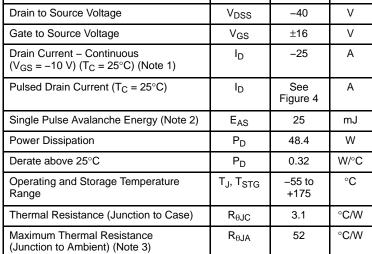
Advance Information P-Channel Logic Level PowerTrench[®] MOSFET

–40 V, –25 A, 21 m Ω


Features

- Typ $r_{DS(on)} = 17 \text{ m}\Omega$ at $V_{GS} = -10 \text{ V}$; $I_D = -25 \text{ A}$
- Typ $Q_{g(tot)} = 17 \text{ nC}$ at $V_{GS} = -10 \text{ V}$; $I_D = -25 \text{ A}$
- UIS Capability
- Qualified to AEC Q101
- These Devices are Pb–Free and are RoHS Compliant **Applications**
- Automotive Engine Control
- Powertrain Management
- Solenoid and Motor Drivers
- Electrical Power Steering
- Integrated Starter/Alternator
- Distributed Power Architectures and VRM
- Primary Switch for 12 V Systems

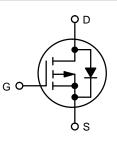
Rating

10 V;	$I_{\rm D} = -25 {\rm A}$	L		
l are l	RoHS Com	pliant		
es and	VRM			
ms				
iS (T _J	= 25°C unles Symbol	ss otherwise Value	noted) Unit]
	V _{DSS}	-40	V	
	V _{GS}	±16	V	See detailed

ABSOLUTE MAXIMUM RATINGS (T_{.1} = 25°C unless otherwise noted)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Current is limited by wirebond configuration
- 2. Starting Tj = 25°C, L = 0.08 mH, I_{AS} = -25 A, V_{DD} = -40 V during inductor charging and V_{DD} = 0 V during time in avalanche
- 3. R_{0JA} is the sum of the junction–to–case and case–to–ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design while R_{0JA} is determined by the user's board design. The maximum rating presented here is based on mounting on a 1 in² pad of 2 oz copper.


This document contains information on a new product. Specifications and information herein are subject to change without notice.

ON Semiconductor®

www.onsemi.com

ORDERING INFORMATION

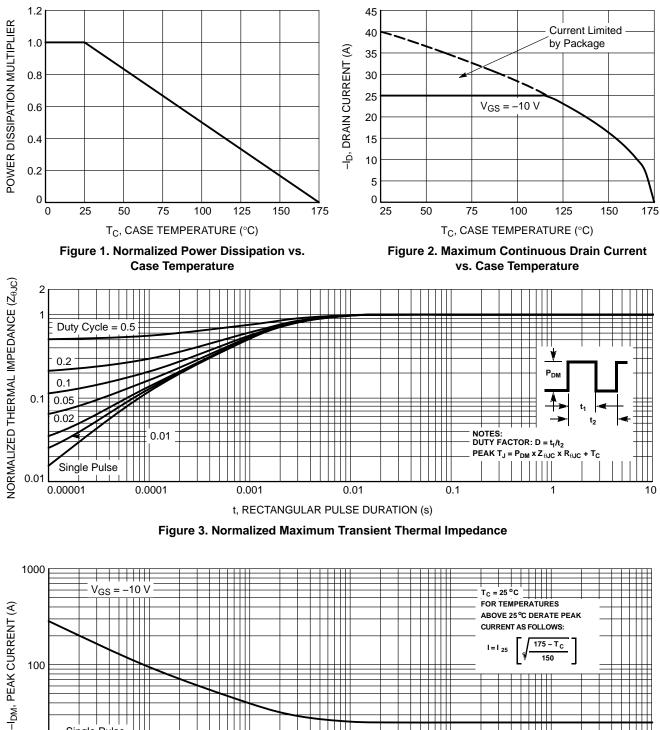
See detailed ordering and shipping information on page 2 of this data sheet.

PACKAGE MARKING AND ORDERING INFORMATION

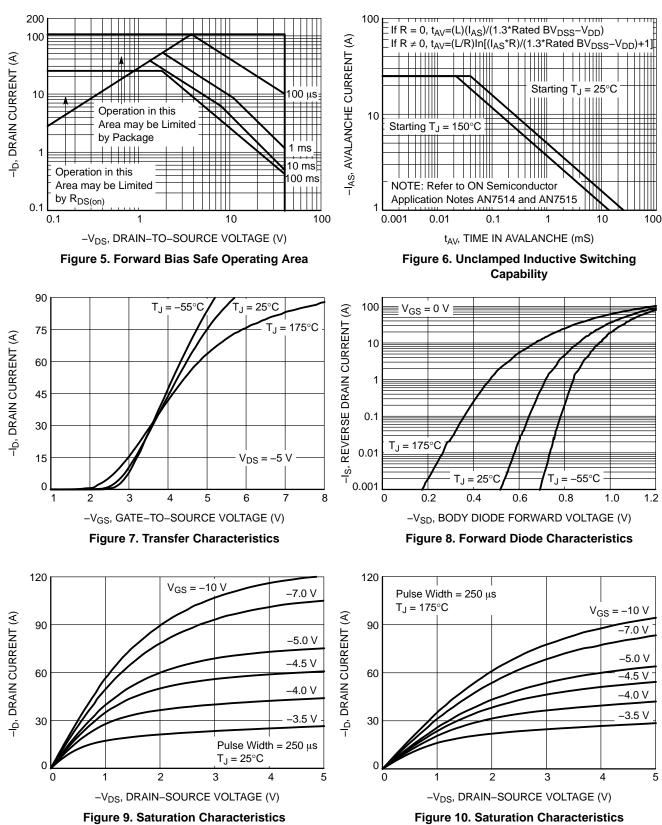
Device	Device Marking	Package	Reel Size	Tape Width	Quantity
FDD9511L-F085	FDD9511L	D-PAK (TO-252)	13″	12 mm	2500 Units

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

I _{DSS} Drain I _{GSS} Gate CHARACTERISTI V _{GS(th)} Gate R _{DS(on)} Drain	in to Source Breakdown Voltage in to Source Leakage Current e to Source Leakage Current	$V_{GS} = 0 V, I_D =$ $V_{DS} = -40 V,$ $V_{GS} = 0 V$ $V_{GS} = \pm 16 V$ $V_{GS} = V_{DS}, I_D =$ $V_{CS} = -4.5 V, I_T$	T _J = 25°C T _J = 175°C (Note 4)	40 - - -	- - -	- -1 -1 ±100	V µA mA nA
I _{DSS} Drain	e to Source Leakage Current ICS e to Source Threshold Voltage	$V_{DS} = -40 V,$ $V_{GS} = 0 V$ $V_{GS} = \pm 16 V$ $V_{GS} = V_{DS}, I_{D} =$	T _J = 25°C T _J = 175°C (Note 4)		-	-1 -1	μA mA
I _{GSS} Gate CHARACTERISTI V _{GS(th)} Gate R _{DS(on)} Drain	e to Source Leakage Current ICS e to Source Threshold Voltage	$V_{GS}^{CS} = 0 V$ $V_{GS} = \pm 16 V$ $V_{GS} = V_{DS}, I_{D} =$	$T_{J} = 175^{\circ}C \text{ (Note 4)}$	-	-	-1	mA
CHARACTERISTI V _{GS(th)} Gate R _{DS(on)} Drain	ICS e to Source Threshold Voltage	V _{GS} = ±16 V V _{GS} = V _{DS} , I _D =		-	_		
CHARACTERISTI V _{GS(th)} Gate R _{DS(on)} Drain	ICS e to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D =$	= 250 μA		-	±100	nA
V _{GS(th)} Gate R _{DS(on)} Drain	e to Source Threshold Voltage		= 250 μA	1			
R _{DS(on)} Drain	ç		= 250 μA	1			
55(01)	in to Source On–Resistance	$V_{GS} = -4.5$ V. Ir		-1	-1.8	-3	V
		V_{GS} = -4.5 V, I _D = -12.5 A, T _J = 25°C		-	24	32	mΩ
		$V_{GS} = -10 V,$ $I_D = -25 A$	$T_J = 25^{\circ}C$	-	17	21	mΩ
NAMIC CHARACT			T _J = 175°C (Note 4)	-	28	36	mΩ
	TERISTICS						
C _{iss} Inpu	ut Capacitance	V _{DS} = –20 V, V _{GS} = 0 V, f = 100 KHz		-	1200	-	pF
C _{oss} Outp	put Capacitance			-	480	-	pF
C _{rss} Reve	erse Transfer Capacitance			-	27	-	pF
R _g Gate	e Resistance	V_{GS} = -0.5 V, f = 1 MHz		-	38	-	Ω
Q _{g(tot)} Total	al Gate Charge	$V_{DD} = -20 V,$	$V_{GS} = 0 V \text{ to } -10 V$	-	17	23	nC
Q _{g(-4.5)} Total	al Gate Charge	I _D = -25 A	V_{GS} = 0 V to -4.5 V	-	8	-	nC
Q _{g(th)} Thre	eshold Gate Charge		$V_{GS} = 0 V \text{ to } -1 V$	-	1	-	nC
Q _{gs} Gate	e to Source Gate Charge	$V_{DD} = -20 \text{ V}, I_D = -25 \text{ A}$		-	4	-	nC
Q _{gd} Gate	e to Drain "Miller" Charge			-	2.5	-	nC

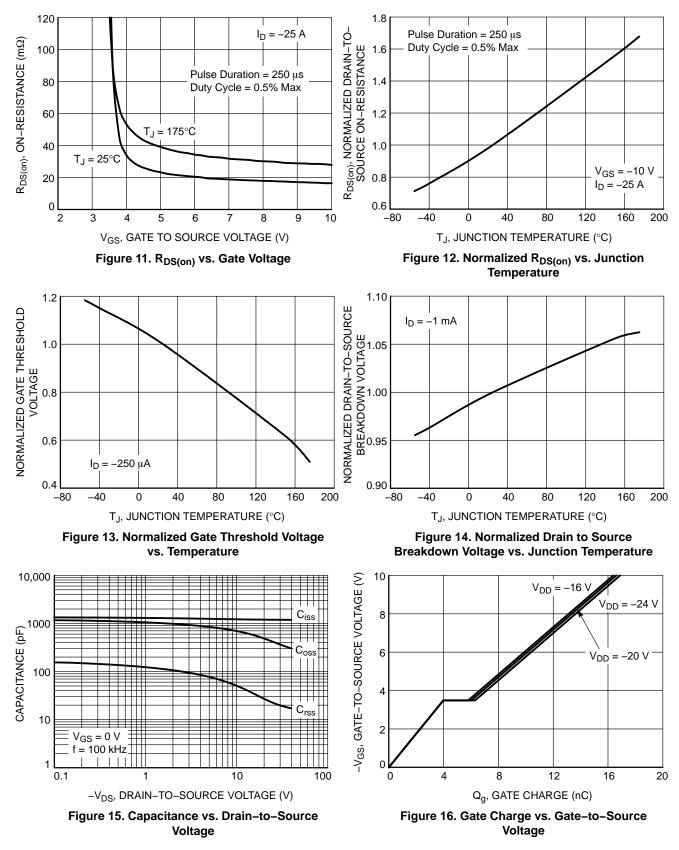

t _{on}	Turn-On Time	V_{DD} = -20 V, I _D = -25 A, V _{GS} = -10 V, R _{GEN} = 6 Ω	-	-	45	ns
t _{d(on)}	Turn-On Delay Time	$V_{GS} = -10$ V, $R_{GEN} = 0.52$	-	7	1	ns
tr	Turn-On Rise Time		-	24	-	ns
t _{d(off)}	Turn-Off Delay Time		-	120	-	ns
t _f	Turn-Off Fall Time		-	40	-	ns
t _{off}	Turn-Off Time		-	-	235	ns

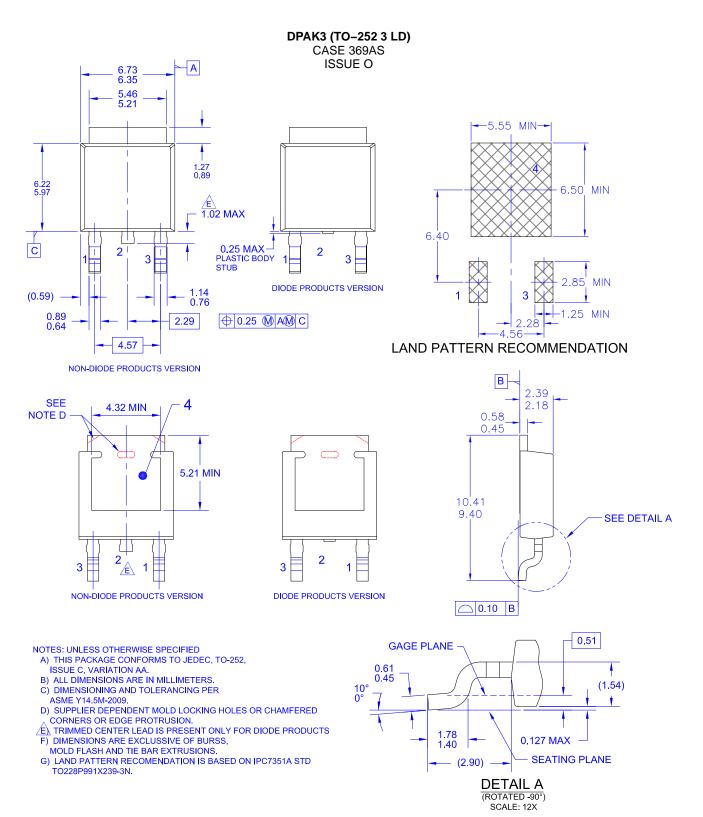
DRAIN-SOURCE DIODE CHARACTERISTICS


V _{SD}	Source to Drain Diode Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{SD} = -25 \text{ A}$	-	-0.95	-1.25	V
		$V_{GS} = 0 \text{ V}, \text{ I}_{SD} = -12.5 \text{ A}$	-	-0.9	-1.2	V
Trr	Reverse Recovery Time	$I_F = -25 \text{ A}, \text{ dI}_{SD}/\text{dt} = 100 \text{ A}/\mu\text{s}$	-	36	54	ns
Q _{rr}	Reverse Recovery Charge		-	22	33	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. The maximum value is specified by design at $T_J = 175^{\circ}$ C. Product is not tested to this condition in production

TYPICAL CHARACTERISTICS





TYPICAL CHARACTERISTICS

PACKAGE DIMENSIONS

www.onsemi.com

POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all aws, regulations and safety requirements or standards, regardless of any support or applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application. Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and

Phone: 421 33 790 2910

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative