imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

AOW4S60/AOWF4S60 600V 4A α MOS[™] Power Transistor

General Description			Product Summary				
The AOW4S60 & AOWF4S60 have been fabricated using the advanced αMOS^{TM} high voltage process that is designed to deliver high levels of performance and robustness in switching applications. By providing low $R_{DS(on)}$, Q_g and E_{OSS} along with guaranteed avalanche capability these parts can be adopted quickly into new and existing offline power supply designs.			V _{DS} @ T _{j,max} 700V I _{DM} 16A R _{DS(ON),max} 0.9Ω				
			Q _{g.typ} E _{oss} @ 400V	6nС 1.5µJ			
			100% UIS Tested 100% R _g Tested	Green			
T0-262 T0-262F							
Top View	Bottom View	Top View	Bottom View		O D		
	G D S S D G	R	G D S S D G	0 G			
	ow4s60 Ratings T _A =25℃ unles		AOWF4S60				
Parameter							
Drain-Source Voltage		Symbol	AOW4S60	AOWF4S60	Units		
Gate-Source Voltage			AOW4S60 600		Units V		
Gate-Source Voltage		V _{DS}					
Gate-Source Voltage Continuous Drain	T _c =25℃	V _{DS} V _{GS}	600	4*	V		
Continuous Drain Current	T _C =100℃	V _{DS}	600 ±30	; ; ;	V		
Continuous Drain Current Pulsed Drain Current	T _C =100℃	V _{DS} V _{GS} 	600 ±30 4 3.7 16	4* 3.7*	V V A		
Continuous Drain Current Pulsed Drain Current	T _C =100℃	V _{DS} V _{GS} 	600 ±30 4 3.7 16 1.6	4* 3.7*	V V A A		
Continuous Drain Current Pulsed Drain Current Avalanche Current ^C Repetitive avalanche	T _C =100 [°] C	V _{DS} V _{GS} 	600 ±30 4 3.7 16 1.6 38	4* 3.7*	V V A A mJ		
Continuous Drain Current Pulsed Drain Current	T _C =100 [°] C energy ^C he energy ^G	V _{DS} V _{GS} 	600 ±30 4 3.7 16 1.6 38 77	4* 3.7*	V V A M MJ mJ		
Continuous Drain Current Pulsed Drain Current Avalanche Current ^C Repetitive avalanche Single pulsed avalanc	$T_{c}=100^{\circ}C$ energy ^C he energy ^G $T_{c}=25^{\circ}C$	V _{DS} V _{GS} 	600 ±30 4 3.7 16 1.6 38 77 83	4* 3.7* 25	V V A M M J M J W		
Continuous Drain Current Pulsed Drain Current Avalanche Current ^C Repetitive avalanche o Single pulsed avalanc Power Dissipation ^B	$T_{c}=100^{\circ}C$ energy ^C he energy ^G $T_{c}=25^{\circ}C$ Derate above 25°C	V _{DS} V _{GS} I _D I _{AR} E _{AR} E _{AS} P _D	600 ±30 4 3.7 16 1.6 38 77 83 0.67	4* 3.7* 25 0.2	V V A MJ MJ W W/ °C		
Continuous Drain Current Pulsed Drain Current Avalanche Current ^C Repetitive avalanche Single pulsed avalanc	$T_{c}=100^{\circ}C$ energy ^C he energy ^G $T_{c}=25^{\circ}C$ Derate above 25°C dness	V _{DS} V _{GS} I _D I _D I _{AR} E _{AR} E _{AS}	600 ±30 4 3.7 16 1.6 38 77 83	4* 3.7* 25 0.2	V V A M M J M J W		
Continuous Drain Current Pulsed Drain Current Avalanche Current ^C Repetitive avalanche Single pulsed avalanc Power Dissipation ^B MOSFET dv/dt rugged	$T_{C}=100^{\circ}C$ energy ^C he energy ^G $T_{C}=25^{\circ}C$ Derate above 25 ^o C dness iv/dt ^H	V _{DS} V _{GS} I _D I _{AR} E _{AR} E _{AS} P _D	600 ±30 4 3.7 16 1.6 38 77 83 0.67 100	4* 3.7* 25 0.2	V V A MJ MJ W W/ °C		
Continuous Drain Current Pulsed Drain Current ^C Avalanche Current ^C Repetitive avalanche Single pulsed avalance Power Dissipation ^B MOSFET dv/dt rugged Peak diode recovery of Junction and Storage Maximum lead temper	$T_c=100^{\circ}C$ energy ^C he energy ^G $T_c=25^{\circ}C$ Derate above 25°C dness dv/dt ^H Temperature Range rature for soldering	V _{DS} V _{GS} I _D I _D I _{AR} E _{AR} E _{AS} P _D dv/dt	600 ±30 4 3.7 16 1.6 38 77 83 0.67 100 20	4* 3.7* 25 0.2	V V A M M M W W/ °C V/ns		
Continuous Drain Current Pulsed Drain Current ¹ Avalanche Current ¹ Repetitive avalanche Single pulsed avalance Single pulsed avalance Power Dissipation ⁸ MOSFET dv/dt rugged Peak diode recovery of Junction and Storage Maximum lead temper purpose, 1/8" from cas	$T_{c}=100^{\circ}C$ energy ^C he energy ^G $T_{c}=25^{\circ}C$ Derate above 25°C dness dv/dt ^H Temperature Range rature for soldering se for 5 seconds ^J	V _{DS} V _{GS} I _D I _D I _{AR} E _{AR} E _{AS} P _D dv/dt	600 ±30 4 3.7 16 1.6 38 77 83 0.67 100 20	4* 3.7* 25 0.2	V V A M M M W W/ °C V/ns		
Continuous Drain Current Pulsed Drain Current ^C Avalanche Current ^C Repetitive avalanche Single pulsed avalance Power Dissipation ^B MOSFET dv/dt rugged Peak diode recovery of Junction and Storage Maximum lead tempel purpose, 1/8" from car Thermal Characteris	$T_{c}=100^{\circ}C$ energy ^C he energy ^G $T_{c}=25^{\circ}C$ Derate above 25°C dness dv/dt ^H Temperature Range rature for soldering se for 5 seconds ^J	V_{DS} V_{GS} I_D I_{DM} I_{AR} E_{AR} E_{AS} P_D dv/dt T_J, T_{STG} T_L	600 ±30 4 3.7 16 1.6 38 77 83 0.67 100 20 -55 to 300	4* 3.7* 25 0.2 150	V V A MJ MJ W W/°C V/ns C		
Continuous Drain Current Pulsed Drain Current Avalanche Current ^C Repetitive avalanche Single pulsed avalance Power Dissipation ^B MOSFET dv/dt rugged Peak diode recovery o Junction and Storage Maximum lead temper purpose, 1/8" from cas Thermal Characteris Parameter	$T_{c}=100^{\circ}C$ energy ^C he energy ^G $T_{c}=25^{\circ}C$ Derate above 25°C dness dv/dt ^H Temperature Range rature for soldering se for 5 seconds ^J tics	V _{DS} V _{GS} I _D I _D I _{AR} E _{AR} E _{AS} P _D dv/dt T _J , T _{STG} T _L	600 ±30 4 3.7 16 1.6 38 77 83 0.67 100 20 -55 to 300 AOW4S60	4* 3.7* 25 0.2 150 AOWF4S60	V V A MJ MJ W W/ °C V/ns C V/ns C Units		
Continuous Drain Current Pulsed Drain Current ^C Avalanche Current ^C Repetitive avalanche Single pulsed avalance Power Dissipation ^B MOSFET dv/dt rugged Peak diode recovery of Junction and Storage Maximum lead tempel purpose, 1/8" from car Thermal Characteris Parameter Maximum Junction-to-	$T_{c}=100^{\circ}C$ c energy ^C he energy ^G $T_{c}=25^{\circ}C$ Derate above 25°C dness dv/dt ^H Temperature Range rature for soldering se for 5 seconds ^J tics Ambient ^{A,D}	V_{DS} V_{GS} I_D I_{DM} I_{AR} E_{AR} E_{AS} $-P_D$ dv/dt T_J, T_{STG} T_L $Symbol$ R_{0JA}	600 ±30 4 3.7 16 1.6 38 77 83 0.67 100 20 -55 to 300 AOW4S60 65	4* 3.7* 25 0.2 150 AOWF4S60 65	V V A MJ MJ W W/ °C V/ns C V/ns C Units C/W		
Continuous Drain Current Pulsed Drain Current ^C Avalanche Current ^C Repetitive avalanche Single pulsed avalance Power Dissipation ^B MOSFET dv/dt rugged Peak diode recovery o Junction and Storage Maximum lead temper purpose, 1/8" from cas Thermal Characteris Parameter	$T_{c}=100^{\circ}C$ c energy ^C he energy ^G $T_{c}=25^{\circ}C$ Derate above 25°C Iness dv/dt ^H Temperature Range rature for soldering se for 5 seconds ^J tics Ambient ^{A,D} k ^A	V _{DS} V _{GS} I _D I _D I _{AR} E _{AR} E _{AS} P _D dv/dt T _J , T _{STG} T _L	600 ±30 4 3.7 16 1.6 38 77 83 0.67 100 20 -55 to 300 AOW4S60	4* 3.7* 25 0.2 150 AOWF4S60	V V A MJ MJ W W/°C V/ns C V/ns C Units		

* Drain current limited by maximum junction temperature.

Electrical Characteristics (T_J=25[°]C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC I	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250µA, V _{GS} =0V, T _J =25℃	600	-	-	
		I _D =250µA, V _{GS} =0V, T _J =150℃	650	700	-	V
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} =600V, V_{GS} =0V	-	-	1	μΑ
		V _{DS} =480V, T _J =150℃	-	10	-	
I _{GSS}	Gate-Body leakage current	$V_{DS}=0V, V_{GS}=\pm 30V$	-	-	±100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=5V,I_{D}=250\mu A$	2.9	3.5	4.1	V
	Static Drain-Source On-Resistance	V_{GS} =10V, I_{D} =2A, T_{J} =25°C	-	0.78	0.9	Ω
R _{DS(ON)}		V _{GS} =10V, I _D =2A, T _J =150℃	-	2	2.4	Ω
V _{SD}	Diode Forward Voltage	I _S =2A,V _{GS} =0V, T _J =25℃	-	0.81	-	V
I _S	Maximum Body-Diode Continuous Current		-	-	4	A
I _{SM}	Maximum Body-Diode Pulsed Current ^C			-	16	A
DYNAMI	C PARAMETERS					
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =100V, f=1MHz	-	263	-	pF
C _{oss}	Output Capacitance	$v_{GS}=0v, v_{DS}=100v, 1=100$	-	21	-	pF
C _{o(er)}	Effective output capacitance, energy related ^H	V_{GS} =0V, V_{DS} =0 to 480V, f=1MHz	-	17.1	-	pF
C _{o(tr)}	Effective output capacitance, time related		-	47.7	-	pF
C _{rss}	Reverse Transfer Capacitance	V _{GS} =0V, V _{DS} =100V, f=1MHz	-	0.75	-	pF
R _g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz	-	18	-	Ω
SWITCH	ING PARAMETERS			-	-	-
Q _g	Total Gate Charge	V _{GS} =10V, V _{DS} =480V, I _D =2A	-	6.0	-	nC
Q _{gs}	Gate Source Charge		-	1.6	-	nC
Q _{gd}	Gate Drain Charge		-	1.8	-	nC
t _{D(on)}	Turn-On DelayTime		-	18	-	ns
t _r	Turn-On Rise Time	V _{GS} =10V, V _{DS} =400V, I _D =2A, R _G =25Ω	-	8	-	ns
t _{D(off)}	Turn-Off DelayTime		-	40	-	ns
t _f	Turn-Off Fall Time		-	12	-	ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =2A,dl/dt=100A/µs,V _{DS} =400V	-	177	-	ns
l _{rm}	Peak Reverse Recovery Current	I _F =2A,dl/dt=100A/µs,V _{DS} =400V	-	12	-	Α
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =2A,dl/dt=100A/µs,V _{DS} =400V	-	1.5	-	μC

A. The value of R $_{\rm BJA}$ is measured with the device in a still air environment with T $_{\rm A}$ =25°C.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C, Ratings are based on low frequency and duty cycles to keep initial T_J =25°C.

D. The R $_{\rm 0JA}$ is the sum of the thermal impedance from junction to case R $_{\rm 0JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =150°C. The SOA curve provides a single pulse ratin g.

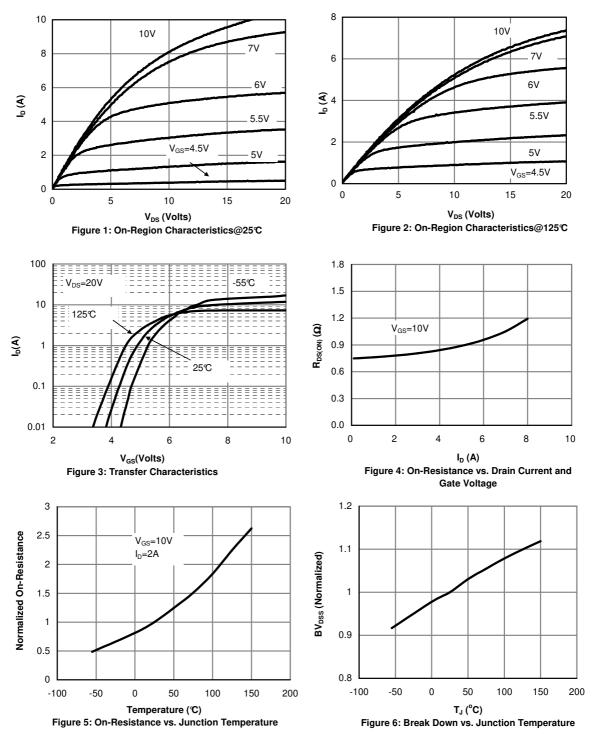
G. L=60mH, I_{AS} =1.6A, V_{DD} =150V, Starting T_J=25°C

H. $C_{o(er)}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 80% $V_{(BR)DSS}$.

I. $C_{o(tr)}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% $V_{(BR)DSS}$.

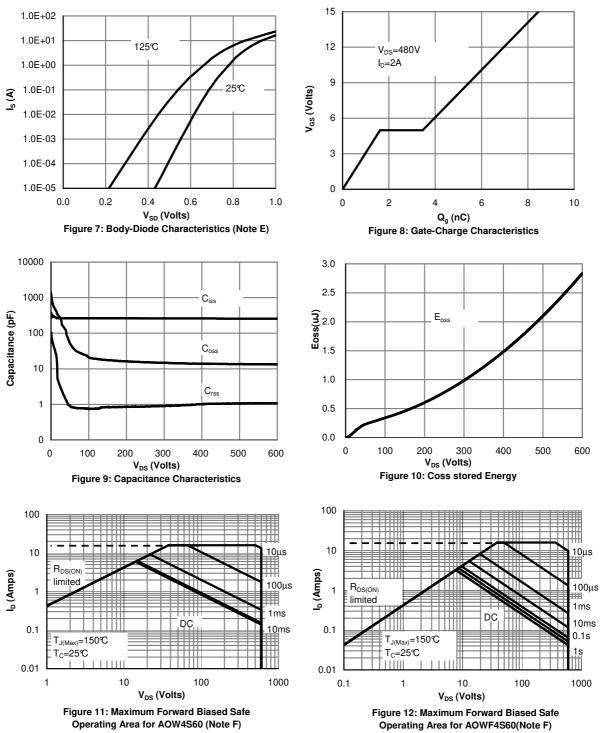
J. Wavesoldering only allowed at leads.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL

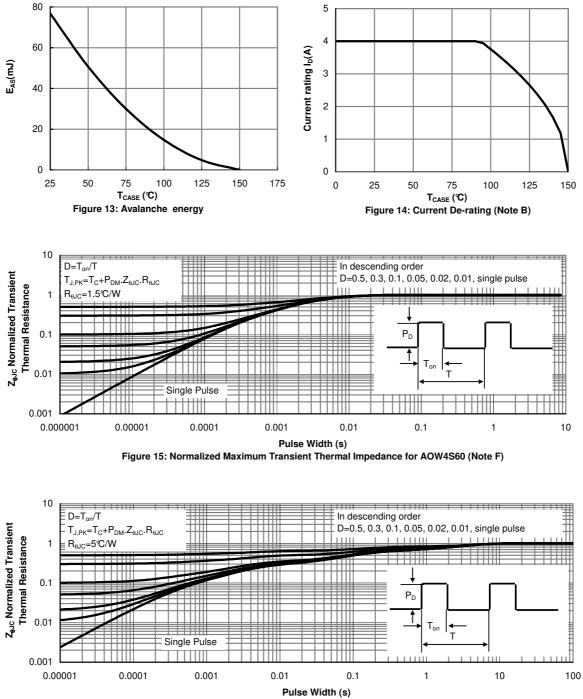

COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING

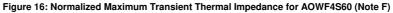
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,

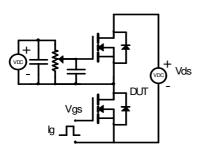
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

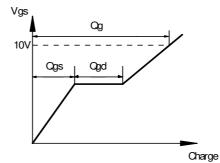


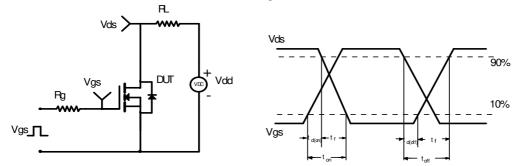
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS



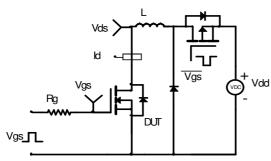

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

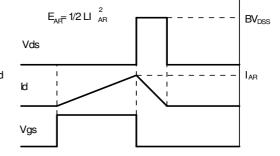

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS



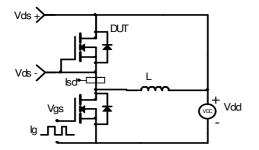


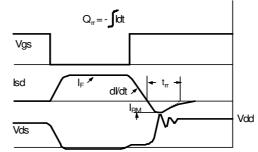
Gate Charge Test Circuit & Waveform





Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

