imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

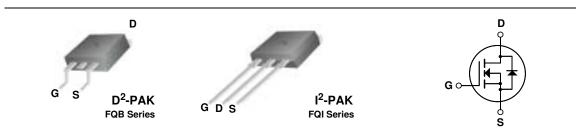
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FAIRCHILD

SEMICONDUCTOR

FQB55N06 / FQI55N06 **60V N-Channel MOSFET**


General Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for low voltage applications such as automotive, DC/ DC converters, and high efficiency switching for power management in portable and battery operated products.

Features

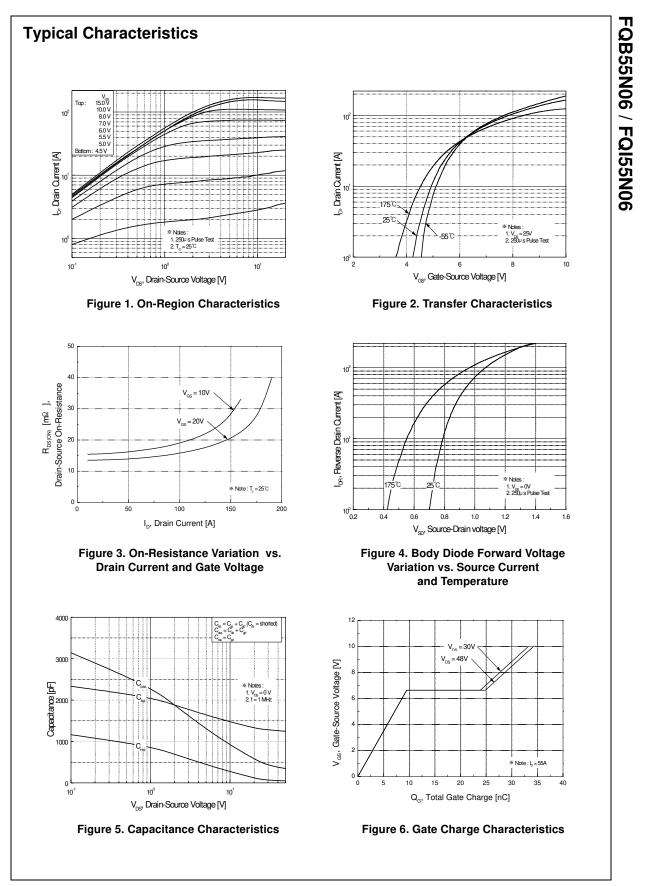
- •
- 55A, 60V, $R_{DS(on)}$ = 0.020 Ω @V_{GS} = 10 V Low gate charge (typical 35 nC) •
- Low Crss (typical 85 pF) •
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability
- 175°C maximum junction temperature rating

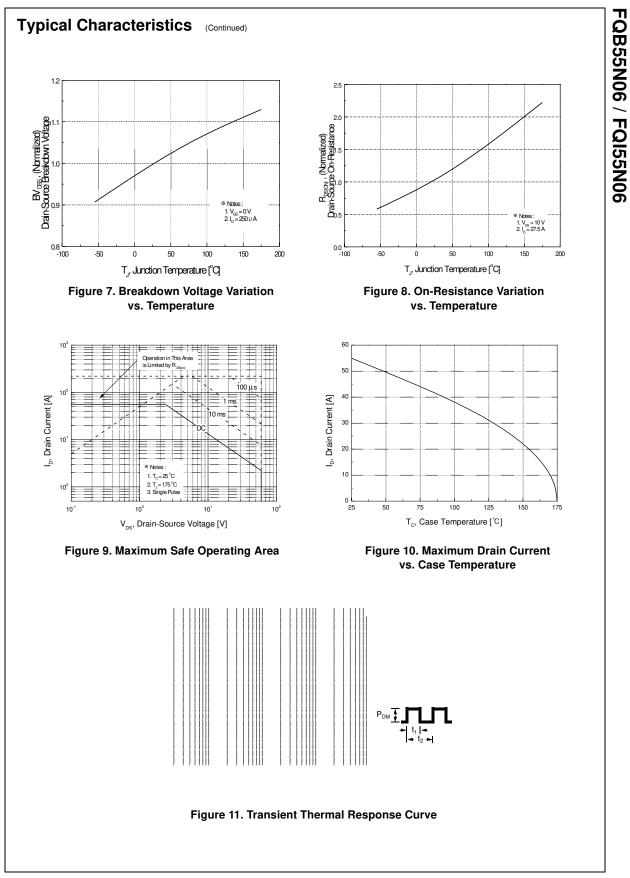
Absolute Maximum Ratings T_C = 25°C unless otherwise noted

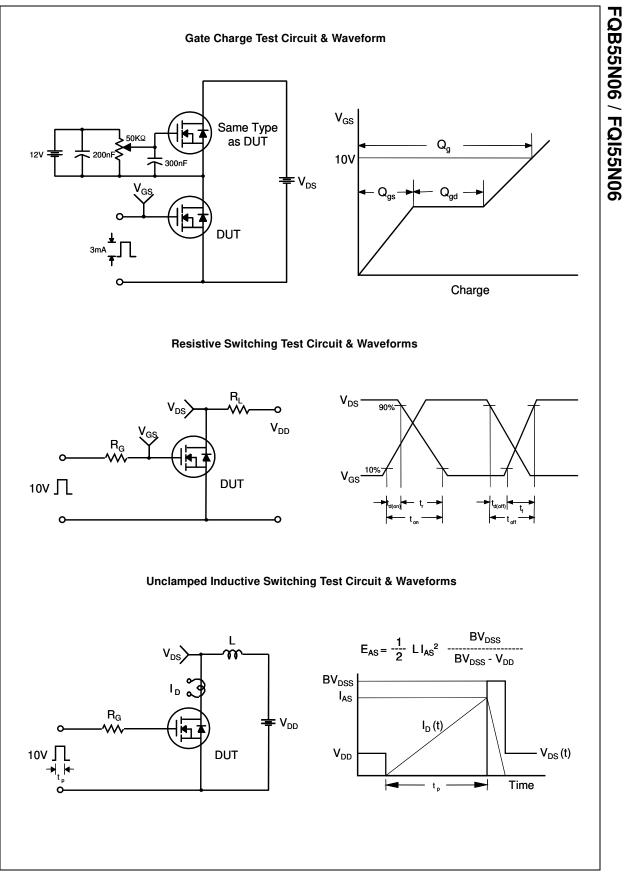
Symbol	Parameter		FQB55N06 / FQI55N06	Units
V _{DSS}	Drain-Source Voltage		60	V
I _D	Drain Current - Continuous ($T_C = 25^{\circ}C$) - Continuous ($T_C = 100^{\circ}C$)		55	Α
			38.9	Α
I _{DM}	Drain Current - Pulsed	(Note 1)	220	Α
V _{GSS}	Gate-Source Voltage		± 25	V
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		545	mJ
I _{AR}	Avalanche Current (N		55	Α
E _{AR}	Repetitive Avalanche Energy	(Note 1)	13.3	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)		7.0	V/ns
PD	Power Dissipation $(T_A = 25^{\circ}C)^*$		3.75	W
	Power Dissipation $(T_C = 25^{\circ}C)$		133	W
	- Derate above 25°C		0.89	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +175	°C
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

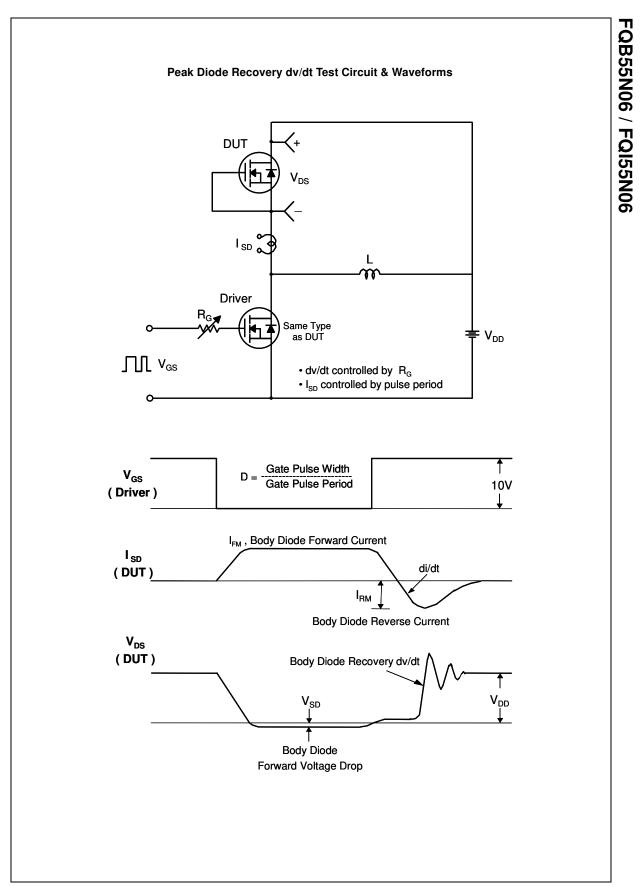
Thermal Characteristics

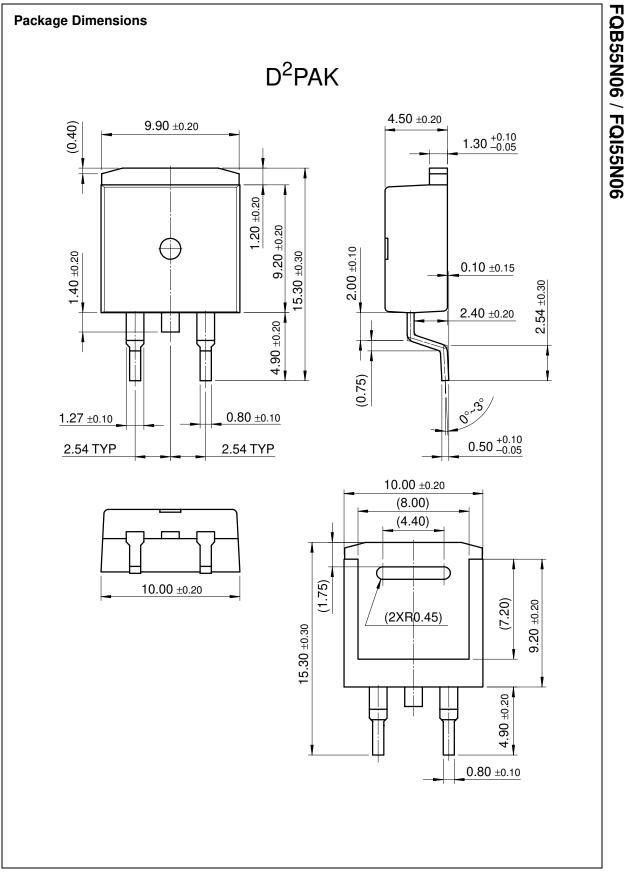
Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		1.13	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *		40	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

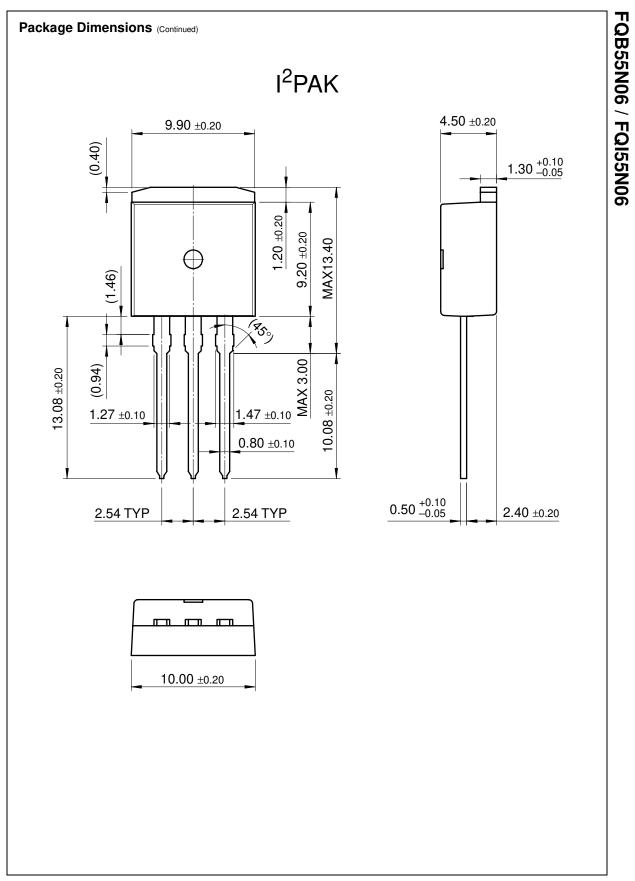

©2001 Fairchild Semiconductor Corporation


FQB55N06 / FQI55N06


May 2001


ET™


racteristics Drain-Source Breakdown Voltage Breakdown Voltage Temperature Coefficient					Units
Breakdown Voltage Temperature					
o 1	V _{GS} = 0 V, I _D = 250 μA	60			V
	$I_D = 250 \ \mu$ A, Referenced to 25°C	;	0.06		V/°C
	$V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}$			1	μA
Zero Gate Voltage Drain Current	V _{DS} = 48 V, T _C = 150°C			10	μA
Gate-Body Leakage Current, Forward	$V_{GS} = 25 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			100	nA
Gate-Body Leakage Current, Reverse	$V_{GS} = -25 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			-100	nA
ractoristics					
Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA	2.0		4.0	V
Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, \text{I}_{D} = 27.5 \text{ A}$		0.015	0.020	Ω
Forward Transconductance	$V_{DS} = 25 \text{ V}, I_D = 27.5 \text{ A}$ (Note 4		30		S
Output Capacitance Reverse Transfer Capacitance	$v_{DS} = 25 v, v_{GS} = 0 v,$ f = 1.0 MHz		490 85	640 110	pF pF pF
A A A A					
na Characteristics					
ng Characteristics			15	40	ns
Turn-On Delay Time	$V_{DD} = 30 \text{ V}, \text{ I}_{D} = 27.5 \text{ A},$		15 130	40 270	ns ns
Turn-On Delay Time Turn-On Rise Time	$V_{DD} = 30 \text{ V}, \text{ I}_{D} = 27.5 \text{ A},$ $R_{G} = 25 \Omega$		130	270	ns
Turn-On Delay Time					
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	R _G = 25 Ω (Note 4, 5		130 60	270 130	ns ns
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time	$R_{G} = 25 $ Ω (Note 4, 5 $V_{DS} = 48 $ V, $I_{D} = 55 $ A,		130 60 75	270 130 160	ns ns ns
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	R _G = 25 Ω (Note 4, 5	 	130 60 75 35	270 130 160 46	ns ns ns nC
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$R_{G} = 25 \Omega$ (Note 4, 5 V _{DS} = 48 V, I _D = 55 A, V _{GS} = 10 V (Note 4, 5	 	130 60 75 35 9.5	270 130 160 46 	ns ns ns nC nC
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	$R_G = 25 \Omega$ (Note 4, 5 V _{DS} = 48 V, I _D = 55 A, V _{GS} = 10 V (Note 4, 5)	 	130 60 75 35 9.5	270 130 160 46 	ns ns nC nC nC
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge ource Diode Characteristics an Maximum Continuous Drain-Source Dio	$R_G = 25 \Omega$ (Note 4, 5 V _{DS} = 48 V, I _D = 55 A, V _{GS} = 10 V (Note 4, 5 mod Maximum Ratings ode Forward Current		130 60 75 35 9.5 15.5	270 130 160 46 	ns ns ns nC nC
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge ource Diode Characteristics al Maximum Continuous Drain-Source Diode F	$R_G = 25 \Omega$ (Note 4, 5 V _{DS} = 48 V, I _D = 55 A, V _{GS} = 10 V (Note 4, 5 nd Maximum Ratings ode Forward Current Forward Current	 	130 60 75 35 9.5 15.5	270 130 160 46 55	ns ns nC nC nC
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge ource Diode Characteristics al Maximum Continuous Drain-Source Diode F	$R_G = 25 \Omega$ (Note 4, 5 V _{DS} = 48 V, I _D = 55 A, V _{GS} = 10 V (Note 4, 5 mod Maximum Ratings ode Forward Current	 	130 60 75 35 9.5 15.5	270 130 160 46 55 220	ns ns nC nC nC A A
	Gate-Body Leakage Current, Reverse racteristics Gate Threshold Voltage Static Drain-Source On-Resistance Forward Transconductance CCharacteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance	Gate-Body Leakage Current, Reverse $V_{GS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ racteristicsGate Threshold Voltage $V_{DS} = V_{GS}, I_D = 250 \mu \text{A}$ Static Drain-Source $V_{GS} = 10 \text{ V}, I_D = 27.5 \text{ A}$ On-Resistance $V_{DS} = 25 \text{ V}, I_D = 27.5 \text{ A}$ Forward Transconductance $V_{DS} = 25 \text{ V}, I_D = 27.5 \text{ A}$ (Note 4)c CharacteristicsInput Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ Output Capacitance $f = 1.0 \text{ MHz}$	Gate-Body Leakage Current, Reverse $V_{GS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ racteristicsGate Threshold Voltage $V_{DS} = V_{GS}, I_D = 250 \mu \text{A}$ 2.0Static Drain-Source On-Resistance $V_{GS} = 10 \text{ V}, I_D = 27.5 \text{ A}$ Forward Transconductance $V_{DS} = 25 \text{ V}, I_D = 27.5 \text{ A}$ c Characteristics Input Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$	Gate-Body Leakage Current, Reverse $V_{GS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ racteristicsGate Threshold Voltage $V_{DS} = V_{GS}, I_D = 250 \mu \text{A}$ 2.0Static Drain-Source On-Resistance $V_{GS} = 10 \text{ V}, I_D = 27.5 \text{ A}$ 0.015Forward Transconductance $V_{DS} = 25 \text{ V}, I_D = 27.5 \text{ A}$ 30c CharacteristicsInput Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ 1300Output Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ 490	Gate-Body Leakage Current, Reverse $V_{GS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ 0.00 Gate Threshold Voltage $V_{DS} = V_{GS}, I_D = 250 \mu A$ 2.0 4.0 Static Drain-Source $V_{GS} = 10 \text{ V}, I_D = 27.5 \text{ A}$ 0.015 0.020 0.020 0.015 0.020 0.020 Characteristics 30 30 30 0.015 0.020 0.020 0.020 0.020 0.015 0.020 0.020 30 30 30 30 0.015 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020



TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	OPTOPLANAR™	SuperSOT™-3
Bottomless™	FASTr™	PACMAN™	SuperSOT™-6
CoolFET™	FRFET™	POP™	SuperSOT™-8
CROSSVOLT™	GlobalOptoisolator™	PowerTrench [®]	SyncFET™
DenseTrench™	GTO™	QFET™	TinyLogic™
DOME™	HiSeC™	QS™	UHC™
EcoSPARK™	ISOPLANAR™	QT Optoelectronics™	UltraFET [®]
E ² CMOS™	LittleFET™	Quiet Series™	VCX™
EnSigna™	MicroFET™	SLIENT SWITCHER [®]	
FACT™	MICROWIRE™	SMART START™	
FACT Quiet Series™	OPTOLOGIC™	Stealth™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.