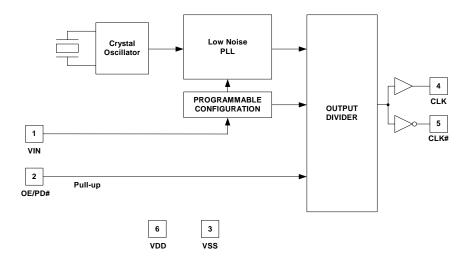


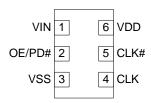
LVPECL Voltage Controlled Crystal Oscillator (VCXO)


Features

- High-frequency VCXO with LVPECL output
- Any output frequency from 50 MHz to 690 MHz
- Available either factory configured or field programmable
- Integrated phase-locked loop (PLL)
- 1 ps typical RMS Phase Jitter
- Output Enable or Power-down function
- Supply voltage: 3.3 V or 2.5 V
- Pb-free package: 5.0 × 3.2 mm LCC
- Commercial and industrial temperature ranges

Benefits

- Eliminates the need for external crystal
- Low-noise internal PLL
- Fast time to market
- Suitable for HDDs, consumer and networking applications
- Small footprint
- Application compatibility in standard and low-power systems
- Field-programmable for reduced inventory


Logic Block Diagram

Pinouts

Figure 1. 6-Pin Ceramic LCC

Pin Definitions

Pin	Name	I/O Type	Description
1	V _{IN}	Analog Input	VCXO control voltage. Positive slope.
2	OE/PD#	CMOS Input, internal pull-up	Output Enable pin: Active HIGH. If OE = 1, CLK is enabled. Power-down pin: Active LOW. If PD# = 0, Power-down is enabled. The functionality of this pin is programmable.
3	V _{SS}	Power	Power supply ground
4, 5	CLK, CLK#	Output	Clock output. LVPECL outputs. CLK# is the complement of CLK.
6	V_{DD}	Power	Positive power supply: 2.5 V or 3.3 V

Functional Description

The CY2V014 is a high-performance high-frequency voltage-controlled crystal oscillator (VCXO).

The device uses a Cypress proprietary low-noise PLL to synthesize the frequency from an embedded crystal.

The output frequency is user adjustable by means of an analog control voltage applied to the V_{IN} pin.

VCXO Control Voltage (V_{IN}, pin 1)

 V_{IN} is an analog input that is used to adjust the output frequency. The nominal output frequency is defined when $V_{IN} = V_{DD}/2.$ Increasing the voltage on V_{IN} increases the output frequency, while decreasing the voltage on V_{IN} decreases the output frequency. Any voltage between V_{SS} and V_{DD} is allowed on $V_{IN}.$ The voltage/frequency slope is very linear over most of the control voltage range.

Programming Description

Field-Programmable CY2V014

Field-programmable devices are shipped unprogrammed, and must be programmed before use. Customers can use Cyber-Clocks™ Online Software to specify the device configuration and generate a .JED programming file. Programming of samples and prototype quantities is available using the CY3672 programmer. Third-party vendors manufacture programmers for small to large volume applications. Cypress's value-added distribution partners also provide programming services. Field-programmable devices are designated with an "F" in the part number, and are intended for quick prototyping and inventory reduction.

Factory-Configured CY2V014

For customers wanting ready-to-use devices, the CY2V014 is available factory-configured, with no programming required. All requests must be submitted to the local Cypress Field Application Engineer (FAE) or sales representative. Once the request has been processed, you will receive a new part number, samples, and data sheet with the programmed values. This part number will be used for additional sample requests and production orders.

Programming Variables

Output Frequency

Any frequency between 50 MHz and 690 MHz may be specified.

Absolute Pull Range

The absolute pull range (APR) may be specified.

Pin 2: Output Enable or Power-Down (OE/PD#)

Pin 2 can be programmed as either output enable (OE) or Power-down (PD#). The OE function is used to enable or disable the CLK output very quickly, but it does not reduce core power consumption. The PD# function puts the device into a low-power state, but wake-up takes longer because the PLL must reacquire lock.

Absolute Maximum Conditions

Parameter	Description	Condition	Min	Max	Unit
V _{CC}	Supply Voltage		-0.5	4.4	V
V _{IN}	Input Voltage	Relative to V _{SS}	-0.5	V _{DD} +0.5	VDC
T _S	Temperature, Storage	Non Functional	- 55	150	°C
T _J	Temperature, Junction		-40	125	°C
ESD _{HBM}	ESD Protection (Human Body Model)	MIL-STD-883, Method 3015	2000		V
UL-94	Flammability Rating	At 1/8 in.	V-	-0	
MSL	Moisture Sensitivity Level		,	1	

Note: The voltage on any input or I/O pin cannot exceed the power pin during power-up.

Operating Conditions

Parameter	Description	Min	Тур	Max	Unit
V_{DD}	Supply Voltage Range	3.0 2.25	3.3 2.5	3.6 2.75	V
T _{PU}	Power-up Time for V _{DD} to Reach Minimum Specified Voltage (power ramp must be monotonic)	0.05	-	500	ms
T _A	Ambient Temperature (Commercial)	0	_	70	°C
T _A	Ambient Temperature (Industrial)	-40	_	85	°C

DC Electrical Characteristics

Parameter	Description	Condition	Min	Тур	Max	Unit
V _{OH}	LVPECL High Output Voltage	$V_{DD} = 3.3 \text{ V or } 2.5 \text{ V}, R_{TERM} = 50 \Omega \text{ to} $ $V_{DD} - 2.0 \text{ V}$	V _{DD} – 1.15	-	V _{DD} – 0.75	V
V _{OL}	LVPECL Low Output Voltage	V_{DD} = 3.3 V or 2.5 V, R_{TERM} = 50 Ω to V_{DD} - 2.0 V	V _{DD} – 2.0	-	V _{DD} – 1.625	V
V _{OD1}	LVPECL Output Voltage Swing (V _{OH} – V _{OL})	V_{DD} = 3.3 V or 2.5 V, R_{TERM} = 50 Ω to V_{DD} - 2.0 V	600	-	1000	mV
V _{OD2}	LVPECL Output Voltage Swing (V _{OH} – V _{OL})	V_{DD} = 2.5 V, R_{TERM} = 50 Ω to V_{DD} - 1.4 V	500	-	1000	mV
V _{OCM}	LVPECL Output Common Mode Voltage (V _{OH} + V _{OL})/2	V_{DD} = 2.5 V, R_{TERM} = 50 Ω to V_{DD} - 1.4 V	1.2	-	_	V
V_{IH}	CMOS Input High Voltage		$0.7 \times V_{DD}$	-	_	V
V_{IL}	CMOS Input Low Voltage		-	-	$0.3 \times V_{DD}$	V
R _{UP}	Internal Pull-up Resistor		_	100	_	kΩ
I _{IH}	CMOS Input High Current	$V_{IN} = V_{DD}$	-	-	10	μΑ
I _{IL}	CMOS Input Low Current	$V_{IN} = V_{SS}$	-	-	120	μΑ
V_{VIN}	V _{IN} Input Voltage		0	-	V_{DD}	V
I _{IVIN}	V _{IN} Input Current	$V_{SS} \le V_{IN} \le V_{DD}$	-	-	10	μΑ
L _{IN}	V _{IN} to f _{OUT} Linearity	$0.2 \times V_{DD} \le V_{IN} \le 0.8 \times V_{DD}$	-	1	_	%
I _{OZ}	Output Leakage Current	Three-state output, PD#/OE = V _{SS}	-35	-	35	μΑ
I _{DD}	Operating Supply Current	$V_{DD} = 3.3 \text{ V or } 2.5 \text{ V, CLK} = 150 \text{ MHz,}$ $C_{LOAD} = 0, \text{ PD\#/OE} = V_{DD}$	_	_	100	mA
I _{SB}	Standby Supply Current	PD# = V _{SS}	_	-	1	mΑ

Document #: 001-06458 Rev. *B

AC Electrical Characteristics

Parameter	Description	Condition	Min	Тур	Max	Unit
f _{OUT}	Output Frequency		50	_	690	MHz
FS _{FACT}	Frequency Stability – factory programmed devices	$V_{IN} = V_{DD}/2^{[1]}$	-60	-	60	ppm
FS _{FIELD}	Frequency Stability – field program- mable devices	$V_{IN} = V_{DD}/2^{[1]}$	-100	-	100	ppm
APR	Absolute Pull Range	$V_{\text{IN}} = V_{\text{DD}}$ to V_{SS} , relative to nominal f_{OUT} , across operating temperature and voltage range ^[2]	±100 ±50	-	-	ppm
BW	Modulation Bandwidth (V _{IN})	−3 dB	10	_	-	kHz
DC	Output Duty Cycle	Measured at zero crossing	45	50	55	%
T _R , T _F	Output Rise and Fall Time	20% and 80% of full output swing	-	350	_	ps
T _{OE1}	Output Disable Time	Time from falling edge on OE to stopped outputs (Asynchronous)	_	-	100	ns
T _{OE2}	Output Enable Time	Time from rising edge on OE to outputs at a valid frequency (Asynchronous)	_	-	100	ns
T _{LOCK}	Start-up Time	Time for CLK to reach valid frequency measured from the time V_{DD} = V_{DD} (Min) or from PD# rising edge.	-	-	10	ms
T _{J1}	RMS Phase Jitter f _{OUT} = 106.25 MHz (12 kHz–20 MHz		_	1	_	ps
T _{J2}	Peak-to-peak Period Jitter	f _{OUT} = 106.25 MHz	-	30	-	ps

Notes

Frequency stability is the maximum variation in frequency from F₀. It includes initial accuracy, plus variation from temperature, supply voltage, shock, vibration and first year aging.
 APR is the minimum pull range under all conditions over the device lifetime, including aging for 10 years. APR is relative to F₀.

Switching Waveforms

Figure 2. Duty Cycle Timing (DC = t_{1A}/t_{1B})

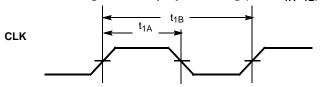


Figure 3. Output Differential Voltage

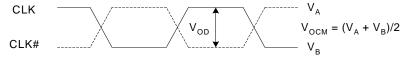
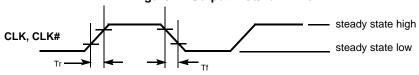
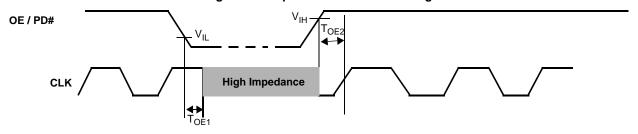




Figure 4. Output Rise/Fall Time

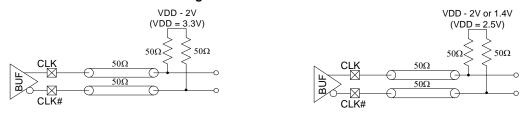

Output Rise time (Tr) =20 to 80% of full output swing Output Fall time (Tf) = 80 to 20% of full output swing

Figure 5. Output Enable/Disable Timing

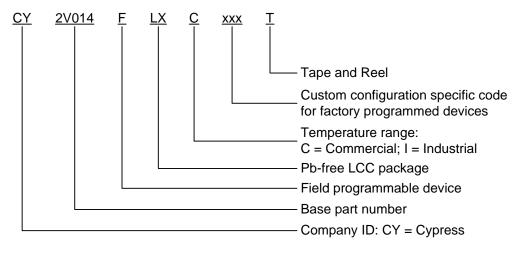
Termination Circuits

Figure 6. LVPECL Termination

Ordering Information

Table 1 lists the CY2V014 key package features and ordering codes. The table contains only the parts that are currently available. If you do not see what you are looking for, contact your local sales representative. For more information, visit the Cypress website at www.cypress.com and refer to the product summary page at http://www.cypress.com/products.

Table 1. Key Features and Ordering Information


Part Number Configuration		Package description	Product Flow	
Pb-free				
CY2V014FLXCT	Field programmable	6-Pin Ceramic LCC SMD – Tape and Reel	Commercial, 0 °C to 70 °C	
CY2V014FLXIT	Field programmable	6-Pin Ceramic LCC SMD – Tape and Reel	Industrial, -40 °C to 85 °C	

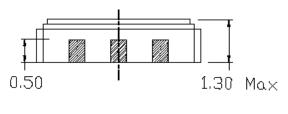
Possible Configurations

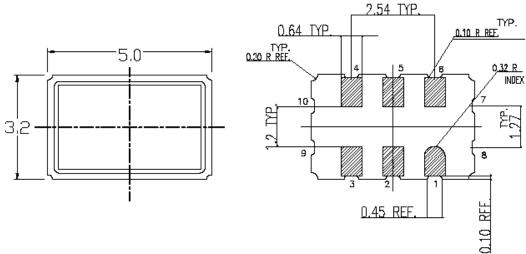
Some product offerings are factory programmed customer specific devices with customized part numbers. The Possible Configurations table shows the available device types, but not complete part numbers. Contact your local Cypress FAE of Sales Representative for more information.

Part Number ^[3]	Configuration	Package description	Product Flow	
Pb-free				
CY2V014LXCxxxT	Factory configured	6-Pin Ceramic LCC SMD – Tape and Reel	Commercial, 0 °C to 70 °C	
CY2V014LXIxxxT	Factory configured	6-Pin Ceramic LCC SMD – Tape and Reel	Industrial, -40 °C to 85 °C	

Ordering Code Defintions

Note


Document #: 001-06458 Rev. *B


^{3. &}quot;xxx" is a factory assigned code that identifies the programming option.

Package Diagram

Figure 7. 6-Pin 3.2 × 5.0 mm Ceramic LCC LZ06A

Acronyms

Table 2. Acronyms Used in this Document

Acronym	Description
CMOS	complementary metal oxide semiconductor
ESD	electro-static discharge
FAE	field applications engineer
HDD	hard disk drive
LCC	leadless chip carrier
PLL	phase-locked loop
RMS	root mean square
SMD	surface mount device
VCXO	voltage-controlled crystal oscillator

Document Conventions

Units of Measure

Table 3. Units of Measure

Symbol	Unit of Measure
°C	degree celcius
KHz	kilo hertz
ΚΩ	kilo ohm
MHz	mega hertz
μA	micro ampere
mA	milli ampere
ms	milli second
mV	milli volt
ns	nano second
Ω	ohm
ppm	parts per million
%	percent
ps	pico second
V	volt

001-10044 *A

Document History Page

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	504458	RGL	See ECN	New data sheet
*A	2899939	CXQ	03/26/10	Updated ordering information table. Updated package diagram. Updated copyright section.
*B	3099970	CXQ	12/02/10	Updated template and styles. Changed from Preliminary to Final. Added Acronyms, Units of Measure, and Ordering Code Definitions sections. Changed 700 MHz to 690 MHz in second "Features" bullet. Changed from 700 MHz to 690 MHz in "Programming Variables" section Changed fOUT spec in AC specifications table from 700 max to 690 max Changed FSfact in AC specifications from +/-60 ppm max to -60ppm min and 60 ppm max. Changed FSfield spec to -100 ppm min and 100 ppm max.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

cypress.com/go/automotive

cypress.com/go/clocks

cypress.com/go/plc

cypress.com/go/interface

cypress.com/go/powerpsoc

Products

Automotive Clocks & Buffers Interface Lighting & Power Control

Memory

cypress.com/go/memory Optical & Image Sensing cypress.com/go/image **PSoC** cypress.com/go/psoc Touch Sensing cypress.com/go/touch **USB Controllers** cypress.com/go/USB Wireless/RF cypress.com/go/wireless **PSoC Solutions**

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2006-2010. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document #: 001-06458 Rev. *B

Revised December 2, 2010

Page 9 of 9

CyberClocks is a trademark of Cypress Semiconductor Corporation. All other products and company names mentioned in this document may be the trademarks of their respective holders.