results.

Figure 8-4. Simulink Simulation Results for the Chirp Stimulus

data_in

data_out

iall]

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

8-6

Chapter 8: Using Black Boxes for HDL Subsystems
Subsystem Builder Design Example

The HDL import tutorial is complete. You can optionally compile your model for
synthesis or perform RTL simulation on your design by following similar procedures
to those described in the “Getting Started”.

Subsystem Builder Design Example

I =
i=

The Subsystem Builder block makes it easy for you to import the input and output
signals for a VHDL or Verilog HDL design into a Simulink subsystem.

If your HDL design contains any LPM or megafunctions that the HDL. Import block
does not support, use the Subsystem Builder block. The Subsystem Builder block
also allows you to create your own Simulink simulation model from non-DSP Builder
blocks for faster simulation speed.

Unlike the HDL Import block, the Subsystem Builder block does not create a Simulink

simulation model for the imported HDL design.

For more information about the Subsystem Builder block, refer to the block
description in the AltLab Library chapter in the DSP Builder Standard Blockset Libraries
section in volume 2 of the DSP Builder Handbook.

In addition to porting the HDL design to a Simulink subsystem, you must create the
Simulink simulation model for the block. The simulation models describes the
functionality of the particular HDL subsystem. The following options are available to
create Simulink simulation models:

m Simulink generic library

m Simulink blocksets (such as the DSP and Communications blocksets)
m DSP Builder blockset

m MATLAB functions

m S-functions

You must add a Non-synthesizable Input block and a Non-synthesizable Output
block around any DSP Builder blocks in the subsystem.

The following section shows an example that uses an S-function to describe the
simulation models of the HDL code.

Creating a Black Box System

DSP Builder Handbook

To create a black-box system, follow these steps:

1. In MATLAB, change the current directory to: <DSP Builder install path>
\DesignExamples\Tutorials\BlackBox\SubSystemBuilder

2. Click Open on the File menu. Select the filter8tap.mdl file and click OK.

3. Open the Simulink Library Browser and expand the AltLab library under the
Altera DSP Builder blockset.

4. Drag a Subsystem Builder block into your model.

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/hb/dspb/hb_dspb_std_lib.pdf

Chapter 8: Using Black Boxes for HDL Subsystems
Subsystem Builder Design Example

8-7

5. Double-click the Subsystem Builder block.

The Subsystem Builder dialog box displays (Figure 8-5).

Figure 8-5. Subsystem Builder Dialog Box

B DSP Builder - Subsystem Builder |- |

3

1. Select HOL file fir _whidl whdl

-

Build fir_vhdl in model fiterStap

Entity fir_whdl |
simulink _clock : in - 1 hit(s)
simulink _sclr in - 1 bit(=)
data_in: in - 16 bit(=)
data_out © out - 33 hit(s)
-

Current System fiterdtap

6. In the dialog box, browse for the fir_vhdl.vhd file and click Build.

This action builds the subsystem and adds the signals for the fir_vhdl subsystem

to the symbol in your filter8tap.mdl model. The Subsystem Builder dialog box
automatically closes.

7. Connect the ports (Figure 8-6).

Figure 8-6. filter8tap Design

-/
25

S_ 1 SignalZompiler E | isimulink_seir data_in > I:l
=] =
P GHD i odala_oul 032?_! Tala oul
a_in i
_ Crutput Scope
= double i15:0 EEn lir whell
L R : Input
= Logical Cata Type Conversion
Step2 Cpem@tar

August 2016 Altera Corporation

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

8-8 Chapter 8: Using Black Boxes for HDL Subsystems
Subsystem Builder Design Example

8. Double-click on the fir vhdl symbol. The filter8tap/fir_vhdl subsystem opens
(Figure 8-7).

Figure 8-7. Library: filter8tap/fir_vhdl Window

COw> bt > € os2:0 £ {1)

iimulink_=clr simulink scl data out odata_out fir_whdl.whd
HOL Entity
C2w 50 3
idata_in data_in

The subsystem contains two HDL Input blocks (simulink sclrand data_in) and a
HDL Output block (data_out). Each of these blocks in turn connects to a subsystem
input or output. DSP Builder also creates a HDL. Entity block to store the name of
the HDL file and the names of the clock and reset ports.

"=~ The clock is handled implicitly and no port is explicitly created in the
subsystem.
9. Leave your model window open for use in the next section.

In the next section, you build the simulation model that represents the
functionality of this block in your Simulink simulations.

Building the Black-Box SubSystem Simulation Model

For this example, you use a S-function C++ simulation model to represent the 8-tap
FIR filter block. To create your model, follow these steps:

1. In the Simulink Library Browser, expand the Simulink folder.

2. From the User-Defined Functions library, drag and drop a S-Function block into
your model window.

3. Double-click the 8-Function block to display the Function Block Parameters:
S-Function dialog box.

4. In the Block Parameters dialog box, change the S-Function name to Sfir8tap and
enter the parameters -1 3962 4817 5420 5733 5733 5420 4817 3962.

The Sfirstap function is a C++ Simulink S-Function simulation model for the
8-tap Fir filter block.

The first parameter refers to the sampling rate (-1 indicates it inherits the sampling
rate from the preceding block) and the rest of the parameters represent the eight
filter coefficients.

=" Leave the S-function modules parameter with its default value.

5. Click the Edit button to view the code that describes the S-Function.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 8: Using Black Boxes for HDL Subsystems 8-9
Subsystem Builder Design Example

= 1If the code does not appear automatically, click Browse and select the
Sfir8tap.CPP file.
6. Scroll down in the Sfir8tap.CPP file to the S-function methods section.

The following code shows the Simulink C++ S-Mex function code that designs a
Simulink filter simulation model:

/*¥====================%
* g-function methods *
¥====================%/

* Abstract:

* The sizes information is used by Simulink to determine the S-function
* block's characteristics (number of inputs, outputs, states, etc.).
*/

static void mdlInitializeSizes (SimStruct *S)

{

/* See sfuntmpl.doc for more details on the macros below */

ssSetNumSFcnParams (S, 9); /* Number of expected parameters */

if (ssGetNumSFcnParams (S) != ssGetSFcnParamsCount (S)) {

/* Return if number of expected != number of actual parameters */
return;

// Set DialogParameters not tunable
const int iMaxssGetSFcnParamsCount = ssGetSFcnParamsCount (S) ;
for (int p=0;p<iMaxssGetSFcnParamsCount;p++)

{

ssSetSFcnParamTunable (S, p, 0);
}
if (!ssSetNumInputPorts (S, 1)) return;
ssSetInputPortWidth(S, 0, 1);
ssSetInputPortDataType (S, 0, SS DOUBLE) ;
if (!ssSetNumOutputPorts (S, 1)) return;
ssSetOutputPortWidth (s, 0, 1);
ssSetOutputPortDataType (S, 0, SS DOUBLE) ;
ssSetNumContStates (S, 0);
ssSetNumDiscStates (S, 1);
ssSetNumSampleTimes (S, 1);
ssSetNumRWork (S, 0);
ssSetNumIWork (S, 0);
ssSetNumDWork (S, DYNAMICALLY SIZED); // reserve element in the

ssSetNumModes (S, 0) ; // pointers vector to store a C++ object

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

8-10 Chapter 8: Using Black Boxes for HDL Subsystems
Subsystem Builder Design Example

ssSetNumNonsampledZCs (S, 0);
ssSetOptions (S, 0);

}

During simulation, Simulink invokes certain callback methods from the S-function.
The callback methods are subfunctions that initialize, update discrete states, and
calculate output. Table 8-1 shows the design example callback methods.

Table 8-1. S-Function Callback Methods

Callback Method Description
mdlInitializeSampleTimes Specify the sample rates at which this S-function operates.
mdlStart Initialize the vectors of this S-function.
mdlOutputs Compute the signals that this block emits.
mdlUpdate Update the states of the block.
mdlTerminate Perform any actions required at termination of simulation.

1. Atthe MATLAB command prompt, type:
mex Sfir8tap.CPP +

The mex command compiles and links the source file into a shared library
executable in MATLAB, Sfir8tap.mexw32. The extension is specific to 32-bit
version of MATLAB run in Windows.

2. Close the editor window and click on OK to close the Function Block Parameters
dialog box.

3. Inthe filter8tap/fir_vhdl window, connect the input port of the S-function block to
the data_in block, and connect the output port of the S-function block to the
data_out block (Figure 8-8).

Figure 8-8. S-Function Block Connection

Cw> b >

sirmulink_sclr simulink_sc

fir_wholwhd

50 Sfiidtap % om0 & —w{ 1) HOL Entity

iata_in data_in g data_oul odata_out
S-Function

' You do not need to connect the simulink sclr block. The HDL Entity block
automatically maps any input ports named simulink clock in the VHDL
entity to the global clock signal, and any input ports named simulink sclr
to the global synchronous clear signal.

4. Click Save on the File menu to save the filter8tap.mdl file.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 8: Using Black Boxes for HDL Subsystems 8-11
Subsystem Builder Design Example

Simulating the Subsystem Builder Model
To run the Simulink simulation, follow these steps:

1. Click Start on the Simulation menu in the filter8tap.mdl window to begin the
simulation.

2. Double-click the Scope block to view the simulation results. Click Autoscale to
resize the scope.

3. Click the Zoom X-axis icon and use the cursor to zoom in on the first 22 x-axis time
units.

Figure 8-9 shows the simulation results.

Figure 8-9. Simulink Simulation Results of 8-Tap FIR Filter, Scope Window

data_in

data_out

10000

RO00

ime offset. 0

Il=~ Because the input is a pulse, the simulation results show the impulse response of the
8-tap FIR filter, which translates to the eight coefficient values. You can change the
input stimulus to verify the step and random response of the filter.

Adding VHDL Dependencies to the Quartus Prime Project and ModelSim

The VHDL file is dependent on two other VHDL files. The Quartus Prime software or
ModelSim do not examine these two files, and compilation either fails or gives
unexpected results. To resolve this issue, follow these steps:

1. Double-click on the Signal Compiler block and click Compile. Ignore the result
for now. This action creates a DSPBuilder_filter8tap_import directory in the
directory containing your design.

L=~ Alternatively, you can create the directory DSPBuilder_filter8tap_import
directly.

2. Copy the extra_add.tcl and extra_add_msim.tcl files from the original design
directory to the DSPBuilder_filter8tap_import directory.

The extra_add.tcl file adds final_add.vhd and four_mult_add.vhd to the Quartus
Prime project, while extra_add_msim.tcl compiles them in ModelSim when your
design is run using the TestBench block. The Quartus Prime software executes any
files ending with _add.tcl when it creates the project. ModelSim executes files ending
with _add_msim.tcl when it compiles your design testbench.

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

8-12 Chapter 8: Using Black Boxes for HDL Subsystems
Subsystem Builder Design Example

Simulate the Design in ModelSim
To test the simulation model against the HDL in ModelSim, follow these steps:

1. In the Simulink Library Browser, expand AltLab library under Altera DSP
Builder Blockset.

2. Drag a TestBench block into your model.
3. Double-click on the TestBench block and click Compare against HDL.
When the comparison completes successfully an Exact Match message issues in

the TestBench Generator dialog box.

= 1If you want to use ModelSim directly, click on the Advanced tab, turn on the Launch
GUI option, and then click Run ModelSim.

This completes the Subsystem Builder tutorial. You can optionally compile your
model for synthesis (“Getting Started”).

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Q' 9. Using Custom Library Blocks

A parameterizable custom library block is a Simulink subsystem in which
DSP Builder primitives describe the block functionality. This design flow also
supports parameterizable hierarchical subsystem structures.

Altera provides an example of a custom library block, <DSP Builder install path>\
DesignExamples\Tutorials\BuildingCustomLibrary\top.mdl. (Figure 9-1).

Figure 9-1. top.mdl Example

I
1
ANV e
I ey dou
Repeating Uni Delay [T —#ena Sutpul
Sequance RamBaszedDe ko
— B rlin
Polay 10 dout —w<€ 070 |——M
1 —ena Ciutput
RamBassdDelay
L P din
Deby 15 gout
1 —Wena Ciutput?
RamBasedlelay2
Scope

The RamBasedDelay block that top.mdl uses, is an example of a custom
parameterizable Simulink block. The library file MyLib.mdl defines it. The
RamBasedDelay block has one parameter, Delay.

Creating a Custom Library Block

To create your own custom block, follow these steps:
. Creating a Library Model File
. Building the HDL Subsystem Functionality
. Defining Parameters Using the Mask Editor

1
2
3
4. Linking the Mask Parameters to the Block Parameters
5. Making the Library Block Read Only

6

. Adding the Library to the Simulink Library Browser

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

9-2 Chapter 9: Using Custom Library Blocks
Creating a Custom Library Block

Creating a Library Model File

To create a Library Model File for your custom block, follow these steps:

1. In MATLAB, change the current directory setting to: <DSP Builder install
path>\DesignExamples\Tutorials\BuildingCustomLibrary.

2. Open the Simulink Library Browser. On the File menu in the Simulink Library
Browser, point to New and click Library to open a new library model window.

3. Expand the Simulink Ports & Subsystems library in the Simulink Library Browser
and drag a Subsystem block into your model.

4. Click on the Subsystem text below the block and rename the block DelayFIFO.

"=~ You should always rename a block representing an HDL Subsystem to
ensure that all the generated entities in a hierarchical design are unique.

5. Click Save on the File menu and save the library file as NewLib.mdl.

Building the HDL Subsystem Functionality
To add functionality to the DelayFIFO block, follow these steps:

1. Double-click on the DelayFIFO block to open the NewLib/DelayFIFO subsystem
window.

2. Drag and drop a Shift Taps block from the Storage library in the Altera DSP
Builder Blockset into your model window. Insert the Shift Taps block between
the input and output blocks (Figure 9-2).

Figure 9-2. Shift Taps Block

i E—) SE—

In1 Cratl

Shift Taps

3. Double-click the shift Taps block to open the Block Parameters dialog box.
Table 9-1 shows the parameters to set.

Table 9-1. Parameters for the Shift Taps Block (Part 1 of 2)

Parameter Value
Main Tab
Number Of Taps 1
Distance Between Taps 10

Optional Ports and Settings Tah
Use Shift Out Port off
Use Enable port: On

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 9: Using Custom Library Blocks 9-3
Creating a Custom Library Block

Table 9-1. Parameters for the Shift Taps Block (Part 2 of 2)

Parameter Value
Use Dedicated Circuitry On
Memory Block Type Auto

4. Click OK to close the Block Parameters dialog box.

5. Add an Input block (In2) from the Simulink Ports & Subsystems library and
connect it to the ena port on the shift Taps block.

6. Rename the blocks (Table 9-2).

Table 9-2. Renaming the Blocks

0ld Name New Name
In1 InDin
In2 InEna
Shift Taps DRB
Out1 OutDout

7. Click Save on the File menu.

Figure 9-3 shows the completed DelayFIFO subsystem.

Figure 9-3. DelayFIF0 Subsystem

I el

In i | tap 10— 1)
ana CutDout
InEna ORE

Figure 9—4 shows the NewLib library model that now shows the input and output
ports defined in the DelayFIFO subsystem.

Figure 9-4. NewLib Model

InDin
CuiDoul B
InEna

Dl FIFO

Defining Parameters Using the Mask Editor

Use the Mask Editor to create parameters for the DelayFIFO block by following these
steps:

1. Right-click the DelayFIFO block in the NewLib model and click Mask Subsystem
on the pop-up menu.

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

Chapter 9: Using Custom Library Blocks
Creating a Custom Library Block

2. In the Mask Editor dialog box set the parameters (Table 9-3 on page 9—4).

Table 9-3. Parameters for the Mask Editor

Drawing Commands

Parameter Value

Icon Tab

Frame Visible

Transparency Opaque

Rotation Fixed

Units Autoscale
port_label(‘input’,1,'din’);
port_label('input',2,'ena’);

port_label('output’,1,'dout");
fprintf('Delay %d',d)

Parameters Tab
Prompt Delay
Variable d

Documentation Tab

Mask type

SubSystem AlteraBlockSet

Mask description

RAM-Based Delay Element
Altera Corporation

3. Click OK in the Mask Editor dialog box.

4. Double-click on the DelayFIFO block in your NewLib model to display the Block

Parameters dialog box.

5. Specify a Delay of 5.

6. Click OK in the Block Parameters dialog box.

7. Click Save on the File menu to save your library model.

For more information about the Mask Editor, refer to the MATLAB Help.

Linking the Mask Parameters to the Block Parameters

DSP Builder Handbook

To pass parameters from the symbol’s mask into the block, use a model workspace

variable, by following these steps:

1. Double-click the DRB block in the NewLib/DelayFIFO window to open the Block

Parameters dialog box.

2. Copy the mask parameter variable name d from the Parameters tab of the Mask
Editor into the Distance Between Taps field in the Block Parameters dialog box.

3. Click OK to close the Shift Taps Block Parameters dialog box.

4. Close your model window.

Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 9: Using Custom Library Blocks

Creating a Custom Library Block

9-5

Making the Library Block Read Only

Make a library block read only so that you do not accidentally edit it in a design

model. To set the read and write permissions, follow these steps:

1.

Adding the

Right-click the DelayFIFO block in the NewLib model and click SubSystem
Parameters on the pop-up menu to display the Block Parameters dialog box.

In the Read/Write permissions list, select ReadOnly.

=~ The ReadWrite option allows edits from both the library and the design.
The NoReadOrWrite option does not allow Signal Compiler to generate
HDL for the design. If you want to modify a library model, open your
model, click Unlock Library on the File menu and change the read and
write permissions in the Block Parameters dialog box. Remember to reset
ReadOnly after changing the library model. Your changes are

automatically propagated to all instances in your design.

Click OK to close the Block Parameters dialog box.

Click Save on the File menu to save your library model.

Library to the Simulink Library Browser

You can add a custom library to the Simulink library browser by creating a slblocks.m
file. This file must be in the same location as your library file and both files must be in

search path for MATLAB. To create this file, follow these steps:

1.

August 2016 Altera Corporation

On the File menu in MATLAB, point to New and click M-File to open a new editor

window.

Enter the following text in the editor window:

function blkStruct = slblocks

blkStruct.Name = ['Custom Library DSP Builder'];
blkStruct.OpenFcn = 'NewLib';
blkStruct.MaskDisplay = '';

% Define the Browser structure array, the first
element contains the information for the Simulink
% block library and the second for the Simulink

% Extras block library.

Browser (1) .Library = 'NewLib';

Browser (1) .Name = 'Custom Library DSP Builder';
Browser (1) .IsFlat = 0;

blkStruct.Browser = Browser;

o\°

% End of slblocks

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

9-6 Chapter 9: Using Custom Library Blocks
Synchronizing a Custom Library

3. Save the M-file with the file name slblocks.m in the same directory as
NewLib.mdl. The next time that you display the Simulink library browser the
custom library is available (Figure 9-5).

Figure 9-5. Custom Library in the Simulink Library Browser

X

® Simulink Library Browser = O ES
File Edit wiew Help

0= - dh |

DelayFIFO: FAM-Based Delay Element
Altera Corporation

i T simulink &)l e
- | Altera DSP Builder Blockset [=]||== e _:DE yHFD

¥ W Communications Blockset
B Control System Toolbox
W Custom Library DSP Buildsr
W Image Acquisition Toolbox il |
3 — 9
Ready 4

You can drag and drop a block from your custom library in the same way as from any
other library in the Simulink library browser.

You can create a custom library with multiple blocks by creating the required blocks
in the same library file.

“ e For more information about M-files, refer to the MATLAB Help. A template
slblocks.m file with explanatory comments is at <MATLAB install path>\toolbox\
simulink\blocks\slblocks.m.

Synchronizing a Custom Library

A custom library can contain MegaCore functions, HDL import, or state machine
editor blocks. If you move or copy your design, synchronize your model containing
these blocks by using the following command:

alt dspbuilder refresh user library blocks
L=~ This command calls automatically when you use either of the commands:

alt dspbuilder refresh hdlimport
or

alt dspbuilder refresh megacore

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

==/ 10. Adding a Board Library

This chapter describes how to create and build a custom board library to use inside
DSP Builder using built-in board components.

Each board library is defined by a XML board description file. This board description
file contains all the board components and their FPGA pin assignments.

Creating a New Board Description

To add additional boards create new board description files. You only need to create a
board description file for each new board and run a MATLAB command to build it
into a DSP Builder Library. You can use the existing components or create your own
custom components.

Predefined Components

Predefined components are in the following folder:
<install dir>\quartus\dsp_builder\lib\boardsupport\components

There is a single XML file, <component_name>.component, that describes each
separate board component. This file defines its data type, direction, bus width, and
appearance. The file also contains a brief description of the component.

Component Types

There are three main types of component: single bit, fixed size bus, and selectable
single bit.

Single Bit Type

These components have a single bit with one FPGA pin assigned to each component.
The components are either inputs or outputs and you cannot change them. DSP
Builder offers the following single-bit predefined components:

® Red and green LEDs (LEDO to LED17 and LEDGO to LEDG8)
m Software switches (SW0 to SW17)

m User push buttons (PBO to PB3)

m Reset push buttons (I0_DEV_CLRn and USER_RESETN)

m RS5232 receive output and RS232 transmit input pins (RS232Rout and RS232Tin)

Fixed-Size Bus Type

These components have a fixed-sized group of same type (either input or output) pins
with one FPGA pin assigned to each bit of the bus. DSP Builder offers the following
fixed-size bus type predefined components:

m 12-bit analog-to-digital converter (A2D1Bit12 and A2D2Bit12)

m 14-bit analog-to-digital converter (A2D1Bit14 and A2D2Bit14)

August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

10-2

Chapter 10: Adding a Board Library
Creating a New Board Description

14-bit digital-to-analog converter (D2A1 and D2A2)
8-bit dual in-line package switch (DipSwitch)

7-Segment display with a decimal point (SevenSegmentDisplay0 to
SevenSegmentDisplayl)

Simple 7-Segment display without a decimal point (Simple7SegmentDisplay0 to
Simple7SegmentDisplay7)

Selectable Single Bit Type

These components have a single bit, you can select the pin from a group of predefined
FPGA pins. Furthermore, the pin can be set as either input or output. DSP Builder
offers the following selectable single-bit predefined components:

Debug pins (Debug? and DebugB)
Prototyping pins (PROTO, PROTO1 to PROTO3)
Evaluation input pin (EvalIoIn)

Evaluation output pin (EvalIoOut)

Component Description File

To define a new component create a corresponding component file,
<component_name>.component, in the same folder as the predefined components.

The component description file contains a root element component that contains
several attributes and subelements that define the component. The component has the
following attributes:

displayname= Specifies the name of the component, which the board description
file references.

direction= Specifies the direction of the signal. It can have the value of Input or
Output. You can omit this attribute for the Selectable Single Bit Type, because it is
set later.

type= Specifies the data type of the signal. The type can be BIT, INT, or UINT.
followed by the size in square brackets. For example, "BIT[1,0]" defines a single
bit while "UINT [12, 0] " is a 12-bit unsigned integer.

The component subelements have the following definitions:

DSP Builder Handbook

<documentation> text </documentation> This subelement contains text
describing the component and one of the following variable that define how the
pin name, or list of pin-names appears in the new board library:

m 3pinname$ for single bit type

m 3pinlist$ for selectable single bit type

m %indexedpinliat% for fixed size bus type

<display [attributes]> This subelement has the following attributes:
m icon= specifies the image file name for the component

m width= specifies the display width for the image file

m height= specifies the display height for the image file

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 10: Adding a Board Library 10-3
Creating a New Board Description

I'=" For components without an image, you can omit the icon display attribute and define
a visual representation using the plot and fprintf commands. For example:

<display width="90" height="26">
plot ([0 19 20 21 22 21 20 19], [0 01 0 O O -1 0]);
fprintf ('EVAL IO OUT \n%pinname% ') ;

</display>

Example Component Description File
The following code shows an example of a component description file:

<component displayname="EVAL IO OUT" direction="Output"
type="BIT[1,0]">

<documentation>
Prototyping Area Pin Single Bit Output
$pinlist%
</documentations>
<display width="90" height="26">
plot ([0 19 20 21 22 21 20 19],[0 0 1 0 0 O -1 0]);
fprintf ('EVAL IO OUT \n%pinname$% ') ;
</display>

</component >

Board Description File
Create the board description file, <board_name>.board, in the following folder:
<install dir>\quartus\dsp_builder\lib\boardsupport\boards

The board description file has header and board description sections.

Header Section

This section contains the following line that defines the XML version and character
encoding:

<?xml version="1.0" encoding="UTF-8"?>

In this case, the document conforms to the 1.0 specification of XML and uses the
ISO-8859-1 (Latin-1/West European) character set.

You should not modify this line.

Board Description Section

The main body of the document is a root element board that has several attributes and
subelements that define the details of the board.

<board Attributesx>
<displayname> Text </displayname>

<component Attributes />

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

10-4 Chapter 10: Adding a Board Library
Creating a New Board Description

<component Attributes />
<configuration Attributess>
<devices> Attributes>
</devices>
<option Attributess
</option>
</configurations>

</boards>

[l =~ Thelast line in the file must be a closing tag for the root element board </board>.

The board attributes have the following definitions:
B uniquename= A unique name to reference the board.

B family= Device family of the FPGA on board (assuming only one device is on the
board).

The board must contain a displayname subelement containing text that describes the
board. For example:

<displayname>Cyclone II XYZ Board</displayname>

The following component subelements declare the components:
m Single bit type examples:

<component name="LEDO" pin="Pin E5"/>
<component name="LED1" pin="Pin B3"/>

where attribute name defines the name of the component on the board and pin
defines the FPGA pin to which the component is connected. The name must match
one of the predefined components and you can use it only once per board.

m Fixed-size bus type example:

<component name="DipSwitch" label="S1">
<pin location="Pin AC13"/> <!-- LSB -->
<pin location="Pin A19"/>
<pin location="Pin C21"/>
<pin location="Pin C23"/>
<pin location="Pin AE18"/>
<pin location="Pin AE19"/> <!-- MSB-->
</component >

where attribute name defines the name of the component on the board and label
defines the name of the component as it appears in Simulink. For a component
with width n, there must be 1 pin subelements. The pin location must be a valid
FPGA pin name. The pin ordering is listed from LSB to MSB, with LSB on top of
the list.

m Selectable single bit type example:

<component name="PROTO1">

<pin location="Pin C3"/>

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 10: Adding a Board Library 10-5
Creating a New Board Description

<pin location="Pin D2"/>
<pin location="Pin L3"/>
<pin location="Pin J7"/>
<pin location="Pin J6"/>
<pin location="Pin K&6"/>
</component >
This element has the same format as the fixed-size bus type, but you can choose
each pin element from a specified list of available FPGA pin locations.
The configuration element defines the board configuration block. For example:
<configuration icon="dspboard2c35.bmp" width="166" height="144">
<devices jtag-code="0x020B40DD">
<device name="EP2C35F672C6" />
</devices>
<!-- Input clock selection list -->
<option name="ClockPinIn" label="Clock Pin In">
<pin location="Pin N2"/>
<pin location="Pin N25"/>
<pin location="Pin AE14"/>
<pin location="Pin AF14"/>
<pin location="None"/>
</option>
<!-- Global Reset Pin --»>
<option name="GlobalResetPin" label="Global Reset Pin">
<pin location="Pin Al4"/>
<pin location="Pin AC18"/>
<pin location="Pin AEl6"/>
<pin location="Pin AE22"/>
<pin location="None"/>
</option>
</configurations>

The configuration attributes have the following definitions:

m icon = the image file to be used for the board configuration block
®m width = the width of the image

B height = the height of the image

The devices subelement has the following attributes:

B jtag-code = the JTAG code of the FPGA device

B device name = the device name of the FPGA used on the board
Each option subelement has the following attributes:

B name = the name of the option (clock or reset pin)

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

10-6 Chapter 10: Adding a Board Library
Building the Board Library

B label =labels that identifies the pins on the blocks
B pin location = a list of selectable clock or reset pins

e For more examples, refer to any of the existing board description files.

Building the Board Library
To build the board library:

1. Start DSP Builder in MATLAB, on Windows OS, click on Start, point to All
Programs, click Altera <version>, click DSP Builder, and click Start in MATLAB
version XX.

2. Run the following command in the MATLAB command window board library:

alt dspbuilder createComponentLibrary

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

fAN IERA 11. Using the State Machine Library

This chapter describes how to implement a state machine in DSP Builder.
L=~ Use the state Machine Editor block in new designs.

The design example, fifo_control_logic.mdl, contains a simple state machine to
implement the control logic for a first-in first-out (FIFO) memory structure.

The design files for this example are in the <DSP Builder install path>\
DesignExamples\Tutorials\StateMachine\ directory.

Figure 11-1 shows the top-level schematic for the FIFO design example.

Figure 11-1. FIFO Design Example Top-Level Schematic

> FIFO Example
SignalSompiler
= cala _in
M dala_inl
—P'I 7.0 Pl
. data_in — el _ackd (7200
Uni Rand DFRARM =5
" Number L gl sy @0 words) 52 |
o P A data_out
Dual-Port RAK
reset empty P bt | emply
Siep boal eEed . full emply Taimoud
pcount_in =]
Idle <_obit | full
Tull
S L B e 4 data nulz
pop 4
el) ploush Push_not_ful pa klke
push fifo_contraller - B Coune H detasnut
Slep2
The state machine in this design example feeds the control inputs of a Dual-Port RAM
block and the inputs of an address counter.
The state machine has the following operation:
m When you assert the push input and the address counter is less than 250, the
address counter increments and a byte of data writes to memory.
m When you assert the pop input and the address counter is greater than 0, the
address counter decrements and a byte of data reads from memory.
m When the address counter is equal to 0, the empty flag asserts
B When the address counter is equal to 250, the full flag asserts.
August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

11-2 Chapter 11: Using the State Machine Library
Using the State Machine Editor Block

Using the State Machine Editor Block

To use the State Machine Editor block to create the FIFO controller in the design
example, follow these steps:

1. Adda State Machine Editor block to your Simulink design and assign it a new
name. Figure 11-2 shows the default State Machine Editor block. In this
example, the block is named fifo controller.

Figure 11-2. fifo_controller State Machine Editor Block

Graphical State Machine Editor

fiho _contioler

& You should save you model and change the default name of the State
Machine Editor block before you define the state machine properties.

2. Double-click the fifo_controller block to open the State Machine Editor in the
Quartus II software (Figure 11-3).

Figure 11-3. Quartus Il State Machine Editor Window

B Quartus Il State Machine Editor - [fifo_controller.smf] E]@
File Edit Yiew Tools Help
= fnput Table fiw e Oufpuf Table x
Input Pork Cukput Pork
W ceriork
B reset

ke
@&,
@

B

%

=
—

; »
Pl plemn @k i !
* Optian [Setting

i |1 | Resst Mode |Synchronous
% E__ Reset Active Level Active High
=

o
g ﬁeneral;{\ States)\ Inputz)\ Outputs }\ Tranzitions)\ Actions ;"

Type IHessage

System
Ready

3. On the Tools menu in the Quartus II State Machine Editor, point to State Machine
Wizard and click Create a new state machine design.
DSP Builder Handbook August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 11: Using the State Ma

chine Library 11-3

Using the State Machine Editor Block

4.

7.

The first page of the wizard allows you to choose the reset mode, whether the reset
is active-high or active-low, and whether the outputs are registered. Accept the
default values (synchronous, active-high, registered outputs) and click Next to
display the Transitions page of the wizard.

Delete the default state names (statel, state2, state3) and type the following
new state names:

B empty
m full
m idle

B pop not empty
m push not full

Delete the default input port names (inputl, input2) and type the following new
input port names:

® count in[7:0]
® pop
® push

"=~ Do not change the clock and reset port names. The count_in port must be
defined as an 8-bit vector to allow count values up to 250.

Edit the state transitions by entering the statements (Table 11-1).

Table 11-1. FIFO Controller Transitions

Source State Destination State Condition

pop_not_empty

pop_not_empty

pop==1)&(count_in!=0)

pop_not_empty

full

push==1)&(count_in==250)

empty push_not_full (push==1)&(count_in!=250)
empty idle (push==0)&(pop==0)
full idle (push==0)&(pop==0)
full pop_not_empty (pop==1)
idle empty (pop==1)&(count_in==0)
idle push_not_full (push==1)
idle pop_not_empty (pop==1)&(count_in!=0)
idle full (pus =1)&(count_in==250)
pop_not_empty idle (push==0)&(pop==0)
pop_not_empty empty (pop==1)&(count_in==0)
pop_not_empty push_not_full (push==1)&(count_in!=250)

(

(

(

(

(

(

(

push_not_full idle push==0)&(pop==0)
push_not_full empty pop==1)&(count_in==0)
push_not_full push_not_full push==1)&(count_in!=250)
push_not_full full push==1)&(count_in==250)
push_not_full pop_not_empty pop==1)&(count_in!=0)

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

11-4 Chapter 11: Using the State Machine Library
Using the State Machine Editor Block

=~ The transitions are validated on entry and must conform with Verilog HDL

syntax.

Figure 11-4 shows the Transitions page after you define the states, inputs, and
transitions.

Figure 11-4. State Machine Editor Wizard Transitions Page

P . N
State Machine Wizard: Transitions [page 2 of 4] %
States: |nput ports:

State Name A Input Pork Mame ||
|1 |emphy [l 1 |clock, [Tl
(2 |full X 2 |reset |
3 |ide o |3 feount_in[7:0]
(4 |pap_not_empty 4 Ipop
|5 {push_nat_ful 5 _|push
& |=< new skate == || & |«<< new input port > [»
£ | it | 2 £ | | [
State tranzitions:

Source State [Destination State [Transikion | |
1 | empty |push_nat_full !r(push==1__);3_:.{_cuunt1in_!=25tlj
2 | empty lidle (push==0)&(pap==0)
3 | ful idle (push==0j8(pop==0)
] ful |pop_nat_empty |ipop==1}
5 | idle |empty {(pop==1)&{rounit_in==0]
5] idle push_nat_ful {push==1) |
7 | idle |pop_not_empty | {pop==1)&{count_in!=0) |
¥ Transition to source state if nat all transition conditions are specified

< Back I MHext > | Finizh Cancel

8. Click Next to display the Actions page. Delete the default output port name
(outputl) and enter the following new output port names:

m out empty

m out full

m out idle

B out pop not empty

m out push not full

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 11: Using the State Machine Library
Using the State Machine Editor Block

11-5

9. Specify the output logic for each output port by specifying the action conditions to
set each output port to 1 when the state is true and 0 for all other states

(Table 11-2).

Table 11-2. FIFO Controller Output Actions

Output Port Output Value In State
out_empty 1 empty
out_full 1 full
out_idle 1 idle
out_pop_not_empty 1 pop_not_empty
out_push_not_full 1 push_not_full
out_empty 0 full
out_empty 0 idle
out_empty 0 pop_not_empty
out_empty 0 push_not_full
out_full 0 empty
out_full 0 idle
out_full 0 pop_not_empty
out_full 0 push_not_full
out_idle 0 empty
out_idle 0 full
out_idle 0 pop_not_empty
out_idle 0 push_not_full
out_pop_not_empty 0 empty
out_pop_not_empty 0 full
out_pop_not_empty 0 idle
out_pop_not_empty 0 push_not_full
out_push_not_full 0 empty
out_push_not_full 0 full
out_push_not_full 0 idle
out_push_not_full 0 pop_not_empty

Figure 11-5 shows the Actions page after you define the output ports, and action.

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

11-6 Chapter 11: Using the State Machine Library
Using the State Machine Editor Block

Figure 11-5. State Machine Editor Wizard Actions Page

State Machine Wizard: Actions [page 3 of 4]

Dutput ports:;
Dutput Pork Mame

(1 | out_empty
2 | out_full
(3 [out_idle
(4| out_pop_not_smpky
3| out_push_nat_Full
6 | << new output port ==
£ 2
Action conditions:

Dukpuk Pork Oukput Value | In State | Additional Cond|
(1 | out_empty |1 empty | == condition »>
2 | out_full [1 [Full | <= rondition »>
13| out_idle |1 fidle | <= condition =
L out_pop_nak_empky |1 |Pop_nok_emply =< condition >
(5| out_push_not_full [1 |push_not_Full | == condition ==
& | oub_emphy |0 {Full | <= condition == |
< | > |

< Back | Mext » | Finizh Cancel

10. Click Next to display the Summary page. Check that the summary lists the five
states (empty, full, idle, pop not_empty, and push_not_full), the five input ports
(clock, count_in[7:0], pop, push, and reset), and the five output ports
(out_empty, out full, out idle, out pop not full, and out push not full).

11. Click Finish to complete the state machine definition. The state machine displays
graphically in the State Editor window (Figure 11-6 on page 11-6).

Figure 11-6. Graphical fifo_controller State Machine Diagram

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 11: Using the State Machine Library 11-7
Using the State Machine Editor Block

"=~ DSP Builder marks the first state that you enter in the wizard as the default
state. This state is the empty state and is the state to which the state machine
transitions when you assert the reset input.

12. On the Tools menu in the Quartus II State Machine Editor, click Generate HDL
File to display the Generate HDL File dialog box. Select VHDL and click OK to
confirm your choice. Click Yes to save the fifo_controller.smf file and check that
there are no FSM verification errors.

& There are five warning messages stating that FSM verification skips in each
state. You can ignore these messages.

If there are any errors, you can edit the state machine using the Properties dialog
boxes that you can display from the right button pop-up menu when you select a
state or transition. You can also edit the state machine in table format by clicking

the tabs at the bottom of the State Machine Editor window.

“ e Tor information about editing state machine properties and drawing a graphical state
machine, refer to the About the State Machine Editor topic in the Quartus II Help.

13. On the File menu in the Quartus II State Machine Editor, click Exit.

The fifo_controller block on your model updates with the input and output
ports defined in the state machine.

"=~ You may need to resize the block to ensure that the input and state names
do not overlap and are displayed correctly.

Figure 11-7 shows the updated fifo_ controller block for the FIFO design
example.

Figure 11-7. fifo_controller Block After Closing the State Machine Editor

reset out_empty

b
count_in out_full

Graphical State Machine Editor out_idle
Eop out_pop_not_empty
push out_push_not_full

State Machine Editor

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

11-8 Chapter 11: Using the State Machine Library
Using the State Machine Editor Block

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Q' 12. Managing Projects and Files

=

DSP Builder design requires the following files to store all the components:

m The top-level Simulink model <top_level _name>.mdl

B The import directory DSPBuilder_<top_level _name>_import and its contents.

®m Any source files for imported HDL.

®m Any Intel format hexadecimal memory initialization (.hex) files.

m Any referenced custom library files.

m The analyzed Simulink model file <fop_level_name>.mdlxml.

When you include the .mdlxml file in a Quartus Prime project, you do not need to call

MATLAB to synthesize the design. You can still synthesize a project without the
.mdlxml file, but you must call MATLAB as part of the generation flow.

If you do not want Quartus Prime synthesis to call MATLAB, or are passing the
design a user without access to MATLAB, follow one of these steps:

m Include both the .mdl and corresponding .mdlxml files in the project,

m Export HDL and specify the exported HDL as the source with no references to the

.mdl or .mdlxml files in the project.

Any design that includes HDL Import, State Machine Editor or MegaCore functions
requires the import directory.

Integrating with Source Control Systems

Altera recommends that you store Quartus Prime archive (.qar) files rather than
individual HDL files for source control purposes.

To create a .qar file, follow these steps in the Quartus Prime software:

1. Create a Quartus Prime project that sources the top-level Quartus Prime IP (.qip)
file that the DSP Builder Export HDL flow generates (“About Exporting HDL” on
page 12-3).

2. Perform analysis and elaboration to ensure the design incorporates any black-box
system files.

3. Archive the project by clicking Archive Project on the project menu in the
Quartus II software) to generate the .qar file.

['=" Any HDL elements that you introduce into DSP Builder with custom library blocks
may require their own source control. Additional .qip files, which are referenced in
the "# Imported IP files" section of the top-level .qip file, list the required files.

August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

12-2

Chapter 12: Managing Projects and Files
HDL Import

HDL Import

In general, source files that you import with HDL Import are not part of a DSP Builder
project. DSP Builder references them in projects that generate with the Export HDL
flow as external files, with absolute paths.

When you move a design to a new version of the tools or to a location on a different
computer, run the alt_dspbuilder refresh HDLimport script to ensure the HDL
Import blocks are up-to-date.

When migrating to a new computer, re-import the HDL to enable hardware
generation (although simulation in Simulink may be possible without this step).

MegaCore Functions

The MegaCore IP Library always installs in the same parent directory as the Quartus
Prime installation. This directory is not a subdirectory of the quartus directory but a
relative path to an install directory at the same level as the quartus directory. The
expected directory structure is:

<install_path><QUARTUS_ROOTDIR>\..\ip

This feature allows the Export HDL flow to use relative paths, and improves
portability.

When moving a design to a new version of the tools or a different location, run the
alt_dspbuilder refresh megacore script to ensure that the MegaCore function
blocks are up-to-date.

Successful migration of designs with MegaCore Functions assumes that the new
environment has all the required IP installed. It may be necessary to install the
MegaCore IP Library and run the alt_dspbuilder setup megacore script.

Memory Initialization Files

DSP Builder Handbook

Intel-format hexadecimal (.hex) files are required for memory initialization in
simulation and hardware generation. If they are generated by HDL Import or
MegaCore function blocks, ensure that they are in the import directory. This fact is
generally not the case if you generate the files with HDL Import.

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 12: Managing Projects and Files

About Exporting HDL

12-3

About Exporting HDL

You can export the DSP Builder-generated synthesizable HDL to a Quartus Prime
project and then use the Export tab in the Signal Compiler block to export them
(Figure 12-1).

Figure 12-1. Export Tab in Signal Compiler

-

9‘:& D5PBuilder - Signal Compiler

M)

Description

This block conkrols the compilation of the design.

Parameters
Quartus II Project: singen_dspbuilder\singan. qpf
Family: | Stratix III ™

IUse Board Block to Specify Devi
L p—— [[] Use Board Block to Specify Device

| Simple | Advanced | SignalTap II_: Export |

Export Synthesizable HOL

Export synthesizable HDL ko a directary, The directory will be created if required and the
existing contents will be overwritten.

Messages

Info: Quartus IT Analysis & Elaboration was successful, 0 errars, 7 warnings
Info: Peak virtual memory: 178 megabytes
Info: Processing ended; Wed Apr 23 17:29:14 2008
Info: Elapsed kime: 00:00:10
Info: Total CPU time (on all processars): 00:00:03
Info: Finished Exporting HOL ko D:\DSPBuilderExamplesihdl
Info: Add the QIP_FILE 'singen. qip’ ta import the files into your project.

-

[s]

]

You can also export HDL by executing the alt dspbuilder exportHDL command in
the MATLAB command window.

The syntax for the export HDL command is:

<exportDir_value> alt _dspbuilder exportHDL(<model>, <exportDir>)

where:

m model is the name of the .mdl file to export. This file is always the top-level name in
the exported Quartus Prime project.

m exportDir is the directory that contains the exported files. If you omit this optional
argument, DSP Builder uses the default or previous export directory.

m exportedDir_value is the return string indicating the output directory containing the
newly generated files.

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

12-4 Chapter 12: Managing Projects and Files
Moving Standard Blockset Files to a New Location

Running this flow creates a set of source files in the export directory, including a .qip
file corresponding to the top-level of your design.

Using Exported HDL
After the Export HDL flow completes:

1. Create a project using the New Project Wizard, which is available on the File
menu in the Quartus Prime software.

2. Enter the top-level name of the exported project and add the corresponding .qip
files as the single source file for the project. Additional .qip files may describe the
requirements for black-box components. The top-level files sources these files
automatically.

3. Use the Archive Project command in the Quartus Prime software to archive this
project.

I'=" When migrating designs that include MegaCore function blocks to a different
location, edit their corresponding .qip files if they include absolute paths to library
components.

Use the Export HDL flow on a Windows computer to a Linux-based computer to
migrate the files generated. However, this act requires adding an additional file to the
project. This additional alt_dspbuilder_package.vhd file is in the
<QUARTUS_ROOTDIR>\libraries\vhdl\altera directory on a Windows computer.

Moving Standard Blockset Files to a New Location

When moving DSP Builder (standard blockset) projects to a new directory or
machine, you can recreate the project by transferring a minimum set of design files.
You do not need to copy the entire project directory. However, in some cases, when
the relative paths for the design files change in the new location, recreate the auxiliary
files to achieve a successful compilation.

You require the following minimum set of design files to recreate a project:
m DSP Builder model (.mdl)

m HDL source files associated with HDL import blocks (if any)—maintain same
relative path to MDL

m HDL wrapper files associated with IP MegaCore function blocks (if any)—
maintain same relative path to the .mdl file (they should be in the
DSPBuilder_<mdl name>_import subdirectory)

® Memory initialization .hex files (if any)
m Custom library files (if any)

To recreate the project in the new location, follow these steps:

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 12: Managing Projects and Files 12-5
Multiple Models in a Top-Level Quartus Prime Project

1. If the model contains IP MegaCore function or HDL import blocks, regenerate the
auxiliary files (.qip, .entityimport, .simdb) associated with the IP MegaCore
function or HDL import block by following these steps:

a. HDL import—run the alt_dspbuilder_refresh. HDLimport script to
automatically update all the HDL import blocks in the new location.

b. IP MegaCore functions—run the alt_dspbuilder_refresh_megacore script to
automatically update all the IP MegaCore function blocks in the new location.
Successful migration of design with IP MegaCore functions assumes that you
install the required MegaCore IP library on the new environment.

L= If the .\DSPBuilder_<mdl name>_import subdirectory copies and the
design files, skip this step.

2. Re-analyze the model by clicking Analyze in the Advanced tab of the Signal
Compiler block to regenerate the auxiliary files (mdlxml, .qip, .ipx) associated
with the model.

Multiple Models in a Top-Level Quartus Prime Project

To integrate multiple DSP Builder (standard blockset) designs in a top-level
Quartus II project, you need the .mdl and .ipx files.

Use the Quartus Prime IP (.qip) file as the single source file for each DSP Builder
model. The .qip file is a single file that contains paths for all the files for an IP design.
The .qip file allows you to add an IP design to the project by adding only one file,
rather than adding all the necessary files individually. You only need the .qip file for
Quartus Prime archiving for DSP Builder, which does not use it for generation.

If the multiple .mdl files uses the same IP cores, the .qip references the IP libraries and
the Quartus Prime software reports conflicts when resolving the libraries. You must
edit the .qip to remove any redundant libraries.

If the DSP Builder design includes HDL import or IP MegaCore functions, the
top-level .qip may reference embedded .qip file(s). Also, some older versions of IP
MegaCore functions (before v8.0) and HDL import blocks may have absolute paths in
the generated .qip files. If you migrate the files from a different location, it may be
necessary to manually edit their corresponding .qip files to reflect the new
environment. By running the Analyze process from the Signal Compiler block in the
new location, the .qip file updates automatically with the new path settings. These
embedded .qip file(s) contain the information concerning the projects, libraries and
source HDL required by the Quartus Prime software for successful integration of
these external entities into DSP Builder.

In addition to the .qip source files, the top-level project also requires an IP Index (.ipx)
file that specifies additional paths to find components. Specifically for DSP Builder
designs, the Quartus Prime software needs the .ipx file for the HDL import and IP
MegaCore function blocks that your model uses. Essentially, the DSP Builder system
is an entity composed of DSP Builder blocks, (which are entities but are easily
discoverable), and non-native entities like HDL import and MegaCore functions.

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

12-6

Chapter 12: Managing Projects and Files
Multiple Models in a Top-Level Quartus Prime Project

The DSP Builder specifies the main entities in the main Quartus Prime .ipx file and
need no special action—you just need to add the extra HDL import and MegaCore
function entities.

To update the IP library search path for the top-level Quartus Prime project, create an
additional directory <project directory>lip/<module name> and create a file <module
name>.ipx in that subdirectory.

The ipx File Contents

The .ipx file has the following contents:
<librarys>
<path path='../../../<module names>/**/*'/>
</library>

These statements specify the relative path to the directory where to locate the .mdl file
and where to search for directories containing further .ipx files. The ** means search
recursively, and the final * locates all identifiable elements there.

You can combine all the search paths into a single .ipx file. For example:

<library>

<path path='../../../<module namels/**/*'/>
<path path='../../../<module name2>/**/*'/>
</library>

You can also specify a path to a specific .ipx file using:

<index file='../../../blockdemo.ipx'/>

Integrating Multiple Designs into a Top-Level Quartus Prime Project

DSP Builder Handbook

This design example shows how you can integrate multiple DSP Builder designs into
a top-level Quartus Prime project. If your top-level design consists of the following
three DSP Builder models:

m firl.mdl—containing two Avalon-MM slave interfaces
m fir2.mdl—containing multiple HDL import blocks

m fir3.mdl—containing one IP MegaCore function block with two Avalon-ST
interfaces

The top-level Quartus Prime project has the following four design files:

m top.vhd—Top-level wrapper that instantiates the three separate models
m firl.qip—Quartus IP file for firl.mdl

m fir2.qip—Quartus IP file for fir2.mdl

m fir3.qip—Quartus IP file for fir3.mdl

Figure 12-2 on page 12-7 shows the design example in the Quartus Prime Project
Navigator window.

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 12: Managing Projects and Files 12-7
Multiple Models in a Top-Level Quartus Prime Project

=

In this example, fir2.qip has an embedded .qip associated with the HDL import block
and fir3.qip has an embedded .qip associated with the IP MegaCore function block.

1.

To update the IP Librarian search path, create additional directories <project
directory>lip/<module name> and create an .ipx file in each subdirectory. Thus in
this design example, create the following directories:

.[I<project directory>/ip/firl
.[I<project directory>/ip/fir2
.[I<project directory>/ip/fir3

In each subdirectory, create a text file <module name>.ipx with the following
contents:

<librarys>
<path path='../../../<module name>/**/*'/>

</library>

These .ipx files specify the relative path to the directory, where the .mdl file is located.

Figure 12-2. Project Navigator Window in the Quartus Prime Software

Praoject Mavigaktor

{3 [Files

WYHD

..... abg
HD

i..gbg

i &bd
{7 HD

i..abg
FT

{ . Ebd
VD

abg tap. vhd

i WHD

AmdlZ/DSPBvilder_fird_import/fi_compiler_blk_ast. vhd
Adl3/DSPEilder_fird_import/fir_compiler_bllk_st v
Adl3/DSPEuilder_fira_import/fir_compiler_blk. whd

- Amdl3/DSPB uilder_fir3_import/fi_compiler_blk_add.tcl

=- Amndl2Air2, gip

Amdl2Afr2 mdl

- Amdl2AFir 2. mdlsl
Amdl2/DSPBuilder_fir2_import/mult_2216_hwbnd_impart. entityimpart
[=}- Amd2/DSPBuilder_firZ_import/mult_22x16_hybnd. qip

B Amdi3idgip

- Amdl3 e 3 mdl

Al 345 3. el

L Amdi2/DEPBuilder_fird_import/fir_compiler_blk_import. entityimport

[=}- Adl3/DSPEwilder_fira_import/fir_compiler_blk. qip
Adl3/DSPEuilder_fir3_import/fir_compiler-ibrand auk_dspip_lib_pkog_fir_81.whd

AmdlZ/DSPB uilder_fir3_import/fi_compiler-ibran auk_dspip_math_pkg_fir_81.vhd

----- C:éwork/DSPADSP_Builder/D esign_E zamples/DSPEuilder_SOPCE uildertest/mdl2/mult_16=4_lcell. vhd

Amdi2/ DS PBuilder_firZ_import/mult_22416_hwbnd_add.tcl
=- _Andl il gip

- . Amdl i ndl

B Amd Al

August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

12-8 Chapter 12: Managing Projects and Files
Multiple Models in a Top-Level Quartus Prime Project

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

13. Troubleshootin
/ANO[S YA !

This chapter contains information about resolving the following DSP Builder
problems and error conditions:

m Signal Compiler Cannot Checkout a Valid License

m Loop Detected While Propagating Bit Widths

m The MegaCore Functions Library Does Not Appear in Simulink
m The Synthesis Flow Does Not Run Properly

m DSP Development Board Troubleshooting

m SignalTap II Analysis Appears to Hang

Error if Output Block Connected to an Altera Synthesis Block
Warning if Input/Output Blocks Conflict with clock or aclr Ports
Wiring the Asynchronous Clear Signal

Error Issues when a Design Includes Pre-v7.1 Blocks

Creating an Input Terminator for Debugging a Design

A Specified Path Cannot be Found or a File Name is Too Long

Incorrect Interpretation of Number Format in Output from MegaCore Functions

Simulation Mismatch For FIR Compiler MegaCore Function
m Simulation Mismatch After Changing Signals or Parameters
m Unexpected Exception Error when Generating Blocks

m VHDL Entity Names Change if a Model is Modified

m Algebraic Loop Causes Simulation to Fail

Parameter Entry Problems in the DSP Block Dialog Box
DSP Builder System Not Detected in Qsys

MATLAB Runs Out of Java Virtual Machine Heap Memory
ModelSim Fails to Invoke From DSP Builder

Unexpected End of File Error When Comparing Simulation Results

Signal Compiler Cannot Checkout a Valid License

You may receive this error message if you try to generate VHDL files and Tcl scripts
(or try to generate VHDL stimuli) and you have not installed a license for
DSP Builder.
“% e Forinformation about how to obtain a license, refer to Volume 1: Introduction to DSP
Builder in the DSP Builder Handbook.

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/hb/dspb/hb_dspb_intro.pdf
http://www.altera.com/literature/hb/dspb/hb_dspb_intro.pdf

13-2

Chapter 13: Troubleshooting

DSP Builder Handbook

Verifying That Your DSP Builder Licensing Functions Properly
Type the following command in the MATLAB Command Window:

dos ('lmutil 1lmdiag C4D5 512A') ¢
where C4D5_512 is the DSP Builder feature ID.

This command outputs the status of the DSP Builder license.
For example, if you are using a node locked license:

lmutil - Copyright (C) 1989-2006 Macrovision Europe Ltd. and/or
Macrovision Corporation. All Rights Reserved.

FLEXnet diagnostics on Mon 8/11/2008 14:36

License file: c:\gdesigns\license.dat
"C4D5 512A" v0000.00, vendor: alterad
uncounted nodelocked license, locked to Vendor-defined

"GUARD_ ID=T000001297" no expiration date

You receive a message about the hostid if you are using an Altera software guard for
licensing.

Alternatively, if you are using a floating license:

>> dos ('lmutil lmdiag C4D5 512A')

lmutil - Copyright (c) 1989-2006 Macrovision Europe Ltd. and/or
Macrovision Corporation. All Rights Reserved.

FLEXnet diagnostics on Mon 8/11/2008 10:49

"C4D5 512A" v2030.12, vendor: alterad
License server: lic server

floating license expires: 31-dec-2030
This license can be checked out

If the command does not work, your license file may not be set up correctly. For
information about how to check your system path and registry settings, refer to “The
Synthesis Flow Does Not Run Properly” on page 13-5.

If your license file has a SERVER line, type the following command in the MATLAB
Command Window:

dos ('lmutil lmstat -a') #
This command outputs the status of the DSP Builder license in the following format:

lmutil - Copyright (c) 1989-2006 Macrovision Europe Ltd. and/or
Macrovision Corporation. All Rights Reserved.

Flexible License Manager status on Mon 8/11/2008 15:36

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 13: Troubleshooting 13-3

License server status:

[Detecting lmgrd processes...]
License server status: node@lic server
License file(s) on shama: /usr/licenses/quartus/license.dat:

lic _server: license server UP (MASTER) v10.8

Vendor daemon status (on lic_ server):
alterad: UP v9.2

Feature usage info:

Users of C4D5 512A: (Total of 100 licenses issued; Total of 0 licenses
in use)

If the command does not work, your license file may not be set up correctly.

Verifying That the LM_LICENSE_FILE Variable Is Set Correctly

The LM _LICENSE_FILE system variable must point to your license.dat file that includes
the DSP Builder FEATURE line for the DSP Builder to operate properly.

'~ If you have multiple versions of software that uses a license.dat file (for example,
Quartus II Limited Edition and a full version of the Quartus II software), make sure
that LM _LICENSE FILE points to the version of software that you want to use with DSP
Builder.

Other software products, such as Mentor Graphics LeonardoSpectrum, also use the
LM _LICENSE_FILE variable to point to a license file. You can combine several
license.dat files into one or you can specify multiple license.dat files in the steps
below.

Follow these steps to set the LM _LICENSE FILE variable:

On the Windows Start menu point to Settings and click Control Panel.
Double-click the System icon in the Control Panel window.

In the System Properties dialog box, click the Advanced tab.

Click on Environment Variables.

Click the System Variable list to highlight it, and then click New.

In the Variable Name box, type LM _LICENSE FILE.

In the Variable Value box, type <path to license file>\license.dat.
Click OK.

® N o g b » N

Verifying the Quartus Prime Path

Verify that the QUARTUS_ROOTDIR environment variable points at the correct version of
the Quartus Prime software by typing the following command in the MATLAB
Command Window:

!lecho %QUARTUS ROOTDIR% ¢

This command returns the path that the QUARTUS_ROOTDIR environment variable
specifies. For example:

C:\altera\8l\guartus

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

13-4 Chapter 13: Troubleshooting

If You Still Cannot Get a License

m Try adding the following paths to your system path:
m quartus/bin
m matlab/bin

m Remove and reinstall DSP Builder. After removing DSP Builder, delete any
DSP Builder files or directories that remain in the file system to ensure that you
re-install a clean file set.

Loop Detected While Propagating Bit Widths

You may get an error if you have a feedback loop in your design and you have not
explicitly defined the feedback loop’s bit width. Figure 13-1 shows this error.

Figure 13-1. Feedback Loop With Unresolved Width Error

i ST
Culpul

Paizalkel Adder Subtacio

To avoid this error, include an AltBus block configured as an internal node to specify
the bit width in the feedback loop explicitly (Figure 13-2).

Figure 13-2. Feedback Loop With AltBus Block as an Internal Node

.

-+ Crulpul

Pamalel Adder Subtmctor

2 G 4—

AllBus

The MegaCore Functions Library Does Not Appear in Simulink

The Simulink Library Browser may not display MegaCore functions library if you
install DSP Builder before you install the Altera MegaCore IP Library.

To fix this problem, type the following command after you instal the Altera MegaCore
IP Library:

alt dspbuilder setup megacore +

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 13: Troubleshooting 13-5

The Synthesis Flow Does Not Run Properly

The DSP Builder automated flows allow you to control your entire synthesis and
compilation flow in the MATLAB or Simulink environment using the Signal
Compiler block. With the automated flow, the Signal Compiler block outputs VHDL
files and Tcl scripts and then automatically begins synthesis and compilation in the
Quartus II software.

If the Quartus II software does not run automatically, check the software paths and if
necessary, change the system path settings.

Check the Software Paths

If you have multiple versions of the same software product on your PC (for example,
Quartus II Web Edition and a full version of the Quartus II software), your registry

DSP Development Board Troubleshooting

If signal Compiler does not configure the device on the DSP development board,
check the following points:

m Ensure that you set up and connect the board to your PC and you install any
necessary drivers.

m When the board powers up, the CONF_DONE LED illuminates. The CONF_DONE LED
turns off and then on when configuration completes successfully. If you do not
observe the LED operating in this way, configuration is unsuccessful.

B You can configure the DSP board manually with an SRAM Object File (.sof), a
ByteBlasterMV, ByteBlaster II, ByteBlaster, or USB-Blaster download cable, and the
Quartus II Programmer in JTAG mode. Signal Compiler generates the SRAM
object file (.sof) file in your working directory.

SignalTap Il Analysis Appears to Hang

The SignalTap II logic analyzer should terminate successfully after it meets all trigger
conditions. However, if it does not meet one or more of the trigger conditions, the
SignalTap II analyzer does not terminate and the JTAG node remains locked.

You can either disconnect and reconnect the USB cable, or switch off the board and
switch it on again. You must program the board again if you power it off.

Error if Output Block Connected to an Altera Synthesis Block

An Output block maps to output ports in VHDL and marks the edge of the generated
system. You should normally use these blocks to connect simulation blocks (Simulink
blocks) for your testbench. If you want to use DSP Builder blocks outside your
synthesizable system (such as for test bench generation or verification) put
Non-synthesizable Input and Non-synthesizable Output blocks around them.

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

13-6 Chapter 13: Troubleshooting

Warning if Input/Output Blocks Conflict with clock or aclr Ports

A warning issues if an input or output port has the same name as a clock or reset
signal that your model uses. For example if your design has an input port aclr, this
name is the same name as the default system reset and the following warning issues
during analysis:

Warning: aclrInputPortTest/aclr has been renamed to avoid conflict:
aclr has been renamed to aclr 1:

The input port renames during HDL conversion. If you want to keep the port aclr,
add a Clock block and use it to rename the reset port.

Wiring the Asynchronous Clear Signal

Wire the asynchronous clear signal with a register to make sure that the end of the
aclr cycle synchronizes with the clock (Figure 13-3).

Figure 13-3. Wiring the Asynchronous Clear Signal

GND ——» +—» To aclr on block

clk ——»

T

users aclr signal

[~ A design may not match the hardware if an asynchronous clear performs during
simulation because the aclr cycle may last several clocks - depending on clock speed
and the device.

Error Issues when a Design Includes Pre-v7.1 Blocks

An error of the following form issues if you attempt to simulate a design that includes
unupgraded pre-v7.1 blocks:
Data type mismatch. Input port 1 of '<old block>' expects a signal

of data type 'double'. However, it is driven by a signal of data type
'DSPB_Type'.

“ e For information about upgrading your designs, refer to Volume 1: Introduction to DSP

Builder in the DSP Builder Handbook.

Creating an Input Terminator for Debugging a Design

If there is a problem somewhere in a design, disconnect some subsystems so that you
can analyze a small portion of your design. This procedure may cause bit width
propagation and inheritance problems.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/hb/dspb/hb_dspb_intro.pdf
http://www.altera.com/literature/hb/dspb/hb_dspb_intro.pdf

Chapter 13: Troubleshooting 13-7

You can avoid these problems by inserting a Non-synthesizable Output block
followed immediately by a Non-synthesizable Input block. This combination
functions as a temporary input terminator and you can remove them after you debug
your design.

A Specified Path Cannot be Found or a File Name is Too Long

The maximum length for a path is limited to 256 characters in the Windows operating
system.

When the file path to a model or the name of the model is very long, DSP Builder may
attempt to create a file path exceeding this limit.

If this problem occurs, reduce the length of the file path to the model or the length of
its name.

Incorrect Interpretation of Number Format in Output from MegaCore
Functions

For some MegaCore functions, DSP Builder may be unable to infer whether it should
interpret output signals as signed, unsigned, signed fractional. This issue can cause
problems when visualizing the output. For example, by directly attaching scopes,
when the signal waveform may obscur because of the incorrectly inferred number
formats.

Correct this issue by connecting to the output with an A1tBus block or a
Non-synthesizable Output block (as appropriate) with the correct bus type
assignment.

Simulation Mismatch For FIR Compiler MegaCore Function

FIR Compiler MegaCore function-generated functional simulation models generally
do not output valid data until the data storage of these models is clear.
“ e For more information including a formula that estimates the number of cycles before
relevant samples are available, refer to the Simulate the Design section in the FIR
Compiler User Guide.

Simulation Mismatch After Changing Signals or Parameters

The simulation results may not match after changing any signal names or parameters.
If this problem occurs, delete the previous testbench directory (tb_<model name>)
and run the simulation again.

Unexpected Exception Error when Generating Blocks

DSP Builder issues errors of the following form when you generate a DSP Builder
system:

Info: IP Generator Info: stderr: No clock info for
my alt dspbuilder clock

Info: IP Generator Info: stderr: Failed to find clock
my alt dspbuilder clock

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/ug/fircompiler_ug.pdf
http://www.altera.com/literature/ug/fircompiler_ug.pdf

13-8

Chapter 13: Troubleshooting

Info: IP Generator Info: stderr: Failed to find clock
my alt dspbuilder clock

Error: IP Generator Error: Unexpected exception thrown by MDLFactory:
java.lang.NullPointerException

Error: Node instance "dut" instantiates undefined entity
"TestBarrelShifter" File: <path>/mytoplevel.vhd Line: 30

This problem is caused by corrupted Librarian IP cache and can be resolved by
deleting the IP cache directory which is normally located at:

C:\Documents and Settings\<user>\.altera.quartus\ip_cache

VHDL Entity Names Change if a Model is Modified

The Signal Compiler VHDL files have a random number suffix appended to the file if
you modify the model.

For example, if you change the pipeline delay on a Delay block, the corresponding
VHDL file: alt_dspbuilder_delay_<randomnumber> changes, while the VHDL file
name for the rest of the blocks in the model remain the same.

Solve this problem with a regular expression in the project assignments (“About
Quartus II Assignments and Block Entity Names” on page 3-28).

Algebraic Loop Causes Simulation to Fail

DSP Builder Handbook

HDL import and IP Toolbench-based MegaCore function blocks provide an interface
for changing the direct feedthrough settings of their inputs.

Algebraic loops are loops entirely consisting of blocks having some inputs that are
direct feedthrough, that is, inputs that have a purely combinational path to at least
one output of the block.

For more information about algebraic loops, refer to the MATLAB Help.

The feature to automatically infer the correct direct feedthrough values is disabled by
default for HDL Import (and DSP Builder treats all inputs as direct feedthrough).
Enable it by typing the following command in the MATLAB command window:

set_param (<HDL Import block name>, 'use dynamic_ feedthrough data', 'on')

The direct feedthrough settings for the HDL Import block update after a successful
compile of the HDL when this parameter is on.

Il = This feature may not generate correct settings when importing low-level
LPM-based HDL.

A more direct method of changing the direct feedthrough settings is to modify the
InDelayed parameter on HDL Import or MegaCore function blocks, with the following
command:

set_param(<block name>, 'inDelayed', <feedthrough settings)
For example, if the block is named My HDL:

set param(<My HDL>, 'inDelayed', '1 0 0 1')

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 13: Troubleshooting 13-9

A valid value of this parameter is a series of digits, one for each of the inputs on the
block (from top to bottom), with a 0 indicating direct feedthrough, and a 1 indicating
that all paths to outputs from this input are registered.
"=~ Specifying a value of 1 for an input, when it is in fact direct feedthrough,
causes Simulink to treat combinational paths as registered, and results in
incorrect simulation results.

Adjust the order in which Simulink exercises all the blocks in a feedback loop, by
giving blocks a priority value. This procedure is useful if you know which block is
providing the correct initial values.

The priority of a block can be set with the General tab in the block properties for a
block. A lower value of priority causes DSP Builder to execute a block before a block
with a higher value.

Parameter Entry Problems in the DSP Block Dialog Box

There are issues with the Block Properties dialog box for the DSP block. Some
interdependencies require that you close and re-open the dialog box to edit further
parameters. This issue may be occur after a warning message issues or when a
required option is not available.

For example, if you change the Output Rounding Operation Type you may get an
error when Symmetric is selected for the Output Saturation Operation Type. If this
occurs, set the saturation type to None (wrap) and close the dialog box. Reopen the
dialog box and you can select now select Symmetric saturation.

DSP Builder System Not Detected in Qsys

Qsys may not detect DSP Builder systems whose hardware has been generated using
previous versions of the DSP Builder software. Altera does not guarantee backwards
compatibility of these modules when you use them in Qsys.

To workaround this issue, follow these steps:

1. Remove the <dspbuilder system name>_dspbuilder directory that the older DSP
Builder version generated.

2. Re-run compilation from the Signal Compiler block with the current DSP Builder
version.

3. Refresh the Qsys system.

MATLAB Runs Out of Java Virtual Machine Heap Memory

August 2016

For a very large design (containing many thousand blocks), MATLAB may have
insufficient heap memory available for the Java virtual machine and issues an error
message of the form:

“OutofMemoryError: Java heap space”

Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

13-10

Chapter 13: Troubleshooting

For information about how to increase the heap space available to the Java virtual
machine, refer to:

http:/ /www.mathworks.com/support/solutions/data/1-1812C.html

ModelSim Fails to Invoke From DSP Builder

If ModelSim fails to invoke from within DSP Builder, check that the currently
supported ModelSim executable (vsim.exe) is in the path. Your PC should
automaticall include ModelSim in your path if you install ModelSim-Altera but you
may need to be add it manually if you use a different ModelSim installation.

You can verify the ModelSim installation by typing the following command at the
MATLAB prompt:

lvsim

This command returns the ModelSim version and the path to the ModelSim
preferences Tcl file. If an error message issues or the returned path is incorrect, you
may need to move ModelSim to be ahead of any other similar tool in the path.

For information about the supported version of ModelSim, refer to the DSP Builder
Installation and Licensing manual.

Unexpected End of File Error When Comparing Simulation Results

DSP Builder Handbook

Occasionally an “Unexpected End of File” error issues when you are comparing the
Simulink and ModelSim simulation results for a design with multiple clocks.

This error occurs because the rounding calculation that aligns the clock signals sets
ModelSim simulation to run for one additional clock cycle (on the fastest clock) and
there is no stimulus data for this extra cycle. You can ignore the error message.

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

http://www.mathworks.com/support/solutions/data/1-18I2C.html
http://www.altera.com/literature/manual/mnl_dsp_install.pdf
http://www.altera.com/literature/manual/mnl_dsp_install.pdf

fAN IERA Section Il. DSP Builder Standard Blockset
= © Libraries

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

-2 Section Il: DSP Builder Standard Blockset Libraries

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

14. AltLab Librar
AITERA /

The blocks in the AltLab library manage design hierarchy and generate RTL VHDL
for synthesis and simulation.

The AltLab library contains the following blocks:
m BP (Bus Probe)

m Clock

m Clock_Derived

m Display Pipeline Depth

m HDL Entity

HDL Import

HDL Input

HDL Output

HIL (Hardware in the Loop)

Quartus Prime Global Project Assignment

Quartus Prime Pinout Assignments

Resource Usage

Signal Compiler

m SignalTap II Logic Analyzer
m SignalTap II Node

B Subsystem Builder

m TestBench

m VCD Sink

m Virtual Pins

BP (Bus Prohe)

The Bus Probe (BP) block is a sink, which you can place on any node of a model. The
Bus Probe block does not have any hardware representation and therefore does not
appear in the VHDL RTL representation generated by the Signal Compiler block.

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

14-2

Chapter 14: AltLab Library

Clock

DSP Builder Handbook

The Display in Symbol parameter selects the graphical shape of the symbol in your
model and the information that is reported there (Table 14-1).

Table 14-1. Bus Probe Block “Display in Symbol” Parameter

Shape of .

Symhol Data Reported in Symbol
Circle Maximum number of integer bits required during simulation.
Rectangle Maximum or minimum value reached during simulation.

After simulating your model, the Bus Probe block back-annotates the following
information in the parameters dialog box for the Bus Probe block:

® Maximum value reached during simulation
® Minimum value reached during simulation

B Maximum number of integer bits required during simulation

Use the Clock block in the top level of a design to set the base hardware clock domain.
The block name is the name of the clock signal and must be a valid VHDL identifier.

A design can have zero or one base clock in a design and an error issues if you try to
use more than one base clock. You can specify the required units and enter any
positive value with the specified units. However, the clock period must be greater
than 1ps but less than 2.1ms.

If no base clock exists in your design, a default clock (clock) with a 20-ns real-world
period and a Simulink sample time of 1 is automatically created with a default Active
Low reset (aclr).

To avoid sample time conflicts in the Simulink simulation, ensure that the sample
time specified in the Simulink source block matches the sample time specified in the
Input block (driven by the Clock block or a derived clock).

Place additional clocks in the system by adding Clock_Derived blocks.

Each clock must have a unique reset name. As all clock blocks have the same default
reset name (aclr) ensure you specify a valid unique name with multiple clocks.

You can add reset synchronizer circuitry for this clock domain by specifying the reset
type to be either synchronized active low or synchronized active high.

When you specify these reset types, DSP Builder adds two extra registers to avoid
metastability issues during reset removal.

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 14: AltLab Library

14-3

Table 14-2 lists the parameters for the Clock block.

Table 14-2. Clock Block Parameters

Value Description

Real-World Clock Period

Specify the clock period, which should be greater than 1ps but less than

user specified 91 ms.

Period Unit

Specify the units for the clock period (picoseconds, nanoseconds,

S, Ns, Us, ms, S . o
P microseconds, milliseconds, or seconds).

Simulink Sample Time

>0 Specify the Simulink sample time.

Reset Name

User defined Specify a unique reset name. The default reset is aclr.

Reset Type

Active Low,
Active High,
Synchronized
Active Low,
Synchronized
Active High

Specify whether the reset signal is active high or active low.

Export As Qutput Pin

On or Off Turn on to export this clock as an output pin.

Clock Derived

I =
=

August 2016 Altera Corporation

Use the Clock Derived block in the top level of a design to add additional clock pins
to your design. Specify these clocks as a rational multiple of the base clock for
simulation purposes.

DSP Builder uses the block name as the name of the clock signal. It must be a valid
VHDL identifier.

You can specify the numerator and denominator multiplicands calculates the derived
clock. However, the resulting clock period should be greater than 1ps but less than
2.1ms.

If no base clock is set in your design, DSP Builder creates a 20ns base clock and
determines the derived clock period. You must use a Clock block to set the base clock
if you want the sample time to be anything other than 1.

To avoid sample time conflicts in the Simulink simulation, ensure that the sample
time specified in the Simulink source block matches the sample time specified in the
Input block (driven by the Clock block or a derived clock).

Each clock must have a unique reset name. As all clock blocks have the same default
reset name (aclr) ensure you specify a valid unique name with multiple clocks.

You can add reset synchronizer circuitry for this clock domain by specifying the reset
type to be synchronized active low or synchronized active high.

When you specify these reset types, DSP Builder adds two extra registers to avoid
metastability issues during reset removal.

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

144

Chapter 14: AltLab Library

Table 14-3 lists the parameters for the Clock Derived block:

Table 14-3. Clock_Derived Block Parameters

Name Value Description
Base Clock Multiplicand Multiply the base clock period by this value. The resulting clock period should
>=1
Numerator be greater than 1ps but less than 2.1ms.
Base Clock Multiplicand o 1 Divide the base clock period by this value. The resulting clock period should be

Denominator

greater than 1ps but less than 2.1ms.

Reset Name

User defined Specify a unique reset name. The default reset is aclr.

Reset Type

Active Low,
Active High,
Synchronized
Active Low,
Synchronized
Active High

Specify whether the reset signal is active high or active low.

Export As Qutput Pin

On or Off Turn on to export this clock as an output pin.

Display Pipeline Depth

HDL Entity

The Display Pipeline Depth block controls whether the pipeline depth displays on
primitive blocks.

You can change the display mode by double-clicking on the block. When set, the
current pipeline depth displays at the top right corner of each block that adds latency
to your design. The currently selected mode shows on the Display Pipeline Depth
block symbol.

Changing modes causes a Simulink display update, which may be slow for very large
designs.

The Display Pipeline Depth block has no parameters.

Use the HDL Entity block for black-box simulation subsystems that you include in
your design with a Subsystem Builder block. The HDL Entity block specifies the name
of the HDL file that DSP Builder substitutes for the subsystem and the names of the
clock and reset ports for the subsystem.

The Subsystem Builder block usually creates this block.

Table 14—4 shows the parameters for the HDL Entity block.

Tahle 14-4. HDL Entity Block Parameters

from Subsystem

Name Value Description
, , Specifies the name of the HDL file that DSP Builder substitutes for the subsystem
HDL File Name User defined represented by a Subsystem Builder block.
Clock Name User defined | Specifies the name of the clock signal that the black-box subsystem uses.
Reset Name User defined | Specifies the name of the reset signal that the black-box subsystem uses.
HDL takes port names Turn on to use the subsystem port names as the entity port names instead of the

On or Off names of the HDL Input and HDL Output blocks.

DSP Builder Handbook

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 14: AltLab Library

14-5

HDL Import

Use the HDL Import block to import existing blocks implemented in HDL into DSP
Builder. Individually specify the VHDL or Verilog HDL files or define in a Quartus® II
project file (.qpf).

You must save your model file before you can import HDL with the HDL Import block.

When you click Compile, a simulation file generates and the block in your model
configures with the required input and output ports. The Quartus Prime software
synthesizes the imported HDL or project as a netlist of megafunctions, LPM functions,
and gates.

DSP Builder may explicitly instantiate the megafunctions and LPM functions in the
imported files, or the Quartus Prime software may infer them. The netlist then
compiles into a binary simulation netlist for use by the HDL simulation engine in DSP
Builder.

When simulating imported VHDL in ModelSim, which includes FIFO buffers, Xs in
the simulation results may give a mismatch with the Simulink simulation. You should
use the FIFO bulffer carefully to avoid any overflows or underflows. Examine and
eliminate any warnings of Xs that ModelSim reports during simulation before you
compare to the Simulink results.

The simulator supports many of the common megafunctions and LPM functions
although it does not support some. If DSP Builder encounters an unsupported
function, it issues an error message after you click Compile and it cannot import the
HDL. However, you may be able to rewrite the HDL so that the Quartus Prime
software infers a different megafunction or LPM function.

HDL Import Parameters

Table 14-5 shows the parameters for the HDL Import block.

Table 14-5. HDL Import Block Parameters (Part 1 of 2)

Name Value Description
Import HDL On or Off You can import individual HDL files when this option is on.
Add .v or .vhd file | Click to browse for one or more VHDL files or Verilog HDL files.
Remove — Click to remove the selected file from the list.
Click to change the compilation order by moving the selected HDL file up or down the
Up, Down — list. The file order is not important when you use the Quartus Prime software but may

be significant when you use other downstream tools (such as ModelSim).

Enter name of top
level design entity

Entity name | Specifies the name of the top level entity in the imported HDL files.

Import Quartus

When this option is on, you can specify the HDL to import with a Quartus Prime project
file (.qpf). DSP Builder imports the current HDL configuration. To import a different
revision, specify the required revision in the Quartus Prime software. The source files
that the Quartus Prime project uses must be in the same directory as your model file or

Prime Project On or Off be explicitly referenced in the Quartus Prime settings file (.qsf). Error messages issue
for any entities that DSP Builder cannot find. Refer to the Quartus Prime documentation
for information about setting the current revision of a project and how to explicitly
reference the source files in your design.

August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

14-6

Chapter 14: AltLab Library

Table 14-5. HDL Import Block Parameters (Part 2 of 2)

Browse .qpf file Click to browse for a Quartus Prime project file.
Sort top-level Turn on to sort the ports that the top-level HDL file alphabetically defines instead of the
On or Off .
ports by name order specified in the HDL.
Combile . Compiles a simulation model from the imported HDL and displays the ports defined in
p the imported HDL on the block.
HDL Import Example

Iz

Figure 14-1 shows an example of an imported HDL design implementing a simple
adder with four input ports (Input, Inputl, Input2, sclrp), and two output ports

(Output, Outputl).

Figure 14-1. Typical HDL Import Block

Input
Inputi
Input2
sclp

Cutputf———

adder

Cutput! fF———

HOL Import

Use std_logic_1164 types to define the input and output interfaces to the imported
VHDL. If your design uses any other VHDL type definitions (such as arithmetic or
numeric types), you should write a wrapper that converts them to std_logic or

std_logic_vector.

HDL import only supports single clock designs. If you import a design with multiple
clocks, DSP Builder uses one clock as the implicit clock and shows any others as input
ports on the Simulink block.

Store HDL source files in any directory or hierarchy of directories.

HDL Import Supported Megafunctions

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

Table 146 lists the supported megafunctions and LPM functions.

Table 14-6. Supported Megafunctions and LPM Functions

Megafunctions LPM Functions

a_graycounter Ipm_abs 1

altsyncram Ipm_mult (7
altaccumulate Ipm_add_sub

parallel_add Ipm_mux
altmult_add . Ipm_compare

) scfifo l[pm_ram_dp

altshift_taps I[pm_counter

Note to Table 14-6:

(1) The Ipm_mult LPM function is not supported when configured to perform a squaring operation.

August 2016 Altera Corporation

Chapter 14: AltLab Library 14-7

HDL Input

Connect the HDL Input block directly to an input node in a subsystem. Use with the
Subsystem Builder and HDL Entity blocks for black-box simulation.

The type and bit width must match the type and bit width on the corresponding input
port in the HDL file referenced by the HDL Entity block. HDL Input blocks are
automatically generated by the Subsystem Builder block.

You can optionally specify the external Simulink type. If set to Simulink Fixed Point
Type, the bit width is the same as the input. If set to Double, the width may be
truncated if the bit width is greater than 52.

Table 14-7 shows the HDL Input block parameters.

Table 14-7. HDL Input Block Parameters

Name Value Description
Signed Integer,
Bus Type S|gqed Fractional, The number format of the bus.
Unsigned Integer,
Single Bit
>=0 ' ' ' int. i '
[number of bits].[] . Specn‘y the.number of bits to the left of the pmary pomt, including the
(Parameterizable) sign bit. This parameter does not apply to single-bit buses.
[J.[number of bits] . Spequ the numper of bits t.o the right of the binary point. This parameter
(Parameterizable) applies only to signed fractional buses.
Inferred, Specifies whether the external type is inferred from the Simulink block it
External Type Simulink Fixed Point Type, | is connected to or explicitly set to either Simulink Fixed Point or Double
Double type. The default is Inferred.

Table 14-8 on page 14-7 shows the HDL Input block I/O formats.

Table 14-8. HDL Input Block 1/0 Formats (*/

V0| Simulink @, VHDL Type 4

I Ry

[1: out STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit - Optional

0 | Olppy.re

01: out STD_LOGIC_VECTOR({LP + RP - 1} DOWNTO 0) Explicit

Notes to Table 14-8:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(8) MRy is aninput port. 01y gy is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

HDL Output

The HDL Output block should be connected directly to an output node in a subsystem.
Use with the Subsystem Builder and HDL Entity blocks for black-box simulation.

The type and bit width must match the type and bit width on the corresponding
output port in the HDL file referenced by the HDL Entity block. HDL Output blocks are
automatically generated by the Subsystem Builder block.

August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

14-8 Chapter 14: AltLab Library

Table 14-9 shows the HDL Output block parameters.

Table 14-9. HDL Output Block Parameters

Name Value Description

Signed Integer,
Signed Fractional,

Bus Type Unsigned Integer, The number format of the bus.
Single Bit

[number of bits] [] >=0 _ Sppcify the number of bits to the Ie.ft of th_e binary point, including the sign bit.
(Parameterizable) | This parameter does not apply to single-bit buses.
>=0 Specify the number of bits to the right of the binary point. This parameter applies

[1.[number of bits] (Parameterizable) | only to signed fractional buses.

Table 14-10 shows the HDL Output block I/O formats.

Table 14-10. HDL Output Block 1/0 Formats (")

V0| Simulink @, (4 VHDL Type #
RO 11: out STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit - Optional

Notes to Table 14-10:
(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(3) Myuy[ryis aninput port. 01y r) is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

HIL (Hardware in the Loop)

The HIL (Hardware in the Loop) block allows you to use an FPGA as a simulation
device inside a Simulink design. This configuration accelerates the simulation time,
and also allows access to real hardware in a simulation.

To use an HIL block, you need an FPGA development board with a JTAG interface.
Use any JTAG download cable, such as a ByteBlasterMV™, ByteBlaster™, or
USB-Blaster™ cable.

HIL supports advanced features, including;:
m Exported ports (allows the use of hardware components connected to the FPGA)
m Burst mode (improves HIL simulation speed)

[l=~ This block supports only single clock designs with registered paths in a design. The
simulation results may be unreliable for combinational paths.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 14: AltLab Library

14-9

Figure 14-2 shows an example with the HIL block.

Figure 14-2. Example With the HIL Block

/ ® Inpul:a) CutputCodizi20:20)
Ramp SHnal Specilieation | P roduct Input) CutputCondic
il
=E§—P Inputl o) DutpulFiller28:0)
Siep Inputl % CutputFilter
HIL HIL Scope
L=~ Refer to the “Using Hardware in the Loop” chapter in the DSP Builder Standard Blockset

User Guide section in volume 2 of the DSP Builder Handbook.

Table 14-11 shows the parameters specified in page 1 of the HIL dialog box.

Table 14-11. HIL Block Parameters, Page 1

Name Value Description
Select the Quartus f file Browse for a Quartus Prime project file ,which describes the hardware design that
Prime project -ap the HIL block uses.
Select the clock pin Port name | The clock pin name for the hardware design in the Quartus Prime software.
Select the reset pin Port name | The reset pin name for the hardware design in the Quartus Prime software.
Identify the signed Signed or Set the number of bits and select the type (signed or unsigned) of each input and
ports Unsigned output port in the hardware design.
Export on or Off When on, the selected port is exported on an FPGA pin (or on multiple pins for
P buses). When off (the default), the port is exported to the Simulink model.
The reset level that matches the setting in the original design. For designs originated
Active Hiah from the standard blockset, the reset level is specified in the clock or
Select the reset level Active_Lo?N’ Clock Derived block. If your design uses no clock block, it uses a default clock
- with reset level active high. For designs originated from the advanced blockset, the
reset level is specified in the signals block.
When on, allows sending data to the FPGA in bursts, which improves the simulation
Burst Mode On or Off speed, but delays the outputs by the burst length. When Off, it defaults to
single-step mode.
Specify the length of a burst ("1" is equivalent to disabling burst mode). Use higher
Burst Length " values to produce faster simulations (although the extra gain becomes negligible
with bigger burst sizes).
. . Specify the sample time period in seconds. (A value of -1 means that the sampling
Sampling Period Integer period is inherited from the block connected to the inputs.)
Asse.rt Sclr .beforef On or Off When on, asserts the synchronous clear signal before the simulation starts.
starting the simulation

Note to Table 14-11:

(1) The record size is 32x1024x1024, which is the product of (packet size) x (burst length) while the packet size is the larger of the total input data
width and the total output data width. For example, for a packet size of 1024 bits, set the burst length to 32x1024. However, due to the
limitations of the JTAG interface, the optimal record size is between 1 to 2 MBPS (depending on the host computer, USB driver and cables).
Hence, setting a bigger burst size might not give significant speed up.

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/hb/dspb/hb_dspb_std_ug.pdf
http://www.altera.com/literature/hb/dspb/hb_dspb_std_ug.pdf

14-10 Chapter 14: AltLab Library

"=~ TheHILblock needs recompilation if you change the Quartus Prime project, clock pin,
or any of the exported ports.

Table 14-12 shows the parameters specified in page 2 of the HIL dialog box.

Table 14-12. HIL Block Parameters, Page 2

Name Value Description

FPGA device device name The FPGA device.

g(r)irr?"ng”e with Quartus — Click to compile the HIL block with the Quartus Prime software.

JTAG Cable cable name The JTAG cable.

Device in chain device location | The required entry for the location of the device.
Click to scan the JTAG interface for all JTAG cables attached to the system

Scan JTAG . (including any remote computers) and the devices on each JTAG cable. The
available cable names and device names are loaded into the JTAG Cable and
Device in chain list boxes.

Configure FPGA — Click to configure the FPGA.

Transcript window — Displays the progress of the compilation.

Quartus Prime Global Project Assignment

This block passes Quartus® II global project assignments to the Quartus Prime project.
Each block sets a single assignment. If you need to make multiple assignments, use
multiple blocks (Figure 14-3). These assignments could set Quartus II compilation
directives such as target device or timing requirements.

I'=" You cannot assign the device, family, or fy;5x requirement with this block. Use the
Signal Compiler block to make device and family settings, or the Clock and
Clock_Derived blocks to make explicit clock settings.

a®

- For a full list of Quartus Prime global assignments and their syntax, refer to the
Quartus Prime Settings File Reference Manual or use the following Quartus Prime shell
command:

quartus_sh --tcl eval get all assignment names

Table 14-13 shows the Quartus Prime Global Project Assignment block parameters.

Table 14-13. Quartus Prime Global Project Assignment Block Parameters

Name Value Description

Assignment Name | String Specify the assignment name.

Specify the assignment value with any optional arguments. Any values or arguments

Assignment Value | String that contain spaces or other special characters must be enclosed in quotes.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

Chapter 14: AltLab Library 14-11

Figure 14-3 shows an example defining multiple assignments with Quartus Prime
Global Project Assignment blocks.

Figure 14-3. Assignments With Quartus Prime Global Project Assignment Blocks

TsU_ REQUIREMENT
10ns

Coarus |l Global Poject Assignments

ToD REQUIREMENT
10n=

Cnartus || Glabal Poject Assignmeantsi

ASINPUT TRI-STATED

RESERVE ALL UNUSED PINS \ll

Qartus [l Giebal Poect Assignments2

Quartus Prime Pinout Assignments

The Quartus Prime Pinout Assignments block passes Quartus® II project pinout
assignments to the Quartus Prime project generated by the Signal Compiler block.

Only use this block at the top level of your model. This block sets the pinout location
of the Input or Output blocks in your model, which have the specified pin names.

For buses, use a comma to separate the bit pin assignment location from LSB to MSB.
For example:

Pin Name: abc
Pin Location: Pin_AA, Pin AB, Pin AC

assigns abc [0] to Pin AA, abc[1] to Pin AB, and abc[2] to Pin AC

To set the pin assignment for a clock, use the name of the Clock block (for example,
the default is clock) for the pin name. For example:

Pin Name: clock
Pin Location: Pin AM17

To set the pin assignment for a reset, use the name of the reset signal specified in the
Clock block (for example the default global reset is aclr) for the pin name. For
example:

Pin Name: aclr
Pin Location: Pin B4

Table 14-14 shows the Quartus Prime Pinout Assignments block parameters.

Table 14-14. Quartus Prime Pinout Assignments Block Parameters

Name Value Description
. . The pin name must be the exact instance name of the Input or output block from the
Pin Name String X
10 & Bus library.
Pin Location String Pin Ioca‘t|0n value of the FPGA 10. Refer to the Quartus Prime Help for the pinout values
of a device.
August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

14-12 Chapter 14: AltLab Library

Figure 14-4 shows an example with the Quartus Prime Pinout Assignments block.
Figure 14-4. Assignments With Quartus Prime Pinout Assignments Blocks

abe
Pin_44, Pin_AB, Pin_AC

Cuartus | Pinoul Assignmenis

clock
Fin_ARNT

Cruartus |l Pinout Assignments

aclr
Fin B4

Qartus [l Pinoul Assignmenis2

Resource Usage

Use the Resource Usage block to check the hardware resources, display timing
information, and highlight the critical paths in your design.

I'=" You must save your model file and run Signal Compiler before you can use the
Resource Usage block.

The Resource Usage block displays an estimate of the logic, block RAM and DSP
blocks resources required by your design.

You can double-click on the Resource Usage block to display more information about
the blocks in your design that generate hardware.

“ %@ Theinformation that displays depends on the selected device family. Refer to the

device documentation for more information.

Select the Timing tab and click Highlight path to highlight the critical paths on your
design.

I'=~ When the source and destination in the dialog box are the same and you highlight a
single block, the critical path is because of the internal function or a feedback loop.

Signal Compiler

Use the Signal Compiler block to create and compile a Quartus Prime project for
your DSP Builder design, and to program your design onto an Altera® FPGA.

I'=” You must save your model file before you can use the Signal Compiler block.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 14: AltLab Library

14-13

Table 14-15 shows the controls and parameters for the Signal Compiler block.

Table 14-15. Signal Compiler Block Parameters Settings Page

Name Value Description
The Altera device family you want to target.
Family — If you use the automated design flow, the Quartus I software
automatically uses the smallest device in which your design fits.
Use Board Block On or Off Turn on to get the device information from the development board block.

to Specify Device

Compile

Click to compile your design.

List of ports connected to

Scan JTAG the JTAG cable. The required JTAG cable port.
Program — Click to download your design to the connected development board.
Analyze — Click to analyze the DSP Builder system.
Synthesis — Click to run Quartus Prime synthesis.
Fitter — Click to run the Quartus Prime Fitter tool.

Turn on to enable use of a SignalTap Il Logic Analyzer block in your
Enable SignalTap I | On or Off design. Turn on this setting to add extra logic and memory to capture

signals in hardware in real time.

SignalTap Il depth

2,4,8,16, 32, 64, 128,

256,512, 1k 2K, 4K, 8K The required depth for the SignalTap 1l Logic Analyzer.

SignalTap Il clock

Specifies the clock to use for capturing data with the SignalTap Il feature

User defined from a list of available signals.

Use Base Clock

Turn on if you want to use the base clock for the SignalTap Il Logic

On or Off Analyzer.

Export

Exports synthesizable HDL to a user-specified directory.

I =

Use a Clock or Clock_Derived block to specify the clock and reset signals.

SignalTap Il Logic Analyzer

August 2016 Altera Corporation

As programmable logic design complexity increases, system verification in software
becomes time consuming and replicating real-world stimulus is increasingly difficult.
To alleviate these problems, you can supplement traditional system verification with
efficient board-level verification.

DSP Builder supports the SignalTap® II embedded logic analyzer, which lets you
capture signal activity from internal Altera device nodes while the system under test
runs at speed. Use the SignalTap II Logic Analyzer block to set up event triggers,
configure memory, and display captured waveforms.

You use the SignalTap II Node block to select signals to monitor. Samples are saved to
internal embedded system blocks (ESBs) when the logic analyzer is triggered, and are
subsequently streamed off chip via the JTAG port with an Altera download cable. The
captured data is then stored in a text file, displayed as a waveform in a MATLAB plot,
and transferred to the MATLAB workspace as a global variable.

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

14-14

Chapter 14: AltLab Library

Table 14-16 shows the SignalTap II Logic Analyzer block parameters.

Table 14-16. SignalTap Il Logic Analyzer Block Parameters Page

Name Value Description
List of ports connected
Scan JTAG to the JTAG cable. The JTAG cable port.
Acquire — Click to acquire data from the development board.
SignalTap Nodes It;:z’E:ELSlgnalTap Il node Click to select a node and use the Change button to set a trigger condition.
D_on t Care, H|gh,. Low, Click the Change button to set the specified logic condition as the trigger
Change Rising Edge, Falling o
. condition for the selected node.
Edge, Either Edge

For detailed instructions on with the SignalTap II Logic Analyzer and

SignalTap II Node blocks, refer to the Performing SignalTap II Logic Analysis chapter in
the DSP Builder Standard Blockset User Guide section in volume 2 of the DSP Builder
Handbook.

Use the SignalTap II Node block with the SignalTap II Logic Analyzer block to
capture signal activity from internal Altera device nodes while the system under test
runs at speed. The SignalTap II Node block specifies the signals (also called nodes)
for which you want to capture activity.

The SignalTap II Node block has no parameters.
For an example of a design with the SignalTap II Logic Node block, refer to the
description of the SignalTap II Logic Analyzer block.

Refer to the Performing SignalTap II Logic Analysis chapter in the DSP Builder Standard
Blockset User Guide section in volume 2 of the DSP Builder Handbook.

SignalTap Il Node

Use the SignalTap II Node block with the SignalTap II Logic Analyzer block to
capture signal activity from internal Altera device nodes while the system under test
runs at speed. The SignalTap II Node block specifies the signals (also called nodes)
for which you want to capture activity.

The SignalTap II Node block has no parameters.
For an example of a design with the SignalTap II Logic Node block, refer to the
description of the SignalTap II Logic Analyzer block.

Refer to the Performing SignalTap II Logic Analysis chapter in the DSP Builder Standard
Blockset User Guide section in volume 2 of the DSP Builder Handbook.

Subsystem Builder

DSP Builder Handbook

The Subsystem Builder block allows you to build black-box subsystems that
synthesize user-supplied VHDL and simulate non-DSP Builder Simulink blocks. This
alternative to HDL import gives better simulation speed. You can also use this block if
you cannot use HDL import because of unsupported megafunctions or LPMs.

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/hb/dspb/hb_dspb_std_ug.pdf
http://www.altera.com/literature/hb/dspb/hb_dspb_std_ug.pdf
http://www.altera.com/literature/hb/dspb/hb_dspb_std_ug.pdf
http://www.altera.com/literature/hb/dspb/hb_dspb_std_ug.pdf
http://www.altera.com/literature/hb/dspb/hb_dspb_std_ug.pdf

Chapter 14: AltLab Library 14-15

The subsystem connects the inputs and outputs in the specified VHDL to HDL Input
and HDL Output blocks and creates an HDL Entity block, which you can modify if the
clock and reset signals are not correctly identified.

The Subsystem Builder block automatically maps any input ports named
simulink_clock in the VHDL entity section to the global VHDL clock signal, and
maps any input ports named simulink sclr in the VHDL entity section to the global
VHDL synchronous clear signal.

The VHDL entity should be formatted according to the following guidelines:
m The VHDL file should contain a single entity
m Port direction: in or out
m Port type: STD_LOGIC or STD_LOGIC VECTOR
B Bussize:
m a(7 DOWNTO 0) is supported (0 is the LSB, and must be 0)
m a(8 DOWNTO 1) is not supported
m a(0 TO 7) is not supported
m Single port declaration per line:
m a:STD_LOGIC; is supported
®m a,b,c:STD _LOGIC; is not supported
The Verilog HDL module should be formatted according to the following guidelines:
m The Verilog HDL file should contain a single module
m Port direction: input or output
B Bussize:
m input [7:0] a; iscorrect (0is the LSB, and must be 0)
m input [8:1] a; is not supported
m input [0:7] a;is notsupported
m Single port declaration per line:
® input [7:0] a; is correct
m input [7:0] a,b,c;isnotsupported

To use the Subsystem Builder block, drag and drop it into your model, click Select
HDL File, specify the file to import, and click Build.

Table 14-17 shows the Subsystem Builder block parameters.

Table 14-17. Subsystem Builder Block Parameters

Name Value Description
Select HDL File User defined | Browse for the VHDL or Verilog HDL file to import.
Build SubSystem — Click to build a subsystem for the selected HDL file.
August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

14-16

Chapter 14: AltLab Library

Figure 14-5 shows an example with the Subsystem Builder block.

Figure 14-5. Example With the Subsystem Builder Block

IS

Clhock

Step

—

AND

e double

Shap2 Crpemtar

Logical Diata Type Conversion

Input

dala_in b I:I
odata_oul n32:ll' data_oul

Crutput

iEimulink_c ook
wirmulink_sclr

Scope

fir_whdl

TestBench

The TestBench block controls the generation of a testbench. If the ModelSim
executable (vsim.exe) is available on your path, you can load the testbench into
ModelSim and compare the results with Simulink. Input and output vectors are
generated when you use the Compare against HDL option in the Simple tab or Run
Simulink in the Advanced tab.

You can optionally launch the ModelSim GUI to visually view the ModelSim
simulation.

stored to a file.

Enabling testbench generation may slow simulation as all input and output values are

Table 14-18 shows the TestBench block parameters.

Table 14-18. TestBench Block Parameters

Name Value Description

Enable Testbench generation | On or Off Turn on to enable automatic testbench generation.
. Click to generate HDL, run Simulink and compare the Simulink simulation
Compare against HDL —) .
results with ModelSim.
Generate HDL — Click to generate a VHDL testbench from the Simulink model.
Run Simulink — Re-run the Simulink simulation.
Run ModelSim — Load the testbench into the ModelSim simulator.
Launch GUI On or Off Turn on to launch the ModelSim graphical user interface.
Compare Results — Compare the Simulink and ModelSim results.
Mark ModelSim Unknowns \E\;::r:’in Display ModelSim unknown values as error, warning, or info messages. Errors
(X’s) as Info 9. display in red; warnings in blue; info in green.
i >=0

ngmum numbgr of Specify the maximum number of mismatches to display.
mismatches to display Default = 10

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 14: AltLab Library

14-17

VCD Sink

The VD Sink block exports Simulink signals to a third-party waveform viewer. When
you run the simulation of your model, the VCD Sink block generates a value change
dump (.ved) <VCD Sink block name>.ved file, which a third-party waveform viewer

can read.

The vCD Sink block does not have any hardware representation and therefore does
not appear in the VHDL RTL representation created by the Signal Compiler block.

Table 14-19 shows the parameters for the VCD Sink block.

Table 14-19. VCD Sink Block Parameters

Name

Value

Description

Number of Inputs

An integer greater than 0

Specify the number of input ports on the vcD Sink block.

Figure 14-6 shows an example of the VCD Sink block

Figure 14-6. Simulink Model With the VCD Sink Block

I
i Signed 2 bit
Uniform Random L Belpom
Mumber
wgﬂ i7:0 Bl portz VCD File
. Un=igned 8 bit
Uniform Random L.
Mumberd i
w e Outputirals
. Single bit
Uniform Random
Humber2

Virtual Pins

The Virtual Pins block allows you to create global assignments in the Quartus Prime
project to force all the pins to be virtual. Adding this block to your design allows you
to avoid any Quartus Prime compilation errors when you are targeting smaller

devices.

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

14-18 Chapter 14: AltLab Library

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

15. Arithmetic Library

The Arithmetic library contains two’s complement signed arithmetic blocks such as
multipliers and adders. Some blocks have a Use Dedicated Circuitry option, which
implements functionality into dedicated hardware in the Altera FPGA devices (that is,

in the dedicated DSP blocks of these devices).

The Arithmetic library contains the following blocks:

Barrel Shifter

Barrel Shifter

Bit Level Sum of Products
Comparator

Counter

Differentiator

Divider

DSP

Gain

Increment Decrement
Integrator

Magnitude

Multiplier

Multiply Accumulate
Multiply Add

Parallel Adder Subtractor
Pipelined Adder

Product

SOP Tap

Square Root

Sum of Products

Variable Precision DSP

The Barrel Shifter block shifts the input data a by the amount set by the distance
bus. The Barrel shifter block can shift data to the left (toward the MSB) or to the
right (toward the LSB).

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

15-2

Chapter 15: Arithmetic Library

The Barrel Shifter block shift data to the left only, or to the right only, or in the
direction specified by the optional direction input. The shifting operation is an
arithmetic shift and not a logical shift; that is, the shifting operation preserves the
input data sign for a right shift although the input sign is lost for a left shift.

Table 15-1 shows the Barrel Shifter block inputs and outputs.

Table 15-1. Barrel Shifter Block Inputs and Outputs

Signal Direction Description
a Input Data input.
distance Input Distance to shift.
direction Input Direction to shift (0 = shift left, 1 = shift right).
ena Input Optional clock enable.
aclr Input Optional asynchronous clear.
r Output Result after shift.

Table 15-2 shows the Barrel Shifter block parameters.

Table 15-2. Barrel Shifter Parameters

Name Value Description
Signed Integer,
Bus Type Signed Fractional, The bus number format that you want to use.

Unsigned Integer

[number of bits].[]

>= 0 (Parameterizable)

Specify the number of bits to the left of the binary point.

[].[number of bits]

>= 0 (Parameterizable)

Specify the number of bits to the right of the binary point.
This field is zero (0) unless Signed Fractional is selected.

Enable Pipeline

On or Off

Turn on to pipeline the barrel shifter with a latency of 3. Enabling
pipeline, increases latency and may increase the fy;ax of your design.

Infer size of distance
port from input port

On or Off

Turn off to specify the bit width of the distance port. When on, the design
uses the full input bus width.

Bit width of distance
port

>= 0 (Parameterizable)

Specify the width in bits of the distance port. Defaults to the size of the
input port.

Shift Direction

Shift Left, Shift Right,
Use direction input pin

The direction you want to shift the bits or specify the direction with the
direction input.

Use Enable Port

On or Off

Turn on to use the clock enable input (ena).

Use asynchronous
Clear Port

On or Off

Turn on to enable the asynchronous clear input. This option is available
only when the pipeline option is enabled.

Use Dedicated Circuitry

On or Off

If you target devices that support DSP blocks, turn on to implement the
functionality in DSP blocks instead of logic elements.

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 15: Arithmetic Library 15-3

Table 15-3 shows the Barrel Shifter block I/O formats.

Table 15-3. Barrel Shifter Block 1/0 Formats (7

V0 | Simulink @, (9 VHDL Type 4
MiL11.R1) 11:in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Explc

|| 12021.R2] 12: in STD_LOGIC_VECTOR({L2 + R2 - 1} DOWNTO 0) Explic
1311 13: in STD_LOGIC

0 | OfpyyR1) 01: out STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0 Explicit

Notes to Table 15-3:

M
(2)

For signed integers and signed binary fractional numbers, the MSB is the sign bit.

[L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

I [LLIR] is an input port. 01 [LLIR] isan output port.

Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 15-1 shows an example with the Barrel Shifter block.

Figure 15-1. Barrel Shifter Block Example

)

Constant %4 L] |:|
mad2'3 q2:0) ——fw| distancei2:0) Bt Scope
Counter

Barrel Shifter

Bit Level Sum of Products

The Bit Level Sum of Products block performs a sum of the multiplication of
one-bit inputs by signed integer fixed coefficients.

The Bit Level Sum of Products block uses the equation:
q=a(0)C0 + ... + a(®)Ci + ... + a(n-1)Cp1

where:

m g is the output result

m (i) is the one-bit input data

m (i are the signed integer fixed coefficients

m 1 is the number of coefficients in the range one to eight

August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

154

Chapter 15: Arithmetic Library

Table 154 on page 15-4 shows the Bit Level Sum of Products block inputs and

outputs.

Table 15-4. Bit Level Sum of Products Block Inputs and Outputs

Signal Direction Description
ena Input Optional clock enable.
sclr Input Optional synchronous clear.
q Output Result.

Table 15-5 shows the Bit Level Sum of Products block parameters.

Table 15-5. Bit Level Sum of Products Block Parameters

Bits

(Parameterizable)

Name Value Description
Number of Coefficients | 1-8 The number of coefficients.
Coefficient Number of | >= 1-51 Specify the bit width as a signed integer. The bit width must be capable of

being expressed as a double in MATLAB.

Signed Integer
Fixed-Coefficient

User Defined
(Parameterizable)

Specify the coefficient values for each port as a sequence of signed integers.
the coefficient values must be capable of being expressed as a double in

Clear Port

Values MATLAB. For example: [-21 2 13 5]

Register Inputs On or Off When on, a register is added on the input signal.
Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Synchronous On or Off Turn on to use the synchronous clear input (sclr).

Table 15-6 shows the Bit Level Sum of Products block I/O formats.

Table 15-6. Bit Level Sum of Products Block 1/0 Formats ("

10 | Simulink 2, () VHDL Type 4
I Explicit
|n[1].[0] In:in STD_LOG'C
I(n+1)[1] [(n+1):in STD_LOGIC
I(n+2)[1] [(n+2): in STD_LOGIC
Notes to Table 15-6:
(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

@)

[L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

)

M{Ly.rp is @n input port. 01 (rp is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 15: Arithmetic Library 15-5

Figure 15-2 shows an example with the Bit Level Sum of Products block.

Figure 15-2. Bit Level Sum of Products Block Example

||:|1|:|1|:|1|:|1|:|1|:|1|:|1|:|1 |—pan >
1
||:u:|11|:u:|11|:u:|11|:u:|11 |—>a1
2 @) .
||:u:u:u:|1111|:u:u:n:|1111 |—>az Dutput e
)
||:u:u:u:u:u:u:u:|11111111 |—>aa
= Bit Lewel Sum Of Products

Comparator

The Comparator block compares two Simulink signals and returns a single bit. The
Comparator block implicitly understands the input data type (for example, signed
binary or unsigned integer) and produces a single-bit output.

Table 15-7 shows the Comparator block inputs and outputs.

Tahle 15-7. Comparator Block Inputs and Outputs

Signal Direction Description
a Input Operand a.
b Input Operand b.
<unnamed> Output Result.

Table 15-8 shows the Comparator block parameters.

Table 15-8. Comparator Block Parameters

Name Value Description

Operator The operation you want to perform on the two buses.

[V VR R VR

Table 15-9 shows the Comparator block I/O formats.

Table 15-9. Comparator Block 1/0 Formats (*/

V0| Simulink @, VHDL Type
|2[L2].[R2] [1:in STD_LOGIC_VECTOR({L2 + R2 - 1} DOWNTOQ 0) Implicit
August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

15-6 Chapter 15: Arithmetic Library

Table 15-9. Comparator Block 1/0 Formats (*/
V0| Simulink @, VHDL Type
0 |0l 01: out STD_LOGIC implicit

Notes to Table 15-9:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(3) NMpy.ry is an input port. 01y gy is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 15-3 shows an example with the Comparator block.

Figure 15-3. Comparator Block Example

Cratput

_,_ﬁ-ﬁ =,

== 70
E == o7
Decrment AlBus1 Compamtor S UPUE

Scope

Counter

The Counter block is an up/down counter. For each cycle, the counter increments or
decrements its output by the smallest amount that DSP Builder can represent with the
selected bus type.

Table 15-10 shows the Counter block inputs and outputs.

Tahle 15-10. Counter Block Inputs and Outputs

Signal Direction Description
data Input Optional parallel data input.
sload Input Optional synchronous load signal.
sset Input Optional synchronous set port. (Loads the specified constant value into the counter.)
updown Input Optional direction (1 = up; 0 = down).
clk_ena Input Optional clock enable. (Disables counting and sload, sset, sclr signals.)
ena Input Optional counter enable. (Disables counting but not sload, sset, and sclr signals.)
sclr Input Optional synchronous clear. (Loads zero into the counter.)
q Output Result.

Table 15-11 shows the Counter block parameters.

Table 15-11. Counter Block Parameters

Name Value Description

Signed Integer, Unsigned
Integer, Signed Fractional

[number of bits].[] >= 0 (Parameterizable) Specify the number of bits to the left of the binary point.

Bus Type The bus number format that you want to use for the counter.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 15: Arithmetic Librar

y

15-7

Table 15-11. Counter Block Parameters

Value

Description

[].[number of bits]

>= 0 (Parameterizable)

Specify the number of bits to the right of the binary point. This field
is ignored unless Signed Fractional selected.

Turn on to enable the Count Modulo parameter. This option is not

Use Modulo On or Off available for bit widths greater than 31.

Count Modulo User define_d Spgcify the mgximum count plus 1. This represents the number of
(Parameterizable) unique states in the counter’s cycle.

Specify Clock On or Off Turn on to explicitly specify the clock name.

Clock User defined Specify the clock signal name.

Counter Direction

Increment, Decrement, Use
Direction Port (updown)

The direction you want to count or specify the direction with the
direction input.

Use Synchronous
Load Ports

On or Off

Turn on to use the synchronous load inputs (data, sload).

Use Synchronous Set
Port

On or Off

Turn on to use the synchronous set input (sset). This option is not
available for bit widths greater than 31.

Set Value

User defined

Specify the constant value loaded when the design uses the sset
input. This value must be less than the Count Modulo value (if used).

Clear Port

Use Clock Enable Port | On or Off Turn on to use the clock enable input (c1k_ena).
gcs)?t00unter Enable On or Off Turn on to use the counter enable input (ena).
Use Synchronous On or Off Turn on to use the synchronous clear input (sclr).

Table 15-12 shows the Counter block I/O formats.

Table 15-12. Counter Block 1/0 Formats (7

0| Simulink @, (9 VHDL Type 4
MR [1:in STD_LOGIC_VECTOR(L + R - 1} DOWNTO 0)
1211 12:in STD_LOGIC
131) 13:in STD_LOGIC .
| . Explicit
1411 14:in STD_LOGIC
1501) |5 in STD_LOGIC
161, 16: in STD_LOGIC
0 | O1ym 01: out STD_LOGIC_VECTOR(L + R - 1} DOWNTO 0) Explicit

Notes to Table 15-12:
(1)
()

For signed integers and signed binary fractional numbers, the MSB is the sign bit.
[L]is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

M.(ry is an input port.

01y1y.ry is an output port.

Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

August 2016 Altera Corporati

on

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

15-8 Chapter 15: Arithmetic Library

Differentiator
The Differentiator block is a signed integer differentiator with the equation:
q(n) = d(n) - d(n-D)
where D is the delay parameter.
Use this block for DSP functions such as CIC filters.

The equation 1-z"P describes the transfer function that the Differentiator block
implements.

Table 15-13 shows the Differentiator block inputs and outputs.

Table 15-13. Differentiator Block Inputs and Outputs

Signal Direction Description
d Input Data input.
ena Input Optional clock enable.
sclr Input Optional synchronous clear.
q Output Result.

Table 15-14 shows the Differentiator block parameters.

Table 15-14. Differentiator Block Parameters

Name Value Description

>=1
Number of Bits) Specify the number of bits.
(Parameterizable)

Any positive number

Depth (Parameterizable) Specify the depth of the differentiator register.
Use Enable Port On or Off Turn on to use the clock enable input (ena).
Use Synchronous Clear Port | On or Off Turn on to use the synchronous clear input (sclr).

Table 15-15 shows the Differentiator block I/O formats.

Table 15-15. Differentiator Block I/0 Formats ("

V0 | Simulink @, (9 VHDL Type 4
HL1y.00; 11:in STD_LOGIC_VECTOR({L1 - 1} DOWNTO 0)

|12 12:in STD_LOGIC Explicit
1311 13: in STD_LOGIC

0 | O1p1yqo] 01: out STD_LOGIC_VECTOR({L1 - 1} DOWNTO 0) Explicit

Notes to Table 15-15:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(3) Mpy.ry is an input port. 01y gy is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 15: Arithmetic Library

15-9

Figure 15-4 shows an example with the Differentiator block.

Figure 15-4. Differentiator Block Example

o700

Increment Decrament

o7)

Increment Decrement

Froduct

o= d15:0) 4. 21 qr150) []
Output
Scope

Differentiator

Divider

1=

L&

Table 15-17. Divider Block Parameters

The Divider block takes a numerator and a denominator and returns the quotient and
a remainder with the equation:

a=bxq+r

g and r are undefined if b is zero.

Dividing a maximally negative number by a minimally negative one (-1 if using

signed integers), outputs a truncated answer.

The numerator and denominator inputs can have different widths but convert to the
specified bit width.

Table 15-16 shows the Divider block inputs and outputs.

Tahle 15-16. Divider Block Inputs and Outputs

Signal Direction Description
a Input Numerator.
b Input Denominator.
ena Input Optional clock enable.
aclr Input Optional asynchronous clear.
q Output Quotient.
r Output Remainder.

Table 15-17 shows the Divider block parameters.

Unsigned Integer

Name Value Description
Signed Integer,
Bus Type Signed Fractional, | The bus number format that you want to use for the divider.

[number of bits].[]

>=0
(Parameterizable)

Specify the number of bits to the left of the binary point.

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

15-10

Chapter 15: Arithmetic Library

Table 15-17. Divider Block Parameters

Value

Description

[].[number of bits]

>=0
(Parameterizable)

only to signed fractional formats.

Specify the number of bits to the right of the binary point. This option applies

Number of Pipeline
Stages

0 to number of bits
(Parameterizable)

When non-zero, adds pipeline stages to increase the data throughput. The clock
enable and asynchronous clear ports are available only if the block is registered
(that is, if the number of pipeline stages is greater than or equal to 1).

Use Enable Port

On or Off

Turn on to use the clock enable input (ena).

Use Asynchronous
Clear Port

On or Off

Turn on to use the asynchronous clear input (aclr).

Table 15-18 shows the Divider block I/O formats.

Table 15-18. Divider Block I/0 Formats (7

V0 | Simulink @, (4 VHDL Type 4
M i.R) 11:in STD_LOGIC_VECTOR(L + R - 1} DOWNTO 0)

| 1211 [R] 12: in STD_LOGIC_VECTOR({L + R - 1} DOWNTO 0) Explicit
1311 13: in STD_LOGIC Explicit
1471 14: in STD_LOGIC

0 01y m] 01: out STD_LOGIC_VECTOR(L + R - 1} DOWNTO 0) Explicit
02(11.R] 02: out STD_LOGIC_VECTOR(IL + R - 1} DOWNTO 0) Explicit

Notes to Table 15-18:
For signed integers and signed binary fractional numbers, the MSB is the sign bit.
[L]is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

M
@)

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) Myuy[ryis aninput port. 01y r) is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 15-5 shows an example with the Divider block.

Figure 15-5. Divider Block Example

T —

Increment Decrament

T

Increment Decrement]

alzl:[2] QUOEE] ——m<]
a=bxqg+r Dutput
bIE]:[2] MEIE s
Outputd
Crivider

Scope

DSP

DSP Builder Handbook

The DSP block consists of one to four multipliers feeding a parallel adder. It is
equivalent to the Multiply Add block but exposes extra features (including chaining)
that are available only on Stratix IV DSP blocks.

The DsP block accepts one to four pairs of multiplier inputs a and b. The operands in
each pair are multiplied together. The second and fourth multiplier outputs can
optionally be added or subtracted from the total.

Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 15: Arithmetic Library

15-11

August 2016 Altera Corporation

The following equation expresses the block function:
res = agxby = a;xby [+ ayxby [+ azxbs]] [+ chainin]

If there are four multipliers and the input bit widths are both less than or equal to 18,
you can optionally enable a chainout adder output (chainout) instead of the normal
output (res).

If there are four multipliers and the input bit widths are both equal to 18, you can
enable a chainout adder input (chainin). Only drive this chainin port from the
chainout output of a DSP block at the preceding stage.

Other features include:

m Parameterizable input and output data widths

m Optional asynchronous clear and clock enable inputs

m Optional accumulator synchronous load input

m Optional shiftin instead of an a input

m Optional shift out from the a input of the last multiplier

m Optional saturation overflow outputs

m Optional registers to pipeline the adder and chainout adder
m Optional accumulator mode

For more information about multiplier or adder operations, refer to the altmult_add
Megafunction User Guide.

Table 15-19 shows the DSP block inputs and outputs.

Table 15-19. DSP Block Inputs and Outputs

Signal Direction Description
a0-a3 Input Operand a.
b0-b3 Input Operand b.
ena Input Optional clock enable.
chainin Input Optional input bus from the preceding stage. (7
zero_chainout Input Optional reset to zero for the chainout value.
aclr Input Optional asynchronous clear.
accum_sload Input Optional accumulator synchronous load input.
res Output Result.
shiftouta Output Optional shift out from A input of last multiplier.
overflow Output Optional saturation overflow output.
chainout Output eOr?atibolggail.)chalinout output. (Replaces the res output when

Note to Table 15-19:
(1) Usethe chainin port to feed the adder result (chainout) from a previous stage. Do not use for any other signal.

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/ug/ug_altmult_accum.pdf
http://www.altera.com/literature/ug/ug_altmult_accum.pdf

15-12 Chapter 15: Arithmetic Library

Figure 15-6 shows a basic multiplier or adder with two inputs where the product is
subtracted.

Figure 15-6. Basic 2-Input Multiplier or Adder

TR
al
& ()
+ res
MULT1
al
' (x)
L

Figure 15-7 shows a 4-input multiplier or adder with shiftin inputs, registered
outputs, rounding and saturation enabled, a chainout adder and saturation overflow
outputs.

Figure 15-7. 4-Input Multiplier or Adder with Chainout Adder

chainin
5 mocTa] [~ \L
b=l
cE=ly
Jalt] X;
ety
+
MULTY ol
cIZI:E =
L2kl _D_E overflow:,
cl
/ res
RlR \ shiftouta
ey
Y Pl
ety
+
MULTS ol
I
Jalk; Pl
i / / /
ero_chainout
= a4
DSP Builder Handbook August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 15: Arithmetic Library

15-13

Table 15-20 shows the DSP block parameters.

Table 15-20. DSP Block Parameters

Value

Description

Number of Multipliers

1,2,3,4

The number of multipliers you want to feed the adder.

Bus Type

Signed Integer,
Unsigned Integer,
Signed Fractional

The number format you want to use for the bus.

b Inputs [].[number of bits]

. >=0 Specify the number of data a input bits to the left of the binary point,
a Inputs [number of bits].[] |, 2 meterizable) | including the sign bit.
. >=0 Specify the number of data a input bits to the right of the binary point.
a Inputs [].[number of bits] (Parameterizable) | This option applies only to signed fractional formats.
. >=0 Specify the number of data b input bits to the left of the binary point,
b Inputs [number of bits].[] |\ o, 2 meterizable) | including the sign bt
>=0 Specify the number of data b input bits to the right of the binary point.

(Parameterizable)

This option applies only to signed fractional formats.

Connect Multiplier Input a

Turn on to connect the multiplier input a to shiftin from the previous

Output [].[number of bits]

to shiftin On or Off multiplier. The design uses separate inputs for each multiplier.)
Use Shiftout from a Input Turn on to create a shiftouta output from the a input of the last
. On or Off o
of Last Multiplier multiplier.
Output Operation on First ADD, SUB Add or subtract the product of the first multiplier pair.
Multiplier Pair ’ P plier pair.
Output Operation on . .
Second Multiplier Pair ADD, SUB Add or subtract the product of the second multiplier pair.
Turn on to enable accumulator mode. When this option is on, you can
Enable Accumulator Mode | On or Off select the accumulator direction and use the optional accum _sload
input.
Accumulator Direction ADD, SUB Add or subtract values in the accumulator.
Use Accumulator . .
Synchronous Load Input On or Off Turn on to use the optional accum_sload input.
Use Chainout Adder Input Turn on to use the chainin input for the chainout adder to add the result
(chainin) P On or Off from a previous stage. This option is available only if the input bit widths
are less than or equal to 18 and the number of multipliers is 4.
. Turn on to use the chainout output from the chainout adder output
t’c?]eaﬁgﬂ{‘)o“t Adder Qutput | 5, o\ o instead of the res output. This option is available only if the input bit
widths are less than or equal to 18 and the number of multipliers is 4.
Use Zero Chainout Input On or Off Turn on to use the zero chainout input, which dynamically sets the
chainout value to zero.
) When on, the multiplier output bit width is full resolution. When off, you
Full Resolution for Output On or Off can specify a different output width. Rounding and saturation are
Result . L L
available for certain input/output type combinations.
. >=0 Specify the number of data output bits to the left of the binary point,
Output [number of bits]. [} (Parameterizable) | including the sign bit.
>=0 Specify the number of data output bits to the right of the binary point.

(Parameterizable)

This option applies only to signed fractional formats.

Output Rounding Operation
Type

None (truncate),
Nearest Integer,
Nearest Even

You can disable rounding (truncate), round to the nearest integer or
round to the nearest even.

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

15-14

Chapter 15: Arithmetic Library

Table 15-20. DSP Block Parameters

Name Value Description
You can disable (wrap), or enable saturation. Symmetric saturation
None (wrap) specifies that the absolute value of the maximum negative number is
Output Saturation ap), equal to the maximum positive number. Asymmetric saturation specifies
! Symmetric, . X :
Operation Type : that the absolute value of the maximum negative number is 1 greater than
Asymmetric . o :
the maximum positive number. Do not enable rounding unless you have
enabled saturation.
Use Qutput Overflow Port | On or Off Turn on to use the overflow output for the saturation unit.
Register Data Inputs to the On or Off Turn on to create registers at the data inputs to the multiplier. (Always on
Multiplier(s) if in shiftin mode.)
'\Rﬂeug:tlis[;[ﬁgromput of the On or Off Turn on to create a register at the data output from the multiplier.
Register Output of the Turn on to create a register at the output of the adder. (Always on if
On or Off .
Adder accumulator mode is enabled.)
Register Chainout Adder on or Off Il;gré)on to create a register at the output of the chainout adder (if it is
Register Shiftout On or Off Registers the shiftouta output (if it is used).
Use Enable Port On or Off Turn on to use the clock enable input (ena) if using registers.
g;(;rU;grrtAsynchronous On or Off Turn on to use the asynchronous clear input (aclr) if using registers.
This parameter turns on, if you enable User Asyncrounous Clear input
(aclr). If parameter value is on, the user asynchrounous clear signal is
OR Asynchronous Clear ORed with global clear signal before it is used. If off, global clear is
Input with Global Aclr On or off ignored, and only user clear is used.
The default value for the parameter is on (as DSP Builder does reset
ORing by default for all blocks).
I~ Compilation in the Quartus Prime software requires that the input bit widths are 18

bits when you use the chainout adder input, output rounding with an output LSB in
the range 6 to 21, or output saturation with an output MSB in the range 28 to 43.

Table 15-21 shows the DSP block I/O formats.

Table 15-21. DSP Block /0 Formats ("

yo| Simulink @, VHDL Type
e 11: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)
Explicit
| |ﬂ[|_1]_[R1] In:in STD_LOG|C_VECTOR({L1 +R1-1} DOWNTO 0)
I(n+1) 4 I(n+1): in STD_LOGIC -
) Explicit
I(n+2)1 I(n+2): in STD_LOGIC
where3<n<9 where 3<n<9

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 15: Arithmetic Library 15-15

Table 15-21. DSP Block I/0 Formats ("

0| Simulink 2, VHDL Type

0 | OT2xquir+ ceilllog2(M)2 | o4. o4t STD LOGIC VECTOR((2 X L1) + ceil(log2(n)) + (2 x R1) - 1) DOWNTO 0) | Implicit
X [R1]

Notes to Tahle 15-21:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(8) Mpuy.ry is aninput port. 01y gy is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 15-8 shows an example of a basic low-pass filter with two DSP blocks.

Figure 15-8. DSP Block Example

| 2116 20[2):(16] n y
= ut Basic Lo-pass Filter
Chirp Signal E TestBench *’
chainout[10]:[34] on % @
-0'08631 EOL[18] Using shiftout and chainout TestBench Signal Compiler
bO reduces routing pressure
res= a0 X b0+ a1 X b1+ aZ X b2+ a3 X b3 and resource usage.
b1
b2[0]:[18] chainin[10]:(34]
bz shiftouta[2]:[16]
0_3?3?1 B3[0]:[12] —|—’aD[2]:[1B] Lizabling "Full Resolution for Output
Result' allowes, for certain configurations,
b3 res= a0 X b0+ a1 X b1+ aZ X b2 + a3 X b3 Mearest Even rounding and Symmetric

saturation, again with reduced resource

Fir Stage 1
| 037371 | B [45] HEaas
bt
res[1]:[16] <0 [2]:[16]
Dutput
| 020100 B b1 [0]:[15] S Stops
b5
| 000055368 | b2 [0):[12]
b
| -0.086311 I b3 [0):[15]
b7
Fir Stage 2

The Gain block generates its output by multiplying the signal input by a specified
gain factor. You must enter the gain as a numeric value in the Gain block parameter
field. The gain factor must be a scalar.

'~ The Simulink software also provides a Gain block. If you use the Simulink Gain block
in your model, you can use it only for simulation; Signal Compiler cannot convert it to
HDL.

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

15-16

Chapter 15: Arithmetic Library

Table 15-22 shows the Gain block inputs and outputs.

Table 15-22. Gain Block Inputs and Outputs

Signal Direction Description
d Input Data input.
ena Input Optional clock enable.
aclr Input Optional asynchronous clear.
<unnamed> Output Result.

Table 15-23 shows the Gain block parameters.

Table 15-23. Gain Block Parameters

Name Value Description
Specify the gain value you want to use as a decimal number (or an
Gain Value User Defined expression that evaluates to a decimal number). The gain is masked to

the number format (bus type) you select.

Map Gain Value to Bus Type

Signed Integer,
Signed Fractional,
Unsigned Integer

The bus number format you want to use for the gain value.

[]-[Gain value number of bits]

(Parameterizable)

[Gain value number of bits].[] >=0 . S.pecn‘y the number of bits to the left of the binary point, including the
(Parameterizable) | sign bit.
>=0 Specify the number of bits to the right of the binary point. This option

applies only to signed fractional formats.

Number of Pipeline Stages

>=0
(Parameterizable)

The number of pipeline delay stages. The Clock Phase Selection and
Optional Ports options are available only if the block is registered (that
is, if the number of pipeline stages is greater than or equal to 1).

Specify the phase selection with a binary string, where a 1 indicates the
phase in which the block is enabled. For example:

1—The block is always enabled and captures all data passing
through the block (sampled at the rate 1).

Clock Phase Selection User Defined 10—The block is enabled every other phase and every other data
(sampled at the rate 1) passes through.
0100—The block is enabled on the second phase of and only the
second data of (sampled at the rate 1) passes through. That is, the
data on phases 1, 3, and 4 do not pass through the block.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Asynchronous Clear Port | On or Off Turn on to use the asynchronous clear input (aclr).

This parameter is for synthesis.
Use LPM On or Off When on, the Gain block is mapped to the LeM MULT library of

parameterized modules (LPM) function and the VHDL synthesis tool
uses the Altera LpM_MULT implementation.

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 15: Arithmetic Library

15-17

Table

15-24 shows the Gain block I/O formats.

Table 15-24. Gain Block /0 Formats "/

/0 | Simulink 2, VHDL Type
ML Ry 11:in STD_LOGIC_VECTOR((L1 + R1 - 1} DOWNTO 0)

] 12p 12: in STD_LOGIC Implicit (4
1311 13:in STD_LOGIC

ECE (5 | 01: out STD_LOGIC_VECTOR({L1+LK+2*max(R1,RK)-1} DOWNTO 0) | Implicit
LK].2*max(R1,RK)]

Notes to Tahle 15-24:

integers R = 0, that is, [L].[0].

il [LLIR] is an input port. 01 L.
Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

For signed integers and signed binary fractional numbers, the MSB is the sign bit.
[L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

For single bits, R = 0, that is, [1] is a single bit.
[R] is an output port.

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

K'is the gain constant with the format K k) [rk]

Figure 15-9 shows an example with the Gain block.

Figure 15-9. Gain Block Example

Soed A bt |
Cutput
Increment
Cecrerment {m Irerse
Crutputd

Sain

Scope

Increment Decrement

The Increment Decrement block increments or decrements a value in time. The output
is a signed integer, unsigned integer, or signed binary fractional number. For all
number formats, the counting sequence increases or decreases by the smallest
representable value; for integer types, the value always changes by 1.

Table 15-25 shows the Increment Decrement block inputs and outputs.

Table 15-25. Increment Decrement Block Inputs and Outputs

Signal Direction Description
ena Input Optional clock enable.
sclr Input Optional synchronous clear.
c Output Result.

August 2016 Altera Corporation

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

15-18

Chapter 15: Arithmetic Library

Table 15-26 shows the Increment Decrement block parameters.

Table 15-26. Increment Decrement Block Parameters

Clear Port

Name Value Description
Signed Integer,
Bus Type Signed Fractional, | The number format you want to use for the bus.
Unsigned Integer
. >=0 : . N . . .
<number of bits>.[] (Parameterizable) Select the number of bits to the left of the binary point, including the sign bit.
. >=0 Select the number of bits to the right of the binary point. This option applies only
[].<number of bits> (Parameterizable) | to signed fractional formats.
Direction :)ncrement, Count up or down.
ecrement
Starting Value User Defined Enter the value with which to begin counting. This value is the initial output value
g (Parameterizable) | of the block after a reset.
Specify the phase selection with a binary string, where a 1 indicates the phase in
which the block is enabled. For example:
1—The block is always enabled and captures all data passing through the
block (sampled at the rate 1).
Clock Phase User Defined .
Selection ser Letine 10—The block is enabled every other phase and every other data (sampled at
the rate 1) passes through.
0100—The block is enabled on the second phase of and only the second data
of (sampled at the rate 1) passes through. That is, the data on phases 1, 3, and
4 do not pass through the block.
Specify Clock On or Off Turn on to explicitly specify the clock name.
Clock User defined Specify the clock signal name.
Use Enable Port On or Off Turn on if you want to use the clock enable input (ena).
Use Synchronous On or Off Turn on if you want to use the synchronous clear input (sclr).

Table 15-27 shows the Increment Decrement block I/O formats.

Table 15-27. Increment Decrement Block 1/0 Formats (7/

V0| Simulink @, VHDL Type
| My 11:in STD_LOGIC

1211 12:in STD_LOGIC
0 | O1ppyqre) 01: out STD_LOGIC_VECTOR({LP + RP - 1} DOWNTO 0) Explicit

Notes to Tahle 15-27:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(3) Myuy[ryis aninput port. 01y r) is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 15: Arithmetic Library 15-19

Figure 15-10 shows an example with the Increment Decrement block.

Figure 15-10. Increment Decrement Block Example

_._G-ﬁ o0 3 e
Inc=ment Qutput
Signed
_,J:-ﬁ 30 Ui 4 Bits
Incemant Cutput]
Unsigned Snape

Integrator
The Integrator block is a signed integer integrator with the equation:
q(n+D) = g(n) + d(n)
where D is the delay parameter.
Use this block for DSP functions such as CIC filters.

The equation z?/ (1-z"P) describes the transfer function that the Integrator block
implements. This behavior of this transfer function is slightly different from the more
typical 1/(1-zP).

Figure 15-11 shows the block diagrams for these functions.

Figure 15-11. Integrator Transfer Functions

Transfer function of a typical integrator = ‘U(‘l—z'l}) Transfer function of integrator in DSP Builder = z%(1-z27)
X Y!
h 4
S

Note: zis number of delay

The magnitude response of these two functions is the same although their phase
response is different. For the typical integrator function, 1/(1-z"P), there is an impulse
on the output at time = 0, whereas the output delays by a factor of D for the
z°/(1-z’P) function that the DSP Builder integrator uses.

This behavior effectively registers the output and gives a better F,,,, performance
compared to the typical function where if you chained a row of # integrators together,
it is equivalent to n unregistered adder blocks in a row, and is slow in hardware.

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

15-20

Chapter 15: Arithmetic Library

Table 15-28 shows the Integrator block inputs and outputs.

Table 15-28. Integrator Block Inputs and Outputs

Signal Direction Description
d Input Data input.
ena Input Optional clock enable.
sclr Input Optional synchronous clear.
q Output Result.

Table 15-29 shows the Integrator block parameters.

Table 15-29. Integrator Block Parameters

Value Description

Number of Bits

>=1

(Parameterizable) Specify the number of bits.

A positive number

Depth (Parameterizable) Specify the depth of the integrator register.
Use Enable Port On or Off Turn on to use the clock enable input (ena).
Use Synchronous Clear Port | On or Off Turn on to use the synchronous clear input (sclr).

Table 15-30 shows the Integrator block I/O formats.

Table 15-30. Integrator Block /0 Formats (*/

V0 | Simulink @, (9 VHDL Type 4
HL1y.00; 11:in STD_LOGIC_VECTOR({L1 - 1} DOWNTO 0)

|12 12: STD_LOGIC Explicit
1311 13: STD_LOGIC

0 | O1p1yqo] 01: out STD_LOGIC_VECTOR({L1 - 1} DOWNTO 0) Explicit

Notes to Table 15-30:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) NMpuy.ry is aninput port. 01y gy is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 15-12 shows an example of the Integrator Block.

Figure 15-12. Integrator Block Design Example

o700

1

1.z

Cutput

Increment Decrament

Integratar

- plasy = quso)l—w<]

Scope

DSP Builder Handbook

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 15: Arithmetic Library 15-21

Magnitude

The scalar Magnitude block returns the absolute value of the incoming signed binary
fractional bus.

The Magnitude block has no parameters.

Table 15-31 shows the Magnitude block I/O formats.

Table 15-31. Magnitude Block 1/0 Formats (”/

V0 | Simulink @, (3 VHDL Type
0 | Olire 01: out STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit

Notes to Tahle 15-31:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(3) NMpuy.ry is aninput port. 01y gy is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 15-13 shows an example with the Magnitude block.

Figure 15-13. Magnitude Block Example

H+
—— > =
Sine Wana ARBus Cutputl

hEgnitude Dutput2

Scope

Multiplier

The Multiplier block supports two scalar inputs (no multidimensional Simulink
signals). Operand a is multiplied by operand b and the result r output as the following
equation shows:

r=axb
The differences between the Multiplier block and the Product block are:

m The Product block supports clock phase selection while the Multiplier block does
not.

m The Product block uses implicit input port data widths that it inherits from the
signals’ sources, whereas the Multiplier block uses explicit input port data
widths that you must specify as parameters.

m The Product block allows you to use the LPM multiplier megafunction, whereas
the Multiplier block always uses the LPM.

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

15-22

Chapter 15: Arithmetic Library

Table 15-32 shows the

Multiplier block inputs and outputs.

Table 15-32. Multiplier Block Inputs and Outputs

Signal Direction Description
a Input Operand a.
b Input Operand b.
ena Input Optional clock enable.
aclr Input Optional asynchronous clear.
r Output Result .

Table 15-33 lists the parameters for the Multiplier block.

Table 15-33. Multiplier Block Parameters

Value

Description

Bus Type

Signed Integer,
Signed Fractional,
Unsigned Integer

The bus number format to use for the Multiplier block.

Input [number of bits].[]

>=0
(Parameterizable)

Specify the number of bits to the left of the binary point for input a (or
both input signals if set to have the same width).

Input [].[number of bits]

>=0
(Parameterizable)

Specify the number of bits to the right of the binary point for input a (or
both input signals if set to have the same width). This option applies only
to signed fractional formats.

Number of Pipeline Stages

>=0
(Parameterizable)

The number of pipeline stages. The ena and aclr ports are available only
if the block is registered (that is, if the number of pipeline stages is greater
than or equal to 1).

Both Inputs Have Same Bit
Width

On or Off

Turn on if you want input a and input b to have the same bit width. When
off, additional fields are available to specify the number of bits to the left
and right of the binary point for input b.

Input b [number of bits].[]

>=0
(Parameterizable)

Specify the number of bits to the left of the binary point for input b.

Input b [].[number of bits]

>=0
(Parameterizable)

Specify the number of bits to the right of the binary point for input b. This
option applies only to signed fractional formats.

Full Resolution for Output

When on, the multiplier output bit width is full resolution. When off, you

Result On or Oft can specify the number of bits for the output.
Output MSB (>I:a?ameterizable) Specify the number of MSBs in the output for an integer bus.
Output LSB >=0 Specify the number of LSBs in the output for an integer bus.

(Parameterizable)

Output [number of bits].[]

>=0
(Parameterizable)

Specify the number of bits to the left of the binary point for the output r.
This option applies only to signed fractional formats.

Output [J.[number of hits]

>=0
(Parameterizable)

Specify the number of bits to the left of the binary point for the output r.
This option applies only to signed fractional formats.

Use Dedicated Circuitry

AUTO, YES, NO

Use dedicated multiplier circuitry (if supported by your target device). A
value of AUTO means that the Quartus Il software uses the dedicated
multiplier circuitry based on the width of the multiplier.

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 15: Arithmetic Library 15-23

Table 15-33. Multiplier Block Parameters

Name Value Description
Use Enable Port On or Off Turn on to use the clock enable input (ena).
ILchs)ftAsynchronous Clear On or Off Turn on to use the synchronous clear input (aclr).

Table 15-34 shows the Multiplier block I/O formats.

Table 15-34. Multiplier Block Input/Output Ports ("

V0| Simulink @, (4 VHDL Type 4
My] 11:in STD_LOGIC_VECTOR((L + R - 1} DOWNTO 0)

| 12011.R) 12: in STD_LOGIC_VECTOR({L + R - 1} DOWNTO 0) Explicit
13, 13: STD_LOGIC Explicit
4, 14: STD_LOGIC

0 01{Lo].(Ro] 01: out STD_LOGIC_VECTOR({Lo + Ro - 1} DOWNTO 0) Explicit
02,101.Ro] 02: out STD_LOGIC_VECTOR({Lo + Ro - 1} DOWNTO 0) Explicit

Notes to Table 15-34:
(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(3) Myuy[ryis aninput port. 01y r) is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 15-14 shows an example with the Multiplier block.

Figure 15-14. Multiplier Block Example

',_BM—F

Increment Decreament

_"‘—»ﬁ'r:ﬁ—r bl % S]]

Increment Drecrement]

Fattern

Output

Scope

hultiplier

e For more information about multiplier operations, refer to the Multiplier Megafunction
User Guide.

Multiply Accumulate

The Multiply Accumulate block consists of a single multiplier feeding an
accumulator, which performs the calculation y +=a x b.

The input is signed integer, unsigned integer, or signed binary fractional formats.

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/ug/ug_lpm_mult_mf.pdf
http://www.altera.com/literature/ug/ug_lpm_mult_mf.pdf

15-24 Chapter 15: Arithmetic Library

Table 15-35 shows the Multiply Accumulate block inputs and outputs.

Table 15-35. Multiply Accumulate Block Inputs and Outputs

Signal Direction Description
a Input Operand A.
b Input Operand B.
sload Input Synchronous load signal.
addsub Input Optional accumulator direction (1= add, 0 = subtract).
ena Input Optional clock enable.
aclr Input Optional asynchronous clear.
y Output Result.

Table 15-36 shows the Multiply Accumulate block parameters.

Table 15-36. Multiply Accumulate Block Parameters

Value

Description

Bus Type

Signed Integer,
Signed Fractional,
Unsigned Integer

The number format you want to use for the bus.

bits

. >=0 Specify the number of data input bits to the left of the binary point for
Input A [number of bits]. (] (Parameterizable) | operand A, including the sign bit.
. >=0 Specify the number of data input bits to the right of the binary point for
Input A [].[number of bits}] (Parameterizable) | operand A. This option applies only to signed fractional formats.
. >=0 Specify the number of data input bits to the left of the binary point for
Input B [number of bits]. (] (Parameterizable) | operand B, including the sign bit.
. >=0 Specify the number of data input bits to the right of the binary point for
Input B [].[number of bits] (Parameterizable) | operand B. This option applies only to signed fractional formats.
Output Result number of | >=0

(Parameterizable)

Specify the number of output bits.

Pipeline Register

None, Data Inputs,
Multiplier Output,
Data Inputs and
Multiplier

Add pipelining to the data inputs, multiplier output, both, or neither.

Circuitry

Use Dedicated Multiplier

AUTO, YES, NO

Select AUTO to automatically implement the functionality in DSP blocks.
Select YES or NO to explicitly enable or disable this option. If your target
device does not support DSP blocks or you select NO, the functionality
implements in logic elements.

Accumulator Direction

Add, Subtract

Add or subtract the result of the multiplier.

Port

Use Add/Subtract Port On or Off Turn on to use the direction input (addsub).
Use Enable Port On or Off Turn on to use the clock enable input (ena).
Use Asynchronous Clear On or Off Turn on to use the asynchronous clear input (aclr).

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 15: Arithmetic Library 15-25

Table 15-37 shows the Multiply Accumulate block I/O formats.

Table 15-37. Multiply Accumulate Block 1/0 Formats (”/

V0 | Simulink @, (9 VHDL Type 4
MiL11.R1) 11:in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)
12[191R2) 12:in STD_LOGIC_VECTOR({L2 + R2 - 1} DOWNTO 0)
| 1311 13: in STD_LOGIC Explicit
1411 14: in STD_LOGIC Explicit
1511 I5: in STD_LOGIC
1611 16: in STD_LOGIC
0 | 01[LopRo) 01: out STD_LOGIC_VECTOR({LO + RO - 1} DOWNTO 0) Explicit

Notes to Tahle 15-37:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(8) MRy is an input port. 01 gy is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

The sload input controls the accumulator feedback path. If the accumulator is adding
and sload is high, the multiplier output is loaded into the accumulator. If the
accumulator is subtracting, the opposite (negative value) of the multiplier output is
loaded into the accumulator.

Figure 15-15 shows an example with the Multiply Accumulate block.

Figure 15-15. Multiply Accumulate Block Example

e a2

Increment Decrament

W—rbm:[ﬁu yr=axt yELE— e]

Incrament Decrementd

Output

Scope

E—h— zload
GHD

hultiply Accumulate

Multiply Add

The Multiply Add block consists of two, three, or four multiplier pairs feeding a
parallel adder. The operands in each pair are multiplied together and the second and
fourth multiplier outputs can optionally be added to or subtracted from the total.

The following equation expresses the block function:
y =a0xb0 + alxbl [+ a2xb2 [+ a3xb3]]]

The operand b inputs can optionally be hidden and instead have constant values
assigned in the Block Parameters dialog box.

The input is a signed integer, unsigned integer, or signed binary fractional formats.

August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

15-26

Chapter 15: Arithmetic Library

Table 15-38 shows the Multiply Add block inputs and outputs.

Table 15-38. Multiply Add Block Inputs and Outputs

Signal Direction Description
a0—a3 Input Operand a.
b0-b3 Input Operand b.
ena Input Optional clock enable.
aclr Input Optional asynchronous clear
y Output Result.

Table 15-39 shows the Multiply Add block parameters.

Table 15-39. Multiply Add Block Parameters

Value

Description

Number of Multipliers

2,3,4

The number multipliers you want to feed the adder.

Signed Integer,

Input [].[number of bits]

Bus Type Signed Fractional, The number format you want to use for the bus.
Unsigned Integer
>=0 i i i i i
Input [number of bits].[] . Spemfy the nur.nber.of data input bits to the left of the binary point,
(Parameterizable) including the sign bit.
>=0

(Parameterizable)

Specify the number of data input bits to the right of the binary
point. This option applies only to signed fractional formats.

Adder Mode

Add Add, Add Sub,
Sub Add, Sub Sub

The operation mode of the adder.

= Add Add: Adds the products of each multiplier.

m Add Sub: Adds the second product and subtracts the fourth.
m Sub Add: Subtracts the second product and adds the fourth.
m Sub Sub: Subtracts the second and fourth products.

Pipeline Register

No Register, Inputs Only,
Multiplier Only, Adder Only,
Inputs and Multiplier,
Inputs and Adder,
Multiplier and Adder,
Inputs Multiplier and Adder

The elements to pipeline. The clock enable and asynchronous clear
ports are available only if the block is registered.

If you target devices that support DSP blocks, turn on to
implement the functionality in DSP blocks instead of with logic

Port

Use Dedicated Circuitry | On or Off elements. This option is not available if you select the Unsigned
Integer bus type.
Turn on to assign the operand b inputs to constant values. Use this

One Input is Constant On or Off option with the Constant Values parameter but is not available
when you enable Use Dedicated Circuitry.

Constant Values User Defined Typ.e th.e congtant valueg in this box_as a MATLA.B array. This
option is available only if One Input is Constant is on.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Asynchronous Clear On or Off Turn on to use the asynchronous clear input (aclr).

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 15: Arithmetic Library 15-27

Table 15-40 shows the Multiply Add block I/O formats.

Table 15-40. Multiply Add Block 1/0 Formats (7/

yo| Simulink @, VHDL Type
Mo 1:n STD_LOGIC_VECTOR(L + R1 - 1} DOWNTO 0)
Explicit
“[L‘I].[R‘I] li: in STD_LOG'C_VECTOR({L1 +R1- 1} DOWNTO 0)

L Explicit
|r|[|_1]_[R1] In:in STD_LOG'C_VECTOR({L1 +R1-1} DOWNTO 0)
I(n+1) 4 I(n+1): in STD_LOGIC -

) Explicit

I(n+2)1 I(n+2): in STD_LOGIC
where3<n<9 where 3<n<9

0 | Otaxpaceillog2(m)2 | o4 oyt STD LOGIC VECTOR((2 x L1) + ceil(log2(n)) + (2 x R1) - 1} DOWNTO 0) | Implicit
x [R1]

Notes to Table 15-40:
(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(3) MRy is aninput port. 01y r) is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 15-16 shows an example with the Multiply Add block.

Figure 15-16. Multiply Add Block Example

AlBus =07 0]
|] B 070
AhEu=1 y=30 b0 -31 X o)]
22 HEL Crutput Dicpkay
b1(7:0)
AtBus2 flu ip by Add
ARBu=2

Parallel Adder Subtractor

The Parallel Adder Subtractor block takes any input data type. If the input widths
are not the same, Signal Compiler sign extends the buses so that they match the
largest input width. The generated VHDL has an optimized, balanced adder tree.

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

15-28 Chapter 15: Arithmetic Library

Table 1541 shows the Parallel Adder Subtractor block inputs and outputs.

Table 15-41. Parallel Adder Subtractor Block Inputs and Outputs

Signal Direction Description
data0-dataN Input Operands.
ena Input Optional clock enable.
aclr Input Optional asynchronous clear
r Output Result.

Table 15-42 shows the Parallel Adder Subtractor block parameters.

Table 15-42. Parallel Adder Subtractor Block Parameters

Name Value Description

Number of Inputs >=2 The number of inputs you want to use.

Specify addition or subtraction operation for each port with the operators + and —.
Add (+) Sub (-) User Defined | For example + —+ implements a — b + ¢ for 3 ports. However, two consecutive
subtractions, (—-) are not legal. Missing operators are assumed to be +.

When on, DSP Bu idler registers the output from each stage in the adder tree,
resulting in a pipeline length that is equal to ceil (1og2 (number of inputs)).

Enable Pipeline On or Off

When you enable a pipeline, you can indicate the phase selection with a binary
string, where a 1 indicates the phase in which the block is enabled. For example:

1—The block is always enabled and captures all data passing through the block
(sampled at the rate 1).

Clock Phase Selection | User Defined 10—The block is enabled every other phase and every other data (sampled at
the rate 1) passes through.

0100—The block is enabled on the second phase of and only the second data of
(sampled at the rate 1) passes through. That is, the data on phases 1, 3, and 4
do not pass through the block.

Use Enable Port On or Off Turn on to use the clock enable input (ena).
Use Asynchronous .
Clear Port On or Off Turn on to use the asynchronous clear input (aclr).

Table 15-43 shows the Parallel Adder Subtractor block I/O formats.

Table 15-43. Parallel Adder Subtractor Block I/0 Formats 7/

o | Simulink 2, @ VHDL Type ¥
L11.R1 [1:in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

Implicit
liLiy fin li:in STD_LOGIC_VECTOR({Li + Ri - 1} DOWNTO 0)

I Implicit
In[Ln).[Rn] In: in STD_LOGIC_VECTOR({Ln + Rn - 1} DOWNTO 0)
I(n+1)p1; [(n+1):in STD_LOGIC Implicit
I(n+2)[1] [(n+2): in STD_LOGIC

DSP Builder Handbook August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 15: Arithmetic Library 15-29

Table 15-43. Parallel Adder Subtractor Block I/0 Formats (")

0| Simulink @, (3 VHDL Type

0 | OMimaxi + 01: out STD_LOGIC_VECTOR({max(Li) + ceil(log2(n)) + max(Ri) - 1} DOWNTO 0) | Implicit
ceil(log2(n))].[max(Ri)]

Notes to Table 15-43:

Figure 15-17 shows an example with the Parallel Adder Subtractor block.

Figure 15-17. Parallel Adder Subtractor Block Example

For signed integers and signed binary fractional numbers, the MSB is the sign bit.

[L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

1y.ry is an input port. 01y gy is an output port.

Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

ﬁU B HO

2 AkBus
Sine Wawe

aY
; AkBus1
Sine Wiz

Famlel
Adder Subtmctor

- CT e

Cutputd]

P00 g

Cutput?

Scope

Pipelined Adder

August 2016 Altera Corporation

The Pipelined Adder block is a pipelined adder and subtractor that performs the

following calculation:

r =a+ b+ cin (when addsub = 1)

r=a-b+ cin -1 (whenaddsub = 0)

Use the optional ovl port an overflow with signed arithmetic or as a carry out with
unsigned arithmetic. For unsigned subtraction, the output is 1 when no overflow
occurs.

Table 15-44 shows the Pipelined Adder block inputs and outputs.

Table 15-44. Pipelined Adder Block Inputs and Outputs

Signal Direction Description
a Input Operand a.
b Input Operand b.
cin Input Optional carry in.
addsub Input Optional control (1= add, 0 = subtract).
ena Input Optional clock enable.
aclr Input Optional asynchronous clear.
r Output Result r.
ovl Output Optional overflow (signed) or carry out (unsigned).

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

15-30

Chapter 15: Arithmetic Library

Table 15-45 shows the Pipelined Adder block parameters.

Tahle 15-45. Pipelined Adder Block Parameters

Unsigned Integer

Name Value Description
Signed Integer,
Bus Type Signed Fractional, | The bus number format that you want to use.

[number of bits].[]

>=0
(Parameterizable)

Specify the number of bits to the left of the binary point.

[].[number of bits]

>=0
(Parameterizable)

Specify the number of bits to the right of the binary point. This option applies
only to signed fractional formats.

Number of Pipeline
Stages

>=0
(Parameterizable)

The number of pipeline stages.

Direction ADD, SUB Use the block as an adder or subtractor.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Asynchronous On or Off Turn on to use the asynchronous clear input (aclr).

Clear Port

Use Garry In Port | On or Off Turn on to use the carry in input (cin).

Use Qverflow /

Carry Out Port On or Off Turn on to use the overflow or carry out output (ovl).

Use Direction Port | On or Off Turn on to use the direction input (addsub). 1= add, 0 = subtract.

Table 15-46 shows the Pipelined Adder block I/0O formats.

Table 15-46. Pipelined Adder Block 1/0 Formats ("

V0| Simulink @, VHDL Type
MR 11:in STD_LOGIC_VECTOR({L + R} DOWNTO 0)
1211 [R] 12: in STD_LOGIC_VECTOR({L + R} DOWNTO 0)
| 131) 13: in STD_LOGIC Explicit
1411 14: in STD_LOGIC Explicit
151 I5: in STD_LOGIC
16711 16: in STD_LOGIC
0 O1y1y.m] 01: out STD_LOGIC_VECTOR(IL + R} DOWNTO 0) Explicit
02;] 02: out STD_LOGIC

Notes to Tahle 15-46:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(3) NMpuy.ry is aninput port. 01y gy is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 15: Arithmetic Library 15-31

Figure 15-18 shows an example with the Pipelined Adder block.

Figure 15-18. Pipelined Adder Block Example

?

Constant

?

Constantd Pipelined Adder

(o S S —

Output

28
Constant?

:
i
i

Drizplay
Bus Concatenation

\'/

23
Constant?

Fipelined Adder Delay

Product

The Product block supports two scalar inputs (no multidimensional Simulink
signals). Operand a is multiplied by operand b and the result output on r as the
following equation shows:

r=axb
The differences between the Product block and the Multiplier block are:

m The Product block supports clock phase selection while the Multiplier block does
not.

m The Product block uses implicit input port data widths that are inherited from the
signals” sources, whereas the Multiplier block uses explicit input port data
widths that you must specify as parameters.

m The Product block allows you to use the LPM multiplier megafunction, whereas
the Multiplier block always uses the LPM.

[~ The Simulink software also provides a Product block. If you use the Simulink Product
block in your model, you can use it only for simulation. Signal Compiler issues an

error and cannot convert the Simulink Product block to HDL.

Table 15-47 shows the Product block inputs and outputs.

Tahle 15-47. Product Block Inputs and Outputs

Signal Direction Description
a Input Operand a.
b Input Operand b.
ena Input Optional clock enable.
aclr Input Optional asynchronous clear.
r Output Result.
August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

15-32

Chapter 15: Arithmetic Library

Table 15-48. Product Block Parameters

Table 15-48 shows the Product block parameters.

Name Value Description
Inferred,
Bus Type Signed Integer, The bus number format that you want to use. Inferred means that the format is

Signed Fractional,
Unsigned Integer

automatically set by the format of the connected signal.

. >=0
[number of bits].[] (Parameterizable) Specify the number of bits to the left of the binary point.
>=0 Specify the number of bits to the right of the binary point. This option applies only

[].[number of bits]

(Parameterizable)

to signed fractional formats.

Number of Pipeline
Stages

>=0
(Parameterizable)

The Pipeline represents the delay. The clock enable and asynchronous clear ports
are available only if the block is registered (that is, if the number of pipeline
stages is greater than or equal to 1).

Clock Phase
Selection

User Defined

This option is available only when the Pipeline value is greater than 0.

Specifies the phase selection with a binary string, where a 1 indicates the phase in
which the block is enabled. For example:

1—The block is always enabled and captures all data passing through the
block (sampled at the rate 1).

10—The block is enabled every other phase and every other data (sampled at
the rate 1) passes through.

0100—The block is enabled on the second phase of and only the second data
of (sampled at the rate 1) passes through. That is, the data on phases 1, 3, and
4 do not pass through the block.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Asynchronous .

Clear Port On or Off Turn on to use the asynchronous clear input (aclr).

When on, the Product block is mapped to the LpM MULT library of parameterized
modules (LPM) function and the VHDL synthesis tool uses the Altera LpM MULT
implementation.

Use LPM On or Off When off, the VHDL synthesis tool uses the native * operator to synthesize the
product. If your design does not need arithmetic boundary optimization—such as
connecting a multiplier to constant combinational logic or register balancing
optimization—the LpM_MULT implementation generally yields a better result for
both speed and area.

Use Dedicated on or Off Turn on to use the dedicated multiplier circuitry (if supported by your target

Circuitry

device). This option is ignored if not supported by your target device.

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 15: Arithmetic Library 15-33

Table 15-49 shows the Product block I/O formats.

Table 15-49. Product Block I/0 Formats (7

/0| Simulink @, () VHDL Type 4
L1y [R1] 11:in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

| 1219 R2] 12: in STD_LOGIC_VECTOR({L2 + R2 - 1} DOWNTO 0) Explicit
131) 13: in STD_LOGIC Explicit
1411, 14: in STD_LOGIC

0 g[ézf;}ax(ulﬂ-ﬂxmax 01: out STD_LOGIC_VECTOR({2xmax(L1,L2) + 2xmax(R1,R2) - 1} DOWNTO 0) | Implicit

Notes to Table 15-49:

1
@)

For signed integers and signed binary fractional numbers, the MSB is the sign bit.

[L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

M{Ly.rp is @n input port. 01 (rp is an output port.

Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 15-19 shows an example with the Product block.

Figure 15-19. Product Block Example

AkBus Ctput

<000 |
Crutputd
e Sged Farg 10 B <o Fe= it

Incerment Froduct GRS
Decrerment

Sine Wae

ﬁU H Haik Sire Wave § bit |:|

Scope

“ e For more information about multiplier operations, refer to the [pm_mult Megafunction

User Guide.

SOP Tap

The S0P Tap block performs a sum of products for two or four taps. Use this block to
build two or four tap FIR filters, or cascade blocks to create filters with more taps.

The S0P Tap block implements with a multiplier-adder, which has registers on the
inputs, multipliers and adders. Thus, the result always lags the input by 3 cycles. The
dout port is assigned the value of din(n-t) where ¢ is the number of taps. The block has
the following equations:

For 2 taps:

q(n+3) = cp(n)xdin(n) + c1(n)xdin(n-1)
dout(n+2) = din(n)

August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/ug/ug_lpm_mult_mf.pdf
http://www.altera.com/literature/ug/ug_lpm_mult_mf.pdf

15-34

Chapter 15: Arithmetic Library

For 4 taps:

q(n+3) = cop(n)xdin(n) + cq(n)xdin(n-1) + cy(n)xdin(n-2) + cz(n)xdin(n-3)
dout(n+4) = din(n)

Table 15-50 shows the SOP Tap block inputs and outputs.

Table 15-50. SOP Tap Block Inputs and Outputs

Signal Direction Description
din Input Data input.
Cys Ci, Cp, C, | Input 2 or 4 tap coefficients.
ena Input Optional clock enable.
aclr Input Optional asynchronous clear.
q Output Result.
dout Output Shifted input data.

Table 15-51 shows the SOP Tap block parameters.

Table 15-51. SOP Tap Block Parameters

Value

Description

Bus Type

Signed Integer,
Unsigned Integer

The bus number format that you want to use for the counter.

Input Number of Bits

>=0
(Parameterizable)

Specify the number of bits.

Number of Taps

20r4

The number of taps.

Use Enable Port

On or Off

Turn on to use the clock enable input (ena).

Use Asynchronous Clear Port

On or Off

Turn on to use the asynchronous clear input (aclr).

Table 15-52 shows the SOP Tap block I/O formats.

Table 15-52. SOP Tap Block I/0 Formats ("

I/0 | Simulink @, (3 VHDL Type 4
M1] 11:in STD_LOGIC_VECTOR({L + R -1} DOWNTO 0)
1215 [R] 12:in STD_LOGIC_VECTOR({L + R -1} DOWNTO 0) Explicit
| Explicit
g Ry In: in STD_LOGIC_VECTOR({L + R -1} DOWNTO 0)
I(n+1) I(n+1): STD_LOGIC Explicit
I(n+2) I(n+2): STD_LOGIC

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 15: Arithmetic Library

15-35

Table 15-52. SOP Tap Block I/0 Formats ("

/0 | Simulink 2, (4 VHDL Type 4
O12L + celllog2(N Explicit
o | 1))1.[2R] 01: out STD_LOGIC_VECTOR({2L + cell(log2(N + 1)) + 2R - 1} DOWNTO 0)
02:in STD_LOGIC_VECTOR({L + R -1} DOWNTO 0) .
02 Explicit

Notes to Table 15-52:
For signed integers and signed binary fractional numbers, the MSB is the sign bit.
[L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
My.ry is an input port. 01y gy is an output port.

Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 15-20 shows an example with the S0P Tap block.

Figure 15-20. SOP Tap Block Example

Al

—

Constant

Constantd

Increment Decrament

—»<____ ™

Outputt

—»<___ ™

Output

din[H:[H
q[=]:[E]
AOE sar
A 4] dout[d]:[H
S50F Tap

Scope

Square Root

The Square Root block returns the square root and optional remainder of unsigned
integer input data with the equation:

q* + remainder = d

where remainder <=2 x q

The Square Root block supports sequential mode (when the number of pipeline
stages> 0) or combinational mode (when the number of pipeline stages = 0).

Assume the radical d is an unsigned integer, and that g and the remainder are always
unsigned integers.

Table 15-53 shows the Square Root block inputs and outputs.

Table 15-53. Square Root Block Inputs and Outputs

Signal Direction Description
d Input Data input.
en Input Optional clock enable.
aclr Input Optional asynchronous clear.

August 2016 Altera Corporation

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

15-36

Chapter 15: Arithmetic Library

Table 15-53. Square Root Block Inputs and Outputs

Signal Direction Description
q Output Result.
remainder Output Optional remainder.

Table 15-54 lists the parameters for the Square Root block.

Table 15-54. Square Root Block Parameters

Value

Description

Input Number of Bits

>=0
(Parameterizable)

Specify the number of bits of the unsigned input signal.

Number of Pipeline Stages

>=0
(Parameterizable)

Specify the number of pipeline stages. The computation is sequential
when the pipeline is greater than 1 or combinational when the number
of pipeline stages is zero. The clock enable and asynchronous clear
ports are available only if the number of pipeline stages is greater than
or equal to 1.

Use Enable Port On or Off Turn on to use the clock enable input (ena).
Use Asynchronous Clear Port | On or Off Turn on to use the asynchronous clear input (aclr).
Use Remainder Port On or Off Turn on to use the remainder input (remainder).

Table 15-55 shows the Square Root block I/O formats.

Table 15-55. Square Root Block 1/0 Formats (”/

V0 | Simulink @, (3 VHDL Type 4
M i.R) 11:in STD_LOGIC_VECTOR({L + R} DOWNTO 0)

|12 12:in STD_LOGIC Explicit
1311 13: in STD_LOGIC

0 01 [L1.R) 01: out STD_LOGIC_VECTOR(IL + R} DOWNTO 0) Explict
02(11.R] 02: out STD_LOGIC_VECTOR({L + R} DOWNTO 0)

Notes to Table 15-55:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(8) MRy is aninput port. 01y gy is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 15-21 shows an example of the Square Root block.

Figure 15-21. Square Root Block Design Example

Increment Decrement

Cutput
\—’ L]

repaindena) ——m”

Qutputl

Scope

Square Root

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 15: Arithmetic Library

15-37

Sum of Products

The Sum of Products block implements the following expression:

g=a(0)CO0+ ... +a(i)Ci + ... + a(n-1)C, 1

where:

m g is the output result

m a(i) is the signed integer input data

m (i are the signed integer fixed coefficients

m 1 is the number of coefficients in the range one to eight

Table 15-56 shows the Sum of Products block inputs and outputs.

Tahle 15-56. Sum of Products Block Inputs and Outputs

Signal Direction Description
ena Input Optional clock enable.
aclr Input Optional asynchronous clear.
q Output Result.

Table 15-57 lists the parameters for the Sum of Products block.

Table 15-57. Sum of Products Block Parameters

Value

Description

Input Data Number of
Bits

>=0
(Parameterizable)

Specify the number of bits to the left of the binary point of all input
signals.

Number of
Coefficients

1-8

The number of coefficients.

Coefficients Number
of Bits

>=1
(Parameterizable)

Specify the number of bits to the left of the binary point of all non-variable
coefficients represented as a signed integer.

Signed Integer
Fixed-Coefficient
Values

Vector
(Parameterizable)

Specify the coefficient values for each port as a sequence of signed
integers.

For example: [-587 -844 -678 -100 367 362 71 -244]

Number of Pipeline
Stages

>=0
(Parameterizable)

Specify the number of pipeline stages.

Full Resolution for
Output Result

On or Off

When on, the multiplier output bit width is full resolution. When off, you
can specify the number of bits in the output signal and the number of
least significant bits (LSBs) truncated from the output signal.

Output Number of Bits

>=0
(Parameterizable)

Specify the number of bits in the output signal.

Output Truncated LSB

>=0
(Parameterizable)

Specify the number of LSBs to be truncated from the output signal.

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

15-38 Chapter 15: Arithmetic Library

Table 15-57. Sum of Products Block Parameters

Name Value Description

Distributed Arithmetic,
FPGA Implementation | Dedicated Multiplier
Circuitry, Auto

Use a distributed arithmetic, dedicated multiplier or automatically
determined implementation.

Use Enable Port On or Off Turn on to use the clock enable input (ena).
Use Asynchronous .
Clear Port On or Off Turn on to use the asynchronous clear input (aclr).

Table 15-58 shows the Sum of Product block I/O formats.

Table 15-58. Sum of Products Block I/0 Formats (7

I/0 | Simulink 2, (3) VHDL Type 4
M. 10] 11:in STD_LOGIC_VECTOR(L - 1} DOWNTO 0)
Explicit
I | Ingu o) In: in STD_LOGIC_VECTOR(L - 1} DOWNTO 0)
I(n+1) I(n+1): STD_LOGIC Explicit
I(n+2) I(n+2): STD_LOGIC
0 011)[)2]L[2+Rc]e"<'092<“ 01: out STD_LOGIC_VECTOR({2L + cell(log2(n + 1)) + 2R - 1} DOWNTO 0) | Explicit
+ .

Notes to Table 15-58:
(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(8) MRy is an input port. 01y gy is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 15-22 shows an example with the Sum of Product block.

Figure 15-22. Sum of Product Block Example

[s>—sf X
Constant
g
Output

5 —»a tipd Dispiay
Canstantz
[8 >—»ss
Canstant3

Sum of Products

Variable Precision DSP

The Variable Precision DSP block consists of one to four multipliers feeding an
adder. It allows preaddition, using a coefficient ROM, and accumulation or chaining.
The block is available for the Arria V, Cyclone V, and Stratix V device families.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 15: Arithmetic Library

15-39

The block accepts from one to four groups of inputs 3, B, C, coef_sel to multipliers.
Each set of inputs depends on the parameters you select.

You can select input scan chaining for A inputs only. This feature requires you to
enable all input registers. For Stratix V devices, it is available in 18-bit modes only.
Enable input scan only when you disable preadder. For Arria and Cyclone V devices,
in 18-bit modes input you can combine the scan chain with the preadder. For 27-bit
modes, enable it only when you disable the preadder.

You can optionally add or subtract the results of the second and forth multipliers from
the result. You can control the operation dynamically by enabling a special control
input. The block subtracts the first operand from the second.

For the configurations with input data widths less than 27 (more than 18 in case of one
multiplier) and at most two multipliers the chaining and accumulation feature is
available.

You can dynamically negate the result of multiplications and additions before passing
to accumulation.

Control the accumulation using the special control input. When the accumulation
control port is low, load a rounding constant into an accumulator. Otherwise, the
block loads 0.

When available, enable the output chaining using chainin and chainout ports. The
chainout port on one block can only feed the chainin on another.

The block exposes up to three enable signals. Each register can chose between any of
these enable signals.

The block has two dedicated asynchronous clear signals: aclr0 for input registers,
aclrl for output registers.

Parameters

Table 15-59 shows the basic structure parameters.

Table 15-59. hasic Structure Parameters

Name Value Description
ArriaV
Device Family Cyclone V Specifies the target device family.
Stratix V
Specifies whether the block operates in one of the separately treated
25x18 Complex Mode | modes (25x18 Complex, 18x18+38 modes). For these modes the set
Use block for 18x18+36 Mode of inputs provided for the block differs from the general pattern used
for the other blocks.
Other Modes
The 25x18 Complex Mode is available only for Stratix V devices.
Number of Multipliers 1234 Specllfles the.number of multipliers. The 3 and 4 options are valid for
Stratix V devices only.

August 2016 Altera Corporation

For Stratix V devices only, you can configure the block to operate in 25x18 complex
mode. In this mode, the block accepts real and imaginary components of two complex
operands and outputs real and imaginary components of the multiplication result
separately.

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

15-40

Chapter 15: Arithmetic Library

For all devices the block can be also configured to operate in 18x18+36 mode, where
first two of three data inputs are multiplied together and added with the third one.

Table 15-60 shows the primary data and controls parameters.

Table 15-60. Primary Data and Controls Parameters

Aclr

Name Value Description
Specifies whether any of possible three enable signals (if used later)
Use Enable Inputs On or off should appear as input for the block. Otherwise, the block ties these
signals to ground internally.
Use Asynchrounous On or off Specifies whether block should have dedicated inputs for asynchrounous
Clear Inputs clear signals.
OR' Asynchrounous Specifies whether the user asynchrounous signals should be OR-ed with
Clear Inputs with Global | On or off global clear signal before the block uses them. The parameter value is

TRUE by the default.

Unsigned Integer

Registers

Bus Type Signed Integer Type of all data inputs, outputs, and internal values in the block.
Signed Fractional

.) Bitwidths for A input busses. For Stratix V devices, the maximum
Alinput [1:36/27] allowed value is 36; for Arria V and Cyclone V devices it is 27.
Register A input(s) On or off Turn on register A input.

oy ENABLEO

Ega?s'fe‘;‘” A'Input(s) | ey aBLE Specify enable signal for A inputs register.

g ENABLE?

.) Bitwidths for B input busses. For Stratix V devices, the maximum
B input [1:36/27] allowed value is 36; for Arria V and Cyclone V devices it is 27.
Register B input(s) On or off Turn on register B input.

o ENABLEO

Er;ati)slcteeior B Input(s) ENABLE1 Specify enable signal for B inputs register.

g ENABLE2
Enable Output Full On or off Turn on to calculate the resolution of the output based on the input
Resolution configuration for the block.
Output [0:72/64] Manually specify the bitwidths for output.
Register Output On or off
Enable for O ENABLEOQ Specify whether the output is registered and enable signal for the output
Rgaisferor utput ENABLET register.

g ENABLE2
Enable Systolic On or off Turn on systolic registers. This option is available only for

18x18_sum_of_2 mode and turns the block into 18x18_systolic mode.

Table 15-61 shows the input phase structure parameters.

Table 15-61. Input phase Structure Parameters

Name Value Description
Turns on input scan chain. Available when input registers are enabled. Turn on
Enable Input Scan Chain | On or off to pass the first data input of the first multiplier to the first inputs of consequent
multipliers.
Use ‘scanin’ Input on or off Instead of data input to the first multiplier, the block uses the scanin input,

which you can drive from the scanout of other DSP blocks.

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 15: Arithmetic Library

15-41

Table 15-61. Input phase Structure Parameters

Name Value Description

Startix V The scan chain is passed out through a scanout port. You can use this data to
Use ‘scanout' Qutput | Arria V drive the scanin input of other DSP block in chain.

Cyclone V

. Turns on scan chain delay registers. You cna add a delay register on a path from
Er;?at)InggpiléttG}Srzan Chain On or off the previous multiplier input to the next. Add delay registers on the path from
y neg 0->1, 2->3 only in 18x18_systolic mode.

Enable Coefficient ROM | On or off Turns on coefficient ROM.
Enable Preadder On or off Turns on preadder.
Preadder direction 233 Specifies the preadder operation, if enabled.
Connect Same Preadder Specifies whether both inputs of the multiplier should feed from the same
Output to Both On or off preadder block, allowing it to calculate the square of the sum or subtraction of
Multiplier Inputs. the A and B inputs.

Table 15-62 shows the output phase structure parameters.

Table 15-62. Output Phase Structure Parameters

Name Value Description

. ADD
Output operation on
; i ; SUB Specifies whether the results of first (third) multiplier should be added or
first multiplier pair -

VARIABLE subtracted to or from the result of the second (fourth) multiplier. Select

] ADD VARIABLE so you can control the operation dynamically through a special
Outpu(tjopelra}tllf;n on qup control port (addnsub1/3).
second multiplier pair VARIABLE

. If output chain is available, specifies whether the block uses chainin input.
lL:]seu?hamout Adder On or off Only the chainout output of a DSP block can feed the chainin input of
P another DSP block.
Use Chainout Adder If output chain is available, specifies whether the block uses chainout
On or off
Output output.
Enable Accumulation | On or off If accumulation is possible, enabling exposes a control input (accum) to
control when the block accumulates.
Enable Dogble Allows you to use double accumulation register. Only for Arria V and Cyclone
Accumulation On or off . -
X V device families.

Register
Operation on ADD The operation that the block performs on the result of multiplications and
Multiplier-Adder SUB additions prior to accumulation. Select VARIABLE to control the operation
Output. VARIABLE dynamically using the special control input (negate).
Use Rounding on or off Any time when accumulation is disabled, you can load a prespecified
Constant constant into the accumulator. Otherwise, the block loads 0.
Rounding Constant [0:64] Specifies the only high bit in 64-bit rounding constant. The actual constant

Value

values is 2" constant_value.

August 2016 Altera Corpora

tion

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

15-42

Chapter 15: Arithmetic Library

Table 15-63 shows the optional data and controls parameters.

Table 15-63. Optional Data and Controls Parameters

Name Value Description

The bitwidth for conditional C data input busses. C must share
the same clock setting (registering, enable signal) with A and B

C Input [0:22/27] input busses.
For Arria and Cyclone V devices the maximum allowed width for
C is 27; for Stratix V devices it is limited to 22.
The bitwidth for fractional part of the coefficients. The width of
the coefficients based on B inputs widths and configuration. It

Coefficient Values [0:18/27] can be either 18 (18-bit mode), 27 (27-bit mode) and 36 (in
36x18 mode). Block enters 36x18 mode, of A input width is less
than 18, while B input width is more than 27.

Coeffm!ents for the first [c1, c2, ... 8]

multiplier

Coefficients for the second [c1, 2, ... c8] Specify up to eight coefficient values for each multiplier if

multiplier T available. You can enter the values as MATLAB vectors.

Coefficients for the third Coefficient selection inputs are data input and should share the

multiplier [c1, c2, c8] same clock setting with A, B inputs.

Coefflc!ents for the fourth [c1, c2, .. c6]

multiplier

Register Control Input for

First Multiplier Pair Output On or off

Operation (addnsub1)

Register Control Input for

First Multiplier Pair Output On or off » .

Operation (addnsub3) Each Qf the§e parameterslspec[fles whether appropriate control

- input is registered (if the input is available).
Register Control Input for
. On or off

Accumulation (accum)

Register Control Input for

Multiplier-Adder Qutput On or off

Operation (negate)

Enable for Control Input(s) ENABLEQ All control inputs should share the same clock settings. This

Register p ENABLE1 parameter allows you to specify the enable signal for all

g ENABLE2 registered control inputs.

Table 15-64 shows the inputs and outputs.

Table 15-64. Inputs and Outputs
Port Direction Description Availability
a_real Input
a_imag Input Real and imaginary components of .
b_real input complex aand b inputs. Only in 25x18_complex mode.
b_imag Input
out_real | Output Real and imaginary components of .
out_imag | Output complex results.

DSP Builder Handbook
Volume 2: DSP Builder Standard

Blockset

August 2016 Altera Corporation

Chapter 15: Arithmetic Library

15-43

Table 15-64. Inputs and Outputs

Port Direction Description Availahility

a Input Up to 18 bit input to 18x18+36 mode.

b Input Up to 18 bit input to 18x18+36 mode. Only in 18x18+36 mode.

ab Input Up to 36 bit input to 18x18+36 mode.

Available for other than complex and 18x18+36

20 modes.

(scanin) Input First input to first multiplier or preadder. | |f you enable Use scanin input, this block names this
port scanin and connects it to scan chain input in
generated HDL, otherwise it connects it to data input.

Second input to the first multiplier or Available if coefRom not enabled, or if preadder is
b0 Input
preadder. enabled.
c0 Inout If you use preadder, a second input to the | Available if preadder is enabled, but coefficient ROM
P first multiplier. not.

coef_sel0 | Input Input to select coefficient from the ROM | Available if coefficient ROM is enabled.

First input to second multiplier or Available if there are at least two multipliers and input

al Input S

preadder. scan chain is disabled.
Second inout to the second multiplier or Available if there are at least 2 multipliers and

b1 Input P P coeffficient ROM not enabled, or if preadder is

preadder.
enabled.
ol Inout If you use preadder, second input to the | Available if there are at least 2 multipliers and if
p second multiplier. preadder is enabled, but coefficient ROM not.
- Available if there are at least 2 multipliers and if
coef_sell | Input Input to select coefficient from the ROM coefficient ROM is enabled.

a2 Input First input to third multiplier or preadder. Avallable_n‘ .ther.e are at least 3 multipliers and input

scan chain is disabled.
. . . Available if there are at least 3 multipliers and
b2 Input Second input to the third multiplier or coefficient ROM not enabled, or if preadder is
preadder.
enabled.
2 Inout If you use preadder, a second input to the | Available if there are at least 3 multiplier and if
p third multiplier. preadder is enabled, but coefficient ROM not.
- Available if there are at least 3 multipliers and if
coef_sel2 | Input Input to select coefficient from the ROM coefficient ROM is enabled.

a3 Input First input to third multiplier or preadder. Ava!laple '.f there are 4 multipliers and input scan
chain is disabled.

b3 Inout Second input to the third multiplier or Available if there are 4 multipliers. and coefficient

p preadder. ROM not enabled, or if preadder is enabled.
3 Inout If you use preadder, a second input to the | Available if there are 4 multiplier and if preadder is
p third multiplier. enabled, but coefficient ROM not.
- Available if there are 4 multipliers and if coefficient
coef_sel3 | Input Input to select coefficient from the ROM ROM is enabled.
- Inpu.t o chain adder. Drive only by 2 Available only in non complex modes, when

chainin Input chainout output of other variable

.. chianout adder is available and the input is enabled.
Precision DSP block.
August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

15-44 Chapter 15: Arithmetic Library
Table 15-64. Inputs and Outputs
Port Direction Description Availahility
Controls the operation on the first Available if d) trol of multiof ot
addnsub1 | Input multiplier pair. vailable if dynamic control of multiplier outpu
operation was activated.
1-ADD, 0-SUB
Controls the operation on the second available i lect d) trol of multioli
addnsub3 | Input multiplier pair. vailable if you select dynamic control of multiplier
output operation.
1-ADD, 0-SUB
Controls whether the block performs
accum Input accumulation. Available if you select accumulation.
1 - accumulate, 0 - does not accumulate.
Controls the operation on
; Inout Multipliers-Adders output to Available if you select the dynamic control of the
negate npu accumulation. operation.
1 - value is negated, 0 - no negation
enal Input
enal Inout Enable inouts Available if you select enable signals, and the block
P P uses the concrete signal.
ena2 Input
aclr0 Input Asynchronous clear outputs: aclr0 for Available if you enable user asynchrounous clear
aclri Input input registers; aclr1 for output registers. | signals.
out Output The result of the operation. The result (not complex mode).
. Only if you enable input scan chain and select Use
scanout Output Output of the scan chain. scanout Output .
. Output of the chainout and accumulation | Available only when chaining is available and
chainout | Output

adder.

chainout output was enabled.

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

= 16. Boards Library

The Boards library supports DSP development platforms for the following
development boards:

m Arria I GXFPGA Development Kit

m Arria I GXFPGA Development Kit, 6G Edition
m Cyclone IV GX FPGA Development Kit

m Cyclone IV GX Transceiver Starter Kit

m Stratix IV E FPGA Development Kit

m Stratix IV FPGA Development Kit

m Stratix IV GX/GT 40G /100G Interlaken

m Stratix IV GX/GT PCI Express /SFP+

These development boards provide an economical solution for hardware and
software verification that enables you to debug and verify both functionality and
design timing.

When combined with DSP intellectual property (IP) from Altera or from the Altera
Megafunction Partners Program (AMPP°M), you can solve design problems that
formerly required custom hardware and software solutions.

Board Configuration

When targeting a development board, your design must contain the corresponding
board configuration block at the top hierarchical level. The configuration block
properties allow you to specify from a list of available pins to use for the clock and
global reset connections. It also displays details of the hardware device on the board.

The other blocks available for each board provide connections to the controls on each
board such as LEDs, push buttons, switches, 7-segment displays, connectors,
analog-to-digital converters (ADC), and digital-to-analog converters (DAC). By using
these blocks, you do not need to make pin assignments to connect the board
components.

Adding PLL Output Clocks

You can manually add PLL blocks to your design and configure them to provide the
required output clocks with the Quartus Prime Pinout Assignments block to assign
pin locations to the PLL outputs.

August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

16-2 Chapter 16: Boards Library
Board Configuration

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

= 17. Complex Type Library

Butterfly

=

Like Simulink, DSP Builder supports native complex signal types. Use complex
number notation to simplify the design of applications such as FFT, I-Q modulation,
and complex filters.

The Complex Type library contains the following blocks:
m Butterfly

m Complex AddSub

m Complex Conjugate

m Complex Constant

Complex Delay
Complex Multiplexer
Complex Product
Complex to Real-Imag

Real-Imag to Complex

When connecting DSP Builder blocks to blocks from the Complex Type library (for
example, connecting AltBus to Complex AddSub), you must use Real-Imag to Complex
or Complex to Real-Imag blocks between the blocks. For an example, refer to

Figure 17-2 on page 17-5.

The Butterfly block performs the following arithmetic operation on complex signed
integer numbers:

A=a+bxW
B=a-bxW

where a, b, W, A, and B are complex numbers (type signed integer) such as:

a=x+jX
b=y+jY
W=v+jV

A=x+y0)-YV+jiX+Yo+yV)
B=(x-yu)+YV+jX-Yv-yV)

This function operates with full bit width precision. The full bit width precision of A
and B is:
2 x [input bit width] + 2.

The Output Bit Width and Output Truncated LSB parameters specify the bit slice for
the output ports A and B. For example, if the input bit width is 16, the output bit
width is 16, and the output LSB is 4, then the full precision is 34 bits and the output
ports A[15:0] and B[15:0] each contain the bit slice 19:4.

August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

17-2

Chapter 17: Complex Type Library

Table 17-1 shows the Butterfly block inputs and outputs.

Table 17-1. Butterfly Block Inputs and Outputs

Signal Direction Description

Input Data input a.
Input Data input b.

W Input Optional input W.

ena Input Optional clock enable.

aclr Input Optional asynchronous clear.

A Output Data Output A.

B Output Data Qutput B.

Table 17-2 shows the Butterfly block parameters.

Tahle 17-2. Butterfly Block Parameters

Name Value Description

Input Bit Width (a, b, W) >=1 Specify the bit width of the complex signed integer inputs a, b, and W.
Number of Pipeline Stages >=3 Specify the required number of pipeline stages.
Full Resolution for Output On or Off When this option is on, full output bit width resolution is enabled. When off,
Type you can separately specify the output bit width and LSB of the output.

- _ Specify the bit width of the complex signed integer outputs A and B. This
Output Bit Width (A, B) >=1 option is available when Full Resolution for Qutput Type is off.

B Specify the LSB of the output bus slice of the full resolution computation.

Output Truncated LSB >=0 This option is available when Full Resolution for Output Type is off.
W is constant On or Off When this option is on, you can specify the real and imaginary values for W

instead of the W port.

W (real) User defined | Specify the value of the real part of the constant W
W (imaginary) User defined | Specify the value of the imaginary part of the constant W.
. TP Auto, Yes, For devices that support multipliers, a value of Auto specifies that the
Dedicated Multiplier Circuitry No choice is based on the width of the multiplier.
Use Enable Port On or Off Turn on to use the clock enable input (ena).
Use Asynchronous Clear Port | On or Off Turn on to use the asynchronous clear input (aclr).

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 17: Complex Type Library

17-3

Table 17-3 shows the Butterfly block I/O formats.

Table 17-3. Butterfly Block I/0 Formats (")

1] Simulink 2, (3/ VHDL Type 4
1 Real([Li) (0] Imag (L1.[0]) I1Real: in STD_LOGIC_VECTOR({Li - 1} DOWNTO 0)
[1Imag: in STD_LOGIC_VECTOR({Li - 1} DOWNTO 0) Explicit
12 Real([Li)[0])Imag (L. (O] I2Real: in STD_LOGIC_VECTOR({Li - 1} DOWNTO 0) Explicit
| 2Imag: in STD_LOGIC_VECTOR({Li - 1} DOWNTO 0) Explicit
13Real((Li. o)) mag((LiL 0] I3Real: in STD_LOGIC_VECTOR({Li - 1} DOWNTO 0) Explicit
I3Imag: in STD_LOGIC_VECTOR({Li - 1} DOWNTO 0) Explicit
411 14: in STD_LOGIC Explicit
1501] 15:in STD_LOGIC
Ot 0101 01Real: out STD_LOGIC_VECTOR({Lo - 1} DOWNTO 0) Explicit
0 0Dimag({Li. 01Imag: out STD_LOGIC_VECTOR({Lo - 1} DOWNTO 0) Explicit
Onenton ot 02Real: out STD_LOGIC_VEGTOR({Lo - 1} DOWNTO 0) Explicit
[0DImag([Lil.[0]) 02Imag: out STD_LOGIC_VECTOR({Lo - 1} DOWNTO 0) Explicit

Notes to Table 17-3:
(1)
()

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

@)
(4)

M y.ry is an input port. 01y gy is an output port.
Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

For signed integers and signed binary fractional numbers, the MSB is the sign bit.
[L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 17-1 shows an example with the Butterfly block.

Figure 17-1. Butterfly Block Example

AT) ——

c (1707

Co

mplex to Real-lm

B(17 01— o]

(1707

Blutterfly

Complexto Real-lm

|_><:|_.
170 Output

70—’ —»
ag Outputt

ol — g
i 0170 Dutpals

i L.<:|_.
Outputs

Complex AddSub

The Complex AddSub block performs addition or subtraction on a specified number of
scalar complex inputs.

Table 17—4 shows the Complex AddSub block inputs and outputs.

Table 17-4. CGomplex AddSub Block Inputs and Outputs

Signal Direction Description
+ or - Input Complex inputs.
ena Input Optional clock enable.

August 2016 Altera Corporation

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

17-4 Chapter 17: Complex Type Library

Table 17-4. Complex AddSub Block Inputs and Outputs

Signal Direction Description
aclr Input Optional asynchronous clear.
R Output Result.

Table 17-5 shows the Complex AddSub block parameters.

Table 17-5. Complex AddSub Block Parameters

Name Value Description

Number of Inputs >=2 Specifies the number of input wires to combine.

Specify addition or subtraction operation for each port with the characters +
and —. For example + — + implements +a — b + ¢ for three ports.

DSP Builder implements the block as a tree of 2-input adders. Each
consecutive pair of inputs are + +, + — or — +. However, none of the input
adders can have two consecutive subtractions. Thus, + —— + is valid (as the
two input adders are parameterized + —and — +), + ——+ + is also valid but
++——+is not valid.

Add (+) Sub (-) User defined

Missing operators are assumed to be +.

When this option is on, DSP Builder registers the output from each stage in
Enable Pipeline On or Off the adder tree, resulting in a pipeline length that is equal to
ceil (log2 (number of inputs)).

When you enable pipeline, you can specify the phase selection as a binary
string, where a 1 indicates the phase in which the block is enabled. For
example:

1—The block is always enabled and captures all data passing through

)) the block (sampled at the rate 1).
Clock Phase Selection User Defined]
10—The block is enabled every other phase and every other data

(sampled at the rate 1) passes through.

0100—The block is enabled on the second phase of and only the second
data of (sampled at the rate 1) passes through. That is, the data on
phases 1, 3, and 4 do not pass through the block.

Use Enable Port On or Off Turn on to use the clock enable input (ena).
Use Asynchronous Clear Port | On or Off Turn on to use the asynchronous clear input (aclr).

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 17: Complex Type Library 17-5
Table 17-6 shows the Complex AddSub block I/O formats.
Table 17-6. Complex AddSub Block I/0 Formats (”/
1] Simulink 2, (4 VHDL Type 4
|1Real([L1].[R1])Imag([L1].[R1]) [1Real: in STD_LOG|C_VECTOR({LP1 +RP1 - 1} DOWNTO 0)
[1Imag: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0) imolicit
plici
_ Implicit
I InReal: in STD_LOGIC_VECTOR({LPn + RPn - 1} DOWNTO 0) Imolicit
mplici
|nReaI([Ln].[Rn])lmag([Ln].[Rn]) InImag: in STD_LOG'C_VECTOR({LPH + RPn - 1} DOWNTO 0) |mp||C|t
I(n+1)[1] [(n+1):in STD_LOGIC P
I(n+2)[1] [(n+2): in STD_LOGIC
0 01 Real(max(L1,Ln) +1),(max(Rl, | O1Real: out STD_LOGIC_VECTOR({max(LI,Ln) + max(RI,Rn)} DOWNTO 0) | Implicit
Rn) + T)lmag(max(L1,Ln) 01lmag: out STD_LOGIC_VECTOR({max(LI,Ln) + max(RI,Rn)} DOWNTO 0) | Implicit
+1),(max(RI,Rn) + 1)

Notes to Table 17-6:
For signed integers and signed binary fractional numbers, the MSB is the sign bit.

[L]is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

My.ry is an input port. 01y gy is an output port.

Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

M
2)

)
(4)

Figure 17-2 shows an example with the Complex AddSub block.

Figure 17-2. Complex AddSub Block Example

2420

B0

S+2i

B2

Sy ==

o907 Cutput

e —w<_ ¥

Outputi
Complexto Real-lmag

Complex AddSub

Complex Conjugate

The Complex Conjugate block outputs a fixed-point complex conjugate value by

performing simple arithmetic operations on the complex inputs. The operation can
optionally be conjugate, negative, or negative conjugate. For an input w = x + iy, the
block returns:

m Conjugate: x —iy

B Negative: -x — iy

m Negative Conjugate: —x + iy

August 2016 Altera Corporation

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

17-6

Chapter 17: Complex Type Library

Table 17-7 shows the Complex Conjugate block inputs and outputs.

Table 17-7. Complex Conjugate Block Inputs and Outputs

Signal Direction Description
W Input Complex inputs.
ena Input Optional clock enable.
aclr Input Optional asynchronous clear.
c Output Fixed point complex conjugate output.

Table 17-8 shows the Complex Conjugate block parameters.

Tahle 17-8. Complex Conjugate Block Parameters

Value

Description

Operation

Conjugate, Negative,
Negative Conjugate

Specify the operation to perform.

Turn on to register the inputs and to enable the optional clock enable

Register Inputs On or Off and asynchronous clear options.
Use Enable Port On or Off Turn on to use the clock enable input (ena).
Use Asynchronous Clear Port | On or Off Turn on to use the asynchronous clear input (aclx).

Table 17-9 shows the Complex Conjugate block I/O formats.

Table 17-9. Complex Conjugate Block 1/0 Formats (/

1] Simulink @), (3/ VHDL Type 4
1 Reat(L1].(R1])imag(L1].[R1]) | |1Real: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

| 11Imag: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0) Implicit
1211 12:in STD_LOGIC Implicit
1311 13: in STD_LOGIC

0 | OTReal(L1)+ 1. R1Dimag(L1 01Real: in STD_LOGIC_VECTOR({LP1 + RP1} DOWNTO 0) Implicit
+1.[R1]) O1lmag: in STD_LOGIC_VEGTOR({LP1 + RP1} DOWNTO 0) Implicit

Notes to Table 17-9:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) NMpy.ryis an input port. 01y gy is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 17: Complex Type Library

17-1

Figure 17-3 shows an example with Complex Conjugate blocks to output conjugate,
negative and negative conjugate values.

Figure 17-3. Complex Conjugate Block Example

B N ——
— e - iy o —— o (20 Output
Cutputi
e —w<__ }—m
Ll - iy o] o0z Outputz
Output3
ien—ml ™
Lt -+ By o —— o (200 Outputd
Megative Conjugate 2 » : »
Outputs

Complex Constant

The Complex Constant block outputs a fixed-point complex constant value.

Table 17-10 shows the Complex Constant block parameters.

Table 17-10. Complex Constant Block Parameters

Name Value

Description

Real Part User Defined

Specify the value of the real part of the constant.

Imaginary Part User Defined

Specify the value of the imaginary part of the constant.

Signed Integer,
Signed Fractional,
Unsigned Integer

Bus Type

Specify the number format of the bus.

[number of bits].[] >=0 Specify the number of bits to the left of the binary point, including the sign bit.
1| (Parameterizable) | This parameter does not apply to single-bit buses.
. >=0 Specify the number of bits to the right of the binary point. This parameter
[].[number of bits] (Parameterizable) | applies only to signed fractional buses.
Specify Clock On or Off Turn on to explicitly specify the clock name.
Clock User defined Specify the clock signal name.

August 2016 Altera Corporation

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

17-8

Chapter 17: Complex Type Library

Table 17-11 shows the Complex Constant block I/O formats.

Table 17-11. Complex Constant Block I/0 Formats (*/

/0 Simulink 2, (¢ VHDL Type
o | OfRea(LiL R mag(iLiL 01Real: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0) Explic
R1)) 01lmag: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

Notes to Table 17-11:

M
(2)

For signed integers and signed binary fractional numbers, the MSB is the sign bit.

[L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

MRy is an input port. 01y gy is an output port.

Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 17—4 shows an example with Complex Constant blocks as inputs to a Complex
Addsub block.

Figure 17-4. Gomplex Gonstant Block Example

O]
GI:Q:U:I |:|I.It|:ll.l‘t

eo—w< —wl Tl
> Clutputi

YT Complexto Real-lmag

Complex AddSub

Complex Delay

The Complex Delay block delays the incoming data by an amount specified by the
Number of Pipeline Stages parameter. The input must be a complex number.

Table 17-12 shows the Complex Delay block inputs and outputs.

Tahle 17-12. Complex Delay Block Inputs and Outputs

Signal Direction Description
d Input Input data.
ena Input Optional clock enable.
sclr Input Optional synchronous clear.
q Output Delayed output data.
DSP Builder Handbook August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 17: Complex Type Library 17-9

Table 17-13 shows the Complex Delay block parameters.
Table 17-13. Complex Delay Block Parameters

Name Value Description

Number of Pipeline Stages >=1 Specify the delay length of the block.

When you enable pipeline, you can indicate the phase selection with a binary
string, where a 1 indicates the phase in which the block is enabled. For

example:
1—The block is always enabled and captures all data passing through the
, User block (sampled at the rate 1).
Clock Phase Selection . .
Defined 10—The block is enabled every other phase and every other data (sampled

at the rate 1) passes through.

0100—The block is enabled on the second phase of and only the second
data of (sampled at the rate 1) passes through. That is, the data on phases
1, 3, and 4 do not pass through the block.

Use Enable Port On or Off Turn on to use the clock enable input (ena).
Use Synchronous Clear Port | On or Off | Turn on to use the synchronous clear input (sclz).

Table 17-14 shows the Complex Delay block I/O formats.

Table 17-14. Complex Delay Block 1/0 Formats (/

10 Simulink @), ¢ VHDL Type
Real(L11.(R1DIMag(L1LL | 1Real: in STD_LOGIC_VEGTOR((LP1 + RP1 - 1} DOWNTO 0)
R1
|) IImag: in STD_LOGIC_VECTOR((LP1 + RP1 - 1} DOWNTO 0) Implicit
2, 12: in STD_LOGIC Implicit
[l 13:in STD_LOGIC
o | Onenr rpmaggury | O1Reat: in STO_LOGIC_VECTOR(LPT + RPT - 1) DOWNTO 0 ot
R1) O1lmag: in STD_LOGIC_VEGTOR({LP1 + RP1 - 1} DOWNTO 0)

Notes to Table 17-14:
(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(3) NMpuy.ry is aninput port. 01y gy is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 17-5 shows an example with the Complex Delay block.

Figure 17-5. Complex Delay Block Example

i) rn:a:u:n—r{:I—pD
Increment Decrement e —pwd 7 g ——fw e (30 Dutput
Acol—»lico iGo—e_ |}
Complex Delay Outputi
Increment Decrementd Complexto Real-Imag Seope
Real-lmagto Complex
August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

17-10

Chapter 17: Complex Type Library

Complex Multiplexer

The Complex Multiplexer block multiplexes N complex inputs to one complex
output. The select port sel is a non-complex scalar.

Table 17-15 shows the Complex Multiplexer block inputs and outputs.

Table 17-15. Complex Multiplexer Block Inputs and Outputs

Signal Direction Description
sel Input Non-complex select line.
0 to N-1 Input Complex inputs.
ena Input Optional clock enable.
aclr Input Optional asynchronous clear.
unnamed Output Result.

Table 17-16 shows the Complex Multiplexer block parameters.

Tahle 17-16. Complex Multiplexer Block Parameters

Value

Description

Number of Input Data Lines >=2

Number of complex input data lines.

Number of Pipeline Stages >=0

Specify the delay length of the block.

Use Enable Port

On or Off

Turn on to use the clock enable input (ena).

Use Asynchronous Clear Port | On or Off

Turn on to use the asynchronous clear input (aclr).

One Hot Select Bus

On or Off

Turn on to use one-hot selection for the select signal instead of full binary.

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 17: Complex Type Library 17-11
Table 17-17 shows the Complex Multiplexer block I/O formats.
Table 17-17. Complex Multiplexer Block I/0 Formats (7/
/0 Simulink @, (3 VHDL Type
I Real([L1].[R1])Imag([L1].[
R1) I1Real: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)
11lmag: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)
|2Real([L2].[R2])Imag([L2].[[2Real: in STD_LOG|C_VECTOR({LP2 + RP2 - 1} DOWNTO 0) ImpI|C|t
|| R2) 12Imag: in STD_LOGIC_VECTOR({LP2 + RP2 - 1} DOWNTO 0)
I3: in STD_LOGIC Implicit
134 |4: in STD_LOGIC
l414) I5:in STD_LOGIC
01Real(max(L1,L2 Rl
o | . (max(LL2MaX®L | 1 Real: in STD_LOGIC_VECTOR({max(LI,L2) + max(RI,R2) - 1} DOWNTO 0) -
mplicl
Imag(max(L1.L2)) (max(®L,A2 | 011mag: in STD_LOGIC_VECTOR({max(L1,L2) + max(RI,R2) - 1} DOWNTO 0) |
)

Notes to Tahle 17-17:

For signed integers and signed binary fractional numbers, the MSB is the sign bit.

[L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

I [LLIR] is an input port. 01 [LLIR] isan output port.

Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

M
(2)

Figure 17-6 shows an example with the Complex Multiplexer block.

Figure 17-6. Gomplex Multiplexer Block Example

 _Tao

Increment Decrement

2+4i

i

T+19i

1142310

!E!E

?m:m\\

0-

el —<_ }—»
1- MLE ———f{c (900 Output

i@ —<_ W
2- Dutputi

Complex to Real-lmag

B BT

Complex Multiplexear

Scope

Complex Product

The Complex Product block performs output multiplication of two scalar complex
inputs. Operand a is multiplied by operand b and the result output on r as the
following equation shows:

r=axb

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

17-12

Chapter 17: Complex Type Library

Table 17-19. Complex Product Block Parameters

Table 17-18 shows the Complex Product block inputs and outputs.

Tahle 17-18. Complex Product Block Inputs and Outputs

Signal Direction Description
a Input Complex operand a.
b Input Complex operand b.
ena Input Optional clock enable.
aclr Input Optional asynchronous clear.
r Output Result.

Table 17-19 shows the Complex Product block parameters.

Name Value Description
Inferred, Signed Integer, Specify the bus number format that you want to use. Inferred means
Bus Type Signed Fractional, that the format is automatically set by the format of the connected

Unsigned Integer

signal.

[number of bits].[]

>= 0 (Parameterizable)

Specify the number of bits to the left of the binary point.

[].[number of bits]

>= 0 (Parameterizable)

Specify the number of bits to the right of the binary point. This option
applies only to signed fractional formats.

Pipeline Register

No Register, Inputs Only,
Multiplier Only, Adder Only,
Inputs and Multiplier,
Inputs and Adder,
Multiplier and Adder,
Inputs Multiplier and Adder

Specify the elements that you want pipelined. The clock enable and
asynchronous clear ports are available only if the block is registered.

Use Enable Port

On or Off

Turn on to use the clock enable input (ena).

Use Asynchronous

Clear Port On or Off Turn on to use the asynchronous clear input (aclr).
Use Dedicated On or Off If you target devices that support DSP blocks, turn on to implement the
Circuitry functionality in DSP blocks instead of logic elements.

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 17: Complex Type Library

17-13

Table 17-20 shows the Complex Product block I/O formats.

Table 17-20. Complex Product Block 1/0 Formats (*/

1] Simulink 2, () VHDL Type
I Real([L1].[R1])Imag([L1].[.
R1]) I1Real: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)
[1Imag: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)
| |2Rea|([L2].[R2])Imag([L2].[I12Real: in STD_LOG|C_VECTOR({LP2 + RP2 - 1} DOWNTO 0) Imolicit
ICI
R2]) I2Imag: in STD_LOGIC_VECTOR({LP2 + RP2 - 1} DOWNTO 0) P
13:in STD_LOGIC
134 14: in STD_LOGIC
01 peali2 x max(LiL2)) 2 x| O1Real: in STD_LOGIC_VECTOR({(2 x max(LI,L2)) + (2 x max(RI,R2)) -1)
DOWNTO 0) .
0 | max(RI,R2)) Implicit
Imag(2 x max(L,L2)),2 xma | O1lmag: in STD_LOGIC_VECTOR({(2 x max(LI,L2)) + (2 x max(RI,R2)) -1}
x(RI,R2)) DOWNTO 0)

Notes to Table 17-20:
For signed integers and signed binary fractional numbers, the MSB is the sign bit.

[L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

M
(2)

I [LLIR] is an input port. 01 L.

[R] is an output port.

Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 17-7 shows an example with the Complex Product block.

Figure 17-7. Complex Product Block Example

Complex Product

c (1507

Tt e e——

sl

Cutput

Outputi

Complex to Real-lmag

Complex to Real-Imag

The Complex to Real-Imag block constructs a fixed-point real and fixed-point
imaginary output from a complex input.

Table 17-21 shows the Complex to Real-Imag block inputs and outputs.

Table 17-21. Complex to Real-lmag Block Inputs and Outputs

Signal Direction Description
c Input Complex input.
r Output Real part output.
i Output Imaginary part output.

August 2016 Altera Corporation

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

17-14 Chapter 17: Complex Type Library

Table 17-22 shows the Complex to Real-Imag block parameters.

Table 17-22. Complex to Real-Imag Block Parameters

Name Value Description
Signed Integer,
Bus Type Signed Fractional, | Specify the number format you want to use for the bus.
Unsigned Integer
[number of bits] [] >=0 . Seleqt the.number of data input bits to the left of the binary point, including
(Parameterizable) | the sign bit.
>=0 Select the number of data input bits to the right of the binary point. This

[1-[number of bits] (Parameterizable) | option applies only to signed fractional formats.

Table 17-23 shows the Complex to Real-Imag block I/O formats.

Table 17-23. Complex to Real-Imag Block 1/0 Formats (")

(1] Simulink 2, (4 VHDL Type #

| Mreaqur ripimagqny | [1Real:in STD_LOGIC_VEGTOR(LPT + RP1 - 1} DOWNTO 0) it
R1)) I1Imag: in STD_LOGIC_VECTOR(LP1 + RP1 - 1} DOWNTO 0)

0 01 Real([L1].[R1]) O1Real: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0) Explicit
02|mag([|_1].[m]) 02Imag: in STD_LOG|C_VECTOR({LP1 +RP1 -1} DOWNTO 0)

Notes to Table 17-23:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(8) MRy is an input port. 01y gy is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 17-8 shows an example with the Complex to Real-Imag block.

Figure 17-8. Complex to Real-imag Block Example

Increment Decrement

Complexto Real-lmag Scope

) AN =
[o571 MUX @) Dutput

T I Sy
2 Dutputd
RS

114230 w

Complex Multiplexer

Real-Imag to Complex

The Real-Imag to Complex block constructs a fixed-point complex output from real
and imaginary inputs.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 17: Complex Type Library 17-15

Table 17-24 shows the Real-Imag to Complex block has the inputs and outputs.

Table 17-24. Real-Imag to Complex Block Inputs and Outputs

Signal Direction Description
r Input Real part input.
i Input Imaginary part input.
c Output Complex output.

Table 17-25 shows the Real-Imag to Complex block parameters.

Table 17-25. Real-Imag to Complex Block Parameters

Name Value Description
Signed Integer,
Bus Type Signed Fractional, | Specify the number format you want to use for the bus.
Unsigned Integer
[number of bits] [] >=0 . Selegt the.number of data input bits to the left of the binary point, including
(Parameterizable) | the sign bit.
>=0 Select the number of data input bits to the right of the binary point. This

[]-[number of bits] (Parameterizable) | option applies only to signed fractional formats.

Table 17-26 shows the Real-Imag to Complex block I/O formats.

Table 17-26. Real-Imag to Complex Block 1/0 Formats (")

10 Simulink @, ¢ VHDL Type

| |1Real([L1].[R1]) [1Real: in STD_LOG'C_VECTOR({LP1 +RP1 - 1} DOWNTO 0) |mp||C|t
|2Imag([L1].[R1]) [1Imag: in STD_LOG|C_VECTOR({LP1 + RP1 -1} DOWNTO 0)

o | OTreaiquiyrymagquay | O1Real:in STD_LOGIC_VECTOR(ILPT + RPT - 1) DOWNTO 0) Exolic
R1]) O1lmag: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

Notes to Table 17-26:
(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(8) MRy is an input port. 01y gy is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 17-9 shows an example with the Real-Imag to Complex block.

Figure 17-9. Real-Imag to Complex Block Example

e rm:nj—r{:I—hD

Increment Decrement el —ed 10 g e (30 Wampat
,.—'_Iﬁ—hiﬁ:ﬂj ol SO s
Complex Delay Cutputd
Increment Decrement] Complexto Real-lmag Scope
Real-lmag to Comple:x
August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

17-16 Chapter 17: Complex Type Library

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

18. Gate & Control Library

The blocks in the Gate & Control library support gate and other related control
functions.

The Gate & Control library contains the following blocks:

m Binary to Seven Segments

Bitwise Logical Bus Operator

Case Statement
Decoder
Demultiplexer
Flipflop

If Statement

LFSR Sequence
Logical Bit Operator
Logical Bus Operator
Logical Reduce Operator
Multiplexer

Pattern

Single Pulse

Binary to Seven Segments

The Binary to Seven Segments block converts a 4-bit unsigned input bus to a 7-bit

output for connection to a seven-segment displays.

The seven-segment display is set to display the hexadecimal representation of the
input number.

Table 18-1 shows the Binary to Seven Segments block inputs and outputs.

Table 18-1. Binary to Seven Segments Block Inputs and Outputs

Signal Direction Description
(3:0) Input 4-bit data input.
(6:0) Output 7-bit data output.

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

18-2 Chapter 18: Gate & Control Library

Table 18-2 shows the 4-bit to 7-bit conversion performed by the Binary to Seven
Segments block.

Tahle 18-2. Binary to Seven Segments

Input Output
Binary Decimal Hex Binary Decimal
0000 0 0 1000000 64
0001 1 1 1111001 121
0010 2 2 0100100 36
0011 3 3 0110000 43
0100 4 4 0011001 25
0101 5 5 0010010 18
0110 6 6 0000010 2
0111 7 7 1111000 120
1000 3 8 0000000 0
1001 9 9 0010000 16
1010 10 A 0001000 3
1011 11 b 0000011 3
1100 12 C 1000110 70
1101 13 d 1000001 33
1110 14 E 0000110 6
1111 15 F 0001110 14

Table 18-3 shows the Binary to Seven Segments block I/O formats.

Table 18-3. Binary to Seven Segments Display Block I/0 Formats (")

V0| Simulink @, VHDL Type
G 11:in STD_LOGIC_VECTOR(3 DOWNTO 0) Explicit
0 | 0170 01:in STD_LOGIC_VECTOR(6 DOWNTO 0) Explicit

Notes to Table 18-3:
(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(8) MRy is aninput port. 01 gy is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 18: Gate & Control Library

18-3

Figure 18-1 shows an example with the Binary to Seven Segments block.

Figure 18-1. Binary to Seven Segments Block Example

e

— Count

Tap

Tap Right

madd gql3:00 -

=0

Bottom Right
50

Baottom

Counterd to 15

Binary To Seven Segments

Bottom Left

Top Left

L Centre
Bus Splitter

<
1

—2 : m Bottom Right L
60 3 obit f—m
T ot |
5
B 0bit |

Scope

Bitwise Logical Bus Operator

The Bitwise Logical Bus Operator block performs bitwise AND, OR, or XOR logical
operations on two input buses.

Table 18—4 shows the Bitwise Logical Bus Operator block inputs and outputs.

Tahle 18-4. Bitwise Logical Bus Operator Block Inputs and Outputs

Signal Direction Description
Input Data input a.
b Input Data input b.
q Output Data output.

Table 18-5 shows the Bitwise

Tahle 18-5. Bitwise Logical Bus Operator Block Parameters

Logical Bus Operator block parameters.

[1.[number of bits] (Parameterizable)

Name Value Description
Signed Integer,
Bus Type Signed Fractional, Specify the bus number format that you want to use.
Unsigned Integer
. >=0 . . . L . . .
[number of bits].[] (Parameterizable) Specify the number of bits to the left of the binary point, including the sign bit.
>=0

Specify the number of bits to the right of the binary point.

Logic Operation AND, OR, XOR

Specify the logical operation to perform.

August 2016 Altera Corporation

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

18-4 Chapter 18: Gate & Control Library

Table 18-6 shows the Bitwise Logical Bus Operator block I/O formats.

Table 18-6. Bitwise Logical Bus Operator Block I/0 Formats (”/

1] Simulink 2, 4 VHDL Type 4

| MiL11.R1) 11:in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Explicit
12141 R1] 12:in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Explicit

0 |01y 01:in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Explicit

Notes to Table 18-6:
(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(3) Myuy[ryis aninput port. 01y r) is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 18-2 shows an example with the Bitwise Logical Bus Operator block.

Figure 18-2. Bitwise Logical Bus Operator Block Example

Incremenl DecEemanl

o
ok
3 T

Constant

Scope

Case Statement

This Case Statement block contains boolean operators, which you can use for
combinational functions.

The Case Statement block compares the input signal (which must be a signed or
unsigned integer) with a set of values (or cases). A single-bit output generates for each
case. You can implement multiple cases with a comma (,) to separate each case. A
comma at the end of the case values is ignored.

You can have multiple conditions for each case with a pipe (|) to separate the
conditions. For example, for four cases if the first has two conditions, enter 1|2,3,4,5
in the Case Values box.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 18: Gate & Control Library

18-5

Table 18-7 shows the Case Statement block inputs and outputs.

Table 18-7. Case Statement Block Inputs and Outputs

Signal Direction Description
unnamed Input Data input.
0 ton Output A separate output is provided for each case.

Table 18-8 shows the Case Statement block parameters.

Table 18-8. Case Statement Block Parameters

Value

Description

Case Statement

User defined
(Parameterizable)

Specify the values with which you want to compare the input. Use a comma
between each case and separate conditions by a pipe (|). For example:
1]2|3,4,5]-1,7

Signed Integer,

Data Bus Type Unsigned Integer Specify the bus number format that you want to use.
. >=0 . . . I . . .
[number of bits].[] (Parameterizable) Specify the number of bits to the left of the binary point, including the sign bit.
. >=0
[].[number of bits] (Parameterizable) Specify the number of bits to the right of the binary point.
Enable Pipeline On or Off Turn on if you want pipeline the output result.
Provide Default Case | On or Off Turn on if you want the others output signal to go high when all the other

outputs are false.

Table 18-9 shows the Case Statement block I/O formats.

Table 18-9. Case Statement Block I/0 Formats (7

V0| Simulink @, (4 VHDL Type #

[LRy 11:in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0) Explicit
01[y, 01: out STD_LOGIC

0 | Oigy Oi: out STD_LOGIC Explicit
ongy On: out STD_LOGIC

Notes to Table 18-9:

For signed integers and signed binary fractional numbers, the MSB is the sign bit.
[L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
M y.ry is an input port. 01y gy is an output port.

Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

18-6

Chapter 18: Gate & Control Library

Figure 18-3 shows an example model with the Case Statement block.

Figure 18-3. Case Statement Block Example

A

Ramp

Inpul

case

defaull

11213

Casa Statemenl

———®<_obil_ |y
| ES TI —
——<_obil e

Cutpen

Cutpull

L

Clutpui2

Cotput3

Crutputd

Scope

DSP Builder Handbook

The following VHDL code generates from the model in Figure 18-3:

caseproc:process (input)
begin
case input is

when

when

when

when

when

7
7
1
7
7
=>
7
7
1
’
7
l
7
1
7
7
=>

7

1

"oooooo001"
ro <= '1"';
rl <= '0';
r2 <= '0';
r3 <= '0';
r4 <= '0';

"oooo0o0100"
r0 <= '0';
rl <= '1"';
r2 <= '0';
r3 <= '0';
r4 <= '0';

"oooo0100"
r0o <= '0';
rl <= '0';
r2 <= '1"';
r3 <= '0';
r4 <= '0';

"oo0o00111"
r0 <= '0';
rl <= '0';
r2 <= '0';
r3 <= '1"';
r4 <= '0';

others =>
r0 <= '0';
rl <= '0';
r2 <= '0"';
r3 <= '0';
r4 <=

end case;
end process;

Volume 2: DSP Builder Standard Blockset

lll;

"00000010"

"00000110"

=>

"00000011"

=>

August 2016 Altera Corporation

Chapter 18: Gate & Control Library

18-7

Decoder

Table 18-11. Decoder Block Parameters

The Case Statement block output ports in the VHDL are named r<number> where
<number> is auto-generated.

The Decoder block is a bus decoder that compares the input value against the
specified decoded value. If the values match, the block outputs a 1, if they do not
match it outputs a 0.

If the specified value is not representable in the data type of the input bus, it is
truncated to the data type of the input bus. For example: 5 (binary 101) as a 2 bit
unsigned integer results in 1 (binary 01).

Table 18-10 shows the Decoder block inputs and outputs.

Table 18-10. Decoder Block Inputs and Outputs

Signal Direction Description
in Input Data input.
match Output Data output (1 = match, 0 = mismatch).

Table 18-11 shows the Decoder block parameters.

Name Value Description
Signed Integer,
Input Bus Type Signed Fractional, Specify the bus number format that you want to use.
Unsigned Integer
. >=0
[number of bits].[] (Parameterizable) Specify the number of bits to the left of the binary point.
[].[number of bits] >=0 Specify the number of bits to the right of the binary point for the gain. This
’ (Parameterizable) option is zero (0) unless Signed Fractional is selected.
Register Output On or Off Turn this option on if you want to register the output result.

Decoded Value

User defined
(Parameterizable)

Specify the decoded value for matching.

Table 18-12 shows the Decoder block I/O formats.

Table 18-12. Decoder Block I/0 Formats (7

(1] Simulink @), ¢ VHDL Type
0 01[1].[0] O1:in STD_LOG|C EXp“Cit

Notes to Table 18-12:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(8) MRy is aninput port. 01 gy is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

August 2016 Altera Corporation

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

18-8 Chapter 18: Gate & Control Library

Figure 18—4 shows an example with the Decoder block.

Figure 18-4. Decoder Block Example

e D

Count

modd g0 P in(3:0) mateh

Lecoder Output

Decoder Scope

Counter 0 to 15

Demultiplexer

The Demultiplexer block is a 1-to-n demultiplexer that uses full encoded binary
values. The value of the input d is output to the selected output. All other outputs
remain constant.

The sel input is an unsigned integer bus.

Table 18-13 shows the Demultiplexer block inputs and outputs.

Table 18-13. Demultiplexer Block Inputs and Outputs

Signal Direction Description
d Input Data input port.
sel Input Select control port.
ena Input Optional clock enable port.
sclr Input Optional synchronous clear port.
0-(n-1) Output Output ports.

Table 18-14 describes the parameters for the Demultiplexer block.

Table 18-14. Demultiplexer Block Parameters

Name Value Description

Aninteger greater than 1

Number of Qutput Data Lines (Parameterizable)

Specify how many outputs you want the demultiplexer to have.

Use Enable Port On or Off Turn on to use the clock enable input (ena).
Use Synchronous Clear Port | On or Off Turn on to use the synchronous clear input (sclr).
DSP Builder Handbook August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 18: Gate & Control Library 18-9
Table 18-15 shows the Demultiplexer block I/O formats.
Table 18-15. Demultiplexer Block I/0 Formats (%
1] Simulink %, VHDL Type 9
M1] 11:in STD_LOGIC_VECTOR(IL + R1 - 1} DOWNTO 0)
| 1215 [R] 12: in STD_LOGIC_VECTOR(IL - 1} DOWNTO 0) Implicit
1311 13 in STD_LOGIC Implicit
1411 14: in STD_LOGIC
01p1ym] 01: out STD_LOGIC_VECTOR(L + R - 1} DOWNTO 0) Implicit
0 |..
Onpuypy On: out STD_LOGIC_VECTOR((L + R - 1} DOWNTO 0) Implicit

Notes to Tahle 18-15:

(1) Where | is the number of outputs to the demultiplexer.
(2) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(3) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(4) MRy is aninput port. 01y gy is an output port.

(5) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 18-5 shows an example with the Demultiplexer block.

Figure 18-5. Demultiplexer Block Example

Increment Decrement

modd q2:0)

Caunter

DEMLLE

sizna—w<_]
s |

Damuix

S —
N S
S —

YYYYvYY

Inthis example each output is updated, inturn, every Gth clock ovcle

Scope

Flipflop

Set the F1ipflop block as a D-type flipflop with enable (DFFE) or T-type flipflop with

enable (TFFE).

If the number of bits is set to more than 1, the block behaves as single-bit flipflops for
each bit. For example, for a TFFE flipflop with an n-bit signal, the signal is processed
with n 1-bit TFFE flipflops.

Table 18-16 shows the Flipflop block inputs and outputs.

Table 18-16. Flipflop Block Inputs and Outputs

Signal Direction Description
input Input Data or togggle port.
ena Input Enable port.

August 2016 Altera Corporation

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

18-10

Chapter 18: Gate & Control Library

Tahle 18-17. Flipflop Block Parameters

Table 18-16. Flipfiop Block Inputs and Outputs

Signal Direction Description
aprn Input Asynchronous reset port.
aclrn Input Asynchronous clear port.
Q Output Output port.
DFFE mode:
if (0 == aclrn) Q = 0;
else if == aprn) Q =1;
else if == ena) Q =D
TFFE mode:
if (0 == aclrn) Q = 0;
else if == aprn) Q =1;
else if == ena) and (1 == T) Q = toggle
DSP Builder does not support (aclrn == 0) and (aprn == 0).

The aclrn port is an active-low asynchronous clear port. When active this sets the
output and internal state to 0 for the remainder/duration of the clock cycle.

The aprn port is an active-low asynchronous preset port. When active this sets the
output and internal state to 1 for the remainder/duration of the clock cycle.

Table 18-17 shows the Flipflop block parameters.

[number of bits].[]

(Parameterizable)

Name Value Description
Mode DFFE or TFFE Specify the type of flipflop to implement.
Signed Integer,
Bus Type Eir?snigtrj]eFdraﬁttig;:rl: Specify the bus number format that you want to use.
Single Bit
>=0

Specify the number of bits to the left of the binary point.

[].[number of bits]

>=0
(Parameterizable)

Specify the number of bits to the right of the binary point for the gain. This
option is zero (0) unless you select Signed Fractional.

Table 18-18 shows the Flipflop block I/O formats.

Table 18-18. Flipflop Block I/0 Formats ("

/0 Simulink 2, (¢ VHDL Type ¥
L1101 11:in STD_LOGIC_VECTOR({L1 - 1} DOWNTO 0)
12 12:in STD_LOGIC

| [11-{0] oS Explicit
|3[1][0] [3:in STD_LOG'C

DSP Builder Handbook

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 18: Gate & Control Library 18-11

Table 18-18. Flipflop Block I/0 Formats ("

1] Simulink @), ¢ VHDL Type
0 | O1pL1q0] 01:in STD_LOGIC_VECTOR({L1 - 1} DOWNTO 0) Explicit
Notes to Table 18-18:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(3) NMpuy.ry is an input port. 01y gy is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 18-6 shows an example with the Flipflop block.

Figure 18-6. Flipflop Block Example

© o
me L { i Count
J Count
Counter O ta 62 B input
— ena
:
II B apm Delayed Count
Lelayed Count
L acirn Seane
Flipflop

If Statement

The If Statement block outputs a 0 or 1 result based on the IF condition expression.

Table 18-19 shows the If Statement block inputs and outputs.

Table 18-19. If Statement Block Inputs and Outputs

Signal Direction Description
a-j Input Input ports.
n Input Optional ELSE IF input port.
true Output Output port (high when true).
false Output Optional ELSE output port (high when false).

You can build an IF condition expression with the signal values 0 or 1 and any of the
permitted operators given in Table 18-20.

Table 18-20. Supported If Statement Block Operators

Operator Operation
& AND
| OR
$ XOR
= Equal To
~ Not Equal To
August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

18-12

Chapter 18: Gate & Control Library

Table 18-20. Supported If Statement Block Operators

Operator Operation
> Greater Than
< Less Than
0] Parentheses

When writing expressions in an If Statement block, ensure that the operators are
always operating on the same types. That is, bus signals compare with and operate
with bus signals; and booleans (the 'true’ or 'false’ result of such operations) only
compare with and operate with booleans. In other words, the types must be the same
on either side of an operator.

Treat an If statement expression, 0 and 1, as signals rather than as booleans,
otherwise you receive an error at HDL generation of the following form:

Can't determine definition of operator "<mixed operator>" -- found 0
possible definitions

If you receive this error, carefully check the expressions specified in the If Statement
blocks.

The following examples of bad syntax give errors:
B (a>b)&c, where a,b and c are all input values to the If Statement.

Here (a>b) returns a boolean ('true’ or 'false’) and is ANDed with signal c. This
operation is ill defined and results in the following error:

Can't determine definition of operator ""&"" -- found 0 possible
definitions

B ((a>b)-~0)
Again (a>b) returns a boolean ('true' or 'false’). 0 is treated as a signal not a

boolean, so the hardware generation fails with an error:

Can't determine definition of operator ""/="" -- found 0 possible
definitions™"

where /= is the hardware translation of the not equal to' operator. Here the ~0
incorrectly means 'not false', and is unnecessary. The correct syntax for this
expression is just (a>b).

Table 18-21 shows the If Statement block parameters.

Table 18-21. If Statement Block Parameters

Name Value Description
Number of Inputs 2-10 Specify the number of inputs to the 1f Statement.
Specify the if condition with any of the following operators: &, |, $, =, ~, >, <,
IF Expression User Defined or (), the variables a, b, c, d, e, f, g, h, i, or j, and the single digit numerals 0,
1.

Data Bus Type

Signed Integer,
Signed Fractional, | Specify the bus number format that you want to use. The selected type must
Unsigned Integer be capable of expressing 0 and 1 exactly.

Single Bit, Inferred

[number of bits].[]

>=0

(Parameterizable) Specify the number of bits to the left of the binary point.

DSP Builder Handbook

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 18: Gate & Control Library 18-13

Table 18-21. If Statement Block Parameters

Name Value Description

>=0 Specify the number of bits to the right of the binary point for the gain. This
(Parameterizable) | option is zero (0) unless Signed Fractional is selected.

This option turns on the false output, which implements an ELSE condition
and goes high if the condition evaluated by the 1f Statement block is false.

This option turns on the else input, which implements an ELSE IF input,
On or Off when you want to cascade multiple IF Statement blocks together or as an
enable for the block.

[].[number of bits]

Use ELSE Output Port | On or Off

Use ELSE IF Input
Port

Table 1822 shows the If Statement block I/O formats.

Table 18-22. If Statement Block /0 Formats ("

10 Simulink @, (3 VHDL Type 4
M) 11:in STD_LOGIC_VECTOR({LT + R1 - 1} DOWNTO 0)
01 01: out STD_LOGIC 3
0 Explicit
02[1] 02: out STD_LOG'C

Notes to Table 18-22:
(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(3) Myuy[ryis aninput port. 01y r) is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 18-7 shows an example of the If Statement block, which implements the
conditional statement:

Quantizer:

if (Input<-4) Output = -100

else if ((Input>=-4) & (Input<l1l0)) Output = 0
else Output = 100

Figure 18-7. If Statement Block Example

7o {2 tue
i IFasb
Band-Limitad b fake
‘While Noks 2k
Low Thieshokl I Statarnent —|
(2:0) ————————
true BusBuikl e
b s = Cutpul
High Threshokd Mull
o (. faks
: Seore
I Stat=ment| High
Fulliplese
August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

18-14 Chapter 18: Gate & Control Library

LFSR Sequence

The LFSR Sequence block implements a linear feedback shift register that shifts one bit
across L registers. The register output bits shift from LSB to most significant bit (MSB)
with the output sout connected to the MSB of the shift register. The register output
bits can optionally be XORed or XNORed together.

For example, when choosing an LFSR sequence of length eight, the default
polynomial is x8 + x4 + x3 + x2 + 1 with the circuitry that Figure 18-8 shows.

Figure 18-8. Default LFSR Sequence Block with Length 8 Circuitry

[
1
!

In this default structure:

m The polynomial is a primitive or maximal-length polynomial

m All registers are initialized to one

m The feedback gate type is XOR

m The feedback structure is an external n-input gate or many to one

You can modify the implemented LFSR sequence by changing the parameter values.

For example, after changing the feedback structure to an internal two-inputs gate,
DSP Builder implements the circuitry (Figure 18-9).

Figure 18-9. Internal 2-Input Gate Circuitry

oHo LL)D éD qBD ATl il el

Vo

This circuitry changes the sequence from:
11111111001000010100°1
to:

1111010011001 10101000

DSP Builder Handbook August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 18: Gate & Control Library

18-15

Table 18-24. LFSR Sequence Block Parameters

Table 18-23 shows the LFSR Sequence block inputs and outputs.

Tahle 18-23. LFSR Sequence Block Inputs and Outputs

Signal Direction Description
ena Input Optional clock enable port.
rst Input Optional reset port.
sout Output Serial output port for MSB of the LFSR.
pout Output Optional parallel output port for LFSR unsigned value.

Table 18-24 shows the LFSR Sequence block parameters.

Value

Description

LFSR Length

User Defined
(Parameterizable)

Specify the LFSR length as an integer.

Feedback Structure

External n-inputs gate,
Internal two-inputs gate

Specify whether you want an external n-inputs gate (many-to-one) or
internal two-inputs gate (one-to-many) structure.

Feedback Gate Type

XOR 0Or XNOR

Specify the type of feedback gate to implement.

Initial Register Value
(Hex)

Any Hexadecimal Number
(Parameterizable)

Specify the initial values in the register. If this value is larger than is
represented in the shift register (set by LFSR Length) the
unrepresentable bits are truncated.

Primitive Polynomial
Tap Sequence

User-Defined Array of
Polynomial Coefficients
(Parameterizable)

Specify where the taps occur in the shift register, 1 denotes the LSB and
the LFSR length denotes the MSB. There must be a minimum of 2 taps.
The numbers should be enclosed in square brackets.

For example, [0 3 10].

Specify Clock

On or Off

Turn on to explicitly specify the clock name.

Clock

User defined
(Parameterizable)

Specify the name of the clock signal.

Clear Port

Use Parallel Output | On or Off Turn on to use the parallel output (pout).
Use Enable Port On or Off Turn on to use the clock enable input (ena).
Use Synchronous On or Off Turn on to use the synchronous clear input (sclr).

Table 18-25 shows the LFSR Sequence block I/O formats.

Table 18-25. LFSR Sequence Block 1/0 Formats (/

10 Simulink @, () VHDL Type
|)00 11:in STD_LOGIC _
12(17.101 12: in STD_LOGIC _
0 01041101 01: out STD_LOGIC —
0211101 02: out STD_LOGIC_VECTOR(L-1 DOWNTOQ 0) —

Notes to Tahle 18-25:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(3) NMpuy.ry is aninput port. 01y gy is an output port.

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

18-16 Chapter 18: Gate & Control Library

Figure 18-10 shows an example with the LFSR Sequence block.

Figure 18-10. LFSR Sequence Block Example

TEERTGE
zout LFSR mMSB
>c:":'+><‘3+'1
pout

(SR Vaiee

LFSR Sequencs
LFSR Walus

Scope

Logical Bit Operator

The Logical Bit Operator block performs logical operations on single-bit inputs.
You can specify a variable number of inputs. If the integer is positive, it is interpreted
as a boolean 1, otherwise it is interpreted as 0. The number of inputs is variable.

Table 18-26 shows the Logical Bit Operator block parameters.

Table 18-26. Logical Bit Operator Block Parameters

Name Value Description

AND, OR, XOR,

Logical rator
ogical Operato NAND, NOR, NOT

Specify the operator you want to use.

1-16 Specify the number of inputs. This parameter defaults to 1 if the NOT logical

Number of Inputs (Parameterizable) | operator is selected.

Table 18-27 shows the Logical Bit Operator block I/O formats.

Table 18-27. Logical Bit Operator Block 1/0 Formats (7/

/0 Simulink 2, (4 VHDL Type
My 11:in STD_LOGIC

I i li: in STD_LOGIC Explicit
Inpiy In: in STD_LOGIC

0 |01 01: out STD_LOGIC Explicit

Notes to Table 18-27:
(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(3) Miyuy[ryis aninput port. 01y r) is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 18: Gate & Control Library

18-17

Figure 18-11 shows an example with the Logical Bit Operator block.

Figure 18-11. Logical Bit Operator Block Example

P obit |
Fatte mACiul
P obit |
Fattema PattemBCul
oo1i1111 o
AND abit
1111100 I 7 And
PatlemB -
%: T ot = L
| . Cir
8]
")o
[H abil
] Xor
X
"l o
L] [- abil
| > Tand
Mand
> = b
[- abil
B Mot
Mo
Scope

Logical Bus Operator

The Logical Bus Operator block performs logical operations on a bus such as AND, OR,
XOR, and invert. You can perform masking by entering a mask value in decimal
notation, or a shift (rotate) operation by entering the number of bits. By default, a
right shift operation preserves the input data sign (for signed inputs).

Table 18-28 shows the Logical Bus Operator block inputs and outputs.

Tahle 18-28. Logical Bus Operator Block Inputs and Outputs

Signal Direction Description
d Input Input data.
q Output Output data.

Table 18-29 shows the Logical Bus Operator block parameters.

Table 18-29. Logical Bus Operator Block Parameters

Name Value

Description

Signed Integer,
Bus Type
Unsigned Integer

Signed Fractional, | Specify the bus number format that you want to use.

[number of bItSLI | (parameterizable) | bit.

>=0 Specify the number of bits to the left of the binary point, including the sign

>=0

[1.[number of bS] | b2 ameterizable)

Specify the number of bits to the right of the binary point.

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

18-18

Chapter 18: Gate & Control Library

Table 18-29. Logical Bus Operator Block Parameters

Name Value Description
AND, OR, XOR,
Invert, Shift Left,
Logical Operation Shift Right, Specify the logical operation to perform.

Rotate Left,
Rotate Right

Mask Value

Integer
(Parameterizable)

Specify the mask value for an AND, OR, Or XOR operation as an unsigned
integer representing the required mask, which must have the same number of
bits as the input.

Number of Bits to Shift User Def|ngd Specn‘y how many bits you want to shift when you chose a shift or rotate
(Parameterizable) | operation.
Sign Extend On or Off Turn on to preserve the input data sign when right shifting signed data.

Table 18-30 shows the Logical Bus Operator block I/O formats.

Table 18-30. Logical Bus Operator Block I/0 Formats ("

10 Simulink @), ¢ VHDL Type
0 | O1p1 R 01: out STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Explicit

Notes to Tahle 18-30:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(8) MRy is an input port. 01y gy is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 18: Gate & Control Library

18-19

Figure 18-12 shows an example with the Logical Bus Operator block.

Figure 18-12. Logical Bus Operator Block Example

_..
I;:;";':Z.r::'”, el 130 GCI::?1 EIGZ':"—G o 00 4 >
—e{cliZ0n Invert -qG:EI-GM’ i~
- Shir:1F:'i:_|hl -.'||3:E'-—G Right = hili 1 >
- H"cul.alln1_=lLa1l '-'Ilﬁi':"—G Lell molale 1 >
Ll 104 Fﬂ:\lalle; Iﬁ'i';lhl -;||3:E--—G Right ratal= 1 >

Logical Reduce Operator

The Logical Reduce Operator block performs logical reduction operations on a bus
such as AND, OR, XOR. The logical operation is applied bit-wise to the input bus to give a
single bit result.

Table 18-31 shows the Logical Reduce Operator block inputs and outputs.

Tahle 18-31. Logical Reduce Operator Block Inputs and Outputs

Signal Direction Description
d Input Input data.
q Output Output result.

Table 18-32 shows the Logical Reduce Operator block parameters.

Table 18-32. Logical Reduce Operator Block Parameters

Signed Fractional,
Unsigned Integer

Name Value Description
Inferred,
Bus Type Signed Integer, Specify the bus number format that you want to use.

[number of bits].[]

>=0
(Parameterizable)

Specify the number of bits to the left of the binary point, including the sign bit.

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

18-20

Chapter 18: Gate & Control Library

Table 18-32. Logical Reduce Operator Block Parameters

Name Value Description
[].[number of bits] (>P=a(rJameterizabIe) Specify the number of bits to the right of the binary point.
B%%L(ﬁ:olﬁeductlon ﬁgbOEBEOR‘ Specify the logical operation to perform.

Table 18-33 shows the Logical Reduce Operator block I/O formats.

Table 18-33. Logical Reduce Operator Block 1/0 Formats (")

1] Simulink 2, 4 VHDL Type 4
| M riy 11:in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Explicit
0 |01y, 01: out STD_LOGIC Explicit
Notes to Table 18-30:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(3) NMpuy.ry is aninput port. 01y gy is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 18-13. Log

Figure 18-13 shows an example with the Logical Reduce Operator block.

ical Reduce Operator Block Example

—{di30l AND qf—w=<_obil |——p
Logical Reduce AND ANH o

- pld@0) OR af—W<_obi —
Logical Reduce OR SiRahais

diz0) XOR o —=__ obil v =
XOR of bits

Logical Reduce XOR

Increment Cecrement
Un=igned Inlager - di3:00 MAND

q

9

Logical Reducs HARND

NAMD of bits

— 30 HOR

q

Logical Reduce NOR

MOR of bils

Scope

Multiplexer

DSP Builder Handbook
Volume 2: DSP Builder

The Multiplexer block operates as either a n-to-1 one-hot or full-binary bus

multiplexer with one select control. The output width of the multiplexer is equal to
the maximum width of the input data lines. The block works on any data type and
sign extends the inputs if there is a bit width mismatch.

Standard Blockset

August 2016 Altera Corporation

Chapter 18: Gate & Control Library

18-21

Table 18-34 shows the Multiplexer block inputs and outputs.

Table 18-34. Multiplexer Block Inputs and Outputs

Signal Direction Description
sel Input Select control port.
0-(n-1) Input Data input ports.
ena Input Optional enable port.
aclr Input Optional asynchronous clear port.
<unnamed> Output Output port.

Table 18-35 shows the Multiplexer block parameters.

Table 18-35. Multiplexer Block Parameters

Value

Description

Number of Input Data Lines

Aninteger greater than
1 (Parameterizable)

Specify how many inputs the multiplexer has.

Number of Pipeline Stages | >= 0 (Parameterizable)

Specify the number of pipeline stages.

Turn on to use one-hot selection for the bus select signal instead of

One Hot Select Bus On or Off .

full binary.

Turn on to use the clock enable input (ena). This option is available
Use Enable Port On or Off only when the number of pipeline stages is greater than 0.
Use Asynchronous Clear On or Off Turn on to use the asynchronous clear input (aclx). This option is

Port

available only when the number of pipeline stages is greater than 0.

Table 18-36 shows the Multiplexer block I/O formats.

Table 18-36. Multiplexer Block 1/0 Formats (7/

/0

Simulink 2, (3

VHDL Type

H[LS].[U] (select
input)

[1:in STD_LOGIC_VECTOR({L1 - 1} DOWNTO 0)
12:in STD_LOGIC_VECTOR({L2 + R2 - 1} DOWNTO 0)

12(12).R2)

. li: in STD_LOGIC_VECTOR((Li + Ri - 1} DOWNTO 0) L
I | i ri Implicit

I.n[L i In: in STD_LOGIC_VECTOR({Ln + Rn - 1} DOWNTO 0)

A In+1: STD_LOGIC

In+1[1]

| In+2; STD_LOGIC

n+2[1]

01l -
o | [maxLmax®)l 1 54. oyt STD_LOGIC_VECTOR({max(Li)) + max(Ri) - 1} DOWNTO 0) Implicit

with (0 < I <i+1)

Notes to Table 18-36:
For signed integers and signed binary fractional numbers, the MSB is the sign bit.

[L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

M{Ly.ry is @n input port. 01 (rp is an output port.

Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

18-22 Chapter 18: Gate & Control Library

Figure 18-14 shows an example with the Multiplexer block.

Figure 18-14. Multiplexer Block Example

gy Salec
Select Dut
IncEmanl Salec|
Cecement .’j'\ b |:|
==l [l
| i .-I:I.
- {1
| 3 Pz
[4 {3 MUX Scope
| 5 4 Mux_ Qi
[® s
| 7 P
| =1 ."T_/-/
Tl

Pattern

The Pattern block generates a repeating periodic bit sequence in time. You can enter
the required pattern as a binary sequence.

For example, the pattern 01100 outputs the repeating pattern:
0110001100011000110001100011000110001100

You can change the output data rate for a registered block by feeding the clock enable
input with the output of the Pattern block.

[l=~ With a sequence of length 1, the Pattern block acts as a constant, holding its output to
the specified value at all times. There is no artificial limit to the pattern length.

Table 18-37 shows the Pattern block inputs and outputs.

Tahle 18-37. Pattern Block Inputs and Outputs

Signal Direction Description
ena Input Optional clock enable port.
sclr Input Optional synchronous clear port.
<unnamed> Output Output data port.

Table 18-38 shows the Pattern block parameters.

Table 18-38. Pattern Block Parameters

Name Value Description
Binary Sequence User Defined Specify the sequence that you want to use.
Specify Clock On or Off Turn on to explicitly specify the clock name.
DSP Builder Handbook August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 18: Gate & Control Library

18-23

Table 18-38. Pattern Block Parameters

Name Value Description
User defined . . .
Clock (Parameterizable) Specify the name of the required clock signal.
Use Enable Port On or Off Turn on to use the clock enable input (ena).
Use Synchronous Clear Port | On or Off Turn on to use the synchronous clear input (sclr).

Table 18-39 shows the Pattern block I/O formats.

Table 18-39. Pattern Block I/0 Formats (7

V0| Simulink @, (4 VHDL Type

| I1[1] [1:in STD_LOGIC Explicit - optional
124 [2:in STD_LOGIC Explicit - optional

0 |01 01: out STD_LOGIC Explicit

Notes to Table 18-39:
For signed integers and signed binary fractional numbers, the MSB is the sign bit.
[L]is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
My.ry is an input port. 01y gy is an output port.

Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

M
@)

Figure 18-15 shows an example with the Pattern block.

Figure 18-15. Pattern Block Example

100
Fattern

bit
B bt o

Pattarn Walue

ana

EE 9670 { 2 Counter

Counter Walue

Counter
Scope

Single Pulse

The single Pulse block generates a single pulse output signal. The output signal is a
single bit that takes only the values 1 or 0. The signal generation type can be an
impulse, a step up (0 to 1), or a step down (1 to 0).

The output of a impulse starts at 0 changing to 1 after a specified delay and changing
to 0 again after a specified length. The output of a step up starts at 0 changing to 1
after a specified delay. The output of a step down starts at 1 changing to 0 after a
specified delay.

August 2016 Altera Corporation

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

18-24 Chapter 18: Gate & Control Library

Table 18-40 shows the Ssingle Pulse block inputs and outputs.

Table 18-40. Single Puise Block Inputs and Outputs

Signal Direction Description
ena Input Optional clock enable port.
sclr Input Optional synchronous clear port.
<unnamed> output Output port.

Table 18-41 shows the Single Pulse block parameters.

Table 18-41. Single Pulse Block Parameters

Name Value Description
Step Up,
Signal Generation Type Step Down, Specify the type of single pulse.
Impulse
Imoulse Lenath Integer Specify the number of clock cycles for which the output signal is
P 9 (Parameterizable) | transitional from 0 to 1 for an Impulse type output.
Dela Integer Specify the number of clock cycles that occur before the pulse
y (Parameterizable) | transition.
Specify Clock On or Off Turn on to explicitly specify the clock name.
User defined . . .
Clock (Parameterizable) Specify the name of the required clock signal.
Use Enable Port On or Off Turn on to use the clock enable input (ena).
Use Synchronous Clear Port | On or Off Turn on to use the synchronous clear input (sclr).

Table 18-42 shows the Single Pulse block I/O formats.

Table 18-42. Single Pulse Block I/0 Formats

/0 Simulink (7 VHDL Type

| 4y [1:in STD_LOGIC Optional trigger
124 12:in STD_LOGIC Optional reset

0 |01y 01: out STD_LOGIC —

Notes to Table 18-42:
(1 N 1] is an input port. 01 1] is an output port.

Figure 18-16. shows an example of a Single Pulse block.

Figure 18-16. Single Pulse Output Signal Types

FPulse Output

D

e Pattemn

Pattern Cutput
Single Pulse Fattern Scope

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

19. Interfaces Librar
AIERA '

Use the blocks in the Interfaces library to build custom logic blocks that support the
Avalon® Memory-Mapped (Avalon-MM) and Avalon Streaming (Avalon-ST)
interfaces.

The Interfaces library contains the following blocks:
m Avalon-MM Master

m Avalon-MM Slave

m Avalon-MM Read FIFO

m Avalon-MM Write FIFO

m Avalon-ST Packet Format Converter (Deprecated)
m Avalon-ST Sink

m Avalon-ST Source

Avalon Memory-Mapped Blocks

iy

The Avalon-MM blocks automate the process of specifying master and slave ports
that are compatible with the Avalon-MM bus.

After you build a model of your DSP Builder peripheral, you can add the following
blocks to control the peripheral’s inputs and outputs:

m Configurable master and slave blocks that contain the ports required to connect
peripherals that use the Avalon-MM bus.

m Wrapped versions of the Avalon-MM slave that implement an Avalon-MM read
FIFO buffer and Avalon-MM write FIFO.

For more information about the Avalon-MM interface, refer to the Avalon Interface
Specifications.

After you synthesize your model and compile it in the Quartus II software, use Qsys
to add it to your Nios II system.

Your design automatically appears under the DSP Builder category in the Qsys
component browser peripherals listing if the MDL file is in the same directory as the
SOPC file.

A file mydesign.mdl creates a component mydesign_interface in Qsys.

For the peripheral to appear in Qsys, the working directory for your Qsys project
must be the same as your DSP Builder working directory.

Avalon-MM Master

The Avalon-MM Master block defines a collection of ports for connection to an Qsys
system when your design functions as an Avalon-MM master interface.

August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

19-2

Chapter 19: Interfaces Library

Table 19-1 lists the signals supported by the Avalon-MM Master block.

Table 19-1. Signals Supported by the Avalon-MM Master Block

Signal Direction Description
. This signal forces the master port to wait until you are ready to proceed with the
waitrequest Input
transfer.
address Output The address signal represents a byte address but is asserted on word boundaries only.
Available with Read or Read/Write address type. Read request signal. Not required if
read Output
there are no read transfers. If used, also use readdata.
Available when Read or Read/Write address type is chosen. Data lines for read
readdata Input o
transfers. Not required if there are no read transfers. If used, also use read.
, Available when Write or Read/Write address type is chosen. Write request signal. Not
write Output N . .
required if there are no write transfers. If used, also use writedata.
, Available when Write or Read/Write address type is chosen. Data lines for write
writedata Output - .)
transfers. Not required if there are no write transfers. If used, also use write.
Available when Write or Read/Write address type is chosen and the bit width is greater
byteenable Output than 8. Enables specific byte lane(s) during write transfers to memories of width greater
than 8 bits. All byteenable lines must be enabled during read transfers.
endofpacket Input Available when Allow Flow Control is on. Indicates an end-of-packet condition.
readdatavalid Inout Available when Allow Pipeline Transfers is on. Use for pipelined read transfers with
cacdatava P latency. Indicates that valid data is present on the readdata lines.
Available when Allow Pipeline Transfers and Use Flush Signal are on. Can be asserted
flush Output . . .
to clear any pending transfers in the pipeline.
burstcount Output Available when Allow Burst Transfers is on. Indicates the number of transfers in a burst.
. Available when Receive IRQ is on. Indicates when one or more ports have requested an
irg Input .
interrupt.
. Available when Receive IRQ is on and IRQ mode is set to Prioritized. Indicates the
irgnumber Input . o . .
interrupt priority. Lower value means higher priority.

=

The direction in Table 19-1 refers to the direction in respect of the DSP Builder block

interface.

Table 19-2 shows the Avalon-MM Master block parameters.

Table 19-2. Avalon-MM Master Block Parameters

Name Value Description
Specify Clock On or Off Turn on to explicitly specify the clock name.
Clock User defined Specifies the clock signal name.

Address Width 1-32 Specifies the number of address bits.
Address Type Ezgghl\vygltte& The address type for the bus.

Signed Integer,
Data Type Signed Fractional, | The number format of the bus.

Unsigned Integer

[number of bits].[]

>=0
(Parameterizable)

Specifies the number of bits to the left of the binary point, including the sign
bit. Read and write buses must have the same number of bits.

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 19: Interfaces Library 19-3

Table 19-2. Avalon-MM Master Block Parameters

Name Value Description

>=0 Specifies the number of bits to the right of the binary point. This parameter
(Parameterizable) | applies only to signed fractional buses.

Turn on to use the Byte Enable Signal. This option is available when the
address type is set to Write or Read/Write and the bit width is greater than 8.

Turn on to enable flow control. Flow control allows a slave port to regulate
Allow Flow Control On or Off incoming transfers from a master port, so that a transfer only begins when the
slave port indicates that it has valid data or is ready to receive data.

Turn on to allow pipeline transfers. Pipeline transfers increase the bandwidth
Allow Pipeline On or Off for synchronous slave peripherals that require several cycles to return data for
Transfers the first access, but can return data every cycle thereafter. This option is
available when the address type is Read or Read/Write.

Turn on to clear any pending transfers in the pipeline. This option is available
when Allow Pipeline Transfers is on.

Turn on to allow burst transfers. A burst executes multiple transfers as a unit,
Allow Burst Transfers | On or Off and maximize the throughput for slave ports that achieves the greatest
efficiency when handling multiple units of data from one master port at a time.

Specifies the maximum width of a burst transfer. This option is available when
Allow Burst Transfers is on.

[].[number of bits]

Allow Byte Enable On or Off

Use Flush Signal On or Off

Maximum Burst Size | 2-32

Receive IRQ On or Off Turn on to enable interrupt requests from the slave port.

Prioritized,

IRQ Mode Individual Signals

The interrupt request mode. This option is available when Receive IRQ is on.

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

19-4

Chapter 19: Interfaces Library

Figure 19-1 shows an Avalon-MM Master block with all signals enabled.

Figure 19-1. Avalon-MM Master Block with All Signals Enabled

ol

‘Wait Request

>

Addmess
1:0

Read

Read Data
[2].10]

i

Write

Write Data
[9].10]

Byte Enable
4:0

End Of Packet

~

Read Data Valid

>

Flush

Burmst Count
2:0

IRC

>;~

)
IRQ Number
5:0

Avalondh Master

-l

“ e For general information about Avalon-MM blocks, refer to “Avalon Memory-Mapped

Blocks” on page 19-1.

Avalon-MM Slave

The Avalon-MM Slave block defines a collection of ports for connection to an Qsys
system when your design functions as an Avalon-MM slave interface.

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 19: Interfaces Library

19-5

Table 19-3 lists the signals supported by the Avalon-MM Slave block.

Table 19-3. Signals Supported by the Avalon-MM Slave Block

Signal Direction Description
Address lines to the slave port. Specifies a word offset into the slave address
address Output
space.
read Outout Available when Read or Read/Write address type is chosen. Read-request
P signal. Not required if there are no read transfers. If used, also use readdata.
readdata Inout Available when Read or Read/Write address type is chosen. Data lines for read
P transfers. Not required if there are no read transfers. If used, also use read.
, Available when Write or Read/Write address type is chosen. Write-request
write Output : o .)
signal. Not required if there are no write transfers. If used, also use writedata.
writedata Outout Available when Write or Read/Write address type is chosen. Data lines for write
P transfers. Not required if there are no write transfers. If used, also use write.
Available when Allow Byte Enable is on and the bit width is greater than 8.
byteenable Output Byte-enable signals to enable specific byte lane(s) during write transfers to
memories of width greater than 8 bits. If used, also use writedata.
readvEordat Inout Available when Write or Read/Write access is chosen and Allow Flow Control is
cadytorcata P on. Indicates that the peripheral is ready for a write transfer.
. Available when Read or Read/Write access is chosen and Allow Flow Control is
dataavailable Input . . .
on. Indicates that the peripheral is ready for a read transfer.
endofpacket Input Available when Allow Flow Control is on. Indicates an end-of-packet condition.
. Available when Allow Pipeline Transfers is on and variable read latency is
readdatavalid Input L
chosen. Marks the rising clock edge when readdata asserts.
- ‘ Inout Available when variable wait-state format is chosen. Use to stall the interface
wartreques P when the slave port cannot respond immediately.
. Available when Allow Burst Transfers is on. Asserted for the first cycle of a burst
beginbursttransfer Output - .)
to indicate when a burst transfer is starting.
burstcount Outout Available when Allow Burst Transfers is on. Indicates the number of transfers in
P a burst. If used, also use waitrequest.
. Available when Output IRQ is on. Interrupt request. Asserted when a port needs
irg Input :
to be serviced.
, Available when Receive Begin Transfer is on. Asserted during the first cycle of
begintransfer Output
every transfer.
chipselect Outout Available when Use Chip Select is on. The slave port ignores all other
P p Avalon-MM signal inputs unless chipselect is asserted.
[l =~ The direction in Table 19-3 refers to the direction in respect of the DSP Builder block

interface.

Table 194 shows the Avalon-MM Slave block parameters.

Table 19-4. Avalon-MM Slave Block Parameters

Name Value Description
Specify Clock On or Off Turn on to explicitly specify the clock name.
Clock User defined Specifies the clock signal name.
Address Width 1-32 Specifies the number of address bits.

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

19-6

Chapter 19: Interfaces Library

Table 19-4. Avalon-MM Slave Block Parameters

Value

Description

Address Alignment

Native, Dynamic

Use native address alignment or dynamic bus sizing.

Address Type Eggg}v\o/rﬁtee’ The address type for the bus.
Signed Integer,
Data Type Signed Fractional, | The number format of the bus.

Unsigned Integer

[].[number of bits]

[number of bits] [] >=0 Specifies the number of bits to the left of the binary point, including the sign
' (Parameterizable) | bit. Read and write buses must have the same number of bits.
>=0 Specifies the number of bits to the right of the binary point. This parameter

(Parameterizable)

applies only to signed fractional buses.

Turn on to use the Byte Enable Signal. This option is available only when

Allow Byte Enable On or Off the address type is set to Write or Read/Write.

Turn on to enable flow control. Flow control allows a slave port to regulate
Allow Flow Control On or Off incoming transfers from a master port, so that a transfer only begins when

the slave port indicates that it has valid data or is ready to receive data.

Turn on to allow pipeline transfers. Pipeline transfers increase the bandwidth
Allow Pipeline on or Off for synchronous slave peripherals that require several cycles to return data
Transfers for the first access, but can return data every cycle thereafter. This option is

available only when the address type is set to Read or Read/Write.

Wait-State Format

Fixed, Variable

The required wait-state format.

Read Wait-State Cycles

0-255

Specifies the number of read wait-state cycles. This option is available only
when the wait-state format is set to Fixed.

Write Wait-State Cycles

0-255

Specifies the number of write wait state cycles. This option is available only
when the wait-state format is set to Fixed.

Read Latency Format

Fixed, Variable

The required read latency format. This option is available only when Allow
Pipeline Transfers is on.

Specifies the pipeline read latency. Latency determines the length of the data
phase, independently of the address phase. For example, a pipelined slave
port (with no wait-states) can sustain one transfer per cycle, even though it

Read Latency Cycles 0-8 may require several cycles of latency to return the first unit of data. This
option is available only when Allow Pipeline Transfers is on and Fixed read
latency format is set.

Turn on to allow burst transfers. A burst executes multiple transfers as a unit,
and maximize the throughput for slave ports that achieves the greatest

Allow Burst Transfers | On or Off efficiency when handling multiple units of data from one master port at a
time.

Maximum Burst Size 4932 Specifies the maximum WIth of a burst transfer. This option is available only
when Allow Burst Transfer is on.

Output IRQ On or Off Turn on to enable interrupt requests from the slave port.

Receive BeginTransfer | On or Off Turn on to receive begintransfer Signals.

Use Chip Select On or Off Turn on to enable the chipselect signal.

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 19: Interfaces Library 19-7

Figure 19-2 shows an Avalon-MM Slave block with all signals enabled.

Figure 19-2. Avalon-MM Slave Block with All Signals Enabled

Addmess
1:0 L
Read
[
Read Data
15:0 b
Wirite >
[
Write Data
15:0 o
Eyte Enablke
40 I
Ready For Data -
Data Availablke [
End Of Packet o

Read Data Valid

‘Wait Request
[
Begin Burst Tmnsfer >
Burst Count o
2:0
)
IR

N T VYV VA

Begin Transfer

3
Chip Sekect >

AvakbndM Slave

e For general information about Avalon-MM blocks refer to “Avalon Memory-Mapped
Blocks” on page 19-1.

Avalon-MM Read FIFO

The Avalon-MM Read FIFOblock is essentially an Avalon-MM Slave block configured to
implement a read FIFO. It is accessed by other Avalon-MM peripherals to obtain data
when connected in Qsys.

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

19-8 Chapter 19: Interfaces Library

For information about the Avalon-MM Slave block, refer to “Avalon-MM Slave” on
page 19-4.

Table 19-5 lists the signals supported by the Avalon-MM Read FIFO block.

Table 19-5. Signals Supported by the Avalon-MM Read FIFO Block

Signal Direction Description

This port must be connected to Simulink blocks. It simulates stall conditions of the
Avalon-MM bus and hence back pressure to the SOPC component. For any simulation

Stall Input cycle where the stall signal is asserted, no Avalon-MM reads take place and the
internal FIFO buffer fills. When full, the Ready output is de-asserted so that no data is
lost.

This port should be connected to DSP Builder blocks and should be connected to

Data Input

outgoing data from the user design.

This port should be connected to DSP Builder blocks and should be asserted whenever
the signal on the Data port corresponds to real data.

This port should be connected to Simulink blocks and corresponds to the data received
over the Avalon-MM bus.

This port should be connected to Simulink blocks and is asserted whenever
TestDataOut corresponds to real data.

DataValid Input

TestDataOut Output

TestDataValid Output

Ready Output When asserted, indicates that the block is ready to receive data.

Table 19-6 shows the Avalon-MM Read FIFO block parameters.

Table 19-6. Avalon-MM Read FIFO Block Parameters

Name Value Description
Signed Integer,
Data Type Signed Fractional, | The number format of the bus.
Unsigned Integer
>=0 Specifies the number of bits to the left of the binary point, including the sign bit.

[number of bits].[| (Parameterizable) This parameter does not apply to single-bit buses.

[].[number of bits] >=0 Specifies the number of bits to the right of the binary point. This parameter
' (Parameterizable) applies only to signed fractional buses.
FIFO Depth >2 Specifies the depth of the FIFO.

Figure 19-3 shows an Avalon-MM Read FIFO block.

Figure 19-3. Avalon-MM Read FIFO

Stall TestDataOut [
Data TeatDataValid |-
Datavalid Ready [

Avakbndh Read FIFO

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 19: Interfa

ces Library

19-9

Figure 19—4 shows the content of the Avalon-MM Read FIFO block.

Figure 19-4. Avalon-MM Read FIFO Content

1
Stall
Addmess ;:g
10
L Reed
ibril
Read Data
(2} Bl q L i P Fead Data Read [
[RETE] full
e FIFO : o
mipty] HETT=G— Btz ;‘;‘:‘i'l"“""b P CalaAvailable TesiCata
Wie Usdw(30) HOT TesiDalaOut
Dste¥ald End Of Packet
FIFO [0 < e bl stal TeslDatavalid
Conslanid TestDataValil
Avalon Read Slave Streaming Avalbn Read Converder
A [_natiun oD
a b -
FIFD Size Compaiaior Fready

Avalon-MM Write FIFO

The Avalon-MM Write FIFO block is essentially an Avalon-MM Slave block configured
to implement a write FIFO.

e« Forinformation about the Avalon-MM Slave block, refer to “Avalon-MM Slave” on

page 19-4.

Table 19-7 lists the signals supported by the Avalon-MM Write FIFO block.

Table 19-7. Signals Supported by the Avalon-MM Write FIFO Block

Signal Direction Description
This port must be connected to Simulink blocks. It provides simulation data to the Avalon-MM
TestData Input write FIFO. The data is passed to the Dataout port one cycle after the Ready input port is
asserted.
This port must be connected to Simulink blocks. It simulates stall conditions of the Avalon-MM
Stall Inout bus and hence underflow to the SOPC component. For any simulation cycle where stall is
@ P asserted, the test data is cached by the Avalon-MM write converter and released in order, one
sample per clock, when stall is de-asserted.
This port must be connected to DSP Builder blocks. It indicates that the downstream hardware
Ready Input :
is ready for data.
Dataout Outout This port should be connected to DSP Builder blocks and corresponds to the oldest unsent
P data sample received on the TestData port.
. This port should be connected to DSP Builder blocks and is asserted whenever Dataout
DataValid | Qutput
corresponds to real data.

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

19-10 Chapter 19: Interfaces Library

Table 19-8 shows the Avalon-MM Write FIFO block parameters.

Table 19-8. Avalon-MM Write FIFO Block Parameters

Name Value Description

Signed Integer,
Data Type Signed Fractional, | The number format of the bus.
Unsigned Integer

>=0 Specifies the number of bits to the left of the binary point, including the sign bit.
(Parameterizable) | This parameter does not apply to single-bit buses.

>=0 Specifies the number of bits to the right of the binary point. This parameter applies
(Parameterizable) | only to signed fractional buses.

FIFO Depth >2 Specifies the depth of the FIFO buffer.

[number of bits].[]

[].[number of bits]

Figure 19-5 shows an Avalon-MM Write FIFO block.

Figure 19-5. Avalon-MM Write FIFO

Testlata DataCut
Stall
R DataValid |

Avalo nddi Write FIFO

Figure 19-6 shows the content of the Avalon-MM Write FIFO block.

Figure 19-6. Avalon-MM Write FIFO Content

¥
o

N TR
P 1)

Ready iReady Adddress }
R En] =
i1 AND fall Ciataliut
TesiData

TestData (1= FIFC

Wrile L
Witz - it empty _b‘[@o_mlerrpl'-'
stai N :

1 wred] uschwi3:0)
stal wloo o WiileDats — Wiite Data .
B Ready 70 —

Avalkon-MM Wiile Test 'C!l:nn'uaner= Feady For Data

¥

ohil

E P End Of Packet Datalalidl
GHD obil Dhzlary

Avakn-M Wrile Slave

a

b [Tromn
FIFDSEe Compamtol

Avalon Streaming Blocks

The Avalon Streaming blocks automate the process of specifying ports that are
compatible with an Avalon-ST interface. The blocks include an Avalon-ST Packet
Format Converter (Deprecated), Avalon-ST Sink and Avalon-ST Source.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 19: Interfaces Library 19-11

For information about the Avalon-ST interface, refer to the Avalon Interface
Specifications.

Avalon-ST Packet Format Converter (Deprecated)

=

This block is deprecated. Use Avalon-ST interfacing blocks available in DSP Builder
Standard or Advanced Blocksets to implement custom transformations.

The Avalon-ST Packet Format Converter (PFC) block transforms packets received
from one block to a different packet format required by another block.

The PFC takes packet data from one or more input interfaces, and provides field
reassignment in time and space to one or more output packet interfaces. You specify
the input packet format and the desired output packet format, then the appropriate
control logic automatically generates.

The PFC operates on a single clock domain, and supports multicast data, where an
input field is broadcast copied to multiple output fields. The ready latency of the PFC
block is zero and it can only connect to other Avalon-ST interfaces with a ready
latency of zero.

Verilog HDL generates for the PFC block and you must therefore have a license that
supports Verilog HDL when simulating in ModelSim.

Figure 19-7 shows the basic operation of the PFC.

Figure 19-7. Basic Packet Format Converter

I
fi?acket Format Converter
|

Avalon-ST Avalon-ST
Interface Interface
Sink Source

inX_data |Avalon-ST Avalon-ST | outy_data

Interface Interface
Sink Source

in0_data outd_data
—_— ——— =

The PFC performs data mapping on a packet by packet basis, so that there is exactly
one input packet on each input interface for one output packet on each output
interface. The interface with the longest packet limits the packet rate of the converter.

When the PFC has multiple output interfaces, the packets on each output interface are
aligned so that the startofpacket signal is presented on the same clock cycle.

If each interface supports fixed-length packets, you can select a Multi-Packet
Mapping option. The PFC can then map fields from multiple input packets to
multiple output packets. The PFC does not support bursts or blocks on its output
interfaces.

August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

19-12 Chapter 19: Interfaces Library

Use the Split Data option to split the input or output data signals across additional
ports named data0 through dataN.

Each input interface consists of the ready, valid, startofpacket, endofpacket, empty,
and data signals. Each output interface has an additional error signal that asserts to
indicate a frame delineation error.

«o For more information about these signal types, refer to the Avalon Interface
Specifications.
I'=~ The PFC block does not support Avalon-ST bursts or blocks on its output interfaces.
Table 19-9 lists the signals supported by the Avalon-ST Packet Format Converter
block.
Tahle 19-9. Signals Supported by the Avalon-ST Packet Format Converter Block
Signal Direction Description
reset n Input Active-low reset signal.
inX dataN Input Data input bus for sink interface X.
. Indicates the number of empty symbols for sink interface X during cycles that
inX empty Input
- mark the end of a packet.
inX endofpacket Input Th|s signal marks the active cycle containing the end of the packet for sink
- interface X.
. This signal marks the active cycle containing the start of the packet for sink
inX startofpacket Input .
- interface X.
inX valid Input Indicates DSP Builder can accept data for sink interface X.
outY ready Input Indicates that the sink driven by the source interface Yis ready to accept data.
aclr Input Optional asynchronous clear port.
inX ready Output Indicates that sink interface Xis ready to output data.
outY dataN Output Data output bus for source interface Y.
Uty empt Output Indicates the number of empty symbols for source interface Y during cycles that
ub_empty P mark the end of a packet.
out¥ endofpacket Output Th|s signal marks the active cycle containing the end of the packet for source
- interface Y.
out¥ startofpacket Output Th|s signal marks the active cycle containing the start of the packet for source
- interface Y.
outY valid Output Indicates that valid data is available on source interface Y.
outYerror Output Indicates an error condition when asserted high.

Table 19-10 shows the Avalon-ST Packet Format Converter block parameters.

Table 19-10. Avalon-ST Packet Format Converter Block Parameters

Name Value Description
Number of Sinks 1-16 Specifies the number of sink interfaces X.
Number of Sources 1-16 Specifies the number of source interfaces Y.
DSP Builder Handbook August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 19: Interfaces Library

19-13

Table 19-10. Avalon-ST Packet Format Converter Block Parameters

Name Value Description

When on, the data signals on the sink and source interface are split into signals

Split Data On or Off | named data0 through datan with widths corresponding to the specified symbol
width.
When off, one input packet is matched to one output packet and the input and

Multi-Packet Manoin On or Off output packets must have the name number of instances in each field. When on,

pping the PFC maps the input packets to output packets such that all instances of every

data field are accounted for.

Symbol Width - Spemﬂes the number of bits per symbol that all the PFC sink and source
interfaces use.

gcs)ftAsynchronous Clear On or Off | Turn on to use the asynchronous clear input (aclr).

Sink Format X string A quoted string or MATLAB variable that describes the packet format for sink
interface X.

Sink X Symbols Per Beat 1-32 Specifies the number of symbols per beat for sink interface X.

Source Format Y string A quoted string or MATLAB variable that describes the packet format for source
interface Y.

Source Y Symbols Per Beat | 1-32 Specifies number of symbols per beat for source interface Y.

PFC Data Flow

The PFC spools data into a FIFO-like memory as it arrives, and spools it out in a
different order as it leaves. DSP Builder can provide the data at the output of each
interface as soon as it writes it into the memory and all previous output data is
transferred. When the PFC has multiple output interfaces, the startofpacket signal
for all the interfaces is asserted at the same time.

The PFC stops data input on input interfaces by deasserting the ready signal
whenever there is a risk of overwriting data that it has not yet output. If a
downstream block pauses output data by deasserting the ready signal to the PFC, the
PFC accepts data until it risk overwriting unsent data. At this point, the PFC deasserts
the ready signals on its own input interface, causing the upstream block to stop
sending data.

In a similar way;, if the upstream block starves the PFC of data by deasserting the
valid signals to the PFC, then the PFC output interface continues to send data until
the memory drains. It then stops sending data by deasserting the output valid
signals.

For multiple interface PFC blocks, back pressuring an output interface or starving an
input interface affects all other interfaces. When an output interface is back pressured,
the input interfaces are back pressured, causing the other outputs to be starved of
data. Likewise, if an input interface is starved of data, the output interfaces eventually
stop, causing the other input interfaces to be back pressured.

Packet Format Description

For each input and output interface, the number of symbols per beat and the packet
description describe the basic format of the packet.

August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

19-14

Chapter 19: Interfaces Library

The number of symbols per beat defines, for each interface, the number of symbols
that present in parallel on every active cycle. The packet description is a string that
describes the fields in the packet.

A basic packet description is a comma-separated list of field names, where a field
name includes any of the characters a-z, A-2, _, or 0-9 but must start with a letter. For
example: Fieldl, Red, Green, Blue, and DestinationAddress. Field names are case
sensitive. Do not use whitespace in a packet description.

If fields repeat in a packet, parentheses delineate the repeated group (of one or more
fields), and a positive integer follows the group to indicate the number of repeats. The
following examples describe the parenthesis further:

B Dest,Source, (Data)128, (CRC)4 indicates a packet that has destination and
source address symbols followed by 128 data symbols and 4 CRC symbols.

B (Red,Green,Blue)100 refers to a frame with 100 repetitions of a symbol of Red,
followed by a symbol of Green, followed by a symbol of Blue.

m Nest repeats, so that (F1,(F2)3,F3)2,F4 is equivalent to (F1,F2,F2,F2,F3)2,F4 or
F1,F2,F2,F2,F3,F1,F2,F2,F2,F3,F4.

Use a + instead of a positive integer, such as (Red, Green, Blue) +, to repeat a group an
unspecified number of times in a packet. However, such a group must compose the
entire packet. Therefore, none of the following examples are valid: &, (B, C) +,
(A,B)+,C, or((A)+)2.

Table 19-11 summarizes the packet description syntax for the PFC.

Table 19-11. Packet Description Syntax

Packet Descriptor:

Group | (Group)+

where + indicates that the preceding Group is repeated an unknown
number of times

Group

repeatedGroup | simpleGroup

repeatedGroup

(Group)N

where N is a positive integer indicating the number of times the preceding
group is repeated

simpleGroup

FieldName [, Group]

Table 19-12 shows some example packets. All these examples use the convention
<packet description> / <symbols per beat>, so that R, G, B/2 refers to an interface where
the packet description is R, G, B and the number of symbols per beat is 2.

Table 19-12. Packet Description Examples

Packet Description / Symbols Per Beat

Example Packets

(%84 (Blc[r[B[c[r[B[c[R[B[G]R|—>
RIR[R|[R |

(R,G,B)4/3 G|G|G|G|—m
Ble|B|B]

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 19: Interfaces Library

19-15

Table 19-12. Packet Description Examples

Packet Description / Symhols Per Beat Example Packets

(b) / Lill R W=

Y,Cr,Y,Cb) /2

Ch|Cr

AlA|A|ALALA
AJAIAA]ALA

((r)2,B,C, (A)2,B,D)3/4 —
B|B|B|B|B|B
Dlc|D|C|D|C
BlA|B|C|A
AlA|IC|A|lA

((((a)2,B)2,0)2,D)2 AIBIDIAIB] o
BIC|A|B|A
ClA|A|A|A
DIA|B|A|B

Figure 19-8 shows an example of the packet formats for a PFC with two input and
two output interfaces.

Figure 19-8. Example of a Packet Format Converter with Two Input and Two Output Interfaces

Symbols fer Beat = 2
Packet Description = ABCDEFRG

|—GECA

Packet Format Converter

Cutputs are idle (valid=0) T and 2 cycles
of every packet respectively because the
warst case input packet takes 4 cycles

Symbols Per Beat =2
Packet Description = A ZEY

in0_data Avalon-ST
= # |nterface
Sink
Input 11s backpressured |
because the input 0 packet | %
takes more time in1_data Avalon-ST
| V |=———=——— |[nterface
Sink

Symbaols Per Beat =3
Packet Description = UVW.X.Y.Z

Avalon-ST | outd data ElA
Interface » Y|Z
Source

| ulz
Avalon-8T | ot data il
Interface = FIX
Source E|w

‘ ’7 o|v

Symbols Per Beat=5
Packet Description = Z, Y. X, WV U,GFED.CBA

Packet Mapping

Packet mapping is the process of determining where the data for each field in each
output interface is coming from (as an {input interface, position} pair).

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

19-16

Chapter 19: Interfaces Library

=

To achieve packet mapping, compare the field name strings. For example, the source
of data for the Red field in a given output interface is the field on an input interface
with the name Red. It is not valid for any field name to exist on multiple-input
interfaces; no two input interfaces may have a Red field. It is valid, however, for
multiple-output interfaces to have the same field; you may copy the Red data to two or
more output interfaces.

A single input or output interface can have multiple instances of the same field. For
example, Red, Green, Red, Blue represents a packet with two red symbols per packet.
The PFC matches the nth instance of a field on an input interface to the nth instance of
the same field on an output interface. If an output interface has Blue, Green, Red, Red,
the data for the first Red field is taken from the first Red field in the input packet.

Each output interface may or may not use a given input field, but unless you set the
Multi-Packet Mapping option (and if the input field is used) there must be the same
number of instances of the field in each output as there is in the input. For example,
Green and Red, Red, Green are both valid, but Red, Green is not.

Multi-Packet Mapping

Set the Multi-Packet Mapping option, so that the PFC is not limited to mapping a
single input packet on each port to a single output packet on each port. It can map
multiple input packets to multiple output packets.

For example, (Red, Green,Blue)2 maps to (Red, Green, Blue) 3 by using three input
packets for every two output packets.

The ratio of input fields to output fields must be constant.

For example, Red, Red, Green, Blue does not map to (Red, Green,Blue)2 because each
output packet requires one input packet for Red, but two input packets for Green and
Blue.

DSP Builder supports multiple interfaces but the packet ratio must be constant across
all {input interface, output interface} pairs.

For example, two input interfaces with the formats (Red, Green) 2 and Blue map to
output interface (Red)6,Blue(3),Green(6) because three input packets are required
for two output packets for all input and output pairs. The same inputs do not map to
(Red) 3,Blue (3),Green(3), because to make two output packets, three of the first
input's packets and six of the second input's packets are required.

DSP Builder does not support packets of unknown length.

Error Handling

DSP Builder Handbook

The PFC contains internal counters that keep track of the current position in the
packet for each input and uses these counters to detect frame delineation errors. Every
time a startofpacket or endofpacket signal asserts on an input interface, the PFC
uses its knowledge of the frame structure to ensure that the assertion is on a valid
cycle. For PFC variants where the packet size is known, the PFC also checks that the
startofpacket and endofpacket signals assert when they should do, and are not
missed.

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 19: Interfaces Library 19-17

The PFC only has a single output error bit to report frame delineation errors. The
output error bit asserts on all outputs as soon as DSP Builder detects an error, and it
asserts for each output interface independently until an endofpacket asserts for that
output interface.

After the endofpacket asserts, the PFC presents no more data to that output interface.
When all output interfaces stop, the PFC resets and resumes normal operation. The
PEC stops independently on the endofpacket signal for each output, and components
downstream of the PFC should never see partial frames.

While errors assert to the output interfaces and the core is reset, the input interfaces
are not back pressured. This action prevents loss of any synchronization between
input interfaces by uneven back pressuring during error conditions.

When the PFC starts again, it waits until it sees a startofpacket signal for each input
interface before accepting data for that interface. It is not possible to guarantee
synchronization of output interfaces when frame delineation errors are present.

The PFC does not support relaying errors from an upstream component to a
downstream component.

When simulating the PFC block, connect the reset port to a pulse generator (such as
the single Pulse block in the DSP Builder Gate & Control library) that is configured
to output an initial 0, then a 1 for the remainder of the simulation.

Avalon-ST Sink

The Avalon-ST Sink block defines a collection of ports for connection to an Qsys
system when your design functions as an Avalon-ST sink.

For information about the Avalon-ST interface, refer to the Avalon Interface
Specifications.

Table 19-13 lists the signals supported by the Avalon-ST Sink block.

Tahle 19-13. Signals Supported by the Avalon-ST Sink Block

Signal Direction Description
Dataln Input Data input bus.
Valid Input Data valid signal that indicates the validity of the input data signals.
Ready Output Data input ready signal. Indicates that the sink can accept data.
This signal is available when Use startofpacket is on and marks the active cycle
startofpacket Input S
containing the start of the packet.
This signal is available when Use endofpacket is on and marks the active cycle
endofpacket Input L2
containing the end of the packet.
This signal is available when Use empty is turned on and the bit width is greater than the
empty Input symbol width. It specifies how many of the symbols in a packet are empty. For example,
a 32-bit wide bus with 8-bit symbols can have an empty value from 0 to 3.
August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

19-18

Chapter 19: Interfaces Library

Table 19-14 shows the Avalon-ST Sink block parameters.

Table 19-14. Avalon-ST Sink Block Parameters

Name Value Description
Specify Glock On or Off Turn on to explicitly specify the clock name.
Clock User defined Specifies the clock signal name.

Signed Integer,
Data Type Signed Fractional, | The number format of the bus.

Unsigned Integer

[number of bits].[] >=0 Specifies the number of bits to the left of the binary point, including the sign bit.
1| (Parameterizable) | Read and write buses must have the same number of bits.
>=0 Specifies the number of bits to the right of the binary point. This parameter applies

[].[number of bits]

(Parameterizable)

only to signed fractional buses.

Symbol Width >=1 Specifies the symbol width in bits.
Use endofpacket | On or Off When this option is on, the endofpacket port is available on the Avalon-ST
Sink block.
Use startofpacket | On or Off When this option is on, the startofpacket port is available on the Avalon-ST
Sink block.
Use empt On or Off When this option is on and the bit width is greater than the symbol width, the
Pty empty port is available on the Avalon-ST Sink block.
Defines the relationship between assertion or deassertion of the Ready signal and
Ready Latency Oori !
cycles the ones ready for data transfer separately for each interface.
Figure 19-9 shows an Avalon-ST Sink block with all signals enabled.
Figure 19-9. Avalon-ST Sink Block with All Signals Enabled
Cata In
B1.0 =
Valid
ibil i
Ready
o bil i
stanoipacket L
ibit
endofpachket [
ibit
emply o
i1
Avalbn-53T Sink
Avalon-ST Source

DSP Builder Handbook

The Avalon-ST Source block defines a collection of ports for connection to an Qsys
system when your design functions as an Avalon-ST source.

Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 19: Interfaces Library

19-19

“ e For information about the Avalon-ST interface, refer to the Avalon Interface
Specifications.

Table 19-15 lists the signals supported by the Avalon-ST Source block.

Tahle 19-15. Signals Supported by the Avalon-ST Source Block

Signal Direction Description

DataOut Output Data input bus.
Valid Output Data valid signal that indicates the validity of the output data signals.
Ready Input Data output ready signal. Indicates that the source can accept data.

This signal is available when the Use startofpacket parameter is on and marks the active
startofpacket Output e

cycle containing the start of the packet.

This signal is available when the Use endofpacket parameter is on and marks the active
endofpacket Output o

cycle containing the end of the packet.

This signal is available when Use empty is turned on and the bit width is greater than the
empty Output symbol width. It specifies how many of the symbols in a packet are empty. For example,

a 32-bit wide bus with 8-bit symbols can have an empty value from 0 to 3.

Table 19-16 on page 19-19 shows the Avalon-ST Source block parameters.

Table 19-16. Avalon-ST Source Block Parameters

[].[number of bits]

Name Value Description
Specify Clock On or Off Turn on to explicitly specify the clock name.
Clock User defined Specifies the clock signal name.
Signed Integer,
Data Type Signed Fractional, | The number format of the bus.
Unsigned Integer
[number of bits] [] >=0 Specifies the number of bits to the left of the binary point, including the sign bit.
1| (Parameterizable) | Read and write buses must have the same number of bits.
>=0 Specifies the number of bits to the right of the binary point. This parameter applies

(Parameterizable)

only to signed fractional buses.

Symbol Width 1-512 Specifies the symbol width in bits.

Use endofpacket | On or Off When this option is on, the endofpacket port is available on the Avalon-ST
Source block.

Use startofpacket | On or Off When this option is on, the startofpacket port is available on the Avalon-ST
Source block.
When this option is on and the bit width is greater than the symbol width, the

Use empty On or Off empty port is available on the Avalon-ST Sink block.

Ready Latency 0or1 Defines the relationship between assertion/deassertion of the Ready signal and

cycles the ones ready for data transfer separately for each interface.

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

19-20 Chapter 19: Interfaces Library

Figure 19-10 shows an Avalon-ST Source block with all signals enabled.

Figure 19-10. Avalon-ST Source Block with All Signals Enabled

Data In
o310 P
Walid
bt e
Ready
ibit > i
starofpac ket »
obil
endofpac ket [
ohil
empty F
ol:0

Avabn-53T Soume

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

20. 10 & Bus Library

The blocks in the IO & Bus library manipulate signals and buses to perform
operations such as truncation, saturation, bit extraction, or bus format conversion.

The IO & Bus library contains the following blocks:

AltBus

AltBus

Binary Point Casting
Bus Builder

Bus Concatenation

Bus Conversion

Bus Splitter

Constant

Extract Bit

Global Reset

GND

Input
Non-synthesizable Input
Non-synthesizable Output
Output

Round

Saturate

VCC

The A1tBus block modifies the bus format of a DSP Builder signal. Only use this block
as an internal node in a system, not as an input to or output from the system. If the

specified bit width is wider than the input bit width, the bus is sign extended to fit. If
it is smaller than the input bit width, you can specify to either truncate or saturate the
excess bits.

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

20-2

Chapter 20: 10 & Bus Library

Table 20-1 shows the A1tBus block parameters.

Table 20-1. AltBus Block Parameters

[].[number of bits]

Name Value Description
Signed Integer,
Bus Type LSJir(lenig(rj]eF(;aI%ttiggn::: The number format of the bus.
Single Bit
[number of bits] [] >=0 . Spgcifies the number of bits to thelleft of t.he binary point, including the sign bit.
(Parameterizable) | This parameter does not apply to single-bit buses.
>=0 Specifies the number of bits to the right of the binary point. This parameter

(Parameterizable) | applies only to signed fractional buses.

Saturate Output

When this option is on, if the output is greater than the maximum positive or
On or Off negative value to be represented, the output is forced (or saturated) to the
maximum positive or negative value, respectively. When off, the MSB is truncated.

Table 20-2 shows the A1tBus block I/O formats.

Table 20-2. AltBus Block I/0 Formats (7

V0 | Simulink @, () VHDL

Tvpe (4)

I MR

[1:in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

Implicit - Optional

0 | O1(Lpy.(RP)

01: out STD_LOGIC_VECTOR({LP + RP - 1} DOWNTO 0)

Explicit

Notes to Table 20-2:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(8) Mpuy.ry is aninput port. 01y gy is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 20: 10 & Bus Library 20-3

Table 20-3 and Figure 20-1 on page 20-3 illustrate how a floating-point number
(4/3 =1.3333) is cast into signed binary fractional format with three different binary
point locations.

Table 20-3. Floating-Point Numbers Cast to Signed Binary Fractional

Bus Notation Input Simulink VHDL
[4].[1] 4/3 1.00 2
[2].13] 4/3 1.25 10
[1].[4] 4/3 -0.6875 (1) -11

Note to Table 20-3:
(1) In this case, more bits are needed to represent the integer part of the number.

Figure 20-1. Floating-Point Conversion

> [13230078125 |
Disp oyl
453 0] 0L el E p | 1]
Input AkBuss -
Constant Cizp ol
S > .
AhBusE
Disp o3
N ol 122
AlBusT ’
Drisp oy
——> SRR > =
AKBuUSS -
Cisp oS
> SEE | BE)
ARBu=D
Disp b

Figure 20-2 illustrates the usage of A1tBus to convert a 20-bit bus with a ([10].[10])
signed binary fractional format to a 4-bit bus with a [2].[2] signed binary fractional
format.

In VHDL, this results in extracting a 4-bit bus (A1tBus (3 DOWNTO 0)) from a 20-bit bus
(AltBus (19 DOWNTO 0)) with the assignment:

August 2016 Altera Corporation DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

20-4 Chapter 20: 10 & Bus Library

AltBus3 (3 DOWNTO 0)) <=AltBus(ll DOWNTO 8))

Figure 20-2. Internal Format Conversion

> | 1.3233533333335 |
Cisp oy
412 | 000 | | 135330076125 |
Constant Input Disphy2
Rl ol 155
AhBusd
Display
> SEEL Al TST28]
AhkBus1
Display
SRR | | 1 33503125 |
AlBus2
Disp s

Figure 20-3 shows AltBus blocks for sign extension.

Figure 20-3. Sign Extension

_/ 150 < —ws 0150 |—p|:|

Signed Integer AltBus Signed Integer
Signed Integer

150 <&, —<E 0150 |—p|:|

Unsigned Integer AltBus1 Unszigned Integer
Un=igned Integer

ol —womn gl]
Single Bit AltBus=sz Signed Integer
Signed Integer

S S E g —eomn —w
Single Bit AlBus2 Unszigned Integer
Un=igned Integer

Scope

Scope

Ramp
Ramp1

Famp3 Scopel

Rampz Scopel

"=~ You can also perform additional internal bus manipulation with the Altera Bus
Conversion, Extract Bit, or Bus Builder blocks.

Binary Point Casting

The Binary Point Casting block changes the binary point position for a signed
fractional bus type, or converts an integer to a fractional bus type.

The output bit width remains equal to the input bit width.

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 20: 10 & Bus Library

20-5

Table 204 shows the Binary Point Casting block parameters.

Table 20-4. Binary Point Casting Block Parameters

Name Value Description
Signed Integer,
Bus Type Signed Fractional, | The number format of the bus.

Unsigned Integer

[number of bits].[]

>=0
(Parameterizable)

Specifies the number of bits to the left of the binary point, including the sign bit.

[].[number of bits]

>=0
(Parameterizable)

Specifies the number of bits to the right of the binary point. This parameter
applies only to signed fractional buses.

Output Binary
Point Position

>=0

(Parameterizable)

Specifies the binary point location of the output.

Table 20-5 shows the Binary Point Casting block I/O formats.

Table 20-5. Binary Point Casting Block I/0 Formats ()

/0 Simulink 2, (3 VHDL Type
0 | O1pLop.1Ro] 01: out STD_LOGIC_VECTOR({LO + RO - 1} DOWNTO 0) Explicit

Notes to Table 20-5:
(1)
()

For signed integers and signed binary fractional numbers, the MSB is the sign bit.
[L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

y.ry is an input port. 01y gy is an output port.
Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 20—4 shows a design example with the Binary Point Casting block.

Figure 20-4. Binary Point Casting Block Example

— e ol —
Binarng Point Casting Bz Drisplay
275 iBE] = (B2 | ELE 373
Constant Imaut Binary Point Casting Batput] Crisplayi
T P N B —»
Binany Faint Casting2 Cutplite Displayz
Bus Builder

The Bus Builder block constructs an output bus from single-bit inputs. The output
bus is signed integer, unsigned integer, or signed binary fractional format. You can
specify the number of bits in each case.

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

20-6

Chapter 20: 10 & Bus Library

The HDL mapping of the Bus Builder block is a simple wire.

The input MSB is at the bottom left of the symbol and the input LSB displays at the
top left of the symbol.

The Bus Builder block does not support sign extension. Instead use a an AltBus block
(Figure 20-3 on page 20-4).

Table 20-6 shows the Bus Builder block parameters.

Table 20-6. Bus Builder Block Parameters

[].[number of bits]

(Parameterizable)

Name Value Description
Signed Integer,
Bus Type Signed Fractional, | The number format of the bus.
Unsigned Integer
. >=0 s . . oL . . .
[number of bits].[] (Parameterizable) Specifies the number of bits to the left of the binary point, including the sign bit.
>=0 Specifies the number of bits to the right of the binary point. This parameter

applies only to signed binary fractional buses.

Table 20-7 shows the Bus Builder block I/O formats.

Table 20-7. Bus Builder Block I/0 Formats ()

1] Simulink @, (3 VHDL Type
13 [1:in STD_LOGIC Explicit

I li1) li:in STD_LOGIC Explicit
Inp3 In: in STD_LOGIC Explicit
01[|_|:>] [RP] with LP + RP =n .

0 - _ 01: out STD_LOGIC_VECTOR({LP + RP - 1} DOWNTO 0) Explicit
where n is the number of inputs

Notes to Table 20-7:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(3) NMpuy.ryis aninput port. 01y gy is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 20: 10 & Bus Library

20-7

Figure 20-5 shows a design example with the Bus Builder block.

Figure 20-5. Bus Builder Block Example

|

Toggle San

bt

bitt |1

bit2

BusE

J yYYeY
(i)

Yy

>

—

[, PRI o |
[
[}

BusBuik_a_Signed_Int

@9 4§.HEEIIII Unzigned Inlager

1
2

3

2] £ 0l2:[2] Siged Frac ol

uikl_z

:“-————'*QZEEEZZZJ

Ll

abi Sgred B

|
Ll

Sigred Integer

BusBuikl_an_Unigned_ Int

Scope

Bus Goncatenation

The Bus Concatenation block concatenates two buses.

The block has two inputs, a and b. These may be signed integer or unsigned integer.
The output width is width(a) + width(b).

Input a becomes the MSB part of the output, input b becomes the LSB part.

Table 20-8 shows the Bus Concatenation block parameters.

Table 20-8. Bus Concatenation Block Parameters

Name Value

Description

Output Is Signed On or Off

Turn on if the output bus is signed.

>=1

Width of Input a (Parameterizable)

Specifies the width of the first bus to concatenate.

>=1

Width of Input b (Parameterizable)

Specifies the width of the second bus to concatenate.

Table 20-9 shows the Bus Concatenation block I/O formats.

Table 20-9. Bus Concatenation Block 1/0 Formats (”/

10 Simulink 2, (3 VHDL Type 4
| M) 11:in STD_LOGIC_VECTOR({N1 - 1} DOWNTO 0) Eoici
XPIICI
1221 12: in STD_LOGIC_VECTOR({N2 - 1} DOWNTO 0) P

August 2016 Altera Corporation

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

20-8

Chapter 20: 10 & Bus Library

Table 20-9. Bus Concatenation Block 1/0 Formats (7

/0

Simulink 2, (3

VHDL Type 4

0 |0l w1+ng

01: out STD_LOGIC_VECTOR({N1 + N2 - 1} DOWNTO 0) Explicit

Notes to Table 20-9:
(1) For signed integers, the MSB is the sign bit.

2

4

(2) [N]is the number of bits.
(3) I1[N] is an input port. 01[,\,] is an output port.
(4) Explicit means that the port bit width information is a block parameter.

Figure 20-6 shows an example with the Bus Concatenation block.

Figure 20-6. Bus Concatenation Block Example

Constant alz
2bi3 T [=
: A At Dizplay
Bus Concatanation
Constant 1
Constant aryo)
28T
A Cpnt) Dizplay
Bu= Concatenation
Constant3

Bus Conversion

The Bus Conversion block extracts a subsection of a bus including bus type and width
conversion. If the input is in signed binary fractional format, you should specify a left

bit width (number of
the output bus. If the
LSB.

integer bits) and a right bit width (number of fractional bits) for
input is an integer, specify the input bit to connect to the output

If Input Bit Connected To Output LSB is on, the input bit indexing starts from 0. Do
not use this option with signed fractional type or with rounding.

Table 20-10 shows the Bus Conversion block parameters.

Table 20-10. Bus Conversion Block Parameters

Value

Description

Bus Type

Signed Integer,
Signed Fractional,
Unsigned Integer

The input bus type for the simulator, VHDL or both.

Input [].[number of bits]

. >=0 Specifies the number of bits to the left of the binary point including the
Input [number of bits].{] (Parameterizable) | sign bit.
>=0 Specifies the number of bits to the right of the binary point. This parameter

(Parameterizable)

applies only to signed binary fractional buses.

DSP Builder

Handbook

Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 20: 10 & Bus Library

20-9

Table 20-10. Bus Conversion Block Parameters

Output [].[number of hits]

Name Value Description
Output [number of bits].[] z;a?ameterizable) Specifies the number of bits to the left of the binary point.
>=0 Specifies the number of bit on the right side of the binary point. This

(Parameterizable)

parameter applies only to signed binary fractional buses.

Specifies the slice of the input bus to use. This parameter designates the

g‘ftUtutBlﬁggnneCtEd to z;a?ameterizable) start point of the slice that is transferred to the output LSB and applies to
P signed or unsigned integer buses only.
Turn on to round the output away from zero. When this option is off, the
Round Onor Off LSM is truncated: <int>(input +0.5).
When this option is on, if the output is greater than the maximum positive
Saturate on or Off or negative value to be represented, the output is forced (or saturated) to

the maximum positive or negative value, respectively. If off, the MSB is
truncated.

Table 20-11 shows the Bus Conversion block I/O formats.

Table 20-11. Bus Conversion Block I/0 Formats ("

/0 Simulink 2, 4 VHDL Type 4
I | 1ypigrei 11 in STD_LOGIC_VECTOR({LPi + RPi - 1} DOWNTO 0) Explicit
0 01 [LPO].[RPO] 01: out STD_LOG|C_VECTOR({LPO +LPO -1} DOWNTO 0) EXp”Cit

Notes to Table 20-11:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(3) NMpuyry is an input port. 01y gy is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 20-7. Bus Conversion Block Example

Figure 20-7 shows a design example with the Bus Conversion block.

AltBus

Cutput
T
signed 7 bit Crutpuid
P | e
signed 4 BEit Crutputs
Disply
obit

——wor | o)

Unsigned 1B

Bus Splitter

The Bus Splitter block splits a bus into single-bit outputs.

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

20-10 Chapter 20: 10 & Bus Library

The output ports are numbered from LSB to MSB. You can specify the bus type that
you want to use, and specify the number of bits on either side of the binary point.

Table 20-12 shows the Bus Splitter block parameters.

Table 20-12. Bus Splitter Block Parameters

Name Value Description
Signed Integer,
Bus Type Signed Fractional, | The number format of the bus.
Unsigned Integer
>=0

[number of bits].[] Specifies the number of bits to the left of the binary point, including the sign bit.

(Parameterizable)

>=0 Specifies the number of bits to the right of the binary point. This parameter

[].[number of bits] (Parameterizable) | applies only to signed binary fractional buses.

Table 20-13 shows the Bus Splitter block I/O formats.

Table 20-13. Bus Splitter Block I/0 Formats ("

10 Simulink @), ¢ VHDL Type #
|1[|_p] [RP] with LP + RP =n . .

I i , [1:in STD_LOGIC_VECTOR({LP + RP - 1} DOWNTO 0) Explicit
where n is the number of inputs
011y 01:in STD_LOGIC Explicit
Onpy, On:in STD_LOGIC Explicit

Notes to Tahle 20-7:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(3) Myuy[ryis aninput port. 01y r) is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 20-8 shows a design example with the Bus Splitter block.

Figure 20-8. Bus Splitter Block Example

;
1 ———<obi |
& ——w<obi_|—w]
G—— oobi P
7:0)

H_‘a/ Input _4
rp Ur=igred Integer 5 -,- =

6 ————<obit_—
7 —— Wb P

Bus Spliter

Scope

DSP Builder Handbook August 2016 Altera Corporation
Volume 2: DSP Builder Standard Blockset

Chapter 20: 10 & Bus Library

20-11

Constant

The Cconstant block specifies a constant bus. The options available depend on the

selected bus type.

Table 20-14 shows the Constant block parameters.

Table 20-14. Constant Block Parameters

Value

Description

Constant Value

Double
(Parameterizable)

Specifies the constant value that is formatted with the specified bus type.

Bus Type

Signed Integer,
Signed Fractional,
Unsigned Integer,
Single Bit

The number format of the bus.

[number of bits].[]

>= 0 (Parameterizable)

Specifies the number of bits to the left of the binary point, including the
sign bit. This parameter does not apply to single-bit buses.

[].[number of bits]

>= 0 (Parameterizable)

Specifies the number of bits to the right of the binary point. This parameter
applies only to signed fractional buses.

Rounding Mode

Truncate,

Round Towards Zero,
Round Away From Zero,
Round To Plus Infinity,
Convergent Rounding

The rounding mode. Refer to the description of the Round block for more
information about the rounding modes.

Saturation Mode

Wrap, Saturate

The saturation mode.

Specify Clock

On or Off

Turn on to explicitly specify the clock name.

Clock

User defined
(Parameterizable)

Specifies the name of the required clock signal.

Table 20-15. Constant Block I/0 Formats (”/

Table 20-15 shows the Constant block I/O formats.

/0

Simulink 2, (¢

0 | Oppy.rey

01: out STD_LOGIC_VECTOR({LP + RP - 1} DOWNTO 0)

Explicit

Notes to Table 20-15:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(3) NMpuy.ry is an input port. 01y gy is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

20-12

Chapter 20: 10 & Bus Library

Figure 20-9. Constant

Figure 20-9 shows an example with the Constant block.

Block Example

Constant arr o
2bi0 T [=
: AL e Display
Bus Concatengtion
Canstant 1
Canstant ar i)
2O T
BLi Citput) Dizplay1
Bu= Concatenation
Constantd

Extract Bit

The Extract Bit block reads a Simulink bus in the specified format and outputs the
single bit specified.

The selected bit is indexed starting from zero for the LSB and increasing to (total bit

width - 1) for the MSB.

Table 20-16 shows the Extract Bit block parameters.

Table 20-16. ExtractB

it Block Parameters

Name Value Description
Signed Integer,
Bus Type Signed Fractional, Specifies the number format of the bus.

Unsigned Integer

[number of bits].[]

>= 0 (Parameterizable)

Specifies the number of bits to the left of the binary point, including the
sign bit.

[].[number of bits]

>= 0 (Parameterizable)

Specifies the number of bits to the right of the binary point.

Select the Bit to be
Extracted From the Bus

>= 0 (Parameterizable)

Specifies the input bit to extract.

DSP Builder Handbook
Volume 2: DSP Builder Stand

ard Blockset

August 2016 Altera Corporation

Chapter 20: 10 & Bus Library 20-13

Table 20-17 shows the Extract Bit block I/O formats.

Table 20-17. Extract Bit Block I/0 Formats (7/

/0 Simulink 2, (¢ VHDL Type ¥
0 |01y, 01: out STD_LOGIC Explicit

Notes to Tahle 20-17:

M
(2)

For signed integers and signed binary fractional numbers, the MSB is the sign bit.

[L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

MRy is an input port. 01y gy is an output port.

Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 20-10 shows a design example with the Extract Bit block.

Figure 20-10. Extract Bit Block Example

D

) Crtput
= B ST oo
Incement — Crutputd]
e erent ExtractEit Scope

Global Reset

The Global Reset (or SCLR) block provides a single bit reset signal. All signals driven
by the block are connected to the global reset for that clock domain. In simulation, this
block outputs a constant 0.

Table 20-18 shows the Global Reset block parameters.

Table 20-18. Global Reset Block Parameters

Name Value Description
Specify Clock On or Off Turn on to explicitly specify the clock name.
Clock User defined (Parameterizable) | Specifies the name of the required clock signal.

Table 20-19 shows the Global Reset block I/O formats.

Table 20-19. Global Reset Block /0 Formats "/

/0

Simulink @, (3 VHDL Type

0

01[1][0] 01: out STD_LOG|C EXp“Cit

Notes to Table 20-19:

For signed integers and signed binary fractional numbers, the MSB is the sign bit.

[L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

My.ry is an input port. 01y gy is an output port.

Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

20-14

Chapter 20: 10 & Bus Library

The GND block is a single bit that outputs a constant 0. Table 20-20 shows the GND block

parameters.

Table 20-20. GND Block Parameters

Name Value

Description

Specify Clock On or Off

Turn on to explicitly specify the clock name.

Clock User defined (Parameterizable)

Specifies the name of the required clock signal.

Table 20-21 shows the GND block I/0O formats.

Table 20-21. GND Block I/0 Formats 7/

/0 Simulink 2, 4

VHDL

Tvpe (4)

0 01[1][0] 01: out STD_LOG'C

Explicit

Notes to Table 20-21:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(3) MRy is aninput port. 01y r) is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 20-11 shows a design example with the GND block.

Figure 20-11. GND Block Example

WEC 3:0)
[— |
GHND
E Bus= Builder
WA

GHD2
— |

WECZ2 3:0)
— ;
WCCG
E Bus Builderi
WCE3

Output

Qutputi

Drisplay

Lisplay

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 20: 10 & Bus Library

20-15

Input

The Input block defines the input boundary of a hardware system and casts
floating-point Simulink signals (from generic Simulink blocks) to signed binary
fractional format (feeding DSP Builder blocks).

Table 20-22 shows the Input block parameters.

Table 20-22. Input Block Parameters

(Parameterizable)

Name Value Description

Signed Integer,

Bus Type ﬁf;g?};ﬁf}?g;:rl Specifies the number format of the bus.
Single Bit

[number of bits] [] >=0 . Spgcifies the number of bits to the I.eft ofthe binary point, including the sign bit.
(Parameterizable) This parameter does not apply to single-bit buses.

O 105 |75, | S D1 PO, T et

Specify Clock On or Off Turn on to explicitly specify the clock name.

Clock User defined Specifies the name of the required clock signal.

Table 20-23. Input Block /0 Formats (7/

Table 20-23 on page 20-15 shows the Input block I/O formats.

/0| Simulink 2, 3

VHDL

Tvpe 4)

I MR

[1: out STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

Implicit - Optional

0 | Olppy.re

01: out STD_LOGIC_VECTOR({LP + RP - 1} DOWNTO 0)

Explicit

Notes to Table 20-23:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(3) MRy is aninput port. 01y r) is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Non-synthesizable Input

The Non-synthesizable Input block marks an entry point to a non-synthesizable DSP
Builder system. Use a corresponding Non-synthesizable Output block to mark the
exit point. Because DSP Builder registers its own type with Simulink, this block is
required when the DSP Builder blocks are not intended to be synthesized.

August 2016 Altera Corporation

DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

20-16

Chapter 20: 10 & Bus Library

Table 20-24 shows the Non-synthesizable Input block parameters.

Tahle 20-24. Non-synthesizable Input Block Parameters

Name Value Description

Signed Integer,
Bus Type ﬁfgg?}gﬁ?‘?:;:rl Specifies the number format of the bus.

Single Bit
[number of bits] [] >=0 Specifies the number of bits to the left of the binary point, including the sign bit.

1| (Parameterizable) This parameter does not apply to single-bit buses.
. =0 Specifies the number of bits to the right of the binary point. This parameter

].[number of bits] > . X .)
[(Parameterizable) applies only to signed fractional buses.
Specify Clock On or Off Turn on to explicitly specify the clock name.
Clock ?PS:r;(rfg[:?gable) Specifies the name of the required clock signal.

Table 20-25 shows the Non-synthesizable Input block I/O formats.

Table 20-25. Non-synthesizable Input Block I/0 Formats (")

V0 | Simulink 2, (4 VHDL Type
RO 11: out STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit - Optional

Notes to Table 20-23:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(3) Myuy[ryis aninput port. 01y r) is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Non-synthesizable Output

The Non-synthesizable Output block marks an exit point from a non-synthesizable
DSP Builder system. Use a corresponding Non-synthesizable Input block to mark the
entry point. Because DSP Builder registers its own type with Simulink, this block is
required when the DSP Builder blocks are not intended to be synthesized. You can
also use this block to create an non-synthesizable output from a synthesizable system.

DSP Builder Handbook

You can optionally specify the external Simulink type. If set to Simulink Fixed Point
Type, the bit width is the same as the DSP Builder input type. If set to Double, the
width may be truncated if the bit width is greater than 52.

Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 20: 10 & Bus Library

2017

Table 20-26 shows the Non-synthesizable Output block parameters.

Table 20-26. Non-synthesizable Output Block Parameters

Name Value Description
Inferred, Signed Integer,
Bus Type Unsigned Integer, Specifies the number format of the bus.

Signed Fractional,
Single Bit

[number of bits].[]

>= 0 (Parameterizable)

Specifies the number of bits to the left of the binary point, including the
sign bit. This parameter does not apply to single-bit buses.

[]-[number of bits]

>= 0 (Parameterizable)

Specifies the number of bits to the right of the binary point. This
parameter applies only to signed fractional buses.

External Type

Inferred,

Simulink Fixed Point Type,

Double

Specifies whether the external type is inferred from the Simulink block it
is connected to or explicitly set to either Simulink Fixed Point or Double
type. The default is Inferred.

Table 20-27 shows the Non-synthesizable Output block I/O formats.

Table 20-27. Non-synthesizable Output Block I/0 Formats (7

V0 | Simulink @, (9 VHDL Type
L Ry [1: out STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit - Optional
0 | O1yLpy (e 01: out STD_LOGIC_VECTOR({LP + RP - 1} DOWNTO 0) Explicit

Notes to Tahle 20-29:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(8) Mpyy.ry is aninput port. 01y gy is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Output

The output block defines the output boundary of a hardware system and casts signed
binary fractional format (from DSP Builder blocks) to floating-point Simulink signals
(feeding generic Simulink blocks).

Output blocks map to output ports in VHDL and mark the edge of the generated
system. You normally connect these blocks to Simulink simulation blocks in your
testbench. Their outputs should not be connected to other Altera blocks.

You can optionally specify the external Simulink type. If set to Simulink Fixed Point
Type, the bit width is the same as the input. If set to Double, the width may be
truncated if the bit width is greater than 52.

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

20-18

Chapter 20: 10 & Bus Library

Table 20-28 shows the Output block parameters.

Table 20-28. Output Block Parameters

Name Value Description
Inferred, Signed Integer,
Bus Type Unsigned Integer, The number format of the bus.

Signed Fractional,
Single Bit

[number of bits].[]

>= 0 (Parameterizable)

Specifies the number of bits to the left of the binary point, including the
sign bit. This parameter does not apply to single-bit buses.

[].[number of bits]

>= 0 (Parameterizable)

Specifies the number of bits to the right of the binary point. This
parameter applies only to signed fractional buses.

External Type

Inferred,

Simulink Fixed Point Type,

Double

Specifies whether the external type is inferred from the Simulink block it
is connected to or explicitly set to either Simulink Fixed Point or Double
type. The default is Inferred.

Table 20-29 shows the Output block I/O formats.

Table 20-29. Output Block I/0 Formats ("

V0 | Simulink @, (9 VHDL Type
L Ry [1: out STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit - Optional
0 | O1yLpy (e 01: out STD_LOGIC_VECTOR({LP + RP - 1} DOWNTO 0) Explicit

Notes to Tahle 20-29:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(8) Mpuy.ry is aninput port. 01y gy is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath
bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

DSP Builder Handbook

The Round block rounds the input to the closest possible representation in the
specified output bus format. If the nearest two possibilities are equidistant, you can
specify from the available rounding modes:

m Truncate: Remove discarded bits without changing the other bits; effectively,
specify the lower value. This is the simplest and fastest mode to implement in

hardware.

® Round Towards Zero: Specify the value closer to zero.

B Round Away From Zero: Specify the value further from zero (round downwards
for negative values, upwards for positive values). This was the rounding behavior
in DSP Builder version 7.0 and before. When using this mode —the maximum
positive value overflows the available representation. For example, when
rounding from an 8-bit signed input to a 6-bit signed output, 01111111 (127)
becomes 100000 (-32). If you use this mode, it is best to use saturation logic to
prevent this from happening.

m Round To Plus Infinity: Specify the higher value.

Volume 2: DSP Builder Standard Blockset

August 2016 Altera Corporation

Chapter 20: 10 & Bus Library 20-19

m Convergent Rounding: Specify the even value. For a large sample of random
input values there is no bias —on average the same number of values round
upwards as downwards.

I'=" When using Simulink fixed-point types, MATLAB supports the following rounding
options: Zero, Nearest (equivalent to Round Away From Zero), Ceiling, Floor
(equivalent to Truncate), and Simplest. The MATLAB Zero and Ceiling modes round
all intermediate values up or down and have no DSP Builder equivalent. This is
because the DSP Builder modes (except Truncate) always specify the nearest
representable value and the rounding mode applies only to values that are equidistant
from two representable values. For example, 0.9 rounds to 1 (for all modes except
Truncate) but the MATLAB Zero mode rounds 0.9 to 0. Similarly 0.1 rounds to 0 but
the MATLAB Ceiling mode rounds 0.1 to 1.

Table 20-30 shows the Round block parameters.

Table 20-30. Round Block Parameters

Name Value Description

Signed Integer,
Bus Type Signed Fractional, The number format of the bus.
Unsigned Integer

Specifies the number of bits to the left of the binary point, including the
sign bit. This parameter does not apply to single-bit buses.

Specifies the number of bits to the right of the binary point. This
parameter applies only to signed fractional buses.

[number of bits].[] | >= 2 (Parameterizable)

[].[number of bits] | >= 0 (Parameterizable)

’l\:)ugebnig\(/)g LSBBits >= 0 (Parameterizable) | Specifies how many bits to remove.
Truncate,
Round Towards Zero,
Rounding Mode Round Away From Zero, | The rounding mode.
Round To Plus Infinity,
Convergent Rounding
Enable Pipeline On or Off Turn on if you want to pipeline the function.
Use Enable Port (7 | On or Off Turn on to use the clock enable input (ena).

Use Asynchronous
Clear Port (7

Note to Table 20-30:
(1) These ports are available only when you enable pipeline.

On or Off Turn on to use the asynchronous clear input (aclz).

Table 20-31 shows the Round block I/O formats.

Table 20-31. Round Block I/0 Formats (7/

I/0 Simulink 2,) VHDL Type 4
I |2[1] 12:in STD_LOGIC Explicit
|3[1] [3:in STD_LOGIC
August 2016 Altera Corporation DSP Builder Handbook

Volume 2: DSP Builder Standard Blockset

20-20

Chapter 20: 10 & Bus Library

Table 20-31. Round Block 1/0 Formats (7/

(1] Simulink @), ¢ VHDL Type

0 | Olyp[re| 01: out STD_LOGIC_VECTOR({LP + RP - 1} DOWNTO 0) Explicit

Notes to Table 20-31:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.

(3) NMpuy.ry is an input port. 01y gy is an output port.

(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 20-12 shows a design example with the Round block.

Figure 20-12. Round Block Example

2 bit Signed Found Up G bit Signed
01000111 010010
o | 02
Output
Constant Found FpL Display
2 bit Signed RDUHU DDWH G bit Signed
01000111 040004
7
Output1
Constant1 Roundq utpu Display

The Saturate block limits output to a maximum value. If the output is greater than
the maximum positive or negative value to be represented, the output is forced (or
saturated) to the maximum positive or negative value, respectively. Alternatively, you
can truncate the MSB.

Table 20-32 shows the Saturate block parameters.

Table 20-32. Saturate Block Parameters
Name Value Description
Signed Integer,
Input Bus Type Signed Fractional, The number format of the bus.

Unsigned Integer

[number of bits].[]

Specifies the number of bits to the left of the binary point, including the

>= 2 (Parameterizable) sign bit. This parameter does not apply to single-bit buses.

[].[number of bits]

Specifies the number of bits to the right of the binary point. This

>= 0 (Parameterizable) parameter applies only to signed fractional buses.

Number of MSB Bits to
Remove

>= 0 (Parameterizable) | Specifies how many bits to remove.

Saturation Type

Saturate,
Truncate MSB,
Enter Saturation Limits

Saturate, truncate, or specify the saturation limits for the output.

DSP Builder Handbook

August 2016 Altera Corporation

Volume 2: DSP Builder Standard Blockset

Chapter 20: 10 & Bus Library

20-21

Table 20-32. Saturate Block Parameters

Name Value Description

. ... | Integer Specifies the upper saturation limit when Saturation Type is set to Enter
Upper Saturation Limit (Parameterizable) Saturation Limits.

. .. | Integer Specifies the lower saturation limit when Saturation Type is set to Enter
Lower Saturation Limit . U

(Parameterizable) Saturation Limits.

Enable Pipeline On or Off Turn on if you want to pipeline the function.
Use Saturation . .
Occurred Port On or Off Turn on to use the saturation occurred input (sat_flag).
Use Enable Port (/| On or Off Turn on to use the clock enable input (ena).
Use Asynchronous .
Clear Port () On or Off Turn on to use the asynchronous clear input (aclr).

Note to Table 20-30:

(1) These ports are available only when you enable pipeline.

Table 20-33 shows the Saturate block I/O formats.

Table 20-33. Saturate Block 1/0 Formats (7

/o Simulink), () VHDL Type
124 [2:in STD_LOGIC .

I) Explicit
1311 13:in STD_LOGIC
I4[1] 14:in STD_LOGIC

Notes to Table 20-33:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(8) MRy is an input port. 01y gy is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 20-13 shows a design example with the Saturate block.

Figure 20-13. Saturate Block Example

& bit Signed
04000444

Constant

2 bit Signed
01000111

Constantd

CRES]

Saturate

50— E |

Saturate

c0—»L om0 |

G bit Signed
a10010

Display

Output
Truncate

6 bit Signed
011111

Dizplay

Cutputd
Saturate g

August 2016 Altera Corporation

DSP Builder Handbook
Volume 2: DSP Builder Standard Blockset

20-22 Chapter 20: 10 & Bus Library

VCC

The vce block outputs a single-bit constant 1.
Table 20-34 shows the vCC block parameters.

Tabhle 20-34. VCC Block Parameters
Name Value Description
Specify Clock On or Off Turn on to explicitly specify the clock name.

User defined
(Parameterizable)

Clock Specifies the name of the required clock signal.

Table 20-35 shows the vce block I/0 formats.

Table 20-35. VCC Block I/0 Formats 7/

/0 Simulink 2, (¢ VHDL Type
0 |01y 01: out STD_LOGIC Explicit

Notes to Table 20-35:
(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.

(2) [L]isthe number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned
integers R = 0, that is, [L