Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China N-Channel Enhancement Mode Low Q_g and R_g High dv/dt Nanosecond Switching Ideal for Class C, D, & E Applications | Symbol | mbol Test Conditions Max | | imum Ratings | | | |-----------------------------|--|------|--------------|--|--| | V _{DSS} | T _J = 25°C to 150°C | 100 | V | | | | \mathbf{V}_{DGR} | T_J = 25°C to 150°C; R_{GS} = 1 $M\Omega$ | 100 | V | | | | V _{GS} | Continuous | ±20 | V | | | | V_{GSM} | Transient | ±30 | V | | | | I _{D25} | T _c = 25°C | 9.0 | Α | | | | I _{DM} | T_c = 25°C, pulse width limited by T_{JM} | 54 | Α | | | | I _{AR} | T _c = 25°C | 14 | Α | | | | E _{AR} | T _c = 25°C | 7.5 | mJ | | | | dv/dt | $\begin{split} &I_{S} \leq I_{DM}, \ di/dt \leq \widetilde{} 100 \text{AV} \mu \text{s}, \ V_{DD} \leq V_{DSS}, \\ &T_{j} \leq 150 ^{\circ}\text{C}, \ R_{G} = 0.2 \Omega \end{split}$ | 5.5 | V/ns | | | | | I _S = 0 | >200 | V/ns | | | | P _{DC} | | 200 | W | | | | \mathbf{P}_{DHS} | T_c = 25°C
Derate 4.4W/°C above 25°C | 80 | W | | | | \mathbf{P}_{DAMB} | $T_c = 25^{\circ}C$ | 3.5 | W | | | | R _{thJC} | | 0.74 | C/W | | | | $\mathbf{R}_{\text{thJHS}}$ | | 1.50 | C/W | | | | | | | | | | | Symbol | Test Conditions | Characteristic Values | | | | |--|--|-----------------------|------|-----------|--------------------------| | T _J = 25°C unless otherwise specified | | min. | typ. | max. | | | V _{DSS} | V_{GS} = 0 V, I_D = 3 ma | 100 | | | V | | $V_{GS(th)}$ | $V_{DS} = V_{GS}$, $I_D = 4$ ma | 2 | 2.8 | | V | | I_{GSS} | $V_{GS} = \pm 20 \ V_{DC}, \ V_{DS} = 0$ | | | ±100 | nA | | I _{DSS} | $V_{DS} = 0.8 V_{DSS} T_J = 25^{\circ}C$
$V_{GS} = 0$ $T_J = 125^{\circ}C$ | | | 25
250 | μ Α
μ Α | | R _{DS(on)} | V_{GS} = 15 V, I_D = 0.5 I_{D25}
Pulse test, t \leq 300 μ S, duty cycle d | ≤ 2% | | 0.16 | Ω | | g fs | V_{DS} = 15 V, I_{D} = 0.5 I_{D25} , pulse test | 2.5 | 3.0 | | S | | T _J | | -55 | | +175 | °C | | T _{JM} | | | 175 | | °C | | T _{stg} | | -55 | | +175 | °C | | T _L | 1.6mm(0.063 in) from case for 10 s | i | 300 | | °C | | Weight | | | 2 | | g | | | | | | | | V_{DSS} = 100 V $I_{D25} = 9.0 A$ $R_{DS(on)} \leq 0.16 \Omega$ P_{DC} = 200 W ### **Features** - Isolated Substrate - high isolation voltage (>2500V) - excellent thermal transfer - Increased temperature and power cycling capability - IXYS advanced low Q_g process - Low gate charge and capacitances - easier to drive - faster switching - Low R_{DS(on)} - Very low insertion inductance (<2nH) - No beryllium oxide (BeO) or other hazardous materials #### **Advantages** - Optimized for RF and high speed switching at frequencies to >100MHz - Easy to mount—no insulators needed - High power density # DE150-101N09A RF Power MOSFET | Symbol | Test Conditions | Characteristic Values | | | | | |--|--|-----------------------|------|------|----|--| | (T _J = 25°C unless otherwise specified) | | min. | typ. | max. | .• | | | R_{G} | | | | 5 | Ω | | | C _{iss} | | | 700 | | pF | | | C _{oss} | $V_{GS} = 0 \text{ V}, V_{DS} = 0.8 \text{ V}_{DSS(max)},$
f = 1 MHz | | 200 | | pF | | | \mathbf{C}_{rss} | | | 30 | | pF | | | C _{stray} | Back Metal to any Pin | | 16 | | pF | | | T _{d(on)} | | | 4 | | ns | | | T_{on} | $V_{GS} = 15 \text{ V}, V_{DS} = 0.8 \text{ V}_{DSS}$ $I_{D} = 0.5 I_{DM}$ | | 4 | | ns | | | $\mathbf{T}_{d(off)}$ | $R_G = 0.3 I_{DM}$
R _G = 0.2 Ω (External) | | 4 | | ns | | | \mathbf{T}_{off} | | | 4 | | ns | | | Q _{g(on)} | | | 22 | | nC | | | \mathbf{Q}_{gs} | V_{GS} = 10 V, V_{DS} = 0.5 V_{DSS} I_D = 0.5 I_{D25} , I_S = 3 ma | | 3.4 | | nC | | | \mathbf{Q}_{gd} | | | 9.1 | | nC | | ## **Source-Drain Diode** (T_J = 25°C unless otherwise specified) ## **Characteristic Values** | Symbol | Test Conditions | min. | typ. | max. | | |------------------------|--|------|------|------|----| | Is | V _{GS} = 0 V | | | 9.0 | Α | | I _{SM} | Repetitive; pulse width limited by $T_{\mbox{\tiny JM}}$ | | | 54 | Α | | V _{SD} | I_F = I_S , V_{GS} = 0 V,
Pulse test, t ≤ 300 μs, duty cycle ≤ 2% | | | 1.5 | V | | T _{rr} | | | 300 | | ns | CAUTION: Operation at or above the Maximum Ratings values may impact device reliability or cause permanent damage to the device. Information in this document is believed to be accurate and reliable. IXYSRF reserves the right to make changes to information published in this document at any time and without notice. For detailed device mounting and installation instructions, see the "Device Installation & Mounting Instructions" technical note on the IXYSRF web site at; http://www.ixysrf.com/pdf/switch_mode/appnotes/7de_series_mosfet_installation_instructions.pdf IXYS RF reserves the right to change limits, test conditions and dimensions. IXYS RF MOSFETS are covered by one or more of the following U.S. patents: | 4,835,592 | 4,860,072 | 4,881,106 | 4,891,686 | 4,931,844 | 5,017,508 | |-----------|-----------|-----------|-----------|-----------|-----------| | 5,034,796 | 5,049,961 | 5,063,307 | 5,187,117 | 5,237,481 | 5,486,715 | | 5,381,025 | 5,640,045 | | | | | # DE150-101N09A RF Power MOSFET Fig. 1 Typical Transfer Characteristics $V_{DS} = 30V \text{ PW} = 20 \mu \text{S}$ Fig. 2 Typical Output Characteristics Fig. 3 Gate Charge vs. Gate-to-Source Voltage Fig. 4 Extended Typical Output Characteristics Fig. 5 Fig. 6 Package Drawing #### 101N09A DE-SERIES SPICE Model The DE-SERIES SPICE Model is illustrated in Figure 7. The model is an expansion of the SPICE level 3 MOSFET model. It includes the stray inductive terms L_G , L_S and L_D . Rd is the $R_{DS(ON)}$ of the device, Rds is the resistive leakage term. The output capacitance, C_{OSS} , and reverse transfer capacitance, C_{RSS} are modeled with reversed biased diodes. This provides a varactor type response necessary for a high power device model. The turn on delay and the turn off delay are adjusted via Ron and Roff. Figure 7 DE-SERIES SPICE Model This SPICE model may be downloaded as a text file from the IXYSRF web site at http://www.ixysrf.com/products/switch mode.html http://www.ixysrf.com/spice/de150-101n09a.html #### Net List: *SYM=POWMOSN .SUBCKT 101N09A 10 20 30 - * TERMINALS: D G S - * 100 Volt 9 Amp .16 ohm N-Channel Power MOSFET 10-30-2001 M1 12 3 3 DMOS L=1U W=1U RON 561.5 DON 62 D1 ROF 57.2 DOF 27 D1 D1CRS 2 8 D2 D2CRS 1 8 D2 CGS 23 .7N RD 41.16 DCOS 3 1 D3 RDS 1 3 5.0MEG LS 330.1N LD 104 1N LG 20 5 1N .MODEL DMOS NMOS (LEVEL=3 VTO=3.0 KP=9.0) .MODEL D1 D (IS=.5F CJO=1P BV=100 M=.5 VJ=.6 TT=1N) .MODEL D2 D (IS=.5F CJO=1100P BV=100 M=.5 VJ=.6 TT=1N RS=10M) .MODEL D3 D (IS=.5F CJO=300P BV=100 M=.3 VJ=.4 TT=400N RS=10M) .ENDS Doc #9200-0242 Rev 5 © 2009 IXYS RF An IXYS Company 2401 Research Blvd., Suite 108 Fort Collins, CO USA 80526 970-493-1901 Fax: 970-493-1903 Email: sales@ixyscolorado.com Web: http://www.ixyscolorado.com