

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

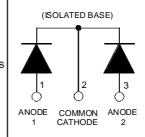
Contact us

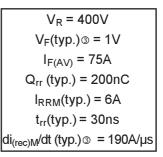
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

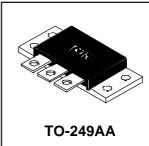
International Rectifier


HFA75MC40C


HEXERED™

Ultrafast, Soft Recovery Diode

Features


- · Reduced RFI and EMI
- · Reduced Snubbing
- · Extensive Characterization of Recovery Parameters

Description

HEXFRED™ diodes are optimized to reduce losses and EMI/RFI in high frequency power conditioning systems. An extensive characterization of the recovery behavior for different values of current, temperature and di/dt simplifies the calculations of losses in the operating conditions. The softness of the recovery eliminates the need for a snubber in most applications. These devices are ideally suited for power converters, motors drives and other applications where switching losses are significant portion of the total losses.

Absolute Maximum Ratings (per Leg)

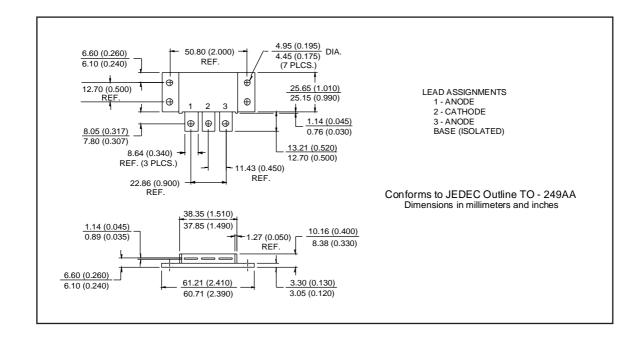
	Parameter	Max.	Units			
V_R	Cathode-to-Anode Voltage	400	V			
I _F @ T _C = 25°C	Continuous Forward Current	75				
I _F @ T _C = 100°C	Continuous Forward Current	36	A			
I _{FSM}	Single Pulse Forward Current ① 300					
I _{AS}	Maximum Single Pulse Avalanche Current ②	5.0				
E _{AS}	Non-Repetitive Avalanche Energy ②	1.4	mJ			
P _D @ T _C = 25°C	P _D @ T _C = 25°C Maximum Power Dissipation 125					
P _D @ T _C = 100°C	Maximum Power Dissipation	50	W			
TJ	Operating Junction and	-55 to +150	°C			
T _{STG}	Storage Temperature Range	-55 (0 +150				
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)				

Thermal - Mechanical Characteristics

	Parameter	Min.	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case, Single Leg Conducting			1.0	0000
Rago	Junction-to-Case, Both Legs Conducting			0.50	°C/W K/W
$R_{\theta CS}$	Case-to-Sink, Flat , Greased Surface		0.10		IV V V
VVt	Weight		58 (2.0)		g (oz)
	Mounting Torque	35 (4.0)		50 (5 7)	lbf•in
		33 (4.0)		50 (5.7)	

Note: ① Limited by junction temperature

② L = 100μH, duty cycle limited by max T_J


③ 125°C

Electrical Characteristics (per Leg) @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Test Conditions		
V _{BR}	Cathode Anode Breakdown Voltage	400			V	I _R = 100μA		
V _{FM}	Max Forward Voltage		1.1	1.3		I _F = 35A		
			1.3	1.5	V	I _F = 75A	See Fig. 1	
			1.0	1.2		I _F = 35A, T _J = 125°C		
I _{RM}	Max Reverse Leakage Current		0.50	3.0	μΑ	V _R = V _R Rated	See Fig. 2	
			0.75	4.0	mA	T _J = 125°C, V _R = 320V		
C _T	Junction Capacitance		90	125	pF	V _R = 200V	See Fig. 3	
L _S	Series Inductance		8.0		nH	From terminal hole to terminal hole		

Dynamic Recovery Characteristics (per Leg) @ T_J = 25°C (unless otherwise specified)

-		_	_			-		
	Parameter	Min.	Тур.	Мах.	Units	Test Conditions		
t _{rr}	Reverse Recovery Time		30			$I_F = 1.0A$, $di_f/dt = 200A/\mu s$, $V_R = 3$		
t _{rr1}			67	100	ns	T _J = 25°C	See Fig.	
t _{rr2}			110	170		T _J = 125°C	5	I _F = 35A
I _{RRM1}	Peak Recovery Current		6.0	11	Α	T _J = 25°C	See Fig.	
I _{RRM2}			9.0	16		T _J = 125°C	6	V _R = 200V
Q _{rr1}	Reverse Recovery Charge		200	540	nC	T _J = 25°C	See Fig.	
Q_{rr2}			500	1300	110	$T_{J} = 125^{\circ}C$	7	di _f /dt = 200A/µs
di _{(rec)M} /dt1	Peak Rate of Fall of Recovery Current		240		Λ/110	T _J = 25°C	See Fig.	
di _{(rec)M} /dt2	During t _b		190		A/µs	T _J = 125°C	8	

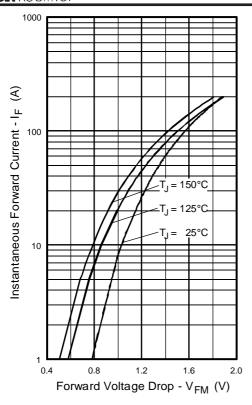


Fig. 1 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current, (per Leg)

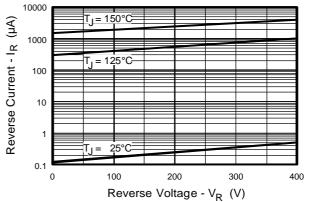
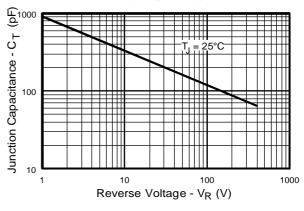
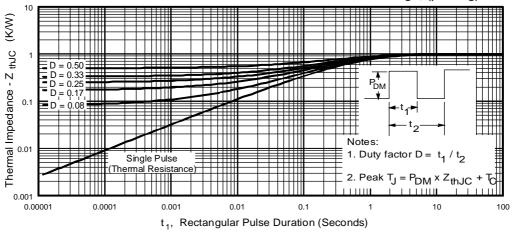




Fig. 2 - Typical Reverse Current vs. Reverse Voltage, (per Leg)

Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage, (per Leg)

 $\textbf{Fig. 4-} \textbf{Maximum Thermal Impedance } Z_{thjc} \textbf{ Characteristics, (per Leg)}$

HFA75MC40C

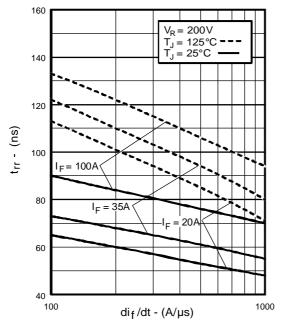


Fig. 5 - Typical Reverse Recovery vs. di_f/dt, (per Leg)

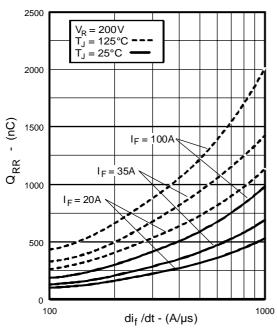


Fig. 7 - Typical Stored Charge vs. di_f/dt, (per Leg)

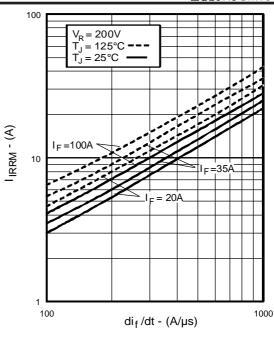


Fig. 6 - Typical Recovery Current vs. di_f/dt, (per Leg)

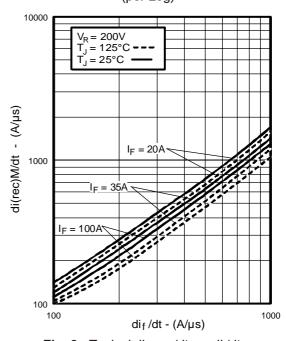


Fig. 8 - Typical di_{(rec)M}/dt vs. di_f/dt, (per Leg)

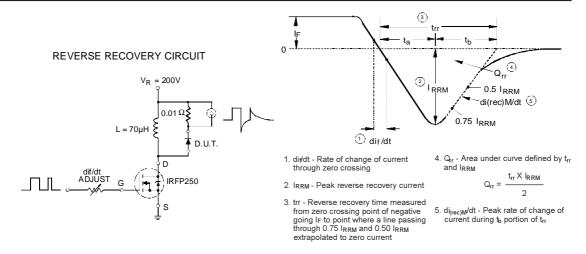


Fig. 9 - Reverse Recovery Parameter Test Circuit

Fig. 10 - Reverse Recovery Waveform and Definitions

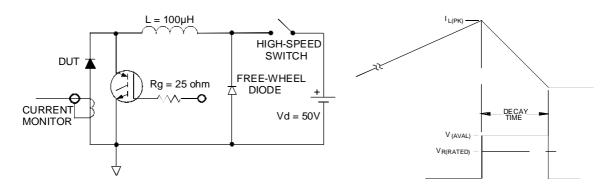


Fig. 11 - Avalanche Test Circuit and Waveforms

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331

EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020

IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897

IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086

IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371

http://www.irf.com/ Data and specifications subject to change without notice. 5/97