imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FemtoClock[®] Crystal-to-3.3V, 2.5V LVPECL Clock Generator

843251I-15

DATA SHEET

General Description

The 843251I-15 is an Ethernet Clock Generator. The 843251I-15 uses an 18pF parallel resonant crystal over the range of 23.2MHz - 30MHz. For Ethernet applications, a 25MHz crystal is used. The 843251I-15 uses IDT's 3rd generation low phase noise VCO technology, and can achieve <1ps rms phase jitter performance over the 1.875MHz – 20MHz integration range. The 843251I-15 is packaged in a small 8-pin TSSOP, making it ideal for use in systems with limited board space.

Features

- One differential 3.3V LVPECL output pair
- Crystal oscillator interface, 18pF parallel resonant crystal (23.2MHz – 30MHz)
- Output frequency range: 116MHz 150MHz and 580MHz 750MHz
- VCO range: 580MHz 750MHz
- RMS phase jitter @ 125MHz, using a 25MHz crystal (1.875MHz 20MHz): 0.45ps (typical), 3.3V
- Full 3.3V or 2.5V supply modes
- -40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) package

Common Configuration Table

	Inpu	its			
Crystal Frequency (MHz)	FREQ_SEL	М	N	Multiplication Value M/N	Output Frequency (MHz)
25	1	25	1	25	625
26.667	1	25	1	25	666.67
25	0	25	5	5	125
26.667	0	25	5	5	133.33

Block Diagram

Pin Assignment

Pin Description and Pin Characteristic Tables

Table 1. Pin Descriptions

Number	Name	Ţ	уре	Description
1	V _{CCA}	Power		Analog supply pin.
2	V _{EE}	Power		Negative supply pin.
3, 4	XTAL_OUT XTAL_IN	Input		Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.
5	FREQ_SEL	Input	Pulldown	Frequency select pin. LVCMOS/LVTTL interface levels.
6, 7	nQ, Q	Output		Differential output pair. LVPECL interface levels.
8	V _{CC}	Power		Core supply pin.

NOTE: Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating	
Supply Voltage, V _{CC}	4.6V	
Inputs, V _I	-0.5V to V _{CC} + 0.5V	
Outputs, I _O		
Continuous Current	50mA	
Surge Current	100mA	
Package Thermal Impedance, θ_{JA}	129.5°C/W (0 mps)	
Storage Temperature, T _{STG}	-65°C to 150°C	

DC Electrical Characteristics

Table 3A. Power Supply DC Characteristics, V_{CC} = $3.3V \pm 5\%$, V_{EE} = 0V, T_A = $-40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{CC}	Core Supply Voltage		3.135	3.3	3.465	V
V _{CCA}	Analog Supply Voltage		V _{CC} – 0.10	3.3	V _{CC}	V
I _{EE}	Power Supply Current				83	mA
I _{CCA}	Analog Supply Current				10	mA

Table 3B. Power Supply DC Characteristics, V_{CC} = 2.5V \pm 5%, V_{EE} = 0V, T_A = -40^{\circ}C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{CC}	Core Supply Voltage		2.375	2.5	2.625	V
V _{CCA}	Analog Supply Voltage		V _{CC} - 0.08	2.5	V _{CC}	V
I _{EE}	Power Supply Current				78	mA
I _{CCA}	Analog Supply Current				8	mA

Table 3C. LVCMOS/LVTTL DC Characteristics, $V_{CC} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V	Input High Voltage	V _{CC} = 3.3V	2		V _{CC} + 0.3	V
V _{IH}		V _{CC} = 2.5V	1.7		V _{CC} + 0.3	V
V		V _{CC} = 3.3V	-0.3		0.8	V
V _{IL}	Input Low Voltage	V _{CC} = 2.5V	-0.3		0.7	V
I _{IH}	Input High Current	$V_{CC} = V_{IN} = 3.465 V \text{ or } 2.625 V$			150	μA
I _{IL}	Input Low Current	$V_{CC} = 3.465$ V or 2.625V, $V_{IN} = 0$ V	-5			μA

Table 3D. LVPECL DC Characteristics, V_{CC} = $3.3V \pm 5\%$, V_{EE} = 0V, T_A = $-40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Current; NOTE 1		V _{CC} -1.4		$V_{CC} - 0.9$	V
V _{OL}	Output Low Current; NOTE 1		V _{CC} - 2.0		V _{CC} – 1.7	V
V _{SWING}	Peak-to-Peak Output Voltage Swing		0.6		1.0	V

NOTE 1: Outputs termination with 50 Ω to V_CC – 2V.

Table 3E. LVPECL DC Characteristics, $V_{CC} = 2.5V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Current; NOTE 1		V _{CC} – 1.4		V _{CC} – 0.9	V
V _{OL}	Output Low Current; NOTE 1		V _{CC} - 2.0		V _{CC} – 1.5	V
V _{SWING}	Peak-to-Peak Output Voltage Swing		0.4		1.0	V

NOTE 1: Outputs termination with 50 $\!\Omega$ to V_{CC} – 2V.

Table 4. Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation			Fundamental		
Frequency		23.2		30	MHz
Equivalent Series Resistance (ESR)				40	Ω
Shunt Capacitance				7	pF

NOTE: It is not recommended to overdrive the crystal input with an external clock.

AC Electrical Characteristics

Table 5A. AC Characteristics, V_{CC} = 3.3V \pm 5%, V_{EE} = 0V, T_A = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f Output	Output Frequency	FREQ_SEL = 0	116		150	MHz
fout	Oulput Frequency	FREQ_SEL = 1	580		750	MHz
<i>t</i> jit(Ø)	RMS Phase Jitter, Random;	125MHz, (Integration Range: 1.875MHz – 20MHz)		0.45		ps
ijit(Ø)	NOTE 1	625MHz, (Integration Range: 1.875MHz – 20MHz)		0.34		ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	100		600	ps
odc	Output Duty Cycle		47		53	%

NOTE 1: Refer to Phase Noise Plots.

Table 5B. AC Characteristics, V_{CC} = 2.5V ± 5%, V_{EE} = 0V, T_A = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
6 Outrust		FREQ_SEL = 0	116		150	MHz
fout	Output Frequency	FREQ_SEL = 1	580		750	MHz
fiit(Q)	RMS Phase Jitter, Random;	125MHz, (Integration Range: 1.875MHz – 20MHz)		0.44		ps
<i>t</i> jit(Ø)	NOTE 1	625MHz, (Integration Range: 1.875MHz – 20MHz)		0.33		ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	100		600	ps
odc	Output Duty Cycle		45		55	%

NOTE 1: Refer to Phase Noise Plots.

Typical Phase Noise at 125MHz @ 3.3V

7

Noise Power dBc Hz

Parameter Measurement Information

3.3V LVPECL Output Load AC Test Circuit

RMS Phase Jitter

Output Duty Cycle/Pulse Width/Period

2.5V LVPECL Output Load AC Test Circuit

Application Information

Power Supply Filtering Technique

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The 8432511-15 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{CC} and V_{CCA} should be individually connected to the power supply plane through vias, and 0.01µF bypass capacitors should be used for each pin. *Figure 1* illustrates this for a generic V_{CC} pin and also shows that V_{CCA} requires that an additional 10 Ω resistor along with a 10µF bypass capacitor be connected to the V_{CCA} pin.

Figure 1. Power Supply Filtering

Crystal Input Interface

The 843251I-15 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 2* below were determined using a 25MHz, 18pF parallel resonant crystal and were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.

Figure 2. Crystal Input Interface

Overdriving the XTAL Interface

The XTAL_IN input can be overdriven by an LVCMOS driver or by one side of a differential driver through an AC coupling capacitor. The XTAL_OUT pin can be left floating. The amplitude of the input signal should be between 500mV and 1.8V and the slew rate should not be less than 0.2V/ns. For 3.3V LVCMOS inputs, the amplitude must be reduced from full swing to at least half the swing in order to prevent signal interference with the power rail and to reduce internal noise. *Figure 3A* shows an example of the interface diagram for a high speed 3.3V LVCMOS driver. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω . This can also be accomplished by removing R1 and changing R2 to 50Ω . The values of the resistors can be increased to reduce the loading for a slower and weaker LVCMOS driver. *Figure 3B* shows an example of the interface diagram for an LVPECL driver. This is a standard LVPECL termination with one side of the driver feeding the XTAL_IN input. It is recommended that all components in the schematics be placed in the layout. Though some components might not be used, they can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a quartz crystal as the input.

Figure 3A. General Diagram for LVCMOS Driver to XTAL Input Interface

Figure 3B. General Diagram for LVPECL Driver to XTAL Input Interface

Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential outputs are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω

Figure 4A. 3.3V LVPECL Output Termination

transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 4A and 4B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

Figure 4B. 3.3V LVPECL Output Termination

Termination for 2.5V LVPECL Outputs

Figure 5A and *Figure 5B* show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50Ω to V_{CC} – 2V. For V_{CC} = 2.5V, the V_{CC} – 2V is very close to

Figure 5A. 2.5V LVPECL Driver Termination Example

Figure 5C. 2.5V LVPECL Driver Termination Example

ground level. The R3 in Figure 5B can be eliminated and the termination is shown in *Figure 5C*.

Figure 5B. 2.5V LVPECL Driver Termination Example

Schematic Example

Figure 6 shows an example of 843251I-15 application schematic. In this example, the device is operated at $V_{CC} = 3.3V$. The 18pF parallel resonant 25MHz crystal is used. The C1 = 27pF and C2 = 27pF are recommended for frequency accuracy. For different board layout, the C1 and C2 may be slightly adjusted for optimizing

frequency accuracy. Two examples of LVPECL termination are shown in this schematic. Additional termination approaches are shown in the *LVPECL Termination Application Note*.

Note: Thermal pad (E-pad) must be connected to ground (V_{EE}).

Figure 6. 843251I-15 Schematic Example

Power Considerations

This section provides information on power dissipation and junction temperature for the 843251I-15. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 843251I-15 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{CC} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = V_{CC MAX} * I_{EE MAX} = 3.465V * 83mA = 287.60mW
- Power (outputs)_{MAX} = 30mW/Loaded Output pair

Total Power_MAX (3.3V, with all outputs switching) = 287.60mW + 30mW = 317.60mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature is 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming a moderate air flow of 1 meter per second and a multi-layer board, the appropriate value is 125.5°C/W per Table 6 below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

 $85^{\circ}C + 0.318W * 125.5^{\circ}C/W = 124.9^{\circ}C$. This is below the limit of $125^{\circ}C$.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 6. Thermal Resistance θ_{JA} for 8 Lead TSSOP, Forced Convection

$ heta_{JA}$ vs. Air Flow			
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	129.5°C/W	125.5°C/W	123.5°C/W

3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load.

LVPECL output driver circuit and termination are shown in Figure 7.

Figure 7. LVPECL Driver Circuit and Termination

To calculate worst case power dissipation into the load, use the following equations which assume a 50 Ω load, and a termination voltage of V_{CC} – 2V.

- For logic high, $V_{OUT} = V_{OH_MAX} = V_{CC_MAX} 0.9V$ ($V_{CC_MAX} - V_{OH_MAX}$) = 0.9V
- For logic low, $V_{OUT} = V_{OL_MAX} = V_{CC_MAX} 1.7V$ ($V_{CC_MAX} - V_{OL_MAX}$) = 1.7V

Pd_H is power dissipation when the output drives high.

 Pd_L is the power dissipation when the output drives low.

 $\begin{array}{l} \mathsf{Pd}_{-}\mathsf{H} = [(\mathsf{V}_{\mathsf{OH}_\mathsf{MAX}} - (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - 2\mathsf{V}))/\mathsf{R}_{\mathsf{L}}] * (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OH}_\mathsf{MAX}}) = [(2\mathsf{V} - (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OH}_\mathsf{MAX}}))/\mathsf{R}_{\mathsf{L}}] * (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OH}_\mathsf{MAX}}) = [(2\mathsf{V} - 0.9\mathsf{V})/50\Omega] * 0.9\mathsf{V} = 19.8\mathsf{mW} \end{array}$

 $\begin{array}{l} \mathsf{Pd}_{L} = [(\mathsf{V}_{\mathsf{OL}_\mathsf{MAX}} - (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - 2\mathsf{V}))/\mathsf{R}_{L}] * (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OL}_\mathsf{MAX}}) = [(2\mathsf{V} - (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OL}_\mathsf{MAX}}))/\mathsf{R}_{L}] * (\mathsf{V}_{\mathsf{CC}_\mathsf{MAX}} - \mathsf{V}_{\mathsf{OL}_\mathsf{MAX}}) = [(2\mathsf{V} - 1.7\mathsf{V})/50\Omega] * 1.7\mathsf{V} = \textbf{10.2mW} \end{array}$

Total Power Dissipation per output pair = Pd_H + Pd_L = **30mW**

Reliability Information

Table 7. θ_{JA} vs. Air Flow Table for a 8 Lead TSSOP

θ_{JA} vs. Air Flow				
Meters per Second	0	1	2.5	
Multi-Layer PCB, JEDEC Standard Test Boards	129.5°C/W	125.5°C/W	123.5°C/W	

Transistor Count

The transistor count for 843251I-15 is: 2395

Package Outline and Package Dimensions

Package Outline - G Suffix for 8 Lead TSSOP

Table 8. Package Dimensions

All Dimensions in Millimeters			
Symbol	Minimum	Maximum	
N	8		
Α		1.20	
A1	0.05	0.15	
A2	0.80	1.05	
b	0.19	0.30	
c	0.09	0.20	
D	2.90	3.10	
E	6.40 Basic		
E1	4.30	4.50	
e	0.65 Basic		
L	0.45	0.75	
α	0°	8°	
aaa		0.10	

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
843251BGI-15LF	BI15L	8 Lead TSSOP, Lead-Free	Tube	-40°C to 85°C
843251BGI-15LFT	BI15L	8 Lead TSSOP, Lead-Free	Tape & Reel	-40°C to 85°C

Revision History Sheet

Rev	Table	Page	Description of Change	Date
		1	Deleted HiPerClockS references.	
	T4 3 A 7		Crystal Characteristics Table - added note.	
Α			Deleted application note, LVCMOS to XTAL Interface.	11/2/12
		10	Added Note: Thermal pad (E-pad) must be connected to ground (VEE).	
	Т9	14	Deleted quantity from tape and reel.	
			Updated header/footer throughout the datasheet.	
			Deleted <i>IDT</i> prefix from part number.	
Р		9	Application Information:	10/00/15
В		10	added Overdriving the XTAL Interface,	10/29/15
		11	updated Termination for 3.3V LVPECL Outputs	
	Т9	18	Ordering Information Table - deleted: leaded part rows and table note.	

Corporate Headquarters 6024 Silver Creek Valley Road San Jose, CA 95138 USA

Sales 1-800-345-7015 or 408-284-8200 Fax: 408-284-2775 www.IDT.com

Tech Support

email: clocks@idt.com

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Product specification subject to change without notice. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.