imall

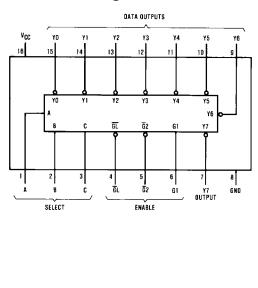
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

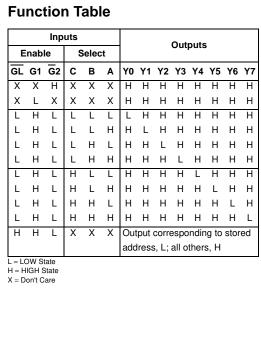
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China




. L

Ordering Code:

Order Number	Package Number	Package Description
DM74ALS137M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
DM74ALS137N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Devices also available	in Tape and Reel. Specify	by appending the suffix letter "X" to the ordering code.

Connection Diagram

www.fairchildsemi.com

FAIRCHILD

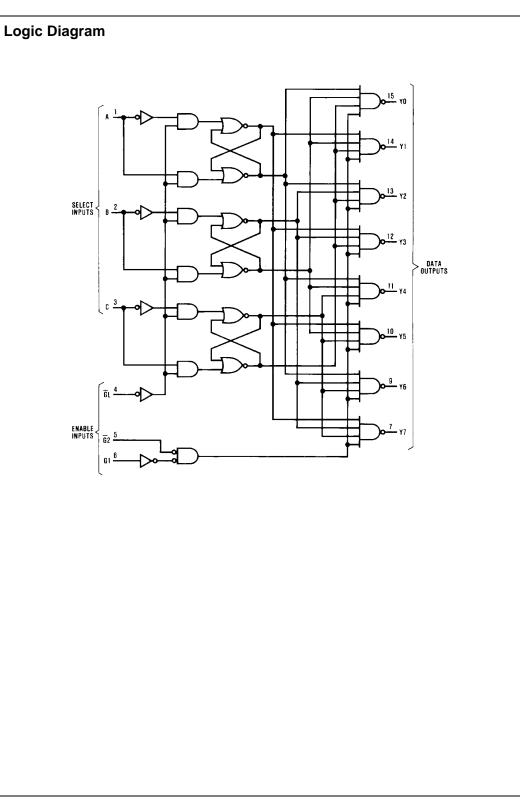
SEMICONDUCTOR

DM74ALS137 3 to 8 Line Decoder/Demultiplexer with Address Latches

General Description

The ALS137 is a three line to eight line decoder/demultiplexer with latches on the three address inputs. When the latch-enable input (\overline{GL}) is LOW, the ALS137 acts as a decoder/demultiplexer. When \overline{GL} goes from LOW-to-HIGH, the address present at the select inputs (A, B, and C) is stored in the latches. Further address changes are ignored as long as \overline{GL} remains HIGH. The output enable controls, G1 and G2, control the state of the outputs independently of the select or latch-enable inputs. All of the outputs are HIGH unless G1 is HIGH and $\overline{G2}$ is LOW. The ALS137 is ideally suited for implementing glitch-free decoders in strobed (stored-address) applications in bus-oriented systems.

Features


- Combines decoder and 3-bit address latch
- Incorporates 3 enable inputs to simplify cascading
- Low power dissipation: 28 mW typ
- \blacksquare Switching specifications guaranteed over full temperature and V_{CC} range

February 1991

Revised February 2000

Advanced oxide-isolated, ion-implanted Schottky TTL process

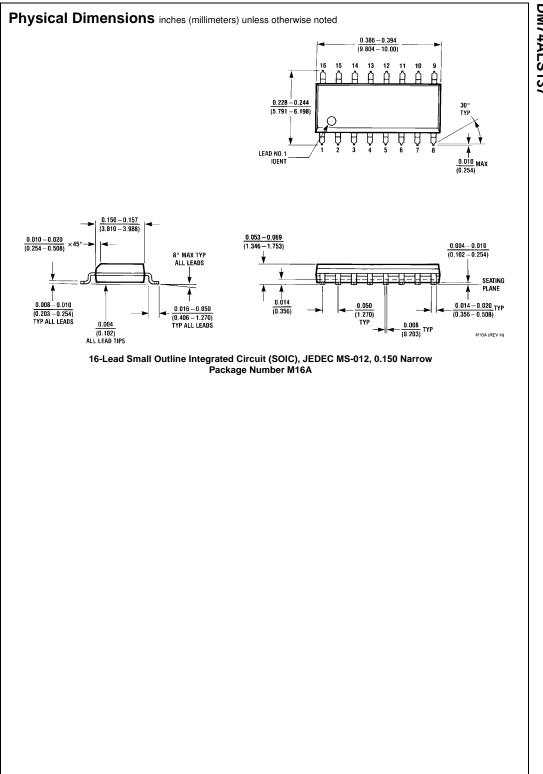
Absolute Maximum Ratings(Note 1)

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	0°C to +70°C
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$
Typical θ _{JA}	
N Package	75.5°C/W
M Package	104.0°C/W

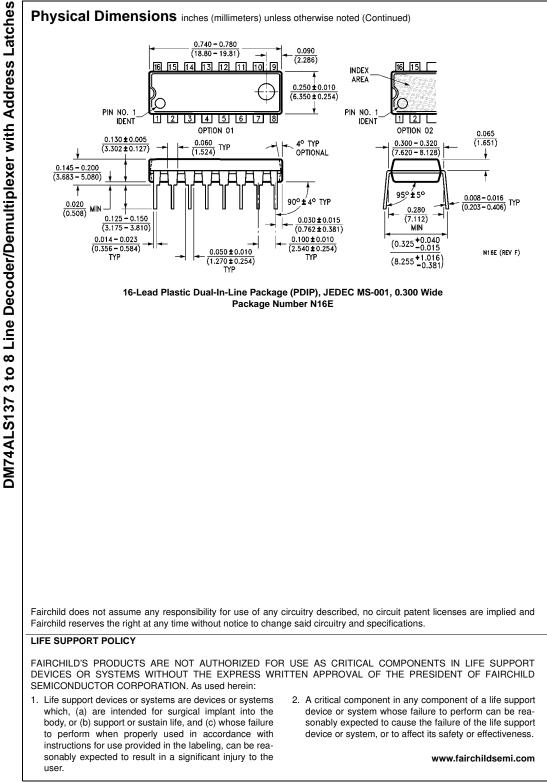
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		Min	Nom	Max	Units	
V _{CC}	Supply Voltage		4.5	5	5.5	V	
V _{IH}	HIGH Level Input Voltage		2			V	
V _{IL}	LOW Level Input Voltage				0.8	V	
I _{ОН}	HIGH Level Output Current				-0.4	mA	
OL	LOW Level Output Current				8	mA	
tw	Width of Enabling Pulse	GL LOW	10			ns	
su	Setup Time (Note 2)	A, B, C	10↑			ns	
н	Hold Time (Note 2)	A, B, C	5↑			ns	
T _A	Free Air Operating Temperature	•	0		70	°C	


Note 2: The arrow (\uparrow) indicates the positive edge of the \overline{GL} input pulse is used for reference.

Electrical Characteristics


over recommended operating free air temperature range. All typical values are measured at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Symbol	Parameter	Condition	$\label{eq:VCC} \begin{array}{c} \mbox{Conditions} \\ \mbox{V}_{CC} = 4.5 \mbox{V}, \mbox{I}_{I} = -18 \mbox{ mA} \end{array}$		Тур	Max	Units
V _{IK}	Input Clamp Voltage	$V_{CC} = 4.5V, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -0.4 \text{ mA}$ $V_{CC} = 4.5 \text{V}$ to 5.5 V	011				V
V _{OL}	LOW Level	$V_{CC} = 4.5V$	$I_{OL} = 4 \text{ mA}$		0.25	0.4	V
	Output Voltage		$I_{OL} = 8 \text{ mA}$		0.35	0.5	V
1	Input Current @ Maximum	$V_{CC} = 5.5V$	Enable			0.1	mA
	Input Voltage	$V_{IH} = 7V$	A, B, C			0.1	- ma
IIH	HIGH Level	$V_{CC} = 5.5V$	Enable			20	μA
	Input Current	$V_{IH} = 2.7V$	A, B, C			20	μА
IIL	LOW Level	$V_{CC} = 5.5V$	Enable			-0.1	mA
	Input Current	$V_{IL} = 0.4V$	A, B, C			-0.1	- ma
0	Output Drive Current	$V_{CC} = 5.5V, V_{O} = 2.25V$	•	-30		-112	mA
I _{CC}	Supply Current	$V_{CC} = 5.5V$			5	11	mA

Symbol	Parameter	Conditions	From (Input) To (Output)	Min	Max	Unit
t _{PLH}	Propagation Delay Time	$V_{CC} = 4.5V$ to 5.5V	A, B, C	5	20	ns
	LOW-to-HIGH Level Output	$R_L = 500\Omega$	to Y	5		
t _{PHL}	Propagation Delay Time	$C_L = 50 \text{ pF}$	A, B, C	6	20	ns
	HIGH-to-LOW Level Output		to Y	0		
t _{PLH}	Propagation Delay Time		G2		10	
	LOW-to-HIGH Level Output		to Y	4	12	ns
t _{PHL}	Propagation Delay Time		G2	_		
	HIGH-to-LOW Level Output		to Y	5	15	ns
t _{PLH}	Propagation Delay Time		G1	F	17	
	LOW-to-HIGH Level Output		to Y	5	17	ns
t _{PHL}	Propagation Delay Time	7	G1	5	15	
	HIGH-to-LOW Level Output		to Y	5	15	ns
t _{PLH}	Propagation Delay Time		GL	7	00	<i>w</i> -
	LOW-to-HIGH Level Output		to Y	7	22	ns
t _{PHL}	Propagation Delay Time	7	GL	_		
	HIGH-to-LOW Level Output		to Y	7	20	ns

DM74ALS137

