imall

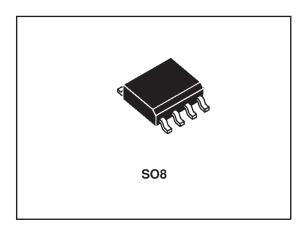
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

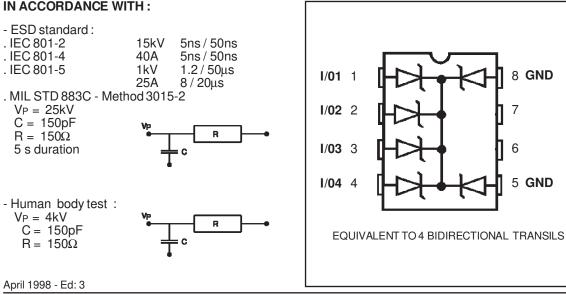
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



ITA6V5C1 / ITA10C1 ITA18C1 / ITA25C1

MONOLITHIC TRANSIL® ARRAY FOR DATA LINE PROTECTION

FEATURES


- HIGH SURGE CAPABILITY TRANSIL ARRAY $I_{PP} = 40 \text{ A} 8/20 \mu \text{s}$
- UP TO 5 BIDIRECTIONAL TRANSIL FUNC-TIONS
- BREAK DOWN VOLTAGE AND MAXIMUM DIF-FERENTIAL VOLTAGE BETWEEN TWO **INPUT PINS:** ITA6V5 = 6.5 V ITA10 = 10 V ITA18 = 18 V ITA25 = 25 V
- LOW CLAMPING FACTOR (V_{CL} / V_{BR}) AT HIGH CURRENT LEVEL
- LOW LEAKAGE CURRENT
- LOW INPUT CAPACITANCE

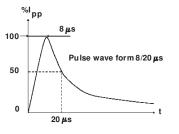
FUNCTIONAL DIAGRAM

DESCRIPTION

This is a specific transil array for RS232, RS423 interface protection developed in monolithic chip form in order to provide a high surge capability and a low clamping voltage

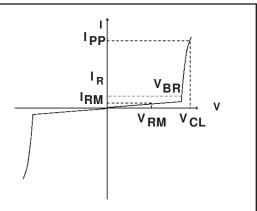
IN ACCORDANCE WITH:

1/5


ITA6V5C1/ITA10C1 / ITA18C1 / ITA25C1

Symbol	Parameter	Value	Unit	
I _{PP}	Peak pulse current for 8/20 µsexponential pulse	Seenote	40	A
l ² t	Wire I ² t value	See note	0.6	A ² s
T _{stg} Tj	Storage and Junction Temperature Range		- 55 to + 150 125	O° O°

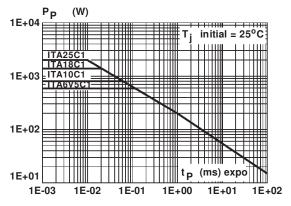
ABSOLUTE RATINGS (limiting values) ($0^{\circ}C \le Tamb \le 70^{\circ}C$)


Note :

For surges greater than the maximum value specified, the input/output will present first a short circuit to the common bus line and after an open circuit caused by the wire.

ELECTRICAL CHARACTERISTICS

Symbol	Parameter
I _{RM}	Leakage Current @ V _{RM}
V _{RM}	Stand-off Voltage
V _{BR}	Breakdown Voltage
V _{CL}	Clamping Voltage
IPP	Surge Current
С	Input Capacitance



	I _{RM} @	VRM	V _{BR}	@ I _R	V _{CL} @) IPP	V _{CL}	IPP	C 1	C 2	αΤ
Types	max		min			8/20µs	max	8/20μs	max	max	max
			Note 1		Note 1		Note 1		Note 2	Note 3	
	μA	V	V	mA	V	Α	V	Α	pF	pF	10 ⁻⁴ /°C
ITA6V5C1	10	5	6.5	1	10	10	12	25	750	550	4
ITA10C1	10	8	10	1	15	10	19	25	570	260	8
ITA18C1	4	15	18	1	25	10	28	25	350	180	9
ITA25C1	4	24	25	1	33	10	38	25	300	100	12

All parameters tested at 25°C, except where indicated. **Note 1:** Between I/O pin and ground. **Note 2:** Between two input Pins at 0 V Bias. **Note 3:** Between two input Pins at V_{RM} .

Fig.1 : Typical Peak pulse power versus exponential pulse duration.

Fig.3: Peak current I_{DC} inducing open circuit of the wire for one input/output versus pulse duration (typical values).

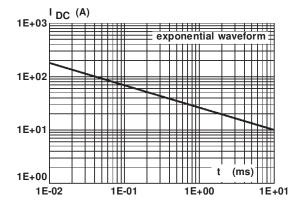
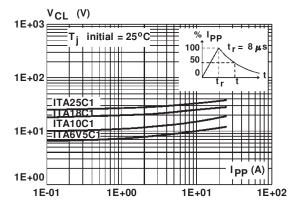
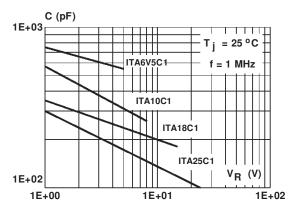
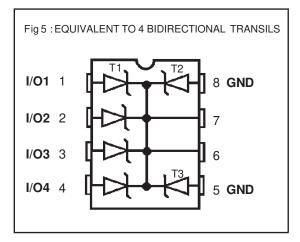




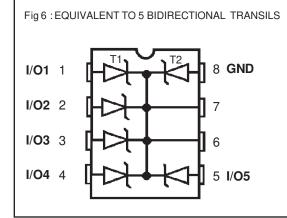
Fig.2 : Clamping voltage versus peak pulse current exponential waveform $8/20 \, \mu s$.

Fig.4: Junction capacitance versus reverse applied voltage for one input/output (typical values).

Note :

The curve of the figure 2 is specified for a junction temperature of 25°C before surge.


ITA6V5C1/ITA10C1 / ITA18C1 / ITA25C1


APPLICATION NOTICE

Types	Maximum differential voltage between two input pins at 25°C			
	V			
ITA6V5C1	6.5			
ITA10C1	10			
ITA18C1	18			
ITA25C1	25			

INSTRUCTION GUIDE

This monolithic Transil Array is based on 6 Unidirectional Transils with a common cathode and can be configurated to offer 4 or 5 bidirectional functions, according to the following customer application.

UTILIZATION AS A BIDIRECTIONAL TRANSIL ARRAY WITH 4 I/Os.

The main application of this device is to be configurated as a 4, bidirectional Transil Array as per the Pin-out of Fig 5.

Pins 5 and 8 are connected to ground. INPUTS/OUTPUTS are from Pin 1 to Pin 4.

<u>Note</u> : The bidirectional function is made with 2 unidirectional Transils. One (T1) is connected to the INPUT/OUTPUT, the other one (T2) is connected to the ground (see Fig 5).

Ground is connected via 2 diodes T2 and T3. This allows to withstand 2 specified surges on 2 different lines at the same time.

UTILIZATION AS A BIDIRECTIONAL TRANSIL ARRAY WITH 5 I/Os.

The ITAxxC1 can be used as a 5 bidirectional Transil Array.

Ground can be connected to any pin (except 6 and 7).

The other pins are used as INPUTS and OUT-PUTS.

The bidirectional function is made with 2 unidirectional Transils T1 and T2. One example with ground on Pin 8 is shown in Fig 6.

This configuration allows to withstand only one specified surge at the same time.

ITA6V5C1 / ITA10C1 / ITA18C1 / ITA25C1

ORDER CODE ITA 25 C 1 PACKAGE 1=S08 PLASTIC VBR min COMMON GROUND

MARKING

ТҮРЕ	ITA6V5C1	ITA10C1	ITA18C1	ITA25C1		
MARKING	6V5C1	10C1	18C1	25C1		

PACKAGE MECHANICAL DATA

SO8

		REF.	DIMENSIONS					
			Millimetres			Inches		
			Min.	Тур.	Max.	Min.	Тур.	Max.
		Α			1.75			0.069
		a1	0.1		0.25	0.004		0.010
N		a2			1.65			0.065
		b	0.35		0.48	0.014		0.019
ן ההיר שו		b1	0.19		0.25	0.007		0.010
8 5		С		0.50			0.020	
F		c1	45° (typ)					
		D	4.8		5.0	0.189		0.197
		E	5.8		6.2	0.228		0.244
		е		1.27			0.050	
		e3		3.81			0.150	
		F	3.8		4.0	0.15		0.157
Weight : 0.077g		L	0.4		1.27	0.016		0.050
		М			0.6			0.024
			8° (max)					

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1998 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

