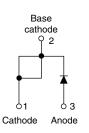
imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us


Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Schottky Rectifier, 6 A

PRODUCT SUMMARY							
Package	TO-220AC						
I _{F(AV)}	6 A						
V _R	35 V, 40 V, 45 V						
V _F at I _F	0.53 V						
I _{RM} max.	7 mA at 125 °C						
T _J max.	175 °C						
Diode variation	Single die						
E _{AS}	8 mJ						

FEATURES

- 175 °C T_J operation
- High frequency operation
- Low forward voltage drop
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance

- RoHS COMPLIANT HALOGEN FREE
- Guard ring for enhanced ruggedness and long term reliability
- Compliant to RoHS Directive 2002/95/EC
- Designed and qualified according to JEDEC-JESD47
- Halogen-free according to IEC 61249-2-21 definition (-N3 only)

DESCRIPTION

The VS-6TQ... Schottky rectifier series has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 175 °C junction temperature. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS								
SYMBOL	CHARACTERISTICS	VALUES	UNITS					
I _{F(AV)}	Rectangular waveform	6	A					
V _{RRM}	Range	35 to 45	V					
I _{FSM}	t _p = 5 μs sine	690	A					
V _F	6 A _{pk} , T _J = 125 °C	0.53	V					
TJ	Range	- 55 to 175	°C					

VOLTAGE RATINGS										
PARAMETER	SYMBOL	VS- 6TQ035PbF	VS- 6TQ035-N3	VS- 6TQ040PbF	VS- 6TQ040-N3	VS- 6TQ045PbF	VS- 6TQ045-N3	UNITS		
Maximum DC reverse voltage	V _R	35	35	40	40	45	45	V		
Maximum working peak reverse voltage	V _{RWM}									

ABSOLUTE MAXIMUM RATINGS									
PARAMETER	SYMBOL	TEST COND	VALUES	UNITS					
Maximum average forward current See fig. 5	I _{F(AV)}	50 % duty cycle at T_{C} = 164 °C	6	А					
Maximum peak one cycle non-repetitive surge current	Irou	5 μs sine or 3 μs rect. pulse	Following any rated load condition and with rated	690	А				
See fig. 7	IFSM	10 ms sine or 6 ms rect. pulse	V_{RRM} applied	140	~				
Non-repetitive avalanche energy	E _{AS}	$T_J = 25 \ ^{\circ}C, \ I_{AS} = 1.20 \ A, \ L = 11$	8	mJ					
Repetitive avalanche current	I _{AR}	Current decaying linearly to zer Frequency limited by T _J maxim	1.20	А					

Revision: 29-Aug-11

Document Number: 94252

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

ELECTRICAL SPECIFICATIONS								
PARAMETER	SYMBOL	TEST CO	VALUES	UNITS				
Maximum forward voltage drop See fig. 1		6 A	T.I = 25 °C	0.60	V			
	V _{EM} ⁽¹⁾	12 A	1j=25 C	0.73				
	VFM	6 A	T.I = 125 °C	0.53				
		12 A	1j=125 C	0.64				
Maximum reverse leakage current	I _{RM} ⁽¹⁾	T _J = 25 °C	$V_{\rm B}$ = Rated $V_{\rm B}$	0.8	mA			
See fig. 2		T _J = 125 °C	$v_{\rm R} = naleu v_{\rm R}$	7				
Threshold voltage	V _{F(TO)}			0.35	V			
Forward slope resistance	r _t	$T_J = T_J$ maximum		18.23	mΩ			
Maximum junction capacitance	CT	$V_{R} = 5 V_{DC}$ (test signal range	400	pF				
Typical series inductance	L _S	Measured lead to lead 5 m	8	nH				
Maximum voltage rate of change	dV/dt	Rated V _R	10 000	V/µs				

Note

 $^{(1)}\,$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS									
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS					
Maximum junction and storage temperature range	T _J , T _{Stg}		- 55 to 175	°C					
Maximum thermal resistance, junction to case	R _{thJC}	DC operation See fig. 4	2.2	°C/W					
Typical thermal resistance, case to heatsink	R _{thCS}	Mounting surface, smooth and greased	0.50	C/ VV					
Approvimate weight			2	g					
Approximate weight			0.07	oz.					
Mounting torque			6 (5)	kgf · cm					
Mounting torque maximum			12 (10)	$(lbf \cdot in)$					
			6TQ035						
Marking device		Case style TO-220AC	6TQ040						
			6TQ045						

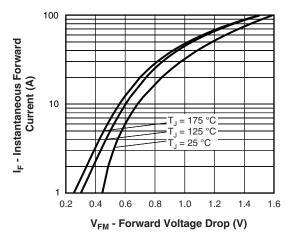


Fig. 1 - Maximum Forward Voltage Drop Characteristics

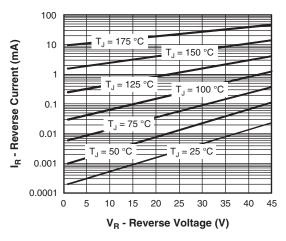
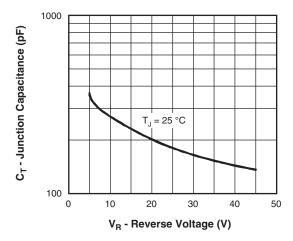
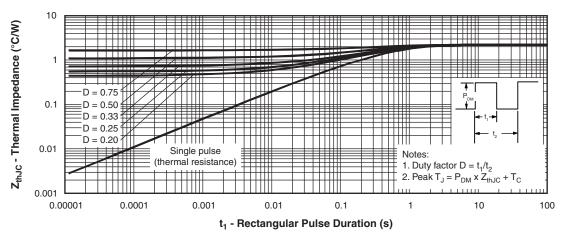
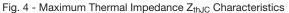
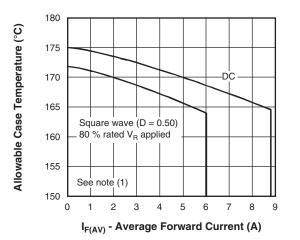
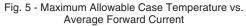
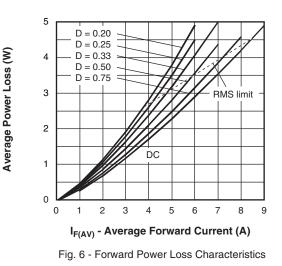


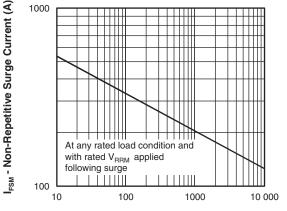
Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage






Revision: 29-Aug-11 3 Document Number: 94252 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

t_p - Square Wave Pulse Duration (µs)

Fig. 7 - Maximum Non-Repetitive Surge Current

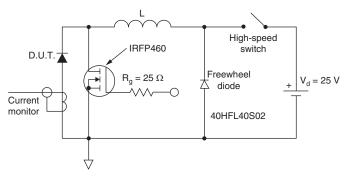


Fig. 8 - Unclamped Inductive Test Circuit

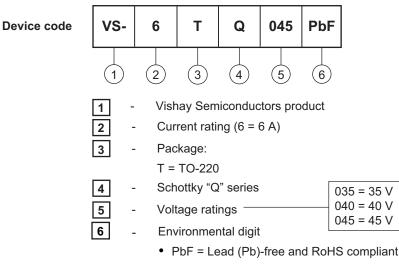
Note

⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$;

Pd = Forward power loss = $I_{F(AV)} \times V_{FM}$ at $(I_{F(AV)}/D)$ (see fig. 6);

 Pd_{REV} = Inverse power loss = $V_{R1} \times I_R (1 - D)$; $I_R \text{ at } V_{R1}$ = 80 % rated V_R

Revision: 29-Aug-11


4

Document Number: 94252

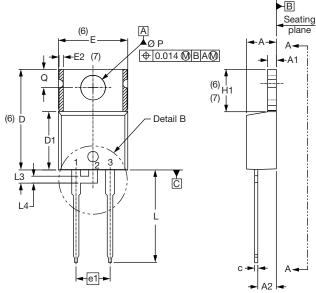
For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

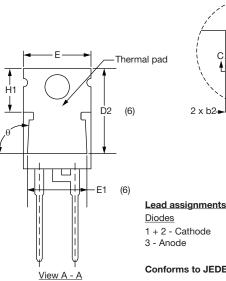
ORDERING INFORMATION TABLE

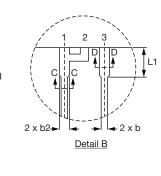
• -N3 = Halogen-free, RoHS compliant, and totally lead (Pb)-free

ORDERING INFORMATION (Example)									
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION						
VS-6TQ035PbF	50	1000	Antistatic plastic tube						
VS-6TQ035-N3	50	1000	Antistatic plastic tube						
VS-6TQ040PbF	50	1000	Antistatic plastic tube						
VS-6TQ040-N3	50	1000	Antistatic plastic tube						
VS-6TQ045PbF	50	1000	Antistatic plastic tube						
VS-6TQ045-N3	50	1000	Antistatic plastic tube						

LINKS TO RELATED DOCUMENTS						
Dimensions		www.vishay.com/doc?95221				
Part marking information	TO-220AC PbF	www.vishay.com/doc?95224				
	TO-220AC -N3	www.vishay.com/doc?95068				




TO-220AC


plane

A-

DIMENSIONS in millimeters and inches

Diodes 1 + 2 - Cathode 3 - Anode

Conforms to JEDEC outline TO-220AC

SYMBOL	MILLIM	IETERS	INC	HES	NOTES	NOTES	SYMBOL -	MILLIN	IETERS	INCHES		NOTES
STNIDOL	MIN.	MAX.	MIN.	MAX.	NOTES			MIN.	MAX.	MIN.	MAX.	NOTES
А	4.25	4.65	0.167	0.183			E1	6.86	8.89	0.270	0.350	6
A1	1.14	1.40	0.045	0.055			E2	-	0.76	-	0.030	7
A2	2.56	2.92	0.101	0.115			е	2.41	2.67	0.095	0.105	
b	0.69	1.01	0.027	0.040			e1	4.88	5.28	0.192	0.208	
b1	0.38	0.97	0.015	0.038	4		H1	6.09	6.48	0.240	0.255	6, 7
b2	1.20	1.73	0.047	0.068			L	13.52	14.02	0.532	0.552	
b3	1.14	1.73	0.045	0.068	4		L1	3.32	3.82	0.131	0.150	2
с	0.36	0.61	0.014	0.024			L3	1.78	2.13	0.070	0.084	
c1	0.36	0.56	0.014	0.022	4		L4	0.76	1.27	0.030	0.050	2
D	14.85	15.25	0.585	0.600	3		ØР	3.54	3.73	0.139	0.147	
D1	8.38	9.02	0.330	0.355			Q	2.60	3.00	0.102	0.118	
D2	11.68	12.88	0.460	0.507	6		θ	90° t	o 93°	90° t	o 93°	
E	10.11	10.51	0.398	0.414	3, 6							

Notes

⁽¹⁾ Dimensioning and tolerancing as per ASME Y14.5M-1994

- ⁽²⁾ Lead dimension and finish uncontrolled in L1
- (3) Dimension D, D1 and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- (4) Dimension b1, b3 and c1 apply to base metal only
- ⁽⁵⁾ Controlling dimension: inches
- ⁽⁶⁾ Thermal pad contour optional within dimensions E, H1, D2 and E1
- ⁽⁷⁾ Dimension E2 x H1 define a zone where stamping and singulation irregularities are allowed
- ⁽⁸⁾ Outline conforms to JEDEC TO-220, D2 (minimum) where dimensions are derived from the actual package outline

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.