

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

20V P-Channel MOSFET

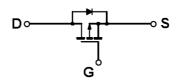
SOT-23

Pin Definition:

- 1. Gate
- 2. Source
- 3. Drain

PRODUCT SUMMARY

V _{DS} (V)	$R_{DS(on)}(m\Omega)$	I _D (A)
	39 @ V _{GS} = -4.5V	-4.7
-20	52 @ V _{GS} = -2.5V	-4.1
	68 @ V _{GS} = -1.8V	-2.0


Features

- Advance Trench Process Technology
- High Density Cell Design for Ultra Low On-resistance

Application

- Load Switch
- PA Switch

Block Diagram

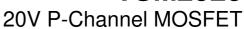
P-Channel MOSFET

Ordering Information

Part No.	Package	Packing
TSM2323CX RFG	SOT-23	3Kpcs / 7" Reel

Note: "G" denote for Green Product

Absolute Maximum Rating (Ta = 25°C unless otherwise noted)

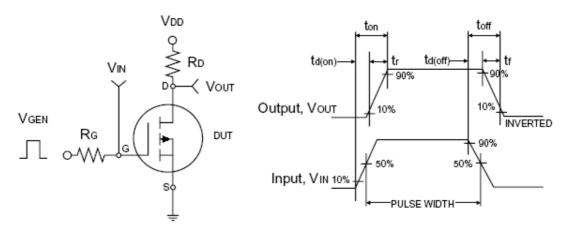

Parameter		Symbol Limit			
Drain-Source Voltage		V_{DS}	-20	V	
Gate-Source Voltage		V_{GS}	±8	V	
Continuous Drain Current, V _{GS} @ 4.5V.		I _D	-4.7	Α	
Pulsed Drain Current, V _{GS} @ 4.5V		I _{DM}		Α	
Continuous Source Current (Diode Cond	duction) ^{a,b}	Is	-1.0	Α	
M : B B: : ::	Ta = 25°C	В	1.25	W	
Maximum Power Dissipation	Ta = 70°C	P_{D}	0.8		
Operating Junction Temperature		T _J	+150	°C	
Operating Junction and Storage Temperature Range		T _J , T _{STG}	- 55 to +150	°C	

Thermal Performance

Parameter	Symbol	Limit	Unit
Junction to Case Thermal Resistance	R⊖ _{JC}	75	°C/W
Junction to Ambient Thermal Resistance (PCB mounted)	R⊖ _{JA}	120	°C/W

Notes:

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature



Electrical Specifications

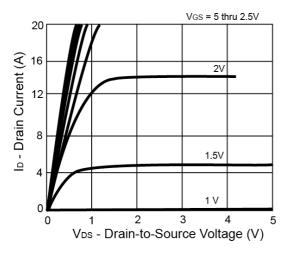
Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Static						
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = -250uA$	BV _{DSS}	-20			V
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250uA$	$V_{GS(TH)}$	-0.4		-1.0	V
Zero Gate Voltage Drain Current	$V_{DS} = -16V, V_{GS} = 0V$	I _{DSS}			-1.0	uA
Gate Body Leakage	$V_{GS} = \pm 8V$, $V_{DS} = 0V$	I _{GSS}			±100	nA
On-State Drain Current	V _{DS} ≤-5V, V _{GS} = -4.5V	I _{D(ON)}	-20			Α
	$V_{GS} = -4.5V, I_D = -4.7A$			31	39	
Drain-Source On-State Resistance	$V_{GS} = -2.5V, I_D = -4.1A$	R _{DS(ON)}		41	52	mΩ
	$V_{GS} = -1.8V, I_D = -2.0A$			54	68	
Forward Transconductance	$V_{DS} = -5V, I_{D} = -4.7A$	g _{fs}		16		S
Diode Forward Voltage	$I_S = -1.0A, V_{GS} = 0V$	V_{SD}		- 0.7	-1.2	V
Dynamic ^b						
Total Gate Charge	$V_{DS} = -10V$, $I_{D} = -4.7A$,	Q_g		12.5	19	
Gate-Source Charge	, , ,	Q_gs		1.7		nC
Gate-Drain Charge	$V_{GS} = -4.5V$ Q_{gd}		3.3			
Input Capacitance	$V_{DS} = -10V, V_{GS} = 0V,$ $f = 1.0MHz$	C _{iss}		1020		
Output Capacitance		C _{oss}		191		pF
Reverse Transfer Capacitance	T = T.OIVITIZ	C_{rss}		140		
Switching ^{b,C}						
Turn-On Delay Time	$V_{DD} = -10V, R_{L} = 10\Omega,$ $I_{D} = -1A, V_{GEN} = -4.5V,$ $R_{G} = 6\Omega$	t _{d(on)}		25	40	
Turn-On Rise Time		t _r		43	65	nC
Turn-Off Delay Time		$t_{d(off)}$		71	110	nS
Turn-Off Fall Time		t _f		48	75	

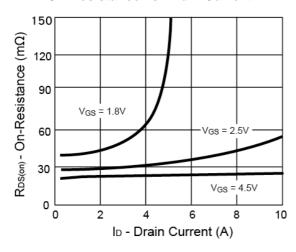
Notes:

- a. pulse test: PW $\leq 300\mu$ S, duty cycle $\leq 2\%$
- b. Guaranteed by design of component.
- c. Switching time is essentially independent of operating temperature.

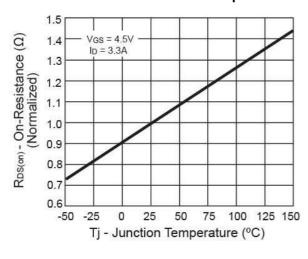
Switching Test Circuit

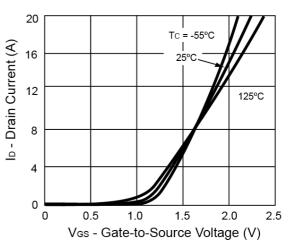
Switchin Waveforms

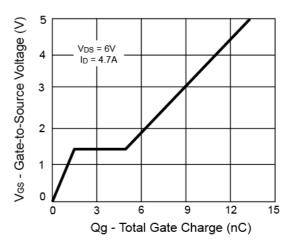


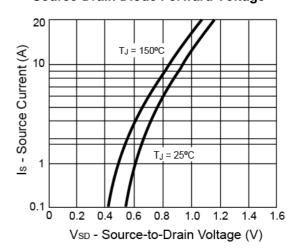


Electrical Characteristics Curve (Ta = 25°C, unless otherwise noted)


Output Characteristics

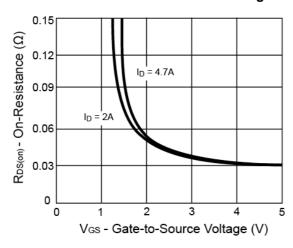

On-Resistance vs. Drain Current


On-Resistance vs. Junction Temperature

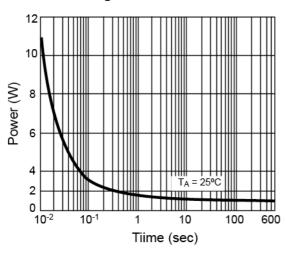

Transfer Characteristics

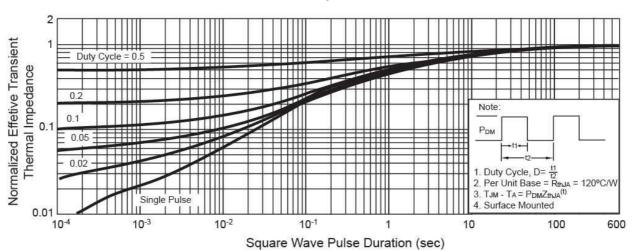
Gate Charge

Source-Drain Diode Forward Voltage

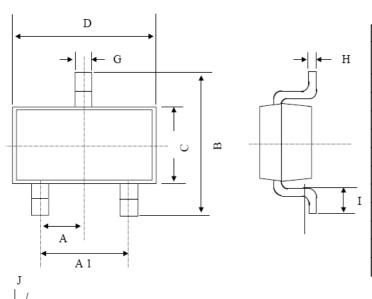


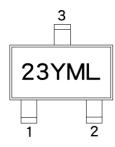
Electrical Characteristics Curve (Ta = 25°C, unless otherwise noted)


On-Resistance vs. Gate-Source Voltage


Threshold Voltage

Single Pulse Power


Normalized Thermal Transient Impedance, Junction-to-Ambient


SOT-23 Mechanical Drawing

 $\bigvee_{\blacktriangledown} F$

	00	T OO DIME	NOION			
	SOT-23 DIMENSION					
DIM	MILLIMETERS		INCHES			
וווט	MIN	MAX	MIN	MAX.		
Α	0.95	BSC	0.037	.037 BSC		
A1	1.9	BSC	0.074 BSC			
В	2.60	3.00	0.102	0.118		
С	1.40	1.70	0.055	0.067		
D	2.80	3.10	0.110	0.122		
Е	1.00	1.30	0.039	0.051		
F	0.00	0.10	0.000	0.004		
G	0.35	0.50	0.014	0.020		
Н	0.10	0.20	0.004	0.008		
I	0.30	0.60	0.012	0.024		
J	5º	10⁰	5º	10⁰		

Marking Diagram

23 = Device Code

Y = Year Code

M = Month Code for Halogen Free Product

O =Jan P =Feb Q =Mar R =Apr S =May T =Jun U =Jul V =Aug

W =Sep X =Oct Y =Nov Z =Dec

L = Lot Code

TSM2323 20V P-Channel MOSFET

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.