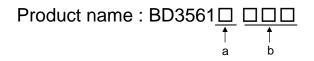


High-performance Regulator IC Series for PCs

300mA Linear Regulators for Desktop PC

BD35613HFV/EFJ/HFN, BD35615HFV/EFJ/HFN, BD35618HFV/EFJ/HFN

Description


BD3561 series is a LDO regulator with output current 300mA. The output accuracy is $\pm 1\%$ of output voltage. BD3561 series has some kinds of output voltage line-up and package line-up. Thus, it is used for the wide applications of digital appliances. Over current protection (for protecting the IC destruction by output short circuit), shutdown ON/OFF switch (for setting the circuit current 0 μ A at shutdown mode), and thermal shutdown circuit (for protecting ICs from heat destruction by over load condition) are all built in.

Features

- 1) Output current 300mA
- 2) Output voltage accuracy : $\pm 1\%$
- 3) Built-in Over Current Protection circuit (OCP)
- 4) Built-in Thermal Shut Down circuit (TSD)
- 5) With shut down switch
- 6) Rich package line-up : HSON8, HTSOP-J8, HVSOF6

●Line-up

Product name	8.0V	5.0V	3.3V	Package
BD3561 HFN	0	0	0	HSON8
BD3561 EFJ	0	0	0	HTSOP-J8
BD3561 HFV	0	0	0	HVSOF6

Symbol				
	а		b	
1□	Output Voltage (V)		Package	
18	8.0V typ.	HFN	HSON8	
15	5.0V typ.	EFJ	HTSOP-J8	
13	3.3V typ.	HFV	HVSOF6	

Oct. 2008

●Absolute maximum ratings (Ta=25°C)

Paramet	er	Symbol	Limits	Unit
Power Supply Voltag	e	Vcc	15.0 * ¹	V
EN Voltage		VEN	15.0	V
	HSON8		1350 ^{*2}	
Power Dissipation	HTSOP-J8	Pd	2110 ^{*3}	mW
	HVSOF6		850.0 *4	
Operating Temperatu	ire Range	Topr	-10~+100	°C
Storage Temperature	Range	Tstg	-55~+150	°C
Junction Temperature	Э	Tjmax	+150	°C

*1 Not to exceed Pd

*2 Reduced by 10.8mW for each increase in Ta of 1°C $\,$ over 25°C.

(when mounted on a board 70.0mm × 70mm × 1.6mm Glass-epoxy PCB. (copper foil area:100mm²))

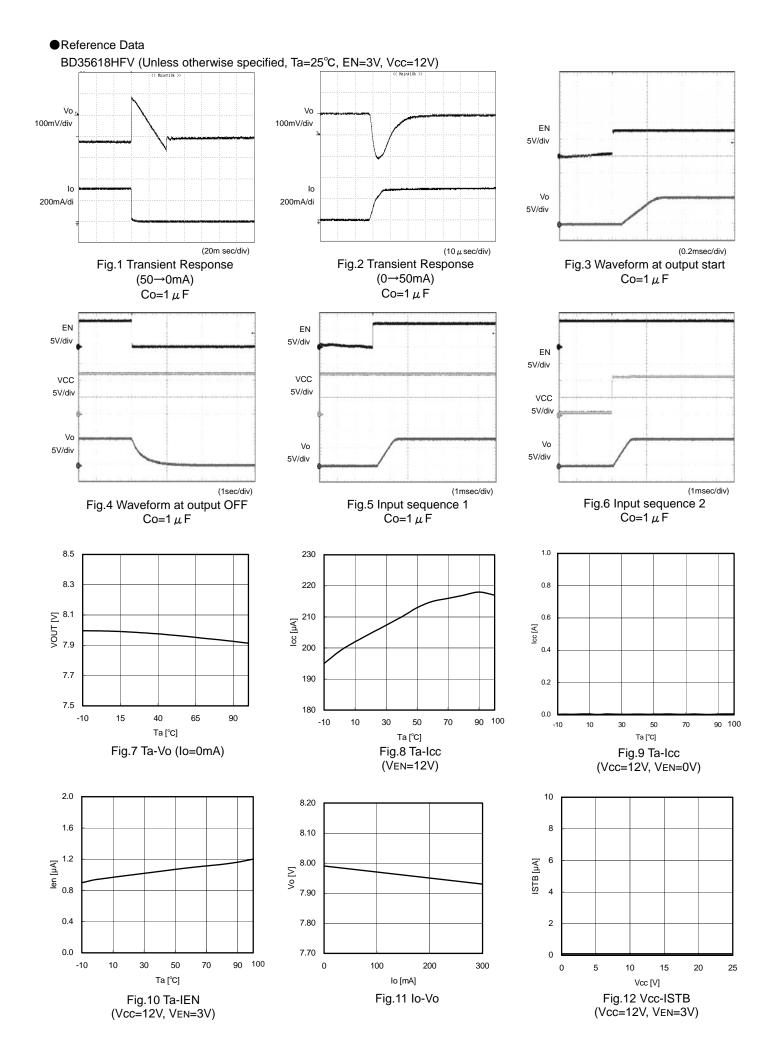
*3 Reduced by 16.9mW for each increase in Ta of 1°C over 25°C.

(when mounted on a board 70.0mm × 70mm × 1.6mm Glass-epoxy PCB, 2 layer)

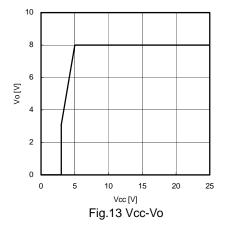
*4 Reduced by 6.8mW for each increase in Ta of 1°C over 25°C.

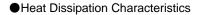
(when mounted on a board 70.0mm × 70mm × 1.6mm Glass-epoxy PCB. (copper foil area:100mm²))

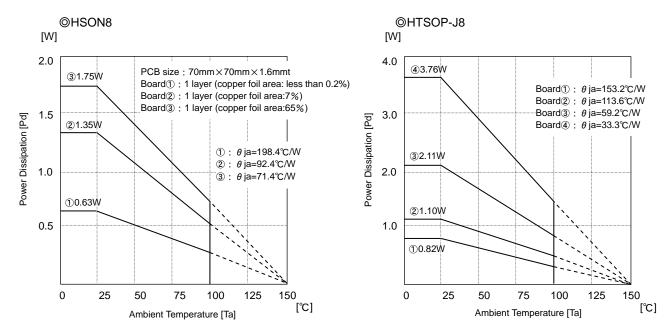
●Operating Conditions (Ta=25°C)

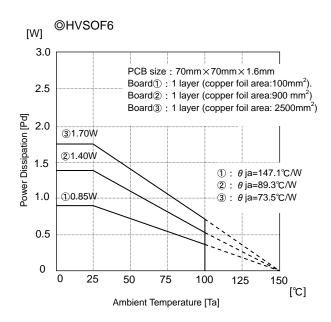

Parameter	Symbol	Min.	Max.	Unit
Input Power Supply Voltage	VCC	Vo+1.8	14.0	V
EN Voltage	VEN	-	14.0	V
Output Current	lo	-	300	mA

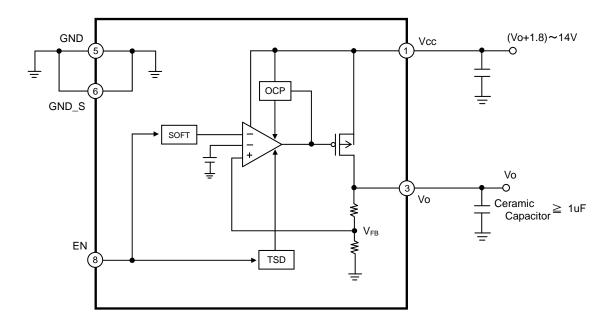
 \star This product should not be used in a radioactive environment.

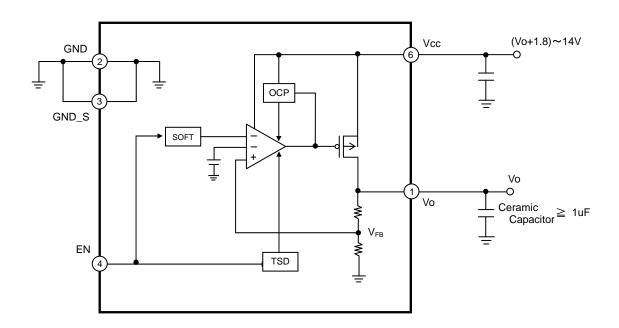

●ELECTRICAL CHARACTERISTICS


BD3561 HFN/EFJ/HFV (Unless otherwise noted, Ta=25°C, EN=3V, Vcc=12V)

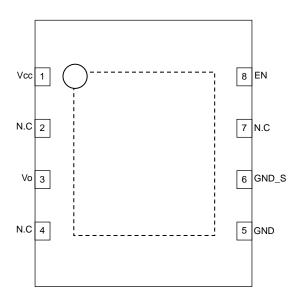

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Output Voltage 1	Vo1	Vo(T) ×	Vo(T)	Vo(T) ×	V	lo=0mA
		0.99		1.01		
Output Voltage 2	Vo2	$Vo(T) \times$	Vo(T)	$Vo(T) \times$	V	Tj=0 to 100°C
Output Voltage 2	V02	0.985	VO(1)	1.015	v	lo=0mA→300mA
Circuit Current at shutdown mode	Isd	-	0	5	μA	EN=0V, @OFF mode
Bias Current	lcc	-	200	300	μA	
Output Current Ability	lo	300	-	-	mA	
Line Degulation	Dogl		25	50	MV	Vcc=(Vo+1.8V)→14.0V,
Line Regulation	Reg.l	-	25	50	IVI V	lo=300mA
EN Low Voltage	VEN (Low)	0	-	0.8	V	
EN High Voltage	Ven (High)	2.4	-	14.0	V	
EN Bias Current	IEN	0.5	1.0	5.0	μA	



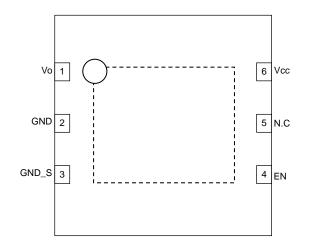

Reference Data
 BD35618HFV (Unless otherwise specified, Ta=25°C, EN=3V, Vcc=12V)

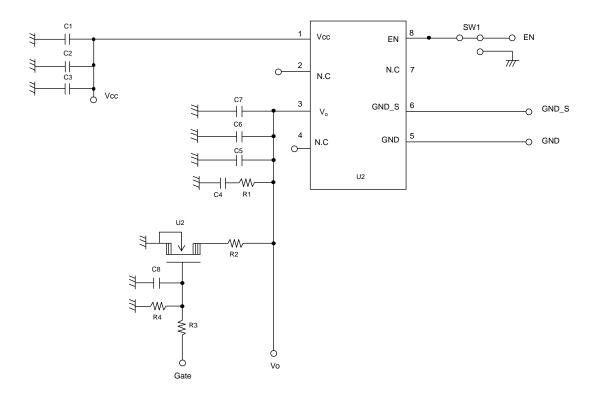


(HVSOF6)


●Pin Function Table (HSON8, HTSOP-J8)

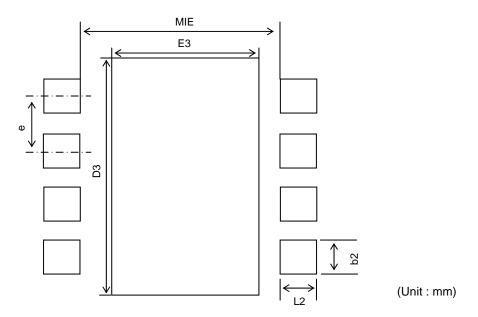
Pin No.	Pin name	Pin Function
1	Vcc	Input Voltage Pin
2	N.C.	Open
3	Vo	Output Voltage Pin
4	N.C.	Open
5	GND	GND Pin
6	GND_S	GND Sense Pin
7	N.C.	Open
8	EN	Enable Pin


(HVSOF6)


Pin No.	Pin name	Pin Function
1	Vo	Output Voltage Pin
2	GND	GND Pin
3	GND_S	GND Sense Pin
4	EN	Enable Pin
5	N.C	Open
6	Vcc	Input Voltage Pin

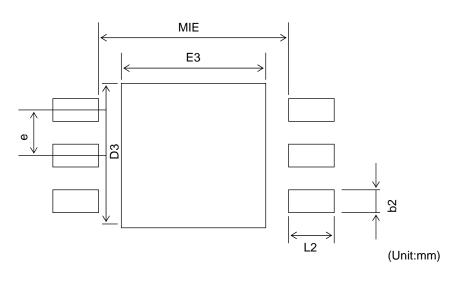
●Pin Layout (HSON8, HTSOP-J8)

(HVSOF6)



●Evaluation Board Parts List

Designation	Value	Part No.	Company
R1	-	-	-
R2	-	-	-
R3	-	-	-
R4	-	-	-
C1	-	-	-
C2	1uF	CM105B105K10A	KYOCERA
C3	-	-	-
C4	-	-	-
C5	-	-	-
C6	1uF	CM105B105K16A	KYOCERA
C7	-	-	-
C8	-	-	-
U1	-	BD3561XHFV	ROHM
U2	-	-	-


©HSON8

ſ	Lead pitch	landing pitch	landing length	landing pitc
	е	MIE	≧l2	b2
Γ	0.65	2.50	0.40	0.35
Γ	central pad length	central pad pitch		
	D3	E3		
Γ	2.90	1.90		

*It is recommended to design suitable for the actual application.

©HVSOF6

Lead pitch	landing pitch	landing length	landing pitch
е	MIE	12	b2
0.50	3.00	0.55	0.25

central pad length	central pad pitch
D3	E3
1.60	2.60

*It is recommended to design suitable for the actual application.

Operation Notes

1. Absolute maximum ratings

An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down the devices, thus making impossible to identify breaking mode, such as a short circuit or an open circuit. If any over rated values will expect to exceed the absolute maximum ratings, consider adding circuit protection devices, such as fuses.

2. Connecting the power supply connector backward

Connecting of the power supply in reverse polarity can damage IC. Take precautions when connecting the power supply lines. An external direction diode can be added.

3. Power supply lines

Design PCB layout pattern to provide low impedance GND and supply lines. To obtain a low noise ground and supply line, separate the ground section and supply lines of the digital and analog blocks. Furthermore, for all power supply terminals to ICs, connect a capacitor between the power supply and the GND terminal. When applying electrolytic capacitors in the circuit, not that capacitance characteristic values are reduced at low temperatures.

4. GND voltage

The potential of GND pin must be minimum potential in all operating conditions.

5. Thermal design

Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.

6. Inter-pin shorts and mounting errors

Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any connection error or if pins are shorted together.

7. Actions in strong electromagnetic field

Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to malfunction.

8. ASO

When using the IC, set the output transistor so that it does not exceed absolute maximum ratings or ASO.

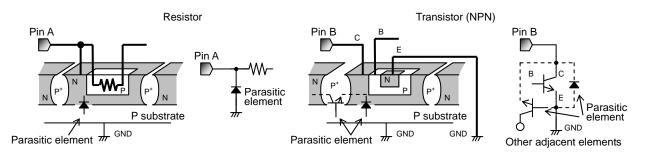
9. Thermal shutdown circuit

The IC incorporates a built-in thermal shutdown circuit (TSD circuit). The thermal shutdown circuit (TSD circuit) is designed only to shut the IC off to prevent thermal runaway. It is not designed to protect the IC or guarantee its operation. Do not continue to use the IC after operating this circuit or use the IC in an environment where the operation of this circuit is assumed.

	TSD on temperature [°C] (typ.)	Hysteresis temperature [°C] (typ.)
BD3561XHFN/EFJ/HFV	175	15

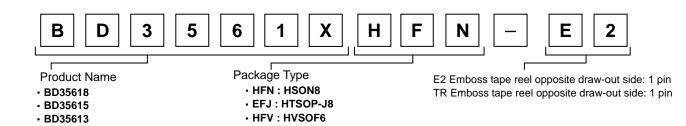
10. Testing on application boards

When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress. Always discharge capacitors after each process or step. Always turn the IC's power supply off before connecting it to or removing it from a jig or fixture during the inspection process. Ground the IC during assembly steps as an antistatic measure. Use similar precaution when transporting or storing the IC.

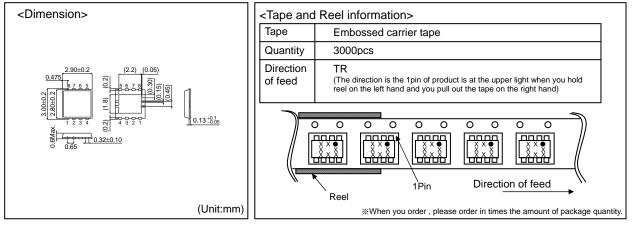

11. Regarding input pin of the IC

This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N junctions are formed at the intersection of these P layers with the N layers of other elements, creating a parasitic diode or transistor. For example, the relation between each potential is as follows:

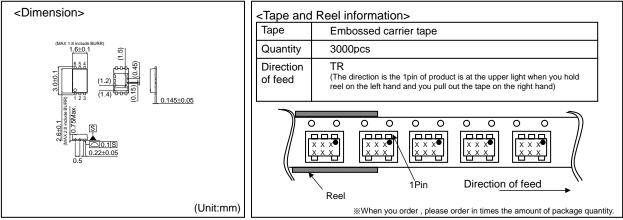
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.

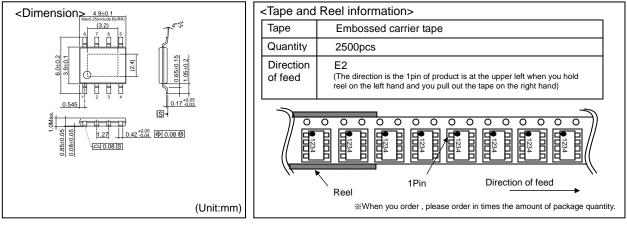

When GND > Pin B, the P-N junction operates as a parasitic transistor.

Parasitic diodes can occur inevitable in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Accordingly, methods by which parasitic diodes operate, such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin, should not be used.



12. Ground Wiring Pattern.


When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns, placing a single ground point at the ground potential of application so that the pattern wiring resistance and voltage variations caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change the GND wiring pattern of any external components, either.


HSON8

HVSOF6

HTSOP-J8

•	The	contents	described	herein	are	correct	as	of	October,	2008	
---	-----	----------	-----------	--------	-----	---------	----	----	----------	------	--

The contents described herein are subject to change without notice. For updates of the latest information, please contact and confirm with ROHM CO, LTD.
Any part of this application note must not be duplicated or copied without our permission.
Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding

upon circuit constants in the set.

Any data including, but not limited to application circuit diagrams and information, described herein, are intended only as illustrations of such devices and not as the specifications for such devices. BOHM COLUTD, disclaims any

warranty that any use of such devices shall be free from infingement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such

infringement, or arising from or connected with or related to the use of such devices.

• Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer.

The products described herein utilize silicon as the main material.
 The products described herein are not designed to be X ray proof.

The products listed in this catalog are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Contact us for further information about the products.

Excellence in Electronics

ROHM CO., LTD.

21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan TEL: +81-75-311-2121 FAX: +81-75-315-0172 URL http://www.rohm.com

Published by

KTC LSI Deve	lopment H	leadquarters
LSI Business	Pomotion	Group

San Diego	TEL: +1-858-625-3630	FAX: +1-858-625-3670
Atlanta	TEL: +1-770-754-5972	FAX: +1-770-754-0691
Boston	TEL: +1-978-371-0382	FAX: +1-928-438-7164
Chicago	TEL: +1-847-368-1006	FAX: +1-847-368-1008
Dallas	TEL: +1-469-287-5366	FAX: +1-469-362-7973
Denver	TEL: +1-303-708-0908	FAX: +1-303-708-0858
Detroit	TEL: +1-248-348-9920	FAX: +1-248-348-9942
Nashville	TEL: +1-615-620-6700	FAX: +1-615-620-6702
Mexico	TEL: +52-33-3123-2001	FAX: +52-33-3123-2002
Düsseldorf	TEL: +49-2154-9210	FAX: +49-2154-921400
Munich	TEL: +49-8999-216168	FAX: +49-8999-216176
Stuttgart	TEL: +49-711-7272-370	FAX: +49-711-7272-3720
France	TEL: +33-1-5697-3060	FAX: +33-1-5697-3080
United Kingdom	TEL: +44-1-908-306700	FAX: +44-1-908-235788
Denmark	TEL: +45-3694-4739	FAX: +45-3694-4789
Espoo	TEL: +358-9725-54491	FAX: +358-9-7255-4499
Salo	TEL: +358-2-7332234	FAX: +358-2-7332237
Oulu	TEL: +358-8-5372930	FAX: +358-8-5372931
Barcelona	TEL: +34-9375-24320	FAX: +34-9375-24410
Hungary	TEL: +36-1-4719338	FAX: +36-1-4719339
Poland	TEL: +48-22-5757213	FAX: +48-22-5757001
Russia	TEL: +7-495-739-41-74	FAX: +7-495-739-41-74
Seoul	TEL: +82-2-8182-700	FAX: +82-2-8182-715
Masan	TEL: +82-55-240-6234	FAX: +82-55-240-6236
Dalian	TEL: +86-411-8230-8549	FAX: +86-411-8230-8537
Beijing	TEL: +86-10-8525-2483	FAX: +86-10-8525-2489

Tianjin	- 11
Shanghai	TI
Hangzhou	TI
Nanjing	T
Ningbo	T
Qingdao	T
Suzhou	T
Wuxi	TI
Shenzhen	T
Dongguan	T
Fuzhou	TI
Guangzhou	TI
Huizhou	TI
Xiamen	T
Zhuhai	T
Hong Kong	T
Taipei	T
Kaohsiung	TI
Singapore	T
Philippines	T
Thailand	TI
Kuala Lumpur	T
Penang	T
Kyoto	T
Yokohama	T

TEL: +86-22-23029181	FAX: +86-22-23029183
TEL: +86-21-6279-2727	FAX: +86-21-6247-2066
TEL: +86-571-87658072	FAX: +86-571-87658071
TEL: +86-25-8689-0015	FAX: +86-25-8689-0393
TEL: +86-574-87654201	FAX: +86-574-87654208
TEL: +86-532-5779-312	FAX:+86-532-5779-653
TEL: +86-512-6807-1300	FAX: +86-512-6807-2300
TEL: +86-510-82702693	FAX: +86-510-82702992
TEL: +86-755-8307-3008	FAX: +86-755-8307-3003
TEL: +86-769-8393-3320	FAX: +86-769-8398-4140
TEL: +86-591-8801-8698	FAX: +86-591-8801-8690
TEL: +86-20-3878-8100	FAX: +86-20-3825-5965
TEL:+86-752-205-1054	FAX: +86-752-205-1059
TEL: +86-592-238-5705	FAX: +86-592-239-8380
TEL: +86-756-3232-480	FAX: +86-756-3232-460
TEL: +852-2-740-6262	FAX: +852-2-375-8971
TEL: +886-2-2500-6956	FAX: +886-2-2503-2869
TEL: +886-7-237-0881	FAX: +886-7-238-7332
TEL: +65-6332-2322	FAX: +65-6332-5662
TEL: +63-2-807-6872	FAX: +63-2-809-1422
TEL: +66-2-254-4890	FAX: +66-2-256-6334
TEL: +60-3-7958-8355	FAX: +60-3-7958-8377
TEL: +60-4-2286453	FAX: +60-4-2286452
TEL: +81-75-365-1218	FAX: +81-75-365-1228
TEL: +81-45-476-2290	FAX: +81-45-476-2295