

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

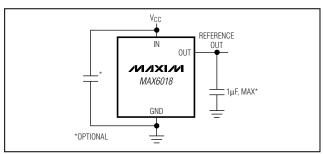
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

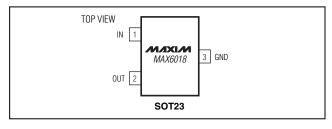
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description


The MAX6018 is a precision, low-voltage, low-dropout, micropower voltage reference in a SOT23 package. This three-terminal reference operates with an input voltage from (Vout + 200mV) to 5.5V, and is available with output voltage options of 1.2V, 1.6V, 1.8V, and 2.048V

The MAX6018 voltage reference consumes less than 5µA (max) of supply current and can source and sink up to 1mA of load current. Unlike conventional shuntmode (two-terminal) references that waste supply current and require an external resistor, devices in the MAX6018 family offer a supply current that is virtually independent of supply voltage (with only 0.1µA/V variation with supply voltage) and do not require an external resistor. The MAX6018 has initial accuracies of 0.2% (A grade) and 0.4% (B grade) and temperature drift of 50ppm/°C (max). The low-dropout voltage and the ultra-low, supply voltage-independent supply current make this device ideal for two-cell alkaline, end-of-life, battery-monitoring systems. The MAX6018 is available in a tiny 3-pin SOT23 package.


Applications

Two-Cell, Battery-Operated Systems Battery-Operated Equipment Hand-Held Equipment Data-Acquisition Systems Industrial and Process-Control Systems

Typical Application Circuit

Pin Configuration

Features

- ♦ Ultra-Low Supply Current: 5µA (max)
- ♦ 1.6V Output from 1.8V Input
- ♦ Ultra-Small, 3-Pin SOT23 Package
- ♦ Initial Accuracy: ±0.2% (max)
- ♦ Low Temperature Drift: 50ppm/°C (max)
- ♦ 200mV Dropout Voltage
- ♦ Load Regulation (1mA Source): 700µV/mA (max)
- ◆ Line Regulation (V_{OUT} + 200mV) to 5.5V: 250µV/V
- ♦ Four Output Voltage Options: 1.2V, 1.6V, 1.8V. 2.048V

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX6018AEUR12-T	-40°C to +85°C	3 SOT23-3	FZJH
MAX6018BEUR12-T	-40°C to +85°C	3 SOT23-3	FZJI
MAX6018AEUR16-T	-40°C to +85°C	3 SOT23-3	FZJJ
MAX6018BEUR16-T	-40°C to +85°C	3 SOT23-3	FZJK
MAX6018AEUR18-T	-40°C to +85°C	3 SOT23-3	FZJL
MAX6018BEUR18-T	-40°C to +85°C	3 SOT23-3	FZJM
MAX6018AEUR21-T	-40°C to +85°C	3 SOT23-3	FZJN
MAX6018BEUR21-T	-40°C to +85°C	3 SOT23-3	FZJO

Selector Guide

PART	OUTPUT VOLTAGE (V)	INITIAL ACCURACY (%)		
MAX6018AEUR12	1.263	±0.2		
MAX6018BEUR12	1.263	±0.4		
MAX6018AEUR16	1.600	±0.2		
MAX6018BEUR16	1.600	±0.4		
MAX6018AEUR18	1.800	±0.2		
MAX6018BEUR18	1.800	±0.4		
MAX6018AEUR21	2.048	±0.2		
MAX6018BEUR21	2.048	±0.4		

MIXIM

ABSOLUTE MAXIMUM RATINGS

(Voltages Referenced to GND)	Operating Temperature Range40°C to +85°C
V _{IN} 0.3V to +6V	Junction Temperature+150°C
Output Short-Circuit Duration to GND or VINContinuous	Storage Temperature Range65°C to +150°C
Continuous Power Dissipation (T _A = +70°C)	Lead Temperature (soldering, 10s)+300°C
3-Pin SOT23 (derate 4.0mW/°C above +70°C)320mW	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (MAX6018_12-1.263V)

 $(V_{IN} = 1.8V; C_{OUT} = 47nF, I_{OUT} = 0; T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
OUTPUT	•		•				
0.1.17.11		MAX6018A_12 (0.2%)	1.2605	1.2630	1.2655	V	
Output Voltage	Vout	MAX6018B_12 (0.4%)	1.2580	1.2630	1.2681		
Output Voltage Temperature Drift	TCV _{OUT}	(Note 2)		16	50	ppm/°C	
Line Regulation	ΔV _{OUT} / ΔV _{IN}	1.8V ≤ V _{IN} ≤ 5.5V		50	400	μV/V	
Land Danielation	ΔV _{OUT} /	0 ≤ I _{OUT} ≤ 1mA		90	700	μV/mA	
Load Regulation	Δ l $_{ m OUT}$	-100µA ≤ I _{OUT} ≤ 0		2	9	μV/μΑ	
	1	Sourcing to GND		3		^	
Short-Circuit Current	Isc	Sinking from V _{IN}		6		mA	
Long-Term Stability	ΔV _{OUT} / Time	1000hrs at T _A = +25°C		100		ppm	
Thermal Hysteresis		(Note 4)		130		ppm	
DYNAMIC CHARACTERISTICS	•	·					
NI : W II		0.1Hz to 10Hz		45		µVр-р	
Noise Voltage	eout	10Hz to 10kHz		100		µVRMS	
Ripple Rejection		$V_{IN} = 1.8V \pm 100 \text{mV} (f = 120 \text{Hz})$		85		dB	
Turn-On Settling Time	t _R	Settling to 0.1%; COUT = 5nF		200		μs	
Capacitive-Load Stability Range	Cout	(Note 2)	47		1000	nF	
INPUT	•						
Supply Voltage Range	VIN	Guaranteed by Line Regulation Test	1.8		5.5	V	
0: 10 10 :	I _{IN}	T _A = +25°C		3	5		
Quiescent Supply Current		$T_A = T_{MIN}$ to T_{MAX}		3	6	μA	
Change in Quiescent Supply Current vs. Input Voltage	ΔΙ _{ΙΝ} /ΔV _{ΙΝ}	1.8V ≤ V _{IN} ≤ 5.5V		0.1	0.5	μΑ/V	

ELECTRICAL CHARACTERISTICS (MAX6018_16-1.600V)

 $(V_{IN} = 1.8V; C_{OUT} = 47nF, I_{OUT} = 0; T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
OUTPUT							
0 1 1 1 1 1	\/	MAX6018A_16 (0.2%)	T _A = +25°C	1.5968	1.6000	1.6032	V
Output Voltage	Vout	MAX6018B_16 (0.4%)	T _A = +25°C	1.5936	1.6000	1.6064	
Output Voltage Temperature Drift	TCV _{OUT}	(Note 2)			16	50	ppm/°C
Line Regulation	ΔV _{OUT} / ΔV _{IN}	$1.8V \le V_{IN} \le 5.5V$			40	250	μV/V
Load Degulation	ΔV _{OUT} /	$0 \le I_{OUT} \le 1mA$			90	700	μV/mA
Load Regulation	Δ l $_{ m OUT}$	$-750\mu A \le I_{OUT} \le 0$			0.6	50	μV/μΑ
Dropout Voltage (Note 3)	V _{IN} - V _{OUT}	I _{OUT} = 1mA			100	200	mV
Short-Circuit Current	loo	Sourcing to GND			6		mA
Short-Circuit Current	ISC Sinking from V _{IN}				2		MA
Long-Term Stability	ΔV _{OUT} / Time	1000hrs at T _A = +25°C			100		ppm
Thermal Hysteresis		(Note 4)			130		ppm
DYNAMIC CHARACTERISTICS							
Noise Voltage	0.01.17	0.1Hz to 10Hz			40		μVр-р
Noise voitage	eout	10Hz to 10kHz			150		μVRMS
Ripple Rejection		$V_{IN} = 1.8V \pm 100 \text{mV} (f = 120 \text{Hz})$	łz)		85		dB
Turn-On Settling Time	t _R	Settling to 0.1%; Cout = 5nF			200		μs
Capacitive-Load Stability Range	Cout	(Note 2)		0.1		1000	nF
INPUT							
Supply Voltage Range	VIN	Guaranteed by Line Regulation Test		1.8		5.5	V
Quiescent Supply Current	I _{IN}	$T_A = +25^{\circ}C$			3	5	μΑ
Quicocent oupply ourient		$T_A = T_{MIN}$ to T_{MAX}			3	6	μΛ
Change in Quiescent Supply Current vs. Input Voltage	$\Delta I_{IN}/\Delta V_{IN}$	$1.8V \le V_{IN} \le 5.5V$			0.1	0.5	μΑ/V

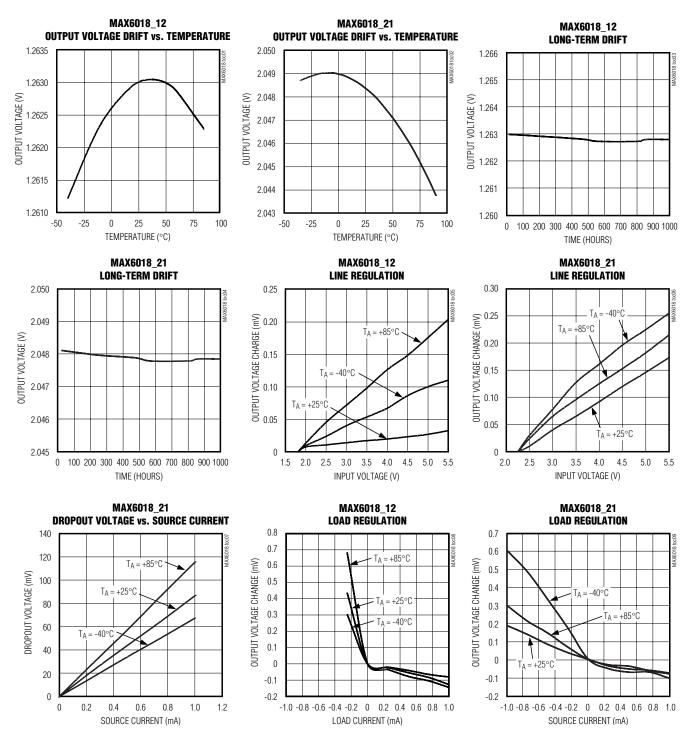
ELECTRICAL CHARACTERISTICS (MAX6018_18-1.800V)

 $(V_{IN}=2.0V;\ C_{OUT}=47nF,\ I_{OUT}=0;\ T_{A}=T_{MIN}\ to\ T_{MAX},\ unless\ otherwise\ noted.\ Typical\ values\ are\ at\ T_{A}=+25^{\circ}C.)\ (Note\ 1)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ОUТРUТ							
		MAX6018A_18 (0.2%)	T _A = +25°C	1.7964	1.8000	1.8036	V
Output Voltage	Vout	MAX6018B_18 (0.4%)	T _A = +25°C	1.7928	1.8000	1.8072	
Output Voltage Temperature Drift	TCV _{OUT}	(Note 2)			16	50	ppm/°C
Line Regulation	ΔV _{OUT} / ΔV _{IN}	$2.0V \le V_{ N } \le 5.5V$			40	275	μV/V
Load Degulation	ΔV _{OUT} /	0 ≤ I _{OUT} ≤ 1mA			90	800	μV/mA
Load Regulation	Δ lout	-1mA ≤ I _{OUT} ≤ 0			0.4	50	μV/μΑ
Dropout Voltage (Note 3)	V _{IN} - V _{OUT}	I _{OUT} = 1mA			100	200	mV
Short-Circuit Current	l	Sourcing to GND			7.5		A
Snort-Circuit Current	Isc	Sinking from V _{IN}			3		mA
Long-Term Stability	ΔV _{OUT} / Time	1000hrs at T _A = +25°C			100		ppm
Thermal Hysteresis		(Note 4)			130		ppm
DYNAMIC CHARACTERISTICS				•			
Naine Welkers		0.1Hz to 10Hz			45		µVр-р
Noise Voltage	eout	10Hz to 10kHz		160			μVRMS
Ripple Rejection		V _{IN} = 2.0V ±100mV (f = 120Hz	<u>z</u>)		85		dB
Turn-On Settling Time	t _R	Settling to 0.1%; C _{OUT} = 5nF			200		μs
Capacitive-Load Stability Range	Cout	(Note 2)		0.1		1000	nF
INPUT				•			•
Supply Voltage Range	VIN	Guaranteed by Line Regulation Test		2.0		5.5	V
Out and the Comment		T _A = +25°C			3	5	^
Quiescent Supply Current	IIN	TA = TMIN to TMAX		3	6	μΑ	
Change in Quiescent Supply Current vs. Input Voltage	$\Delta I_{IN}/\Delta V_{IN}$	$2V \le V_{\text{IN}} \le 5.5V$			0.1	0.5	μΑ/V

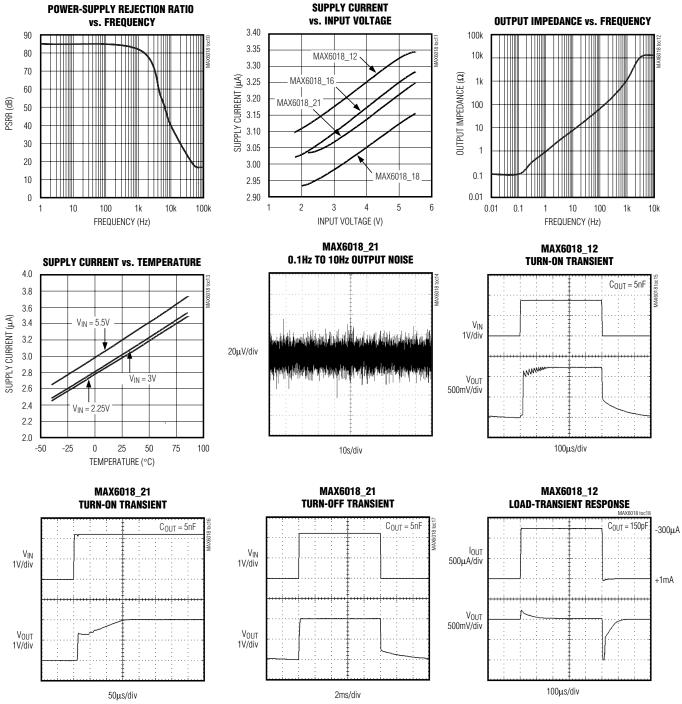
! ______ /N/XI/N

ELECTRICAL CHARACTERISTICS (MAX6018_21-2.048V)

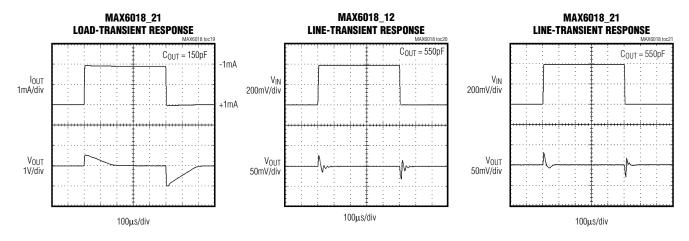

(VIN = 2.25V; COUT = 47nF, IOUT = 0; TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ОИТРИТ				•			
Outrot Waltage	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	MAX6018A_21 (0.2%)	T _A = +25°C	2.0439	2.0480	2.0521	V
Output Voltage	Vout	MAX6018B_21 (0.4%)	T _A = +25°C	2.0398	2.0480	2.0562	
Output Voltage Temperature Drift	TCV _{OUT}	(Note 2)			16	50	ppm/°C
Line Regulation	$\Delta V_{OUT}/$ ΔV_{IN}	$2.25V \le V_{ N } \le 5.5V$			45	330	μV/V
Lood Dogulation	ΔV _{OUT} /	$0 \le I_{OUT} \le 1mA$			90	1000	μV/mA
Load Regulation	Δ l $_{ m OUT}$	-1mA ≤ I _{OUT} ≤ 0			0.3	50	μV/μΑ
Dropout Voltage (Note 3)	V _{IN} - V _{OUT}	I _{OUT} = 1mA			100	200	mV
Chart Circuit Current	1	Sourcing to GND			10		
Short-Circuit Current	Isc	Sinking from V _{IN}			4		mA
Long-Term Stability	ΔV _{OUT} / Time	1000hrs at T _A = +25°C			100		ppm
Thermal Hysteresis		(Note 4)			130		ppm
DYNAMIC CHARACTERISTICS							,
Niciae Voltoge		0.1Hz to 10Hz			50		µVр-р
Noise Voltage	eout	10Hz to 10kHz		175			μVRMS
Ripple Rejection		$V_{IN} = 2.25V \pm 100 \text{mV} \text{ (f} = 12)$	OHz)		85		dB
Turn-On Settling Time	t _R	Settling to 0.1%; Cout = 5n	F		200		μs
Capacitive-Load Stability Range	Cout	(Note 2)		0.1		1000	nF
INPUT							
Supply Voltage Range	VIN	Guaranteed by Line Regulation Test		2.25		5.5	V
0: .0 .0		T _A = +25°C			3	5	
Quiescent Supply Current		TA = TMIN to TMAX			3	6	μΑ
Change in Quiescent Supply Current vs. Input Voltage	$\Delta I_{IN}/\Delta V_{IN}$	2.25V ≤ V _{IN} ≤ 5.5V			0.1	0.5	μΑ/V

- Note 1: Devices are 100% production tested at T_A = +25°C and are guaranteed by design from T_A = T_{MIN} to T_{MAX}.
- Note 2: Not production tested. Guaranteed by design.
- Note 3: Dropout voltage is the minimum input voltage at which V_{OUT} changes ≤ 0.2% from V_{OUT} at rated V_{IN} and is guaranteed by Load Regulation Test.
- Note 4: Thermal hysteresis is defined as the change in $T_A = +25^{\circ}C$ output voltage before and after temperature cycling of the device (from $T_A = T_{MIN}$ to T_{MAX}). Initial measurement at $T_A = +25^{\circ}C$ is followed by temperature cycling the device to $T_A = +85^{\circ}C$ then to $T_A = -40^{\circ}C$ and another measurement at $T_A = +25^{\circ}C$ is compared to the original measurement at $T_A = +25^{\circ}C$.


Typical Operating Characteristics

 $(T_A = +25^{\circ}C, unless otherwise noted.)$


Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Detailed Description

The MAX6018 is a precision, low-voltage, low-dropout, micropower, bandgap voltage reference in a SOT23 package. This three-terminal reference operates with an input voltage from (V_{OUT} + 200mV) to 5.5V, and is available with output voltage options of 1.2V, 1.6V, 1.8V, and 2.048V. These devices can source up to 1mA with <200mV of dropout voltage, making them attractive for use in low-voltage applications.

Applications Information

Output/Load Capacitance

These devices require a minimum of 100pF load to maintain output stability.

They remain stable for capacitive loads as high as $1\mu F$. In applications where the load or the supply can experience step changes, a larger output capacitor reduces the amount of overshoot (or undershoot) and assists the circuit's transient response. Otherwise, applications may not need more than 100pF.

Supply Current

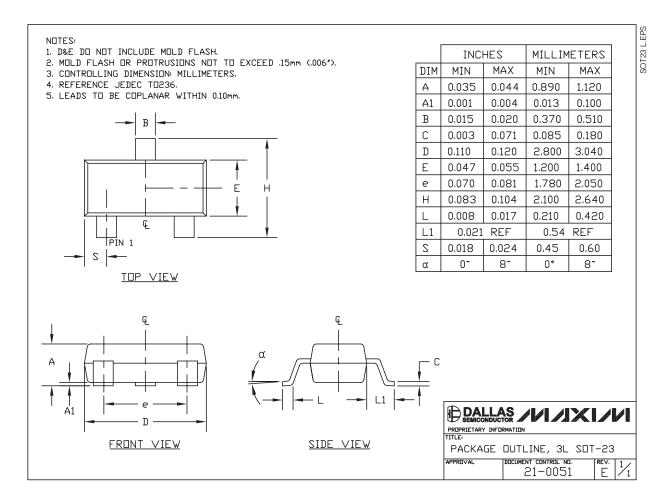
The $5\mu A$ maximum supply current varies only $0.1\mu A/V$ with the supply voltage.

When the supply voltage is below the minimum-specified input voltage (as during turn-on), the devices can draw up to 20µA beyond the nominal supply current. The input voltage source must be capable of providing this current to ensure reliable turn-on.

Pin Description

PIN	NAME	FUNCTION
1	IN	Supply Voltage Input. Bypass with a 0.1µF capacitor to ground.
2	OUT	Reference Voltage Output. Bypass with at least 100pF to ground. (See <i>Output/Load Capacitance</i> section).
3	GND	Ground

Turn-On Time


These devices typically turn on and settle to within 0.1% of their final value in 200µs. The turn-on time can increase up to 1ms with the device operating at the minimum dropout voltage and the maximum load.

_Chip Information

TRANSISTOR COUNT: 87 PROCESS: BiCMOS

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.