Features
* High-performance, Low-power 32-bit Atmel® AVR® Microcontroller
— Compact Single-cycle RISC Instruction Set Including DSP Instructions
— Read-modify-write Instructions and Atomic Bit Manipulation
— Performance
e Up to 64DMIPS Running at 50MHz from Flash (1 Flash Wait State)
e Up to 36 DMIPS Running at 25MHz from Flash (0 Flash Wait State)
— Memory Protection Unit (MPU)
¢ Secure Access Unit (SAU) providing User-defined Peripheral Protection
* picoPower® Technology for Ultra-low Power Consumption
¢ Multi-hierarchy Bus System
— High-performance Data Transfers on Separate Buses for Increased Performance
— 12 Peripheral DMA Channels Improve Speed for Peripheral Communication
¢ Internal High-speed Flash
— 64Kbytes, 32Kbytes, and 16 Kbytes Versions
— Single-cycle Access up to 25MHz
— FlashVault Technology Allows Pre-programmed Secure Library Support for End
User Applications
— Prefetch Buffer Optimizing Instruction Execution at Maximum Speed
- 100,000 Write Cycles, 15-year Data Retention Capability
— Flash Security Locks and User-defined Configuration Area
¢ Internal High-speed SRAM, Single-cycle Access at Full Speed
— 16Kbytes (64 Kbytes and 32Kbytes Flash), or 8 Kbytes (16 Kbytes Flash)
¢ Interrupt Controller (INTC)
— Autovectored Low-latency Interrupt Service with Programmable Priority
¢ External Interrupt Controller (EIC)
¢ Peripheral Event System for Direct Peripheral to Peripheral Communication
¢ System Functions
— Power and Clock Manager
— SleepWalking Power Saving Control
— Internal System RC Oscillator (RCSYS)
— 32KHz Oscillator
— Multipurpose Oscillator and Digital Frequency Locked Loop (DFLL)
¢ Windowed Watchdog Timer (WDT)
¢ Asynchronous Timer (AST) with Real-time Clock Capability
— Counter or Calendar Mode Supported
* Frequency Meter (FREQM) for Accurate Measuring of Clock Frequency
¢ Six 16-bit Timer/Counter (TC) Channels
— External Clock Inputs, PWM, Capture, and Various Counting Capabilities
36 PWM Channels (PWMA)
— 8-bit PWM with a Source Clock up to 150MHz
* Four Universal Synchronous/Asynchronous Receiver/Transmitters (USART)
- Independent Baudrate Generator, Support for SPI
— Support for Hardware Handshaking
* One Master/Slave Serial Peripheral Interfaces (SPI) with Chip Select Signals
— Up to 15 SPI Slaves can be Addressed
¢ Two Master and Two Slave Two-wire Interface (TWI), 400kbit/s 1°C-compatible
¢ One 8-channel Analog-to-digital Converter (ADC) with up to 12 Bits Resolution

- Internal Temperature Sensor
AIMEL

Y 5

Y P

32-bit Atmel
AVR
Microcontroller

AT32UC3L064
AT32UC3L032
AT32UC3L016

320991-01/2012

¢ Eight Analog Comparators (AC) with Optional Window Detection
¢ Capacitive Touch (CAT) Module
- Hardware-assisted Atmel® AVR® QTouch® and Atmel® AVR® QMatrix Touch Acquisition
— Supports QTouch and QMatrix Capture from Capacitive Touch Sensors
¢ QTouch Library Support
— Capacitive Touch Buttons, Sliders, and Wheels
— QTouch and QMatrix Acquisition
* On-chip Non-intrusive Debug System
— Nexus Class 2+, Runtime Control, Non-intrusive Data and Program Trace
— aWire Single-pin Programming Trace and Debug Interface Muxed with Reset Pin
— NanoTrace Provides Trace Capabilities through JTAG or aWire Interface
¢ 48-pin TQFP/QFN/TLLGA (36 GPIO Pins)
* Five High-drive I/0 Pins
¢ Single 1.62-3.6 V Power Supply

AIMEL 2

320991-01/2012 I ©

1. Description

320991-01/2012

The Atmel® AVR® AT32UC3L016/32/64 is a complete system-on-chip microcontroller based on
the AVR32 UC RISC processor running at frequencies up to 50MHz. AVR32 UC is a high-per-
formance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications,
with particular emphasis on low power consumption, high code density, and high performance.

The processor implements a Memory Protection Unit (MPU) and a fast and flexible interrupt con-
troller for supporting modern and real-time operating systems. The Secure Access Unit (SAU) is
used together with the MPU to provide the required security and integrity.

Higher computation capability is achieved using a rich set of DSP instructions.

The AT32UC3L016/32/64 embeds state-of-the-art picoPower technology for ultra-low power
consumption. Combined power control techniques are used to bring active current consumption
down to 165pA/MHz, and leakage down to 9nA while still retaining a bank of backup registers.
The device allows a wide range of trade-offs between functionality and power consumption, giv-
ing the user the ability to reach the lowest possible power consumption with the feature set
required for the application.

The Peripheral Direct Memory Access (DMA) controller enables data transfers between periph-
erals and memories without processor involvement. The Peripheral DMA controller drastically
reduces processing overhead when transferring continuous and large data streams.

The AT32UC3L016/32/64 incorporates on-chip Flash and SRAM memories for secure and fast
access. The FlashVault technology allows secure libraries to be programmed into the device.
The secure libraries can be executed while the CPU is in Secure State, but not read by non-
secure software in the device. The device can thus be shipped to end customers, who will be
able to program their own code into the device to access the secure libraries, but without risk of
compromising the proprietary secure code.

The External Interrupt Controller (EIC) allows pins to be configured as external interrupts. Each
external interrupt has its own interrupt request and can be individually masked.

The Peripheral Event System allows peripherals to receive, react to, and send peripheral events
without CPU intervention. Asynchronous interrupts allow advanced peripheral operation in low
power sleep modes.

The Power Manager (PM) improves design flexibility and security. The Power Manager supports
SleepWalking functionality, by which a module can be selectively activated based on peripheral
events, even in sleep modes where the module clock is stopped. Power monitoring is supported
by on-chip Power-on Reset (POR), Brown-out Detector (BOD), and Supply Monitor (SM). The
device features several oscillators, such as Digital Frequency Locked Loop (DFLL), Oscillator O
(OSC0), and system RC oscillator (RCSYS). Either of these oscillators can be used as source
for the system clock. The DFLL is a programmable internal oscillator from 40 to 150MHz. It can
be tuned to a high accuracy if an accurate refernce clock is running, e.g. the 32KHz crystal
oscillator.

The Watchdog Timer (WDT) will reset the device unless it is periodically serviced by the soft-
ware. This allows the device to recover from a condition that has caused the system to be
unstable.

The Asynchronous Timer (AST) combined with the 32KHz crystal oscillator supports powerful
real-time clock capabilities, with a maximum timeout of up to 136 years. The AST can operate in
counter mode or calendar mode.

AIMEL 3

Y 5

320991-01/2012

The Frequency Meter (FREQM) allows accurate measuring of a clock frequency by comparing it
to a known reference clock.

The device includes six identical 16-bit Timer/Counter (TC) channels. Each channel can be inde-
pendently programmed to perform frequency measurement, event counting, interval
measurement, pulse generation, delay timing, and pulse width modulation.

The Pulse Width Modulation controller (PWMA) provides 8-bit PWM channels which can be syn-
chronized and controlled from a common timer. One PWM channel is available for each 1/O pin
on the device, enabling applications that require multiple PWM outputs, such as LCD backlight
control. The PWM channels can operate independently, with duty cycles set independently from
each other, or in interlinked mode, with multiple channels changed at the same time.

The AT32UC3L016/32/64 also features many communication interfaces, like USART, SPI, and
TWI, for communication intensive applications. The USART supports different communication
modes, like SPI Mode and LIN Mode.

A general purpose 8-channel ADC is provided, as well as eight analog comparators (AC). The
ADC can operate in 10-bit mode at full speed or in enhanced mode at reduced speed, offering
up to 12-bit resolution. The ADC also provides an internal temperature sensor input channel.
The analog comparators can be paired to detect when the sensing voltage is within or outside
the defined reference window.

The Capacitive Touch (CAT) module senses touch on external capacitive touch sensors, using
the QTouch technology. Capacitive touch sensors use no external mechanical components,
unlike normal push buttons, and therefore demand less maintenance in the user application.
The CAT module allows up to 17 touch sensors, or up to 16 by 8 matrix sensors to be interfaced.
One touch sensor can be configured to operate autonomously without software interaction,
allowing wakeup from sleep modes when activated.

Atmel offers the QTouch library for embedding capacitive touch buttons, sliders, and wheels
functionality into AVR microcontrollers. The patented charge-transfer signal acquisition offers
robust sensing and includes fully debounced reporting of touch keys as well as Adjacent Key
Suppression® (AKS®) technology for unambiguous detection of key events. The easy-to-use
QTouch Suite toolchain allows you to explore, develop, and debug your own touch applications.

The AT32UC3L016/32/64 integrates a class 2+ Nexus 2.0 On-chip Debug (OCD) System, with
non-intrusive real-time trace and full-speed read/write memory access, in addition to basic run-
time control. The NanoTrace interface enables trace feature for aWire- or JTAG-based
debuggers. The single-pin aWire interface allows all features available through the JTAG inter-
face to be accessed through the RESET pin, allowing the JTAG pins to be used for GPIO or
peripherals.

AIMEL 4

Y 5

2. Overview

2.1 Block Diagram

Figure 2-1. Block Diagram

¢———MCKO————— i
|¢«——MDOJ5.0F————] u.|<,L> LOCAL BUS LOCAL BUS
47M:\E/$I[1..0]7 AVR32UC CPU % INTERFACE I
«— eoN——— 1 NEXUS [
e CLASS 2+ |4 ony protecTioN UNITS | =
TCK—p <
D JTAG ocD MEMORY PROTECTION UNIT % 16/8 KB
[——T0-—>] INTERFACE ® INSTR DATA e SRAM
dDATAOUT’ - INTERFACE | INTERFACE | =
aWire
«————RESET_N—
M M M S
&
T3
HIGH SPEED % Q| 64/32/16 KB
sM BUS MATRIX 3 FLASH
sau (= sK=) 2%
O
S S M
@ CONFIGURATION@REGISTERS BUS @
HSB-PB HSB-PB PERESERAL
BRIDGE B BRIDGE A GCONTROLLER
%)
o
= DI
o POWER MANAGER I VDIVEN—p
@ <| CAPACITIVE TOUCH [oA} >
& CLOCK <#> a MODULE [——CSBl16:0——>
423* 5 CONTROLLER < NG >
o
-
g SLEEP ﬁ USARTO
i CONTROLLER USART1 - rRo— |
z g TXD——)
® R RESET KB 8§2§% « ok
CONTROLLER [€———RTS, CTs——
¢ |———SCK———p|
|€———GCLK[4.0———] <)::>§ SPI [€«———MISO, MOS——»| |
RCSYS (= e <«—NPos3.o——>»| 9
w
[RC320UT- -RC32K < N 3
W TWI MASTER 0 e g 4"@.}
RC120M < o o
| | Re120M K= SYSTEM CONTROL (=) P TWIMASTER1 [€ ™Mo—— > 2
lexouTsz2] OSC32K K= INTERFACE DI —
——XINO 0SCo “ o
XOUTI(€——TWCK———p W
exouTo (| TwisLAvEo W z
DFLL (& 3 TWI SLAVE 1) ® "o
€————TWALM——
INTERRUPT Ao
‘ CONTROLLER K:> <;l> £| 8CHANNELADC <« TRIGGER——
a INTERFACE [€——AD[8.0}————
EXTINT(S..1-——— EXTERNAL INTERRUPT <)::> 4—— ADVREFP
N CONTROLLER
NMF l———ApR.o— >
(D TIMERGOUNTER 7 [¢ 8o
[«——PWMA[35.0——— PWM CONTROLLER <,:> |€——CLK[2.0———
ASYNCHRONOUS
TIMER = R
K= ACINTERFACE |«—ACAPGO
WATCHDOG | €———ACAN[3..0]
|€¢——ACREFN———
TIMER
‘ FREQUENCY METER Ki{> GLUE LOGIC T —
<):> CONTROLLER D] —

320991-01/2012

ATMEL

<

2.2 Configuration Summary

Table 2-1. Configuration Summary
Feature AT32UC3L064 | AT32UC3L032 | AT32UC3L016
Flash 64KB 32KB 16KB
SRAM 16KB 16KB 8KB
GPIO 36
High-drive pins 5
External Interrupts 6
TWI 2
USART 4
Peripheral DMA Channels 12
Peripheral Event System 1
SPI 1
Asynchronous Timers 1
Timer/Counter Channels 6
PWM channels 36
Frequency Meter 1
Watchdog Timer 1
Power Manager 1
Secure Access Unit 1
Glue Logic Controller 1
Digital Frequency Locked Loop 40-150MHz (DFLL)
Crystal Oscillator 3-16 MHz (OSCO0)
Oscillators Crystal Oscillator 32KHz (OSC32K)
RC Oscillator 120MHz (RC120M)
RC Oscillator 115kHz (RCSYS)
RC Oscillator 32kHz (RC32K)
ADC 8-channel 12-bit
Temperature Sensor 1
Analog Comparators 8
Capacitive Touch Module 1
JTAG 1
aWire 1
Max Frequency 50MHz
Packages TQFP48/QFN48/TLLGA48

AIMEL 6

320991-01/2012 I ©

3. Package and Pinout

3.1 Package

The device pins are multiplexed with peripheral functions as described in Section 3.2.

Figure 3-1.

PA15
PA16
PA17
PA19
PA18
VDDIO
GND
PB11
GND
PA10
PA12
VDDIO

320991-01/2012

TQFP48/QFN48 Pinout

<ig
58885833 -09
o
I RN
CRIRNSIARNER
37 24
38 23
39 22
40 21
41 20
42 19
43 18
44 17
45 16
46 15
47 14
48 13
INRRRRRRRRRN
R L R
562383253338883%3

ATMEL

PA21
PB10
RESET_N
PB04
PBO5
GND
VDDCORE
VDDIN
PBO1
PAO7
PAO1
PA02

Figure 3-2. TLLGA48 Pinout

o
<
SL2

mvgggoor\«)mv‘—mo

~— OO OOO~«~——AN

<<<0O0OO0Z0 MmN CCC<

ono><Ooonoononn

NOWOFTOAN—O MO M © LD

ODOOOOOOMONNNNN
PA16 ——/ 38 24 — PA21
PA17 —— 39 23 == PB10

PA19 —— 40 22 — RESET_N
PA18 —— 41 21 = PB04
VDDIO —— 42 20 == PBO05
GND ——3 43 19 —= GND
PB11 —— 44 18 ——= VDDCORE

GND —43 45 17 == VDDIN
PA10 —— 46 16 —= PBO01
PA12 —= 47 15 == PAO7
VDDIO — 48 14 ——= PAO01

ATMEL :

320991-01/2012

3.2 Peripheral Multiplexing on I/O lines

3.21 Multiplexed signals
Each GPIO line can be assigned to one of the peripheral functions.The following table describes
the peripheral signals multiplexed to the GPIO lines.

Table 3-1. GPIO Controller Function Multiplexing

G GPIO Function
P
48- | Pin
pin PIN o Supply Type A B C D E F G H
Normal USARTO USART1 SPI PWMA SCIF CAT
1 PAD 0 VbDIo 110 TXD RTS NPCS[2] PWMA[0] GCLK[0] CSA[2]
14 PAOT 1 \VDDIO Normal USARTO USART1 SPI USART1 PWMA ACIFB TWIMSO CAT
110 RXD CTS NPCS[3] CLK PWMA[1] ACAP[0] TWALM CSA[1]
13 PAG2 2 \VDDIO High- USARTO ADCIFB USART2 TCO PWMA ACIFB USARTO CAT
drive 110 RTS TRIGGER TXD A0 PWMA[2] ACBP[0] CLK CSA[3]
4 PAO3 3 \VDDIO Normal USARTO SPI USART2 TCO PWMA ACIFB USARTO CAT
110 CTS NPCS[1] TXD BO PWMA[3] ACBN[3] CLK CSB[3]
Normal SPI TWIMSO USART1 TCO PWMA ACIFB CAT
2 PAG4 4 VDDIO 110 MISO TWCK RXD B1 PWMA[4] ACBP[1] CSA[T]
12 PAGS 5 \VDDIO Normal SPI TWIMS1 USART1 TCO PWMA ACIFB TWIMSO CAT
10 (TWI) MOSI TWCK TXD Al PWMA[5] ACBN[0] TWD CSB[7]
High-
drive /0, SPI USART2 USART1 TCO PWMA SCIF CAT
10 PADG 6 VDIO 5V SCK TXD CLK B0 PWMA[6] GCLK[1] CSB[1]
tolerant
15 PAGT 7 VDDIO Normal SPI USART2 TWIMS1 TWIMSO PWMA ACIFB EIC CAT
110 (TWI) NPCS[0] RXD TWALM TWCK PWMA[7] ACAN[0] EXTINT[O] CSB[2]
High- USART1 SPI TCO ADCIFB PWMA CAT
3 PAC8 8 VDDIO drive 110 TXD NPCS[2] A2 ADP[0] PWMA[S] CSA[4]
2 PAGY 9 \VDDIO H|gh- USART1 SPI TCO ADCIFB PWMA SCIF EIC CAT
drive 110 RXD NPCS[3] B2 ADP[1] PWMA[9] GCLK[2] EXTINT[1] CSB[4]
Normal TWIMSO TCO PWMA ACIFB SCIF CAT
46 PA10 10 VbDIO 110 TWD A0 PWMA[10] ACAP[1] GCLK[2] CSA[5]
Normal PWMA
27 PA11 11 VDDIN 10 PWMALH]
Normal USART2 TCO CAT PWMA ACIFB SCIF CAT
4 PA12 12 VbDIO 110 CLK CLK1 SMP PWMA[12] ACAN[1] GCLK[3] CSB[5]
Normal GLOC GLOC TCO SCIF PWMA CAT EIC CAT
% PA3 3 VDDIN 110 ouT[0] IN[7] A0 GCLK[2] PWMA[13] SMP EXTINT[2] CSA[0]
Normal ADCIFB TCO USART2 CAT PWMA SCIF CAT
% PA14 1 VbDIO 110 ADI[0] CLK2 RTS SMP PWMA[14] GCLK[4] CSA[6]
Normal ADCIFB TCO GLOC PWMA CAT EIC CAT
3 PA15 15 VDDIO 110 AD[1] CLK1 IN[6] PWMA[15] SYNC EXTINT[3] CSBI6]
Normal ADCIFB TCO GLOC PWMA ACIFB EIC CAT
38 PA16 16 VbDIO 110 AD[2] CLKO IN[5] PWMA[16] ACREFN EXTINT[4] CSA[8]
Normal TCO USART2 TWIMS1 PWMA CAT CAT CAT
¥ PA17 7 VbDIO 110 (TWI) Al CTS TWD PWMA[17] SMP DIS CSBI8]
Normal ADCIFB TCO GLOC PWMA CAT EIC CAT
PA18 18 VbDIo 110 AD[4] B1 IN[4] PWMA[18] SYNC EXTINT[5] CSBI[0]

N AImEl 9

320991-01/2012 I ©

Table 3-1. GPIO Controller Function Multiplexing

Normal ADCIFB TCO TWIMS1 PWMA CAT CAT
40 PAT9 19 VDDIO 110 AD[5] A2 TWALM PWMA[19] SYNC CSA[10]
Normal USART2 TCO GLOC PWMA SCIF CAT
% PAZ0 2 VDDIN 110 TXD A1 IN[3] PWMA[20] RC320UT CSA[12]
Normal
1/0 (TWI,
24 PA1 21 VDDIN 5V USART2 TWIMSO TCO ADCIFB PWMA PWMA SCIF CAT
tolerant RXD TWD B1 TRIGGER PWMA[21] PWMAOD[21] GCLK]0] SMP
SMBus)
Normal USARTO USART2 TCO CAT PWMA ACIFB CAT
° PAZ2 2 VDDIO 110 CTS CLK B2 SMP PWMA[22] ACBN[2] CSB[10]
Normal USART3 ADCIFB SPI TCO PWMA ACIFB TC1 CAT
6 PBO0 32 VDbDIO 110 TXD ADPI0] NPCSJ[0] A1l PWMA[23] ACAP[2] A0 CSA[9]
High- USART3 ADCIFB SPI TCO PWMA TC1 CAT
16 PBO1 3 VbDIo drive 110 RXD ADPI[1] SCK B1 PWMA[24] Al CSB[9]
Normal USART3 USART3 SPI TCO PWMA ACIFB SCIF CAT
4 PBO2 34 VDDIO 110 RTS CLK MISO A2 PWMA[25] ACAN[2] GCLK[1] CSB[11]
Normal USART3 USART3 SPI TCO PWMA ACIFB TC1 CAT
8 PBO3 % VDbDIO 110 CTS CLK MOSI B2 PWMA[26] ACBP[2] A2 CSA[11]
Normal
110 (TWI,
2 PBO4 36 VDDIN 5y TC1 USART1 USART1 TWIMSO PWMA PWMA TWIMS1 CAT
tolerant A0 RTS CLK TWALM PWMA[27] PWMAOQD[27] TWCK CSA[14]
SMBus)
Normal
1/0 (TWI,
20 PBOS a7 VDDIN 5V TC1 USART1 USART1 TWIMSO PWMA PWMA SCIF CAT
tolerant BO CTS CLK TWCK PWMA[28] PWMAOD[28] GCLK[3] CSB[14]
SMBus)
Normal TC1 USART3 ADCIFB GLOC PWMA ACIFB EIC CAT
30 PBO6 38 VbDIO 110 A1 TXD AD[6] IN[2] PWMA[29] ACAN[3] EXTINT[O] CSB[13]
Normal TC1 USART3 ADCIFB GLOC PWMA ACIFB EIC CAT
3 PBO7 % VbDIo 110 B1 RXD AD[7] IN[1] PWMA[30] ACAPI[3] EXTINT[1] CSA[13]
Normal TC1 USART3 ADCIFB GLOC PWMA CAT EIC CAT
32 PBO8 40 VbDIo 110 A2 RTS AD[8] IN[O] PWMA[31] SYNC EXTINT[2] CSB[12]
Normal TC1 USART3 USART3 PWMA ACIFB EIC CAT
2 PBO9 # VbDIo 110 B2 CTS CLK PWMA[32] ACBN[1] EXTINT[3] CSB[15]
Normal TC1 USART1 USART3 GLOC PWMA EIC CAT
2 PB10 42 VDDIN 110 CLKO TXD CLK OUT[1] PWMA[33] EXTINT[4] CSB[16]
Normal TC1 USART1 ADCIFB PWMA CAT EIC CAT
i PBIt 43 VbDIO 110 CLK1 RXD TRIGGER PWMA[34] VDIVEN EXTINT[5] CSA[16]
Normal TC1 TWIMS1 CAT PWMA ACIFB SCIF CAT
5 PB12 i VbDIO 110 CLK2 TWALM SYNC PWMA[35] ACBPI[3] GCLK[4] CSA[15]

See Section 3.3 for a description of the various peripheral signals.

Refer to "Electrical Characteristics” on page 770 for a description of the electrical properties of
the pin types used.

3.2.1.1 TWI, 5V Tolerant, and SMBUS Pins
Some Normal I/O pins offer TWI, 5V Tolerant, and SMBUS features. These features are only
available when either of the TWI functions or the PWMAOD function in the PWMA are selected

for these pins.
ATMEL 10

320991-01/2012 I ©

Refer to the "TWI Pin Characteristics(1)” on page 778 for a description of the electrical proper-
ties of the TWI, 5V Tolerant, and SMBUS pins.

3.2.2 Peripheral Functions
Each GPIO line can be assigned to one of several peripheral functions. The following table
describes how the various peripheral functions are selected. The last listed function has priority
in case multiple functions are enabled on the same pin.

Table 3-2. Peripheral Functions

Function Description

GPIO Controller Function multiplexing GPIO and GPIO peripheral selection A to H

Nexus OCD AUX port connections OCD trace system

aWire DATAOUT aWire output in two-pin mode
JTAG port connections JTAG debug port

Oscillators 0SCo, 0OSC32

3.2.3 JTAG Port Connections
If the JTAG is enabled, the JTAG will take control over a number of pins, irrespectively of the I/O
Controller configuration.

Table 3-3. JTAG Pinout

48-pin Pin Name JTAG Pin
11 PAQOO TCK
14 PAO1 T™MS
13 PAO2 TDO
4 PAO3 TDI

3.24 Nexus OCD AUX Port Connections
If the OCD trace system is enabled, the trace system will take control over a number of pins, irre-
spectively of the I/O Controller configuration. Two different OCD trace pin mappings are
possible, depending on the configuration of the OCD AXS register. For details, see the AVR32
UC Technical Reference Manual.

Table 3-4. Nexus OCD AUX Port Connections

Pin AXS=1 AXS=0
EVTI_N PAO5 PBO08
MDO[5] PA10 PB00
MDO[4] PA18 PB04
MDO[3] PA17 PBO5
MDO[2] PA16 PB03

AIMEL 1

320991-01/2012 I ©

Table 3-4. Nexus OCD AUX Port Connections

Pin AXS=1 AXS=0
MDO[1] PA15 PB02
MDO[0] PA14 PB09
EVTO_N PA04 PA04
MCKO PA06 PBO1
MSEO[1] PAO7 PB11
MSEOQ[0] PA11 PB12

3.2.5 Oscillator Pinout

The oscillators are not mapped to the normal GPIO functions and their muxings are controlled
by registers in the System Control Interface (SCIF). Please refer to the SCIF chapter for more
information about this.

Table 3-5. Oscillator Pinout

48-pin Pin Oscillator Function
3 PA08 XINO
46 PA10 XIN32
26 PA13 XIN32_2
2 PA09 XOUTOo
47 PA12 XOUT32
25 PA20 XouT32_2

3.2.6 Other Functions
The functions listed in Table 3-6 are not mapped to the normal GPIO functions. The aWire DATA
pin will only be active after the aWire is enabled. The aWire DATAOUT pin will only be active
after the aWire is enabled and the 2_PIN_MODE command has been sent. The WAKE_N pin is
always enabled. Please refer to Section 6.1.4 on page 40 for constraints on the WAKE_N pin.

Table 3-6. Other Functions

48-pin Pin Function
27 PA11 WAKE_N
22 RESET_N aWire DATA
11 PAOO aWire DATAOUT

AIMEL 12

320991-01/2012 I ©

3.3 Signal Descriptions
The following table gives details on signal name classified by peripheral.

Table 3-7. Signal Descriptions List
Active
Signal Name Function Type Level Comments
Analog Comparator Interface - ACIFB

ACAN3 - ACANO Negative inputs for comparators "A" Analog
ACAPS3 - ACAPO Positive inputs for comparators "A" Analog
ACBNS3 - ACBNO Negative inputs for comparators "B" Analog
ACBP3 - ACBPO Positive inputs for comparators "B" Analog
ACREFN Common negative reference Analog

ADC Interface - ADCIFB
ADS8 - ADO Analog Signal Analog
ADP1 - ADPO Drive Pin for resistive touch screen Output
TRIGGER External trigger Input

aWire - AW
DATA aWire data I/0
DATAOUT aWire data output for 2-pin mode I/0O
Capacitive Touch Module - CAT
CSA16 - CSAO Capacitive Sense A I/0
CSB16 - CSBO Capacitive Sense B I/0
DIS Discharge current control Analog
SMP SMP signal Output
SYNC Synchronize signal Input
VDIVEN Voltage divider enable Output
External Interrupt Controller - EIC
NMI Non-Maskable Interrupt Input
EXTINT5 - EXTINTA External interrupt Input
Glue Logic Controller - GLOC
IN7 - INO Inputs to lookup tables Input
OUT1 - OUTO Outputs from lookup tables Output
JTAG module - JTAG
TCK Test Clock Input
TDI Test Data In Input
TDO Test Data Out Output
T™MS Test Mode Select Input
AIMEL 13
Y 5

320991-01/2012

Table 3-7. Signal Descriptions List
Power Manager - PM
RESET_N Reset Input Low
Pulse Width Modulation Controller - PWMA
PWMA35 - PWMAO PWMA channel waveforms Output
PWMAODS5 - PWMA channel waveforms, open drain Output Not_ all channels support open
PWMAODO mode drain mode
System Control Interface - SCIF

GCLK4 - GCLKO Generic Clock Output Output
RC320UT RC32K output at startup Output
XINO Crystal 0 Input ADnigli?agI'/
XIN32 Crystal 32 Input (primary location) Aqa!og/

Digital
XIN32_2 Crystal 32 Input (secondary location) Aqa!og/

Digital
XOUTO Crystal 0 Output Analog
XOuUT32 Crystal 32 Output (primary location) Analog
XOouT32_2 Crystal 32 Output (secondary location) Analog

Serial Peripheral Interface - SPI
MISO Master In Slave Out IO
MOSI Master Out Slave In I/0
NPCS3 - NPCSO SPI Peripheral Chip Select I/0 Low
SCK Clock I/O
Timer/Counter - TCO, TC1
A0 Channel 0 Line A I/O
A1 Channel 1 Line A I/0
A2 Channel 2 Line A I/0
BO Channel 0 Line B I/0
B1 Channel 1 Line B I/0
B2 Channel 2 Line B I/0
CLKO Channel 0 External Clock Input Input
CLK1 Channel 1 External Clock Input Input
CLK2 Channel 2 External Clock Input Input
Two-wire Interface - TWIMSO0, TWIMS1

TWALM SMBus SMBALERT I/0 Low
TWCK Two-wire Serial Clock I/0
TWD Two-wire Serial Data I/O

Universal Synchronous/Asynchronous Receiver/Transmitter - USARTO0, USART1, USART2, USART3

320991-01/2012

ATMEL

Y 5

14

Table 3-7. Signal Descriptions List

CLK Clock I/0

CTS Clear To Send Input Low
RTS Request To Send Output Low
RXD Receive Data Input

TXD Transmit Data Output

Note: 1. ADCIFB: AD3 does not exist.

Table 3-8. Signal Description List, Continued

Active
Signal Name Function Type Level | Comments
Power
VDDCORE Core Power Supply / Voltage Regulator Output Power 1.62V to 1.98V
Input/Output
1.62V to 3.6V. VDDIO should
VDDIO I/0 Power Supply Power Input always be equal to or lower than
VDDIN.

VDDANA Analog Power Supply Power Input 1.62V to 1.98V
ADVREFP Analog Reference Voltage Power Input 1.62V to 1.98V
VDDIN Voltage Regulator Input Power Input 1.62Vt0 3.6V ("
GNDANA Analog Ground Ground

GND Ground Ground

Auxiliary Port - AUX

MCKO Trace Data Output Clock Output

MDOS5 - MDOO Trace Data Output Output

MSEO1 - MSEQO Trace Frame Control Output

EVTI_N Event In Input Low

EVTO_N Event Out Output Low

General Purpose 1/O pin

PA22 - PAOO Parallel I/O Controller I/O Port 0 I/0

PB12 - PB0O Parallel I/O Controller I/O Port 1 I/0
1. See Section 6.1 on page 36

AIMEL 18

320991-01/2012 I ©

3.4

3.41

3.4.2

3.4.3

3.44

3.45

3.4.6

3.4.7

JTAG Pins

PA0O

RESET_N Pin

I/O Line Considerations

The JTAG is enabled if TCK is low while the RESET_N pin is released. The TCK, TMS, and TDI
pins have pull-up resistors when JTAG is enabled. The TCK pin always has pull-up enabled dur-
ing reset. The TDO pin is an output, driven at VDDIO, and has no pull-up resistor. The JTAG
pins can be used as GPIO pins and multiplexed with peripherals when the JTAG is disabled.
Please refer to Section 3.2.3 on page 11 for the JTAG port connections.

Note that PAOO is multiplexed with TCK. PA0O GPIO function must only be used as output in the
application.

The RESET_N pin is a schmitt input and integrates a permanent pull-up resistor to VDDIN. As
the product integrates a power-on reset detector, the RESET_N pin can be left unconnected in
case no reset from the system needs to be applied to the product.

The RESET_N pin is also used for the aWire debug protocol. When the pin is used for debug-
ging, it must not be driven by external circuitry.

TWI Pins PA21/PB04/PB05

When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation and
inputs with spike filtering. When used as GPIO pins or used for other peripherals, the pins have
the same characteristics as other GPIO pins. Selected pins are also SMBus compliant (refer to
Section 3.2 on page 9). As required by the SMBus specification, these pins provide no leakage
path to ground when the AT32UC3L016/32/64 is powered down. This allows other devices on
the SMBus to continue communicating even though the AT32UC3L016/32/64 is not powered.

After reset a TWI function is selected on these pins instead of the GPIO. Please refer to the
GPIO Module Configuration chapter for details.

TWI Pins PAO5/PA07/PA17

GPIO Pins

When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation and
inputs with spike filtering. When used as GPIO pins or used for other peripherals, the pins have
the same characteristics as other GPIO pins.

After reset a TWI function is selected on these pins instead of the GPIO. Please refer to the
GPIO Module Configuration chapter for details.

All the 1/O lines integrate a pull-up resistor. Programming of this pull-up resistor is performed
independently for each 1/O line through the GPIO Controller. After reset, I/O lines default as
inputs with pull-up resistors disabled, except PA00. PA20 selects SCIF-RC320UT (GPIO Func-
tion F) as default enabled after reset.

High-Drive Pins

320991-01/2012

The five pins PA02, PA06, PA08, PA09, and PB0O1 have high-drive output capabilities. Refer to
Section 32. on page 770 for electrical characteristics.

AIMEL 16

Y 5

3.4.8 RC320UT Pin

3.4.8.1

3.4.8.2

Clock output at startup

After power-up, the clock generated by the 32kHz RC oscillator (RC32K) will be output on PA20,
even when the device is still reset by the Power-On Reset Circuitry. This clock can be used by
the system to start other devices or to clock a switching regulator to rise the power supply volt-
age up to an acceptable value.

The clock will be available on PA20, but will be disabled if one of the following conditions are
true:

¢ PA20 is configured to use a GPIO function other than F (SCIF-RC320UT)

¢ PA20 is configured as a General Purpose Input/Output (GPIO)

* The bit FRC32 in the Power Manager PPCR register is written to zero (refer to the Power
Manager chapter)

The maximum amplitude of the clock signal will be defined by VDDIN.

Once the RC32K output on PA20 is disabled it can never be enabled again.

XOUT32_2 function

PA20 selects RC320UT as default enabled after reset. This function is not automatically dis-
abled when the user enables the XOUT32_2 function on PA20. This disturbs the oscillator and
may result in the wrong frequency. To avoid this, RC320UT must be disabled when XOUT32_2
is enabled.

3.4.9 ADC Input Pins

320991-01/2012

These pins are regular 1/0O pins powered from the VDDIO. However, when these pins are used
for ADC inputs, the voltage applied to the pin must not exceed 1.98V. Internal circuitry ensures
that the pin cannot be used as an analog input pin when the 1/O drives to VDD. When the pins
are not used for ADC inputs, the pins may be driven to the full I/O voltage range.

AIMEL 7

Y 5

4. Processor and Architecture

4.1

4.2

Features

320991-01/2012

Rev: 2.1.0.0

This chapter gives an overview of the AVR32UC CPU. AVR32UC is an implementation of the
AVRS32 architecture. A summary of the programming model, instruction set, and MPU is pre-
sented. For further details, see the AVR32 Architecture Manual and the AVR32UC Technical
Reference Manual.

32-bit load/store AVR32A RISC architecture
— 15 general-purpose 32-bit registers
— 32-bit Stack Pointer, Program Counter and Link Register reside in register file
— Fully orthogonal instruction set
— Privileged and unprivileged modes enabling efficient and secure operating systems
— Innovative instruction set together with variable instruction length ensuring industry leading
code density
— DSP extension with saturating arithmetic, and a wide variety of multiply instructions
* 3-stage pipeline allowing one instruction per clock cycle for most instructions
— Byte, halfword, word, and double word memory access
— Multiple interrupt priority levels
MPU allows for operating systems with memory protection
Secure State for supporting FlashVault technology

AVR32 Architecture

AVR32 is a new, high-performance 32-bit RISC microprocessor architecture, designed for cost-
sensitive embedded applications, with particular emphasis on low power consumption and high
code density. In addition, the instruction set architecture has been tuned to allow a variety of
microarchitectures, enabling the AVR32 to be implemented as low-, mid-, or high-performance
processors. AVR32 extends the AVR family into the world of 32- and 64-bit applications.

Through a quantitative approach, a large set of industry recognized benchmarks has been com-
piled and analyzed to achieve the best code density in its class. In addition to lowering the
memory requirements, a compact code size also contributes to the core’s low power characteris-
tics. The processor supports byte and halfword data types without penalty in code size and
performance.

Memory load and store operations are provided for byte, halfword, word, and double word data
with automatic sign- or zero extension of halfword and byte data. The C-compiler is closely
linked to the architecture and is able to exploit code optimization features, both for size and
speed.

In order to reduce code size to a minimum, some instructions have multiple addressing modes.
As an example, instructions with immediates often have a compact format with a smaller imme-
diate, and an extended format with a larger immediate. In this way, the compiler is able to use
the format giving the smallest code size.

Another feature of the instruction set is that frequently used instructions, like add, have a com-
pact format with two operands as well as an extended format with three operands. The larger
format increases performance, allowing an addition and a data move in the same instruction in a

AIMEL 18

Y 5

single cycle. Load and store instructions have several different formats in order to reduce code
size and speed up execution.

The register file is organized as sixteen 32-bit registers and includes the Program Counter, the
Link Register, and the Stack Pointer. In addition, register R12 is designed to hold return values
from function calls and is used implicitly by some instructions.

4.3 The AVR32UC CPU

320991-01/2012

The AVR32UC CPU targets low- and medium-performance applications, and provides an
advanced On-Chip Debug (OCD) system, no caches, and a Memory Protection Unit (MPU).
Java acceleration hardware is not implemented.

AVR32UC provides three memory interfaces, one High Speed Bus master for instruction fetch,
one High Speed Bus master for data access, and one High Speed Bus slave interface allowing
other bus masters to access data RAMs internal to the CPU. Keeping data RAMs internal to the
CPU allows fast access to the RAMs, reduces latency, and guarantees deterministic timing.
Also, power consumption is reduced by not needing a full High Speed Bus access for memory
accesses. A dedicated data RAM interface is provided for communicating with the internal data
RAMSs.

A local bus interface is provided for connecting the CPU to device-specific high-speed systems,
such as floating-point units and 1/0 controller ports. This local bus has to be enabled by writing a
one to the LOCEN bit in the CPUCR system register. The local bus is able to transfer data
between the CPU and the local bus slave in a single clock cycle. The local bus has a dedicated
memory range allocated to it, and data transfers are performed using regular load and store
instructions. Details on which devices that are mapped into the local bus space is given in the
CPU Local Bus section in the Memories chapter.

Figure 4-1 on page 20 displays the contents of AVR32UC.

AIMEL 19

Y 5

AT32UC3L016/32/64

Figure 4-1. Overview of the AVR32UC CPU

N . o
£ = =
2 o I
£) $
3 ‘0‘ @
s ocD Power/
2 Reset
2 system
8 control

AVR32UC CPU pipeline

¢

¢

4.3.1 Pipeline Overview
AVR32UC has three pipeline stages, Instruction Fetch (IF), Instruction Decode (ID), and Instruc-
tion Execute (EX). The EX stage is split into three parallel subsections, one arithmetic/logic
(ALU) section, one multiply (MUL) section, and one load/store (LS) section.

320991-01/2012

| MPU
Instruction memory controller Data memory controller
. High CPU Local
High Speed Bus master High Speed Speed Bus CPU RAM
Bus master
Bus slave master
[2] 2] (IJ‘ 17
@ @ @ a
3 kot ® T
a 2 3 3
(7] %) n —
< N c 2
(o] O (o] o
T T T)

Instructions are issued and complete in order. Certain operations require several clock cycles to
complete, and in this case, the instruction resides in the ID and EX stages for the required num-
ber of clock cycles. Since there is only three pipeline stages, no internal data forwarding is
required, and no data dependencies can arise in the pipeline.

Figure 4-2 on page 21 shows an overview of the AVR32UC pipeline stages.

ATMEL

Y 5

20

4.3.2

4.3.2.1

4.322

4.3.2.3

4.3.24

320991-01/2012

Figure 4-2. The AVR32UC Pipeline

—»{ MUL | Multiply unit
IF ID Regfile » ALU » Regfile ALU unit
Read write
Prefetch unit | Decode unit —
A4
L LS o Load-§tore
unit

AVR32A Microarchitecture Compliance

AVR32UC implements an AVR32A microarchitecture. The AVR32A microarchitecture is tar-
geted at cost-sensitive, lower-end applications like smaller microcontrollers. This
microarchitecture does not provide dedicated hardware registers for shadowing of register file
registers in interrupt contexts. Additionally, it does not provide hardware registers for the return
address registers and return status registers. Instead, all this information is stored on the system
stack. This saves chip area at the expense of slower interrupt handling.

Interrupt Handling

Upon interrupt initiation, registers R8-R12 are automatically pushed to the system stack. These
registers are pushed regardless of the priority level of the pending interrupt. The return address
and status register are also automatically pushed to stack. The interrupt handler can therefore
use R8-R12 freely. Upon interrupt completion, the old R8-R12 registers and status register are
restored, and execution continues at the return address stored popped from stack.

The stack is also used to store the status register and return address for exceptions and scall.
Executing the rete or rets instruction at the completion of an exception or system call will pop
this status register and continue execution at the popped return address.

Java Support

AVR32UC does not provide Java hardware acceleration.

Memory Protection

The MPU allows the user to check all memory accesses for privilege violations. If an access is
attempted to an illegal memory address, the access is aborted and an exception is taken. The
MPU in AVR32UC is specified in the AVR32UC Technical Reference manual.

Unaligned Reference Handling

AVR32UC does not support unaligned accesses, except for doubleword accesses. AVR32UC is
able to perform word-aligned st.d and /d.d. Any other unaligned memory access will cause an

AIMEL 21

Y 5

4.3.2.5

4.3.2.6

320991-01/2012

address exception. Doubleword-sized accesses with word-aligned pointers will automatically be
performed as two word-sized accesses.

The following table shows the instructions with support for unaligned addresses. All other
instructions require aligned addresses.

Table 4-1. Instructions with Unaligned Reference Support
Instruction Supported Alignment
ld.d Word
st.d Word

Unimplemented Instructions

The following instructions are unimplemented in AVR32UC, and will cause an Unimplemented
Instruction Exception if executed:

¢ All SIMD instructions

 All coprocessor instructions if no coprocessors are present

e retj, incjosp, popjc, pushjc

e tlbr, tibs, tlbow

* cache

CPU and Architecture Revision

Three major revisions of the AVR32UC CPU currently exist. The device described in this
datasheet uses CPU revision 3.

The Architecture Revision field in the CONFIGO system register identifies which architecture
revision is implemented in a specific device.

AVR32UC CPU revision 3 is fully backward-compatible with revisions 1 and 2, ie. code compiled
for revision 1 or 2 is binary-compatible with revision 3 CPUs.

AIMEL 22

Y 5

44 Programming Model

441 Register File Configuration
The AVR32UC register file is shown below.

Figure 4-3. The AVR32UC Register File

Application Supervisor INTO INT1 INT2 INT3 Exception NMI Secure
Bit 31 Bit 0 Bit 31 Bit 0 Bit 31 Bit 0 Bit 31 Bit0 Bit 31 Bit0 Bit 31 Bit0 Bit 31 Bit 0 Bit 31 Bit 0 Bit 31 Bit 0
PC PC |] PC PC PC PC PC PC PC
LR LR LR LR LR LR LR LR LR
SP_APP SP_SYS SP_SYS SP_SYS SP_SYS SP_SYS SP_SYS SP_SYS SP_SEC
R12 R12 R12 R12 R12 R12 R12 R12 R12
R11 R11 R11 R11 R11 R11 R11 R11 R11
R10 R10 R10 R10 R10 R10 R10 R10 R10
R9 R9 R9 R9 R9 R9 R9 R9 R9
R8 R8 R8 R8 R8 R8 R8 R8 R8
R7 R7 R7 R7 R7 R7 R7 R7 R7
R6 R6 R6 R6 R6 R6 R6 R6 R6
R5 R5 R5 R5 R5 R5 R5 R5 R5
R4 R4 R4 R4 R4 R4 R4 R4 R4
R3 R3 R3 R3 R3 R3 R3 R3 R3
R2 R2 R2 R2 R2 R2 R2 R2 R2
R1 R1 R1 R1 R1 R1 R1 R1 R1
RO RO RO RO RO RO RO RO RO
SR | SR | SR | SR | SR | SR | SR | SR | SR
SS_STATUS
SS_ADRF
SS_ADRR
SS_ADRO
SS_ADR1
SS_SP_SYS
SS_SP_APP
SS_RAR
SS_RSR

44.2 Status Register Configuration
The Status Register (SR) is split into two halfwords, one upper and one lower, see Figure 4-4
and Figure 4-5. The lower word contains the C, Z, N, V, and Q condition code flags and the R, T,
and L bits, while the upper halfword contains information about the mode and state the proces-
sor executes in. Refer to the AVR32 Architecture Manual for details.

Figure 4-4. The Status Register High Halfword

Bit 31 Bit 16

SS - - - DM D - M2 | M1 | MO | EM | I3M | I2M | I1M | IOM | GM |Bit name

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 |Initial value

Y |—> Global Interrupt Mask

——— Interrupt Level 0 Mask
Interrupt Level 1 Mask
Interrupt Level 2 Mask
Interrupt Level 3 Mask
Exception Mask
Mode Bit 0

Mode Bit 1

Mode Bit 2

Reserved

Debug State

Debug State Mask
Reserved

Secure State

AIMEL 23

320991-01/2012 I ©

YYYYYYYYYY V{

Figure 4-5. The Status Register Low Halfword

Bit 15 Bit 0

- T - - - - - - - -/ L, Q| V/|N| Z| C Bitname

o, 0, 000 0|0 0|0 0|0 0|0 0| 0| 0 Initalvalue

|—> Carry

L——» Zero
L———» Sign
Overflow
Saturation
Lock
Reserved
Scratch
Reserved

YYYVYYY

443 Processor States
4.4.3.1 Normal RISC State
The AVR32 processor supports several different execution contexts as shown in Table 4-2.
Table 4-2. Overview of Execution Modes, their Priorities and Privilege Levels.
Priority | Mode Security Description
1 Non Maskable Interrupt Privileged Non Maskable high priority interrupt mode
2 Exception Privileged Execute exceptions
3 Interrupt 3 Privileged General purpose interrupt mode
4 Interrupt 2 Privileged General purpose interrupt mode
5 Interrupt 1 Privileged General purpose interrupt mode
6 Interrupt O Privileged General purpose interrupt mode
N/A Supervisor Privileged Runs supervisor calls
N/A Application Unprivileged Normal program execution mode

Mode changes can be made under software control, or can be caused by external interrupts or
exception processing. A mode can be interrupted by a higher priority mode, but never by one
with lower priority. Nested exceptions can be supported with a minimal software overhead.

When running an operating system on the AVR32, user processes will typically execute in the
application mode. The programs executed in this mode are restricted from executing certain
instructions. Furthermore, most system registers together with the upper halfword of the status
register cannot be accessed. Protected memory areas are also not available. All other operating
modes are privileged and are collectively called System Modes. They have full access to all priv-
ileged and unprivileged resources. After a reset, the processor will be in supervisor mode.

4.4.3.2 Debug State
The AVR32 can be set in a debug state, which allows implementation of software monitor rou-
tines that can read out and alter system information for use during application development. This
implies that all system and application registers, including the status registers and program
counters, are accessible in debug state. The privileged instructions are also available.

All interrupt levels are by default disabled when debug state is entered, but they can individually
be switched on by the monitor routine by clearing the respective mask bit in the status register.

AIMEL 24

320991-01/2012 I ©

Debug state can be entered as described in the AVR32UC Technical Reference Manual.

Debug state is exited by the refd instruction.

4.4.3.3 Secure State
The AVR32 can be set in a secure state, that allows a part of the code to execute in a state with
higher security levels. The rest of the code can not access resources reserved for this secure
code. Secure State is used to implement FlashVault technology. Refer to the AVR32UC Techni-
cal Reference Manual for details.

44.4 System Registers
The system registers are placed outside of the virtual memory space, and are only accessible
using the privileged mfsr and mtsrinstructions. The table below lists the system registers speci-
fied in the AVR32 architecture, some of which are unused in AVR32UC. The programmer is
responsible for maintaining correct sequencing of any instructions following a mtsr instruction.
For detail on the system registers, refer to the AVR32UC Technical Reference Manual.

Table 4-3. System Registers

Reg # Address Name Function

0 0 SR Status Register

1 4 EVBA Exception Vector Base Address
2 8 ACBA Application Call Base Address
3 12 CPUCR CPU Control Register

4 16 ECR Exception Cause Register

5 20 RSR_SUP Unused in AVR32UC

6 24 RSR_INTO Unused in AVR32UC

7 28 RSR_INT1 Unused in AVR32UC

8 32 RSR_INT2 Unused in AVR32UC

9 36 RSR_INT3 Unused in AVR32UC

10 40 RSR_EX Unused in AVR32UC

11 44 RSR_NMI Unused in AVR32UC

12 48 RSR_DBG Return Status Register for Debug mode
13 52 RAR_SUP Unused in AVR32UC

14 56 RAR_INTO Unused in AVR32UC

15 60 RAR_INT1 Unused in AVR32UC

16 64 RAR_INT2 Unused in AVR32UC

17 68 RAR_INT3 Unused in AVR32UC

18 72 RAR_EX Unused in AVR32UC

19 76 RAR_NMI Unused in AVR32UC

20 80 RAR_DBG Return Address Register for Debug mode
21 84 JECR Unused in AVR32UC

22 88 JOSP Unused in AVR32UC

23 92 JAVA_LVO Unused in AVR32UC

AIMEL 25

320991-01/2012 I ©

Table 4-3. System Registers (Continued)

Reg # Address Name Function

24 96 JAVA_LV1 Unused in AVR32UC

25 100 JAVA_LV2 Unused in AVR32UC

26 104 JAVA_LV3 Unused in AVR32UC

27 108 JAVA_LV4 Unused in AVR32UC

28 112 JAVA_LV5 Unused in AVR32UC

29 116 JAVA_LV6 Unused in AVR32UC

30 120 JAVA_LV7 Unused in AVR32UC

31 124 JTBA Unused in AVR32UC

32 128 JBCR Unused in AVR32UC

33-63 132-252 Reserved Reserved for future use

64 256 CONFIGO Configuration register 0

65 260 CONFIG1 Configuration register 1

66 264 COUNT Cycle Counter register

67 268 COMPARE Compare register

68 272 TLBEHI Unused in AVR32UC

69 276 TLBELO Unused in AVR32UC

70 280 PTBR Unused in AVR32UC

71 284 TLBEAR Unused in AVR32UC

72 288 MMUCR Unused in AVR32UC

73 292 TLBARLO Unused in AVR32UC

74 296 TLBARHI Unused in AVR32UC

75 300 PCCNT Unused in AVR32UC

76 304 PCNTO Unused in AVR32UC

77 308 PCNT1 Unused in AVR32UC

78 312 PCCR Unused in AVR32UC

79 316 BEAR Bus Error Address Register

80 320 MPUARO MPU Address Register region 0
81 324 MPUAR1 MPU Address Register region 1
82 328 MPUAR2 MPU Address Register region 2
83 332 MPUAR3 MPU Address Register region 3
84 336 MPUAR4 MPU Address Register region 4
85 340 MPUAR5 MPU Address Register region 5
86 344 MPUARG MPU Address Register region 6
87 348 MPUAR7 MPU Address Register region 7
88 352 MPUPSRO MPU Privilege Select Register region 0
89 356 MPUPSR1 MPU Privilege Select Register region 1

AIMEL 26

320991-01/2012 I ©

Table 4-3. System Registers (Continued)
Reg # Address Name Function
90 360 MPUPSR2 MPU Privilege Select Register region 2
91 364 MPUPSR3 MPU Privilege Select Register region 3
92 368 MPUPSR4 MPU Privilege Select Register region 4
93 372 MPUPSR5 MPU Privilege Select Register region 5
94 376 MPUPSR6 MPU Privilege Select Register region 6
95 380 MPUPSR7 MPU Privilege Select Register region 7
96 384 MPUCRA Unused in this version of AVR32UC
97 388 MPUCRB Unused in this version of AVR32UC
98 392 MPUBRA Unused in this version of AVR32UC
99 396 MPUBRB Unused in this version of AVR32UC
100 400 MPUAPRA MPU Access Permission Register A
101 404 MPUAPRB MPU Access Permission Register B
102 408 MPUCR MPU Control Register
103 412 SS_STATUS Secure State Status Register
104 416 SS_ADRF Secure State Address Flash Register
105 420 SS_ADRR Secure State Address RAM Register
106 424 SS_ADRO Secure State Address 0 Register
107 428 SS_ADR1 Secure State Address 1 Register
108 432 SS_SP_SYS Secure State Stack Pointer System Register
109 436 SS_SP_APP Secure State Stack Pointer Application Register
110 440 SS_RAR Secure State Return Address Register
111 444 SS_RSR Secure State Return Status Register
112-191 448-764 Reserved Reserved for future use
192-255 768-1020 IMPL IMPLEMENTATION DEFINED

4.5 Exceptions and Interrupts
In the AVR32 architecture, events are used as a common term for exceptions and interrupts.
AVR32UC incorporates a powerful event handling scheme. The different event sources, like llle-
gal Op-code and interrupt requests, have different priority levels, ensuring a well-defined
behavior when multiple events are received simultaneously. Additionally, pending events of a
higher priority class may preempt handling of ongoing events of a lower priority class.

When an event occurs, the execution of the instruction stream is halted, and execution is passed
to an event handler at an address specified in Table 4-4 on page 31. Most of the handlers are
placed sequentially in the code space starting at the address specified by EVBA, with four bytes
between each handler. This gives ample space for a jump instruction to be placed there, jump-
ing to the event routine itself. A few critical handlers have larger spacing between them, allowing
the entire event routine to be placed directly at the address specified by the EVBA-relative offset
generated by hardware. All interrupt sources have autovectored interrupt service routine (ISR)
addresses. This allows the interrupt controller to directly specify the ISR address as an address

AIMEL 27

Y 5

320991-01/2012

relative to EVBA. The autovector offset has 14 address bits, giving an offset of maximum 16384
bytes. The target address of the event handler is calculated as (EVBA | event_handler_offset),
not (EVBA + event_handler_offset), so EVBA and exception code segments must be set up
appropriately. The same mechanisms are used to service all different types of events, including
interrupt requests, yielding a uniform event handling scheme.

An interrupt controller does the priority handling of the interrupts and provides the autovector off-
set to the CPU.

4.5.1 System Stack Issues
Event handling in AVR32UC uses the system stack pointed to by the system stack pointer,
SP_SYS, for pushing and popping R8-R12, LR, status register, and return address. Since event
code may be timing-critical, SP_SYS should point to memory addresses in the IRAM section,
since the timing of accesses to this memory section is both fast and deterministic.

The user must also make sure that the system stack is large enough so that any event is able to
push the required registers to stack. If the system stack is full, and an event occurs, the system
will enter an UNDEFINED state.

4.5.2 Exceptions and Interrupt Requests
When an event other than scall or debug request is received by the core, the following actions
are performed atomically:

1. The pending event will not be accepted if it is masked. The I3M, I12M, I1M, I0M, EM, and
GM bits in the Status Register are used to mask different events. Not all events can be
masked. A few critical events (NMI, Unrecoverable Exception, TLB Multiple Hit, and
Bus Error) can not be masked. When an event is accepted, hardware automatically
sets the mask bits corresponding to all sources with equal or lower priority. This inhibits
acceptance of other events of the same or lower priority, except for the critical events
listed above. Software may choose to clear some or all of these bits after saving the
necessary state if other priority schemes are desired. It is the event source’s respons-
ability to ensure that their events are left pending until accepted by the CPU.

2. When a request is accepted, the Status Register and Program Counter of the current
context is stored to the system stack. If the event is an INTO, INT1, INT2, or INT3, reg-
isters R8-R12 and LR are also automatically stored to stack. Storing the Status
Register ensures that the core is returned to the previous execution mode when the
current event handling is completed. When exceptions occur, both the EM and GM bits
are set, and the application may manually enable nested exceptions if desired by clear-
ing the appropriate bit. Each exception handler has a dedicated handler address, and
this address uniquely identifies the exception source.

3. The Mode bits are set to reflect the priority of the accepted event, and the correct regis-
ter file bank is selected. The address of the event handler, as shown in Table 4-4 on
page 31, is loaded into the Program Counter.

The execution of the event handler routine then continues from the effective address calculated.

The rete instruction signals the end of the event. When encountered, the Return Status Register
and Return Address Register are popped from the system stack and restored to the Status Reg-
ister and Program Counter. If the rete instruction returns from INTO, INT1, INT2, or INTS,
registers R8-R12 and LR are also popped from the system stack. The restored Status Register
contains information allowing the core to resume operation in the previous execution mode. This
concludes the event handling.

AIMEL 28

320991-01/2012 I ©

45.3 Supervisor Calls
The AVR32 instruction set provides a supervisor mode call instruction. The scall instruction is
designed so that privileged routines can be called from any context. This facilitates sharing of
code between different execution modes. The scall mechanism is designed so that a minimal
execution cycle overhead is experienced when performing supervisor routine calls from time-
critical event handlers.

The scall instruction behaves differently depending on which mode it is called from. The behav-
iour is detailed in the instruction set reference. In order to allow the scall routine to return to the
correct context, a return from supervisor call instruction, rets, is implemented. In the AVR32UC
CPU, scall and rets uses the system stack to store the return address and the status register.

454 Debug Requests

The AVR32 architecture defines a dedicated Debug mode. When a debug request is received by
the core, Debug mode is entered. Entry into Debug mode can be masked by the DM bit in the
status register. Upon entry into Debug mode, hardware sets the SR.D bit and jumps to the
Debug Exception handler. By default, Debug mode executes in the exception context, but with
dedicated Return Address Register and Return Status Register. These dedicated registers
remove the need for storing this data to the system stack, thereby improving debuggability. The
Mode bits in the Status Register can freely be manipulated in Debug mode, to observe registers
in all contexts, while retaining full privileges.

Debug mode is exited by executing the retd instruction. This returns to the previous context.

45.5 Entry Points for Events
Several different event handler entry points exist. In AVR32UC, the reset address is
0x80000000. This places the reset address in the boot flash memory area.

TLB miss exceptions and scall have a dedicated space relative to EVBA where their event han-
dler can be placed. This speeds up execution by removing the need for a jump instruction placed
at the program address jumped to by the event hardware. All other exceptions have a dedicated
event routine entry point located relative to EVBA. The handler routine address identifies the
exception source directly.

AVR32UC uses the ITLB and DTLB protection exceptions to signal a MPU protection violation.
ITLB and DTLB miss exceptions are used to signal that an access address did not map to any of
the entries in the MPU. TLB multiple hit exception indicates that an access address did map to
multiple TLB entries, signalling an error.

All interrupt requests have entry points located at an offset relative to EVBA. This autovector off-
set is specified by an interrupt controller. The programmer must make sure that none of the
autovector offsets interfere with the placement of other code. The autovector offset has 14
address bits, giving an offset of maximum 16384 bytes.

Special considerations should be made when loading EVBA with a pointer. Due to security con-
siderations, the event handlers should be located in non-writeable flash memory, or optionally in
a privileged memory protection region if an MPU is present.

If several events occur on the same instruction, they are handled in a prioritized way. The priority
ordering is presented in Table 4-4 on page 31. If events occur on several instructions at different
locations in the pipeline, the events on the oldest instruction are always handled before any
events on any younger instruction, even if the younger instruction has events of higher priority

AIMEL 29

320991-01/2012 I ©

320991-01/2012

than the oldest instruction. An instruction B is younger than an instruction A if it was sent down
the pipeline later than A.

The addresses and priority of simultaneous events are shown in Table 4-4 on page 31. Some of
the exceptions are unused in AVR32UC since it has no MMU, coprocessor interface, or floating-
point unit.

AIMEL 30

Y 5

Table 4-4. Priority and Handler Addresses for Events
Priority | Handler Address Name Event source Stored Return Address
1 0x80000000 Reset External input Undefined
2 Provided by OCD system OCD Stop CPU OCD system First non-completed instruction
3 EVBA-+0x00 Unrecoverable exception Internal PC of offending instruction
4 EVBA+0x04 TLB multiple hit MPU PC of offending instruction
5 EVBA+0x08 Bus error data fetch Data bus First non-completed instruction
6 EVBA+0x0C Bus error instruction fetch Data bus First non-completed instruction
7 EVBA+0x10 NMI External input First non-completed instruction
8 Autovectored Interrupt 3 request External input First non-completed instruction
9 Autovectored Interrupt 2 request External input First non-completed instruction
10 Autovectored Interrupt 1 request External input First non-completed instruction
11 Autovectored Interrupt O request External input First non-completed instruction
12 EVBA+0x14 Instruction Address CPU PC of offending instruction
13 EVBA+0x50 ITLB Miss MPU PC of offending instruction
14 EVBA+0x18 ITLB Protection MPU PC of offending instruction
15 EVBA+0x1C Breakpoint OCD system First non-completed instruction
16 EVBA+0x20 lllegal Opcode Instruction PC of offending instruction
17 EVBA+0x24 Unimplemented instruction Instruction PC of offending instruction
18 EVBA+0x28 Privilege violation Instruction PC of offending instruction
19 EVBA+0x2C Floating-point UNUSED
20 EVBA+0x30 Coprocessor absent Instruction PC of offending instruction
21 EVBA+0x100 Supervisor call Instruction PC(Supervisor Call) +2
22 EVBA+0x34 Data Address (Read) CPU PC of offending instruction
23 EVBA+0x38 Data Address (Write) CPU PC of offending instruction
24 EVBA+0x60 DTLB Miss (Read) MPU PC of offending instruction
25 EVBA+0x70 DTLB Miss (Write) MPU PC of offending instruction
26 EVBA+0x3C DTLB Protection (Read) MPU PC of offending instruction
27 EVBA+0x40 DTLB Protection (Write) MPU PC of offending instruction
28 EVBA+0x44 DTLB Modified UNUSED

320991-01/2012

ATMEL

Y 5

31

5. Memories

5.1 Embedded Memories
¢ Internal high-speed flash
— 64Kbytes (AT32UC3L064)
— 32Kbytes (AT32UC3L032)
— 16 Kbytes (AT32UC3L016)
¢ 0 wait state access at up to 25mhz in worst case conditions
¢ 1 wait state access at up to 50mhz in worst case conditions
¢ Pipelined flash architecture, allowing burst reads from sequential Flash locations, hiding
penalty of 1 wait state access
¢ Pipelined flash architecture typically reduces the cycle penalty of 1 wait state operation
to only 8% compared to 0 wait state operation
¢ 100 000 write cycles, 15-year data retention capability
e Sector lock capabilities, bootloader protection, security bit
* 32 fuses, erased during chip erase
¢ User page for data to be preserved during chip erase
¢ Internal high-speed SRAM, single-cycle access at full speed
— 16 Kbytes (AT32UC3L064, AT32UC3L032)
— 8Kbytes (AT32UC3L016)

5.2 Physical Memory Map
The system bus is implemented as a bus matrix. All system bus addresses are fixed, and they
are never remapped in any way, not even in boot. Note that AVR32 UC CPU uses unsegmented
translation, as described in the AVR32 Architecture Manual. The 32-bit physical address space
is mapped as follows:

Table 5-1. AT32UC3L016/32/64 Physical Memory Map

Device Start Address Size
AT32UC3L064 AT32UC3L032 | AT32UC3L016

Embedded SRAM | 0x00000000 16Kbytes 16Kbytes 8Kbytes

Embedded Flash 0x80000000 64 Kbytes 32Kbytes 16Kbytes

SAU Channels 0x90000000 256 bytes 256 bytes 256 bytes

HSB-PB Bridge B | OxFFFE0000 64Kbytes 64Kbytes 64Kbytes

HSB-PB Bridge A | OxFFFF0000 64Kbytes 64Kbytes 64Kbytes

Table 5-2. Flash Memory Parameters
Number of pages Page size

Part Number Flash Size (FLASH_PW) (FLASH_P) (FLASH_W)
AT32UC3L064 64Kbytes 256 256 bytes
AT32UC3L032 32Kbytes 128 256 bytes
AT32UC3L016 16Kbytes 64 256 bytes

AIMEL 32

320991-01/2012 I ©

5.3 Peripheral Address Map

Table 5-3. Peripheral Address Mapping

Address Peripheral Name
0xFFFEO0000
FLASHCDW Flash Controller - FLASHCDW
0xFFFE0400
HMATRIX HSB Matrix - HMATRIX
0xFFFE0800
SAU Secure Access Unit - SAU
0xFFFF0000
PDCA Peripheral DMA Controller - PDCA
0xFFFF1000
INTC Interrupt controller - INTC
O0xFFFF1400
PM Power Manager - PM
O0xFFFF1800
SCIF System Control Interface - SCIF
0xFFFF1C00
AST Asynchronous Timer - AST
0xFFFF2000
WDT Watchdog Timer - WDT
0xFFFF2400
EIC External Interrupt Controller - EIC
0xFFFF2800
FREQM Frequency Meter - FREQM
0xFFFF2C00
GPIO General Purpose Input/Output Controller - GPIO
OxFFFF3000 USARTO Universal Synchronous/Asynchronous
Receiver/Transmitter - USARTO
O0xFFFF3400 USART1 Universal Synchronous/Asynchronous
Receiver/Transmitter - USART1
OxFFFF3800 USART2 Universal Synchronous/Asynchronous
Receiver/Transmitter - USART2
O0xFFFF3C00 USARTS3 Universal Synchronous/Asynchronous
Receiver/Transmitter - USART3
0xFFFF4000
SPI Serial Peripheral Interface - SPI
0xFFFF4400
TWIMO Two-wire Master Interface - TWIMO

AIMEL 33

320991-01/2012 I ©

Table 5-3. Peripheral Address Mapping

0xFFFF4800
TWIMA1 Two-wire Master Interface - TWIM1
0xFFFF4C00
TWISO Two-wire Slave Interface - TWISO
O0xFFFF5000
TWIS1 Two-wire Slave Interface - TWIS1
0xFFFF5400
PWMA Pulse Width Modulation Controller - PWMA

0xFFFF5800

TCO Timer/Counter - TCO
0xFFFF5C00

TCH Timer/Counter - TC1
0xFFFF6000

ADCIFB ADC Interface - ADCIFB
0xFFFF6400
ACIFB Analog Comparator Interface - ACIFB

0xFFFF6800

CAT Capacitive Touch Module - CAT
0xFFFF6C00

GLOC Glue Logic Controller - GLOC

O0xFFFF7000

AW aWire - AW

5.4 CPU Local Bus Mapping

Some of the registers in the GPIO module are mapped onto the CPU local bus, in addition to
being mapped on the Peripheral Bus. These registers can therefore be reached both by
accesses on the Peripheral Bus, and by accesses on the local bus.

Mapping these registers on the local bus allows cycle-deterministic toggling of GPIO pins since
the CPU and GPIO are the only modules connected to this bus. Also, since the local bus runs at
CPU speed, one write or read operation can be performed per clock cycle to the local bus-
mapped GPIO registers.

AIMEL 34

320991-01/2012 I ©

The following GPIO registers are mapped on the local bus:

Table 5-4. Local Bus Mapped GPIO Registers

Local Bus

Port Register Mode Address Access
0 Output Driver Enable Register (ODER) WRITE 0x40000040 Write-only
SET 0x40000044 Write-only
CLEAR 0x40000048 Write-only
TOGGLE 0x4000004C Write-only
Output Value Register (OVR) WRITE 0x40000050 Write-only
SET 0x40000054 Write-only
CLEAR 0x40000058 Write-only
TOGGLE 0x4000005C Write-only
Pin Value Register (PVR) - 0x40000060 Read-only
1 Output Driver Enable Register (ODER) WRITE 0x40000140 Write-only
SET 0x40000144 Write-only
CLEAR 0x40000148 Write-only
TOGGLE 0x4000014C Write-only
Output Value Register (OVR) WRITE 0x40000150 Write-only
SET 0x40000154 Write-only
CLEAR 0x40000158 Write-only
TOGGLE 0x4000015C Write-only
Pin Value Register (PVR) - 0x40000160 Read-only

AIMEL 35

320991-01/2012 I ©

6. Supply and Startup Considerations

6.1 Supply Considerations

6.1.1 Power Supplies

The AT32UC3L016/32/64 has several types of power supply pins:

*VDDIO: Powers /O lines. Voltage is 1.8 to 3.3V nominal.

*VDDIN: Powers I/O lines and the internal regulator. Voltage is 1.8 to 3.3V nominal.
*VDDANA: Powers the ADC. Voltage is 1.8V nominal.

*VDDCORE: Powers the core, memories, and peripherals. Voltage is 1.8V nominal.

The ground pins GND are common to VDDCORE, VDDIO, and VDDIN. The ground pin for
VDDANA is GNDANA.

When VDDCORE is not connected to VDDIN, the VDDIN voltage must be higher than 1.98V.
Refer to Section 32. on page 770 for power consumption on the various supply pins.

For decoupling recommendations for the different power supplies, please refer to the schematic
checklist.

6.1.2 Voltage Regulator

The AT32UC3L016/32/64 embeds a voltage regulator that converts from 3.3V nominal to 1.8V
with a load of up to 60mA. The regulator supplies the output voltage on VDDCORE. The regula-
tor may only be used to drive internal circuitry in the device. VDDCORE should be externally
connected to the 1.8V domains. See Section 6.1.3 for regulator connection figures.

Adequate output supply decoupling is mandatory for VDDCORE to reduce ripple and avoid
oscillations. The best way to achieve this is to use two capacitors in parallell between
VDDCORE and GND as close to the device as possible. Please refer to Section 32.8.1 on page
784 for decoupling capacitors values and regulator characteristics.

Figure 6-1. Supply Decoupling
3.3V = »X] VDDIN - -------- y

: Regulator

.IIIIIIIIIIITIIIIIIIII

1.8V m PX|VDDCORE «----- o
= —C

j oUT2—T— “oUT1

6.1.3 Regulator Connection

320991-01/2012

The AT32UC3L016/32/64 supports three power supply configurations:

¢ 3.3V single supply mode
¢ 1.8V single supply mode
* 3.3V supply mode, with 1.8V regulated I/O lines

AIMEL 36

Y 5

AT32UC3L016/32/64

6.1.3.1 3.3V Single Supply Mode
In 3.3V single supply mode the internal regulator is connected to the 3.3V source (VDDIN pin)
and its output feeds VDDCORE. Figure 6-2 shows the power schematics to be used for 3.3V
single supply mode. All I/O lines will be powered by the same power (VDDIN=VDDIO).

Figure 6-2. 3.3V Single Supply Mode

1.98-3.6V _|

VDDIN[3 VVDDIO GND
/O Pins | VO Pins |
¥ \
: OSC32K
Linear RC32K
VDDCORE regulator AST
Wake
POR33
__} SM33
CPU,
= - Peripherals,
VDDANA Memories,
{XI > ADC SCIF, BOD,
—l RCSYS,
-1 DFLL
GNDANA Eﬁ

ATMEL 5

320991-01/2012

6.1.3.2

320991-01/2012

1.8V Single Supply Mode

AT32UC3L016/32/64

In 1.8V single supply mode the internal regulator is not used, and VDDIO and VDDCORE are
powered by a single 1.8V supply as shown in Figure 6-3. All I/O lines will be powered by the
same power (VDDIN = VDDIO = VDDCORE).

Figure 6-3. 1.8V Single Supply Mode.
1.62-1.98V
VDDIN VDDIO
I/O Pins /O Pins
Linear OSC32K
VDDCORE Regulator RC32K
DJ— AST
Wake
— POR33
} SM33
= CPU,
Peripherals
VDDANA ’
EQ > ADC Memories,
- SCIF, BOD,
-1 RCSYS,
DFLL

GND

GNDANA Eg

ATMEL

38

6.1.3.3 3.3V Supply Mode with 1.8V Regulated I/O Lines
In this mode, the internal regulator is connected to the 3.3V source and its output is connected
to both VDDCORE and VDDIO as shown in Figure 6-4. This configuration is required in order to
use Shutdown mode.

Figure 6-4. 3.3V Supply Mode with 1.8V Regulated I/O Lines

1.98-3.6V
VDDIN VDDIO GND

= VO Pins /O Pins

Y i
Linear
OSC32K
Regulator RC32K
AST
Wake
} POR33

VDDCORE

SM33

- CPU,

VDDANA IE Z} > ADC Periphe!’als,
Memories,
- SCIF, BOD,

[RCSYS,

GNDANA Eﬂ DFLL

In this mode, some I/O lines are powered by VDDIN while other I/O lines are powered by VDDIO.
Refer to Section 3.2 on page 9 for description of power supply for each I/O line.

Refer to the Power Manager chapter for a description of what parts of the system are powered in
Shutdown mode.

Important note: As the regulator has a maximum output current of 60mA, this mode can only be
used in applications where the maximum I/O current is known and compatible with the core and
peripheral power consumption. Typically, great care must be used to ensure that only a few 1/0
lines are toggling at the same time and drive very small loads.

AIMEL 39

320991-01/2012 I ©

6.1.4 Power-up Sequence

6.1.4.1

6.1.4.2

Maximum Rise Rate

To avoid risk of latch-up, the rise rate of the power supplies must not exceed the values
described in Table 32-3 on page 771.

Recommended order for power supplies is also described in this chapter.

Minimum Rise Rate

The integrated Power-on Reset (POR33) circuitry monitoring the VDDIN powering supply
requires a minimum rise rate for the VDDIN power supply.

See Table 32-3 on page 771 for the minimum rise rate value.

If the application can not ensure that the minimum rise rate condition for the VDDIN power sup-
ply is met, one of the following configurations can be used:

¢ A logic “0” value is applied during power-up on pin PA11 until VDDIN rises above 1.2V.
* A logic “0” value is applied during power-up on pin RESET_N until VDDIN rises above 1.2V.

6.2 Startup Considerations

This chapter summarizes the boot sequence of the AT32UC3L016/32/64. The behavior after
power-up is controlled by the Power Manager. For specific details, refer to the Power Manager
chapter.

6.2.1 Starting of Clocks

After power-up, the device will be held in a reset state by the Power-on Reset (POR18 and
PORS33) circuitry for a short time to allow the power to stabilize throughout the device. After
reset, the device will use the System RC Oscillator (RCSYS) as clock source. Please refer to
Table 32-17 on page 783 for the frequency for this oscillator.

On system start-up, the DFLL is disabled. All clocks to all modules are running. No clocks have
a divided frequency; all parts of the system receive a clock with the same frequency as the Sys-
tem RC Oscillator.

When powering up the device, there may be a delay before the voltage has stabilized, depend-
ing on the rise time of the supply used. The CPU can start executing code as soon as the supply
is above the POR18 and PORB33 thresholds, and before the supply is stable. Before switching to
a high-speed clock source, the user should use the BOD to make sure the VDDCORE is above
the minimum level (1.62V).

6.2.2 Fetching of Initial Instructions

320991-01/2012

After reset has been released, the AVR32 UC CPU starts fetching instructions from the reset
address, which is 0x80000000. This address points to the first address in the internal flash.

The code read from the internal flash is free to configure the clock system and clock sources .
Please refer to the Power Manager and SCIF chapters for details.

AIMEL 4

Y 5

7. Peripheral DMA Controller (PDCA)

71 Features

7.2 Overview

320991-01/2012

Rev: 1.2.2.1

Multiple channels

¢ Generates transfers between memories and peripherals such as USART and SPI
Two address pointers/counters per channel allowing double buffering

* Performance monitors to measure average and maximum transfer latency

¢ Optional synchronizing of data transfers with extenal peripheral events

* Ring buffer functionality

The Peripheral DMA Controller (PDCA) transfers data between on-chip peripheral modules such
as USART, SPI and memories (those memories may be on- and off-chip memories). Using the
PDCA avoids CPU intervention for data transfers, improving the performance of the microcon-
troller. The PDCA can transfer data from memory to a peripheral or from a peripheral to memory.

The PDCA consists of multiple DMA channels. Each channel has:

* A Peripheral Select Register

¢ A 32-bit memory pointer

¢ A 16-bit transfer counter

¢ A 32-bit memory pointer reload value
* A 16-bit transfer counter reload value

The PDCA communicates with the peripheral modules over a set of handshake interfaces. The
peripheral signals the PDCA when it is ready to receive or transmit data. The PDCA acknowl-
edges the request when the transmission has started.

When a transmit buffer is empty or a receive buffer is full, an optional interrupt request can be
generated.

AIMEL +

Y 5

7.3 Block Diagram

Figure 7-1. PDCA Block Diagram

Memory Perl%heral
HSB to PB
¢ HSB Bridge —
HSB ;
Per|p1heral
g
@
High Speed E
Bus Matrix 2
[
HSB o .
I I — Perlpzheral
Peripheral DMA
Controller ~—
(PDCA)
Interrupt _ RQ Peripheral
Controller | (n-1)
A | A
Handshake Interfaces

7.4 Product Dependencies
In order to use this module, other parts of the system must be configured correctly, as described
below.

741 Power Management
If the CPU enters a sleep mode that disables the PDCA clocks, the PDCA will stop functioning
and resume operation after the system wakes up from sleep mode.

7.4.2 Clocks
The PDCA has two bus clocks connected: One High Speed Bus clock (CLK_PDCA_HSB) and
one Peripheral Bus clock (CLK_PDCA_PB). These clocks are generated by the Power Man-
ager. Both clocks are enabled at reset, and can be disabled in the Power Manager. It is
recommended to disable the PDCA before disabling the clocks, to avoid freezing the PDCA in
an undefined state.

7.4.3 Interrupts
The PDCA interrupt request lines are connected to the interrupt controller. Using the PDCA
interrupts requires the interrupt controller to be programmed first.

AIMEL 2

320991-01/2012 I ©

7.4.4 Peripheral Events
The PDCA peripheral events are connected via the Peripheral Event System. Refer to the
Peripheral Event System chapter for details.

7.5 Functional Description

7.5.1 Basic Operation
The PDCA consists of multiple independent PDCA channels, each capable of handling DMA
requests in parallel. Each PDCA channels contains a set of configuration registers which must
be configured to start a DMA transfer.

In this section the steps necessary to configure one PDCA channel is outlined.

The peripheral to transfer data to or from must be configured correctly in the Peripheral Select
Register (PSR). This is performed by writing the Peripheral Identity (PID) value for the corre-
sponding peripheral to the PID field in the PSR register. The PID also encodes the transfer
direction, i.e. memory to peripheral or peripheral to memory. See Section 7.5.6.

The transfer size must be written to the Transfer Size field in the Mode Register (MR.SIZE). The
size must match the data size produced or consumed by the selected peripheral. See Section
7.5.7.

The memory address to transfer to or from, depending on the PSR, must be written to the Mem-
ory Address Register (MAR). For each transfer the memory address is increased by either a
one, two or four, depending on the size set in MR. See Section 7.5.2.

The number of data items to transfer is written to the TCR register. If the PDCA channel is
enabled, a transfer will start immediately after writing a non-zero value to TCR or the reload ver-
sion of TCR, TCRR. After each transfer the TCR value is decreased by one. Both MAR and TCR
can be read while the PDCA channel is active to monitor the DMA progress. See Section 7.5.3.

The channel must be enabled for a transfer to start. A channel is enable by writing a one to the
EN bit in the Control Register (CR).

7.5.2 Memory Pointer
Each channel has a 32-bit Memory Address Register (MAR). This register holds the memory
address for the next transfer to be performed. The register is automatically updated after each
transfer. The address will be increased by either one, two or four depending on the size of the
DMA transfer (byte, halfword or word). The MAR can be read at any time during transfer.

7.5.3 Transfer Counter
Each channel has a 16-bit Transfer Counter Register (TCR). This register must be written with
the number of transfers to be performed. The TCR register should contain the number of data
items to be transferred independently of the transfer size. The TCR can be read at any time dur-
ing transfer to see the number of remaining transfers.

7.5.4 Reload Registers
Both the MAR and the TCR have a reload register, respectively Memory Address Reload Regis-
ter (MARR) and Transfer Counter Reload Register (TCRR). These registers provide the
possibility for the PDCA to work on two memory buffers for each channel. When one buffer has
completed, MAR and TCR will be reloaded with the values in MARR and TCRR. The reload logic
is always enabled and will trigger if the TCR reaches zero while TCRR holds a non-zero value.
After reload, the MARR and TCRR registers are cleared.

AIMEL 43

320991-01/2012 I ©

7.5.5 Ring Buffer

If TCR is zero when writing to TCRR, the TCR and MAR are automatically updated with the
value written in TCRR and MARR.

When Ring Buffer mode is enabled the TCRR and MARR registers will not be cleared when
TCR and MAR registers reload. This allows the PDCA to read or write to the same memory
region over and over again until the transfer is actively stopped by the user. Ring Buffer mode is
enabled by writing a one to the Ring Buffer bit in the Mode Register (MR.RING).

7.5.6 Peripheral Selection

7.5.7 Transfer Size

The Peripheral Select Register (PSR) decides which peripheral should be connected to the
PDCA channel. A peripheral is selected by writing the corresponding Peripheral Identity (PID) to
the PID field in the PSR register. Writing the PID will both select the direction of the transfer
(memory to peripheral or peripheral to memory), which handshake interface to use, and the
address of the peripheral holding register. Refer to the Peripheral Identity (PID) table in the Mod-
ule Configuration section for the peripheral PID values.

The transfer size can be set individually for each channel to be either byte, halfword or word (8-
bit, 16-bit or 32-bit respectively). Transfer size is set by writing the desired value to the Transfer
Size field in the Mode Register (MR.SIZE).

When the PDCA moves data between peripherals and memory, data is automatically sized and
aligned. When memory is accessed, the size specified in MR.SIZE and system alignment is
used. When a peripheral register is accessed the data to be transferred is converted to a word
where bit n in the data corresponds to bit n in the peripheral register. If the transfer size is byte or
halfword, bits greater than 8 and16 respectively are set to zero.

Refer to the Module Configuration section for information regarding what peripheral registers are
used for the different peripherals and then to the peripheral specific chapter for information
about the size option available for the different registers.

7.5.8 Enabling and Disabling

7.5.9 Interrupts

320991-01/2012

Each DMA channel is enabled by writing a one to the Transfer Enable bit in the Control Register
(CR.TEN) and disabled by writing a one to the Transfer Disable bit (CR.TDIS). The current sta-
tus can be read from the Status Register (SR).

While the PDCA channel is enabled all DMA request will be handled as long the TCR and TCRR
is not zero.

Interrupts can be enabled by writing a one to the corresponding bit in the Interrupt Enable Regis-
ter (IER) and disabled by writing a one to the corresponding bit in the Interrupt Disable Register
(IDR). The Interrupt Mask Register (IMR) can be read to see whether an interrupt is enabled or
not. The current status of an interrupt source can be read through the Interrupt Status Register
(ISR).

The PDCA has three interrupt sources:

* Reload Counter Zero - The TCRR register is zero.
* Transfer Finished - Both the TCR and TCRR registers are zero.
e Transfer Error - An error has occurred in accessing memory.

AIMEL “

Y 5

7.5.10 Priority
If more than one PDCA channel is requesting transfer at a given time, the PDCA channels are
prioritized by their channel number. Channels with lower numbers have priority over channels
with higher numbers, giving channel zero the highest priority.

7.5.11 Error Handling

If the Memory Address Register (MAR) is set to point to an invalid location in memory, an error
will occur when the PDCA tries to perform a transfer. When an error occurs, the Transfer Error
bit in the Interrupt Status Register (ISR.TERR) will be set and the DMA channel that caused the
error will be stopped. In order to restart the channel, the user must program the Memory
Address Register to a valid address and then write a one to the Error Clear bit in the Control
Register (CR.ECLR). If the Transfer Error interrupt is enabled, an interrupt request will be gener-
ated when a transfer error occurs.

7.5.12 Peripheral Event Trigger

Peripheral events can be used to trigger PDCA channel transfers. Peripheral Event synchroniza-
tions are enabled by writing a one to the Event Trigger bit in the Mode Register (MR.ETRIG).
When set, all DMA requests will be blocked until a peripheral event is received. For each periph-
eral event received, only one data item is transferred. If no DMA requests are pending when a
peripheral event is received, the PDCA will start a transfer as soon as a peripheral event is
detected. If multiple events are received while the PDCA channel is busy transferring data, an
overflow condition will be signaled in the Peripheral Event System. Refer to the Peripheral Event
System chapter for more information.

7.6 Performance Monitors

Up to two performance monitors allow the user to measure the activity and stall cycles for PDCA
transfers. To monitor a PDCA channel, the corresponding channel number must be written to
one of the MONO/1CH fields in the Performance Control Register (PCONTROL) and a one must
be written to the corresponding CHO/1EN bit in the same register.

Due to performance monitor hardware resource sharing, the two monitor channels should NOT
be programmed to monitor the same PDCA channel. This may result in UNDEFINED perfor-
mance monitor behavior.

7.6.1 Measuring mechanisms
Three different parameters can be measured by each channel:

¢ The number of data transfer cycles since last channel reset, both for read and write
* The number of stall cycles since last channel reset, both for read and write
* The maximum latency since last channel reset, both for read and write

These measurements can be extracted by software and used to generate indicators for bus
latency, bus load, and maximum bus latency.

Each of the counters has a fixed width, and may therefore overflow. When an overflow is
encountered in either the Performance Channel Data Read/Write Cycle registers (PRDATA0/1
and PWDATAOQ/1) or the Performance Channel Read/Write Stall Cycles registers (PRSTALLO/1
and PWSTALLO/1) of a channel, all registers in the channel are reset. This behavior is altered if
the Channel Overflow Freeze bit is one in the Performance Control register (PCON-
TROL.CHO/10OVF). If this bit is one, the channel registers are frozen when either DATA or
STALL reaches its maximum value. This simplifies one-shot readout of the counter values.

AIMEL 4

320991-01/2012 I ©

320991-01/2012

The registers can also be manually reset by writing a one to the Channel Reset bit in the PCON-
TROL register (PCONTROL.CHO/1RES). The Performance Channel Read/Write Latency
registers (PRLATO/1 and PWLATO/1) are saturating when their maximum count value is
reached. The PRLATO/1 and PWLATO/1 registers can only be reset by writing a one to the cor-
responding reset bit in PCONTROL (PCONTROL.CHO/1RES).

A counter is enabled by writing a one to the Channel Enable bit in the Performance Control Reg-
ister (PCONTROL.CHO/1EN).

AIMEL .

Y 5

7.7 User Interface

7.741

Table 7-1.

Memory Map Overview

PDCA Register Memory Map

Address Range

Contents

0x000 - 0x03F

DMA channel 0 configuration registers

0x040 - 0x07F

DMA channel 1 configuration registers

(0x000 - 0x03F)+m*0x040

DMA channel m configuration registers

0x800-0x830

Performance Monitor registers

0x834

Version register

The channels are mapped as shown in Table 7-1. Each channel has a set of configuration regis-
ters, shown in Table 7-2, where n is the channel number.

7.7.2 Channel Memory Map
Table 7-2. PDCA Channel Configuration Registers
Offset Register Register Name Access Reset

0x000 + n*0x040 Memory Address Register MAR Read/Write 0x00000000
0x004 + n*0x040 Peripheral Select Register PSR Read/Write -
0x008 + n*0x040 Transfer Counter Register TCR Read/Write 0x00000000
0x00C + n*0x040 Memory Address Reload Register MARR Read/Write 0x00000000
0x010 + n*0x040 Transfer Counter Reload Register TCRR Read/Write 0x00000000
0x014 + n*0x040 Control Register CR Write-only 0x00000000
0x018 + n*0x040 Mode Register MR Read/Write 0x00000000
0x01C + n*0x040 Status Register SR Read-only 0x00000000
0x020 + n*0x040 Interrupt Enable Register IER Write-only 0x00000000
0x024 + n*0x040 Interrupt Disable Register IDR Write-only 0x00000000
0x028 + n*0x040 Interrupt Mask Register IMR Read-only 0x00000000
0x02C + n*0x040 Interrupt Status Register ISR Read-only 0x00000000

320991-01/2012

Note: 1.
end of this chapter.

ATMEL

Y 5

The reset values are device specific. Please refer to the Module Configuration section at the

47

7.7.3 Performance Monitor Memory Map

Table 7-3. PDCA Performance Monitor Registers'"
Offset Register Register Name Access Reset
0x800 Performance Control Register PCONTROL Read/Write 0x00000000
0x804 Channel0 Read Data Cycles PRDATAO Read-only 0x00000000
0x808 Channel0 Read Stall Cycles PRSTALLO Read-only 0x00000000
0x80C Channel0 Read Max Latency PRLATO Read-only 0x00000000
0x810 Channel0 Write Data Cycles PWDATAO Read-only 0x00000000
0x814 Channel0 Write Stall Cycles PWSTALLO Read-only 0x00000000
0x818 Channel0 Write Max Latency PWLATO Read-only 0x00000000
0x81C Channel1 Read Data Cycles PRDATA1 Read-only 0x00000000
0x820 Channel1 Read Stall Cycles PRSTALL1 Read-only 0x00000000
0x824 Channell Read Max Latency PRLATA Read-only 0x00000000
0x828 Channel1 Write Data Cycles PWDATA1 Read-only 0x00000000
0x82C Channel1 Write Stall Cycles PWSTALLA1 Read-only 0x00000000
0x830 Channel1 Write Max Latency PWLAT1 Read-only 0x00000000

Note: 1. The number of performance monitors is device specific. If the device has only one perfor-
mance monitor, the Channell registers are not available. Please refer to the Module
Configuration section at the end of this chapter for the number of performance monitors on this

device.

7.7.4 Version Register Memory Map

Table 7-4. PDCA Version Register Memory Map
Offset Register Register Name Access Reset
0x834 Version Register VERSION Read-only -

Note: 1. The reset values are device specific. Please refer to the Module Configuration section at the end of this chapter.

320991-01/2012

ATMEL

48

7.7.5 Memory Address Register

Name: MAR

Access Type: Read/Write

Offset: 0x000 + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ MADDR[31:24] ‘
23 22 21 20 19 18 17 16

‘ MADDR[23:16] ‘
15 14 13 12 11 10 9 8

‘ MADDR[15:8] ‘
7 6 5 4 3 2 1 0

‘ MADDR([7:0] ‘

e MADDR: Memory Address
Address of memory buffer. MADDR should be programmed to point to the start of the memory buffer when configuring the
PDCA. During transfer, MADDR will point to the next memory location to be read/written.

AIMEL .

320991-01/2012 I ©

7.7.6
Name:

Access Type:

Offset:

Reset Value:

Peripheral Select Register
PSR

Read/Write

0x004 + n*0x040

31 30 29 28 27 26 25 24
- - - T - -]
23 22 21 20 19 18 17 16
- - - 1 - -]
15 14 13 12 11 10 9 8
- - - T - -]
7 6 5 4 3 2 1 0

PID

¢ PID: Peripheral Identifier

The Peripheral Identifier selects which peripheral should be connected to the DMA channel. Writing a PID will select both which
handshake interface to use, the direction of the transfer and also the address of the Receive/Transfer Holding Register for the
peripheral. See the Module Configuration section of PDCA for details. The width of the PID field is device specific and

dependent on the number of peripheral modules in the device.

320991-01/2012

ATMEL

Y 5

50

7.7.7 Transfer Counter Register

Name: TCR

Access Type: Read/Write

Offset: 0x008 + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

‘ TCV[15:8] ‘
7 6 5 4 3 2 1 0

‘ TCV[7:0] ‘

e TCV: Transfer Counter Value
Number of data items to be transferred by the PDCA. TCV must be programmed with the total number of transfers to be made.
During transfer, TCV contains the number of remaining transfers to be done.

ATMEL 2

320991-01/2012

7.7.8 Memory Address Reload Register

Name: MARR

Access Type: Read/Write

Offset: 0x00C + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ MARV[31:24] ‘
23 22 21 20 19 18 17 16

‘ MARV[23:16] ‘
15 14 13 12 11 10 9 8

‘ MARV[15:8] ‘
7 6 5 4 3 2 1 0

‘ MARV[7:0] ‘

¢ MARV: Memory Address Reload Value
Reload Value for the MAR register. This value will be loaded into MAR when TCR reaches zero if the TCRR register has a non-
zero value.

AIMEL 52

320991-01/2012 I ©

7.7.9 Transfer Counter Reload Register

Name: TCRR

Access Type: Read/Write

Offset: 0x010 + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - - -+ - ;r - ;- - ;- [- |
23 22 21 20 19 18 17 16

. - r - r-r - r - r - ;- [- |
15 14 13 12 11 10 9 8

‘ TCRV[15:8] ‘
7 6 5 4 3 2 1 0

‘ TCRV[7:0] ‘

e TCRV: Transfer Counter Reload Value
Reload value for the TCR register. When TCR reaches zero, it will be reloaded with TCRV if TCRV has a positive value. If TCRV

is zero, no more transfers will be performed for the channel. When TCR is reloaded, the TCRR register is cleared.

AIMEL 53

320991-01/2012 I ©

7.7.10 Control Register

Name: CR

Access Type: Write-only

Offset: 0x014 + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - r - - 7r -t - [- [-} - |
23 22 21 20 19 18 17 16

. - - - 1< - r - - [- [- |
15 14 13 12 11 10 9 8

- - - r - - 7 - [- | eur |
7 6 5 4 3 2 1 0

I N e -

e ECLR: Transfer Error Clear
Writing a zero to this bit has no effect.
Writing a one to this bit will clear the Transfer Error bit in the Status Register (SR.TERR). Clearing the SR.TERR bit will allow the
channel to transmit data. The memory address must first be set to point to a valid location.
e TDIS: Transfer Disable
Writing a zero to this bit has no effect.
Writing a one to this bit will disable transfer for the DMA channel.
e TEN: Transfer Enable
Writing a zero to this bit has no effect.
Writing a one to this bit will enable transfer for the DMA channel.

AIMEL 54

320991-01/2012 I ©

7.7.11 Mode Register

Name: MR

Access Type: Read/Write

Offset: 0x018 + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - r - - +r - +r - - [- [- |
23 22 21 20 19 18 17 16

- - r - r - r - ;- ;- ;- |
15 14 13 12 11 10 9 8

- - r - r - r - ;- ;- ;- |
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ - ‘ - ‘ RING ‘ ETRIG ‘ SIZE ‘

¢ RING: Ring Buffer

0:The Ring buffer functionality is disabled.

1:The Ring buffer functionality is enabled. When enabled, the reload registers, MARR and TCRR will not be cleared after reload.
e ETRIG: Event Trigger

0:Start transfer when the peripheral selected in Peripheral Select Register (PSR) requests a transfer.

1:Start transfer only when or after a peripheral event is received.
¢ SIZE: Size of Transfer

Table 7-5. Size of Transfer

SIZE Size of Transfer
0 Byte
1 Halfword
2 Word
3 Reserved

AIMEL 55

320991-01/2012 I ©

7.7.12 Status Register

Name: SR

Access Type: Read-only

Offset: 0x01C + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | R | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | I | | |
7 6 5 4 3 2 1 0

I S O R IR AR B B

e TEN: Transfer Enabled
This bit is cleared when the TDIS bit in CR is written to one.

This bit is set when the TEN bit in CR is written to one.
0: Transfer is disabled for the DMA channel.
1: Transfer is enabled for the DMA channel.

ATMEL s

320991-01/2012

7.7.13 Interrupt Enable Register

Name: IER

Access Type: Write-only

Offset: 0x020 + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | - | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | I | | |
7 6 5 4 3 2 1 0

| : | : | : | : | : . teRR | TRC | RCZ |

Writing a zero to a bit in this register has no effect.
Writing a one to a bit in this register will set the corresponding bit in IMR.

ATMEL 5

320991-01/2012

7.714 Interrupt Disable Register

Name: IDR

Access Type: Write-only

Offset: 0x024 + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | - | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | I | | |
7 6 5 4 3 2 1 0

| : | : | : | : | : . teRR | TRC | RCZ |

Writing a zero to a bit in this register has no effect.
Writing a one to a bit in this register will clear the corresponding bit in IMR.

ATMEL s

320991-01/2012

7.7.15 Interrupt Mask Register

Name: IMR

Access Type: Read-only

Offset: 0x028 + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | R | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | I | | |
7 6 5 4 3 2 1 0

| : | : | : | : | : . teRR | TRC | RCZ |

0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

A bit in this register is cleared when the corresponding bit in IDR is written to one.
A bit in this register is set when the corresponding bit in IER is written to one.

ATMEL s

320991-01/2012

7.7.16 Interrupt Status Register

Name: ISR

Access Type: Read-only

Offset: 0x02C + n*0x040

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - r - - +r - +r - - [- [- |
23 22 21 20 19 18 17 16

- - r - r - r - ;- ;- ;- |
15 14 13 12 11 10 9 8

- - r - r - r - ;- ;- ;- |
7 6 5 4 3 2 1 0

| : | : | : | : | : . teRR | TRC | RCZ |

e TERR: Transfer Error

This bit is cleared when no transfer errors have occurred since the last write to CR.ECLR.

This bit is set when one or more transfer errors has occurred since reset or the last write to CR.ECLR.
e TRC: Transfer Complete

This bit is cleared when the TCR and/or the TCRR holds a non-zero value.

This bit is set when both the TCR and the TCRR are zero.

¢ RCZ: Reload Counter Zero
This bit is cleared when the TCRR holds a non-zero value.

This bit is set when TCRR is zero.

AIMEL 60

320991-01/2012 I ©

77147 Performance Control Register

Name: PCONTROL

Access Type: Read/Write

Offset: 0x800

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ - ‘ - ‘ MON1CH ‘
23 22 21 20 19 18 17 16

| ; | ; | MONOCH |
15 14 13 12 11 10 9 8

- [- T T T T - T cmres [crones |
7 6 5 4 3 2 1 0

| ; | ; | cHioF | chooF | i | i | cHiEN | crHoen |

¢ MON1CH: Performance Monitor Channel 1
¢ MONOCH: Performance Monitor Channel 0
The PDCA channel number to monitor with counter n

Due to performance monitor hardware resource sharing, the two performance monitor channels should NOT be programmed to
monitor the same PDCA channel. This may result in UNDEFINED monitor behavior.

e CH1RES: Performance Channel 1 Counter Reset
Writing a zero to this bit has no effect.

Writing a one to this bit will reset the counter in the channel specified in MON1CH.
This bit always reads as zero.

e CHORES: Performance Channel 0 Counter Reset
Writing a zero to this bit has no effect.

Writing a one to this bit will reset the counter in the channel specified in MONOCH.
This bit always reads as zero.

e CH10OF: Channel 1 Overflow Freeze
0: The performance channel registers are reset if DATA or STALL overflows.

1: All performance channel registers are frozen just before DATA or STALL overflows.

e CH10F: Channel 0 Overflow Freeze
0: The performance channel registers are reset if DATA or STALL overflows.

1: All performance channel registers are frozen just before DATA or STALL overflows.

e CH1EN: Performance Channel 1 Enable
0: Performance channel 1 is disabled.

1: Performance channel 1 is enabled.

e CHOEN: Performance Channel 0 Enable
0: Performance channel 0 is disabled.

1: Performance channel 0 is enabled.

AIMEL 61

320991-01/2012 I ©

7.7.18 Performance Channel 0 Read Data Cycles

Name: PRDATAOQ

Access Type: Read-only

Offset: 0x804

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ DATA[31:24] ‘
23 22 21 20 19 18 17 16

‘ DATA[23:16] ‘
15 14 13 12 11 10 9 8

‘ DATA[15:8] ‘
7 6 5 4 3 2 1 0

‘ DATA[7:0] ‘

e DATA: Data Cycles Counted Since Last Reset
Clock cycles are counted using the CLK_PDCA_HSB clock

AIMEL 62

320991-01/2012 I ©

7.7.19 Performance Channel 0 Read Stall Cycles

Name: PRSTALLO

Access Type: Read-only

Offset: 0x808

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ STALL[31:24] ‘
23 22 21 20 19 18 17 16

‘ STALL[23:16] ‘
15 14 13 12 11 10 9 8

‘ STALL[15:8] ‘
7 6 5 4 3 2 1 0

‘ STALL[7:0] ‘

e STALL: Stall Cycles Counted Since Last Reset
Clock cycles are counted using the CLK_PDCA_HSB clock

AIMEL 63

320991-01/2012 I ©

7.7.20 Performance Channel 0 Read Max Latency

Name: PRLATO

Access Type: Read/Write

Offset: 0x80C

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

‘ LAT[15:8] ‘
7 6 5 4 3 2 1 0

‘ LAT[7:0] ‘

e LAT: Maximum Transfer Initiation Cycles Counted Since Last Reset
Clock cycles are counted using the CLK_PDCA_HSB clock

This counter is saturating. The register is reset only when PCONTROL.CHORES is written to one.

ATMEL o

320991-01/2012

7.7.21 Performance Channel 0 Write Data Cycles

Name: PWDATAO

Access Type: Read-only

Offset: 0x810

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ DATA[31:24] ‘
23 22 21 20 19 18 17 16

‘ DATA[23:16] ‘
15 14 13 12 11 10 9 8

‘ DATA[15:8] ‘
7 6 5 4 3 2 1 0

‘ DATA[7:0] ‘

e DATA: Data Cycles Counted Since Last Reset
Clock cycles are counted using the CLK_PDCA_HSB clock

AIMEL 65

320991-01/2012 I ©

7.7.22 Performance Channel 0 Write Stall Cycles

Name: PWSTALLO

Access Type: Read-only

Offset: 0x814

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ STALL[31:24] ‘
23 22 21 20 19 18 17 16

‘ STALL[23:16] ‘
15 14 13 12 11 10 9 8

‘ STALL[15:8] ‘
7 6 5 4 3 2 1 0

‘ STALL[7:0] ‘

e STALL: Stall Cycles Counted Since Last Reset
Clock cycles are counted using the CLK_PDCA_HSB clock

AIMEL 66

320991-01/2012 I ©

7.7.23 Performance Channel 0 Write Max Latency

Name: PWLATO

Access Type: Read/Write

Offset: 0x818

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

‘ LAT[15:8] ‘
7 6 5 4 3 2 1 0

‘ LAT[7:0] ‘

e LAT: Maximum Transfer Initiation Cycles Counted Since Last Reset
Clock cycles are counted using the CLK_PDCA_HSB clock

This counter is saturating. The register is reset only when PCONTROL.CHORES is written to one.

ATMEL o

320991-01/2012

7.7.24 Performance Channel 1 Read Data Cycles

Name: PRDATA1

Access Type: Read-only

Offset: 0x81C

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ DATA[31:24] ‘
23 22 21 20 19 18 17 16

‘ DATA[23:16] ‘
15 14 13 12 11 10 9 8

‘ DATA[15:8] ‘
7 6 5 4 3 2 1 0

‘ DATA[7:0] ‘

e DATA: Data Cycles Counted Since Last Reset
Clock cycles are counted using the CLK_PDCA_HSB clock

AIMEL 68

320991-01/2012 I ©

7.7.25 Performance Channel 1 Read Stall Cycles

Name: PRSTALL1

Access Type: Read-only

Offset: 0x820

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ STALL[31:24] ‘
23 22 21 20 19 18 17 16

‘ STALL[23:16] ‘
15 14 13 12 11 10 9 8

‘ STALL[15:8] ‘
7 6 5 4 3 2 1 0

‘ STALL[7:0] ‘

e STALL: Stall Cycles Counted Since Last Reset
Clock cycles are counted using the CLK_PDCA_HSB clock

AIMEL 69

320991-01/2012 I ©

7.7.26 Performance Channel 1 Read Max Latency

Name: PRLAT1

Access Type: Read/Write

Offset: 0x824

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

‘ LAT[15:8] ‘
7 6 5 4 3 2 1 0

‘ LAT[7:0] ‘

e LAT: Maximum Transfer Initiation Cycles Counted Since Last Reset
Clock cycles are counted using the CLK_PDCA_HSB clock

This counter is saturating. The register is reset only when PCONTROL.CH1RES is written to one.

ATMEL L

320991-01/2012

7.7.27 Performance Channel 1 Write Data Cycles

Name: PWDATA1

Access Type: Read-only

Offset: 0x828

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ DATA[31:24] ‘
23 22 21 20 19 18 17 16

‘ DATA[23:16] ‘
15 14 13 12 11 10 9 8

‘ DATA[15:8] ‘
7 6 5 4 3 2 1 0

‘ DATA[7:0] ‘

e DATA: Data Cycles Counted Since Last Reset
Clock cycles are counted using the CLK_PDCA_HSB clock

AIMEL 7

320991-01/2012 I ©

7.7.28 Performance Channel 1 Write Stall Cycles

Name: PWSTALL1

Access Type: Read-only

Offset: 0x82C

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

‘ STALL[31:24] ‘
23 22 21 20 19 18 17 16

‘ STALL[23:16] ‘
15 14 13 12 11 10 9 8

‘ STALL[15:8] ‘
7 6 5 4 3 2 1 0

‘ STALL[7:0] ‘

e STALL: Stall Cycles Counted Since Last Reset
Clock cycles are counted using the CLK_PDCA_HSB clock

AIMEL 72

320991-01/2012 I ©

7.7.29 Performance Channel 1 Write Max Latency

Name: PWLAT1

Access Type: Read/Write

Offset: 0x830

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

‘ LAT[15:8] ‘
7 6 5 4 3 2 1 0

‘ LAT[7:0] ‘

e LAT: Maximum Transfer Initiation Cycles Counted Since Last Reset
Clock cycles are counted using the CLK_PDCA_HSB clock

This counter is saturating. The register is reset only when PCONTROL.CH1RES is written to one.

ATMEL 7s

320991-01/2012

7.7.30 PDCA Version Register

Name: VERSION

Access Type: Read-only

Offset: 0x834

Reset Value:
31 30 29 28 27 26 25 24

| | - | |
23 22 21 20 19 18 17 16

‘ - ‘ - ‘ - ‘ - ‘ VARIANT ‘
15 14 13 12 11 10 9 8

‘] ‘] ‘] ‘] \ VERSION[11:8] ‘
7 6 5 4 3 2 1 0

‘ VERSION][7:0] ‘

e VARIANT: Variant Number
Reserved. No functionality associated.
e VERSION: Version Number
Version number of the module. No functionality associated.

ATMEL z

320991-01/2012

7.8 Module Configuration
The specific configuration for each PDCA instance is listed in the following tables.The module
bus clocks listed here are connected to the system bus clocks. Please refer to the Power Man-
ager chapter for details.

Table 7-6. PDCA Configuration
Feature PDCA
Number of channels 12
Number of performance monitors 1
Table 7-7. Module Clock Name
Module name | Clock Name Description
CLK_PDCA_HSB Clock for the PDCA HSB interface
PDCA CLK_PDCA_PB Clock for the PDCA PB interface
Table 7-8. Register Reset Values
Register Reset Value
PSR CH 0 0
PSR CH 1 1
PSR CH 2 2
PSR CH 3 3
PSR CH 4 4
PSR CH 5 5
PSR CH 6 6
PSRCH7 7
PSR CH 8 8
PSR CH 9 9
PSR CH 10 10
PSR CH 11 11
VERSION 122

The table below defines the valid Peripheral Identifiers (PIDs). The direction is specified as
observed from the memory, so RX means transfers from peripheral to memory and TX means
from memory to peripheral.

320991-01/2012

Table 7-9. Peripheral Identity Values
PID Direction Peripheral Instance Peripheral Register
0 RX USARTO RHR
1 RX USART1 RHR
2 RX USART2 RHR
3 RX USART3 RHR
AIMEL

75

Table 7-9. Peripheral Identity Values

PID Direction Peripheral Instance Peripheral Register
4 RX SPI RDR

5 RX TWIMO RHR

6 RX TWIM1 RHR

7 RX TWISO RHR

8 RX TWIS1 RHR

9 RX ADCIFB LCDR

10 RX AW RHR

11 RX CAT ACOUNT
12 TX USARTO THR

13 TX USART1 THR

14 TX USART2 THR

15 TX USART3 THR

16 TX SPI TDR

17 TX TWIMO THR

18 TX TWIM1 THR

19 TX TWISO THR

20 TX TWIS1 THR

21 TX AW THR

22 TX CAT MBLEN

AIMEL 76

320991-01/2012 I ©

8. Flash Controller (FLASHCDW)
Rev: 1.0.2.0

8.1 Features

¢ Controls on-chip flash memory

¢ Supports 0 and 1 wait state bus access

¢ Buffers reducing penalty of wait state in sequential code or loops

¢ Allows interleaved burst reads for systems with one wait state, outputting one 32-bit word per
clock cycle for sequential reads

¢ Secure State for supporting FlashVault technology

¢ 32-bit HSB interface for reads from flash and writes to page buffer

¢ 32-bit PB interface for issuing commands to and configuration of the controller

* Flash memory is divided into 16 regions can be individually protected or unprotected

¢ Additional protection of the Boot Loader pages

¢ Supports reads and writes of general-purpose Non Volatile Memory (NVM) bits

* Supports reads and writes of additional NVM pages

¢ Supports device protection through a security bit

* Dedicated command for chip-erase, first erasing all on-chip volatile memories before erasing
flash and clearing security bit

8.2 Overview
The Flash Controller (FLASHCDW) interfaces the on-chip flash memory with the 32-bit internal
HSB bus. The controller manages the reading, writing, erasing, locking, and unlocking
sequences.

8.3 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described
below.

8.3.1 Power Management
If the CPU enters a sleep mode that disables clocks used by the FLASHCDW, the FLASHCDW
will stop functioning and resume operation after the system wakes up from sleep mode.

8.3.2 Clocks

The FLASHCDW has two bus clocks connected: One High Speed Bus clock
(CLK_FLASHCDW_HSB) and one Peripheral Bus clock (CLK_FLASHCDW_PB). These clocks
are generated by the Power Manager. Both clocks are enabled at reset, and can be disabled by
writing to the Power Manager. The user has to ensure that CLK_FLASHCDW_HSB is not turned
off before reading the flash or writing the pagebuffer and that CLK_FLASHCDW_PB is not
turned off before accessing the FLASHCDW configuration and control registers. Failing to do so
may deadlock the bus.

8.3.3 Interrupts
The FLASHCDW interrupt request lines are connected to the interrupt controller. Using the
FLASHCDW interrupts requires the interrupt controller to be programmed first.

AIMEL 77

320991-01/2012 I ©

8.3.4 Debug Operation
When an external debugger forces the CPU into debug mode, the FLASHCDW continues nor-
mal operation. If the FLASHCDW is configured in a way that requires it to be periodically
serviced by the CPU through interrupts or similar, improper operation or data loss may result
during debugging.

8.4 Functional Description

8.4.1 Bus Interfaces

The FLASHCDW has two bus interfaces, one High Speed Bus (HSB) interface for reads from the
flash memory and writes to the page buffer, and one Peripheral Bus (PB) interface for issuing
commands and reading status from the controller.

8.4.2 Memory Organization
The flash memory is divided into a set of pages. A page is the basic unit addressed when pro-
gramming the flash. A page consists of several words. The pages are grouped into 16 regions of
equal size. Each of these regions can be locked by a dedicated fuse bit, protecting it from acci-
dental modification.

e ppages (FLASH_P)

¢ w bytes in each page and in the page buffer (FLASH_W)

e pw bytes in total (FLASH_PW)

¢ fgeneral-purpose fuse bits (FLASH_F), used as region lock bits and for other device-specific
purposes

¢ 1 security fuse bit

* 1 User page

8.4.3 User Page
The User page is an additional page, outside the regular flash array, that can be used to store
various data, such as calibration data and serial numbers. This page is not erased by regular
chip erase. The User page can only be written and erased by a special set of commands. Read
accesses to the User page are performed just as any other read accesses to the flash. The
address map of the User page is given in Figure 8-1 on page 80.

8.4.4 Read Operations
The on-chip flash memory is typically used for storing instructions to be executed by the CPU.
The CPU will address instructions using the HSB bus, and the FLASHCDW will access the flash
memory and return the addressed 32-bit word.

In systems where the HSB clock period is slower than the access time of the flash memory, the
FLASHCDW can operate in 0 wait state mode, and output one 32-bit word on the bus per clock
cycle. If the clock frequency allows, the user should use 0 wait state mode, because this gives
the highest performance as no stall cycles are encountered.

The FLASHCDW can also operate in systems where the HSB bus clock period is faster than the
access speed of the flash memory. Wait state support and a read granularity of 64 bits ensure
efficiency in such systems.

Performance for systems with high clock frequency is increased since the internal read word
width of the flash memory is 64 bits. When a 32-bit word is to be addressed, the word itself and

AIMEL 78

320991-01/2012 I ©

320991-01/2012

also the other word in the same 64-bit location is read. The first word is output on the bus, and
the other word is put into an internal buffer. If a read to a sequential address is to be performed
in the next cycle, the buffered word is output on the bus, while the next 64-bit location is read
from the flash memory. Thus, latency in 1 wait state mode is hidden for sequential fetches.

The programmer can select the wait states required by writing to the FWS field in the Flash Con-
trol Register (FCR). It is the responsibility of the programmer to select a number of wait states
compatible with the clock frequency and timing characteristics of the flash memory.

In Ows mode, no wait states are encountered on any flash read operations. In 1 ws mode, one
stall cycle is encountered on the first access in a single or burst transfer. In 1 ws mode, if the first
access in a burst access is to an address that is not 64-bit aligned, an additional stall cycle is
also encountered when reading the second word in the burst. All subsequent words in the burst
are accessed without any stall cycles.

The Flash Controller provides two sets of buffers that can be enabled in order to speed up
instruction fetching. These buffers can be enabled by writing a one to the FCR.SEQBUF and
FCR.BRBUF bits. The SEQBUF bit enables buffering hardware optimizing sequential instruction
fetches. The BRBUF bit enables buffering hardware optimizing tight inner loops. These buffers
are never used when the flash is in 0 wait state mode. Usually, both these buffers should be
enabled when operating in 1 wait state mode. Some users requiring absolute cycle determinism
may want to keep the buffers disabled.

The Flash Controller address space is displayed in Figure 8-1. The memory space between
address pw and the User page is reserved, and reading addresses in this space returns an
undefined result. The User page is permanently mapped to an offset of 0x00800000 from the
start address of the flash memory.

Table 8-1. User Page Addresses

Memory type Start address, byte sized Size
Main array 0 pw bytes
User 0x00800000 w bytes

AIMEL 79

Y 5

Figure 8-1. Memory Map for the Flash Memories

Offset from
base address

BeseBed
> ser Page
0x0080 0000

§o)

(0]

c

)

(2]

)]

0'd

pw

>

£

@©

o

@©

©

e

)

L)

L

0 Flash base address
Flash with User Page

All addresses are byte addresses

8.4.5 High Speed Read Mode
The flash provides a High Speed Read Mode, offering slightly higher flash read speed at the
cost of higher power consumption. Two dedicated commands, High Speed Read Mode Enable
(HSEN) and High Speed Read Mode Disable (HSDIS) control the speed mode. The High Speed
Mode (HSMODE) bit in the Flash Status Register (FSR) shows which mode the flash is in. After
reset, the High Speed Mode is disabled, and must be manually enabled if the user wants to.

Refer to the Electrical Characteristics chapter at the end of this datasheet for details on the max-
imum clock frequencies in Normal and High Speed Read Mode.

AIMEL 80

Y 5

320991-01/2012

Figure 8-2. High Speed Mode

Frequency

A -
1 wait state
- 0 wait state

Y Frequency limit
for 0 wait state

operation

» Speed mode
o T
’7)@/

8.4.6 Quick Page Read
A dedicated command, Quick Page Read (QPR), is provided to read all words in an addressed
page. All bits in all words in this page are AND’ed together, returning a 1-bit result. This result is
placed in the Quick Page Read Result (QPRR) bit in Flash Status Register (FSR). The QPR
command is useful to check that a page is in an erased state. The QPR instruction is much
faster than performing the erased-page check using a regular software subroutine.

8.4.7 Quick User Page Read
A dedicated command, Quick User Page Read (QPRUP), is provided to read all words in the
user page. All bits in all words in this page are AND’ed together, returning a 1-bit result. This
result is placed in the Quick Page Read Result (QPRR) bit in Flash Status Register (FSR). The
QPRUP command is useful to check that a page is in an erased state. The QPRUP instruction is
much faster than performing the erased-page check using a regular software subroutine.

8.4.8 Page Buffer Operations
The flash memory has a write and erase granularity of one page; data is written and erased in
chunks of one page. When programming a page, the user must first write the new data into the
Page Buffer. The contents of the entire Page Buffer is copied into the desired page in flash
memory when the user issues the Write Page command, Refer to Section 8.5.1 on page 83.

In order to program data into flash page Y, write the desired data to locations YO to Y31 in the
regular flash memory map. Writing to an address A in the flash memory map will not update the
flash memory, but will instead update location A%32 in the page buffer. The PAGEN field in the
Flash Command (FCMD) register will at the same time be updated with the value A/32.

AIMEL 81

320991-01/2012 I ©

Figure 8-3. Mapping from Page Buffer to Flash

Flash
All locations are doubleword locations

([Z31 Z30 729 728

227 226 725 224

Page Buffer Z23 222 Z21 Z20

64-bit data Z19 Page Z 216

215 212

31 30 29 28 Z11 Z10 29 Z8
27 26 25 24 27 76 Z5 Z4
23 22 21 20 > Z3 Z2 Z1 Z0
19 18 17 16 Y31 Y30 Y29 Y28
15 14 13 12 Y27 Y26 Y25 Y24
11 10 9 8 Y23 Y22 Y21 Y20
7 6 5 4 Y19 Page Y Y16
3 2 1 0 Y15 Y12
Y11 Y10 Y9 Y8

Y7 Y6 Y5 Y4

> Y3 Y2 Y1 YO0
X31 X30 X29 X28
xX27 X26 X25 X24
X23 X22 X21 X20
X19 X16
X15 Page X X12

X11 X10 X9 X8

X7 X6 X5 X4

\ X3 X2 X1 X0

Internally, the flash memory stores data in 64-bit doublewords. Therefore, the native data size of
the Page Buffer is also a 64-bit doubleword. All locations shown in Figure 8-3 are therefore dou-
bleword locations. Since the HSB bus only has a 32-bit data width, two 32-bit HSB transfers
must be performed to write a 64-bit doubleword into the Page Buffer. The FLASHCDW has logic
to combine two 32-bit HSB transfers into a 64-bit data before writing this 64-bit data into the
Page Buffer. This logic requires the word with the low address to be written to the HSB bus
before the word with the high address. To exemplify, to write a 64-bit value to doubleword X0
residing in page X, first write a 32-bit word to the byte address pointing to address X0, thereafter
write a word to the byte address pointing to address (X0+4).

The page buffer is word-addressable and should only be written with aligned word transfers,
never with byte or halfword transfers. The page buffer can not be read.

The page buffer is also used for writes to the User page.

Page buffer write operations are performed with 4 wait states. Any accesses attempted to the
FLASHCDW on the HSB bus during these cycles will be automatically stalled.

Writing to the page buffer can only change page buffer bits from one to zero, i.e. writing
O0xAAAAAAAA to a page buffer location that has the value 0x00000000 will not change the page
buffer value. The only way to change a bit from zero to one is to erase the entire page buffer with
the Clear Page Buffer command.

AIMEL 82

320991-01/2012 I ©

The page buffer is not automatically reset after a page write. The programmer should do this
manually by issuing the Clear Page Buffer flash command. This can be done after a page write,
or before the page buffer is loaded with data to be stored to the flash page.

8.5 Flash Commands

The FLASHCDW offers a command set to manage programming of the flash memory, locking
and unlocking of regions, and full flash erasing. See Section 8.8.2 for a complete list of
commands.

To run a command, the CMD field in the Flash Command Register (FCMD) has to be written
with the command number. As soon as the FCMD register is written, the FRDY bit in the Flash
Status Register (FSR) is automatically cleared. Once the current command is complete, the
FSR.FRDY bit is automatically set. If an interrupt has been enabled by writing a one to
FCR.FRDY, the interrupt request line of the Flash Controller is activated. All flash commands
except for Quick Page Read (QPR) and Quick User Page Read (QPRUP) will generate an inter-
rupt request upon completion if FCR.FRDY is one.

Any HSB bus transfers attempting to read flash memory when the FLASHCDW is busy execut-
ing a flash command will be stalled, and allowed to continue when the flash command is
complete.

After a command has been written to FCMD, the programming algorithm should wait until the
command has been executed before attempting to read instructions or data from the flash or
writing to the page buffer, as the flash will be busy. The waiting can be performed either by poll-
ing the Flash Status Register (FSR) or by waiting for the flash ready interrupt. The command
written to FCMD s initiated on the first clock cycle where the HSB bus interface in FLASHCDW
is IDLE. The user must make sure that the access pattern to the FLASHCDW HSB interface
contains an IDLE cycle so that the command is allowed to start. Make sure that no bus masters
such as DMA controllers are performing endless burst transfers from the flash. Also, make sure
that the CPU does not perform endless burst transfers from flash. This is done by letting the
CPU enter sleep mode after writing to FCMD, or by polling FSR for command completion. This
polling will result in an access pattern with IDLE HSB cycles.

All the commands are protected by the same keyword, which has to be written in the eight high-
est bits of the FCMD register. Writing FCMD with data that does not contain the correct key
and/or with an invalid command has no effect on the flash memory; however, the PROGE bit is
set in the Flash Status Register (FSR). This bit is automatically cleared by a read access to the
FSR register.

Writing a command to FCMD while another command is being executed has no effect on the
flash memory; however, the PROGE bit is set in the Flash Status Register (FSR). This bit is
automatically cleared by a read access to the FSR register.

If the current command writes or erases a page in a locked region, or a page protected by the
BOOTPROT fuses, the command has no effect on the flash memory; however, the LOCKE bit is
set in the FSR register. This bit is automatically cleared by a read access to the FSR register.

8.5.1 Write/Erase Page Operation
Flash technology requires that an erase must be done before programming. The entire flash can
be erased by an Erase All command. Alternatively, pages can be individually erased by the
Erase Page command.

The User page can be written and erased using the mechanisms described in this chapter.

AIMEL 83

320991-01/2012 I ©

8.5.2

320991-01/2012

After programming, the page can be locked to prevent miscellaneous write or erase sequences.
Locking is performed on a per-region basis, so locking a region locks all pages inside the region.
Additional protection is provided for the lowermost address space of the flash. This address
space is allocated for the Boot Loader, and is protected both by the lock bit(s) corresponding to
this address space, and the BOOTPROT[2:0] fuses.

Data to be written is stored in an internal buffer called the page buffer. The page buffer contains
w words. The page buffer wraps around within the internal memory area address space and
appears to be repeated by the number of pages in it. Writing of 8-bit and 16-bit data to the page
buffer is not allowed and may lead to unpredictable data corruption.

Data must be written to the page buffer before the programming command is written to the Flash
Command Register (FCMD). The sequence is as follows:

* Reset the page buffer with the Clear Page Buffer command.

* Fill the page buffer with the desired contents as described in Section 8.4.8 on page 81.

* Programming starts as soon as the programming key and the programming command are
written to the Flash Command Register. The PAGEN field in the Flash Command Register
(FCMD) must contain the address of the page to write. PAGEN is automatically updated
when writing to the page buffer, but can also be written to directly. The FRDY bit in the Flash
Status Register (FSR) is automatically cleared when the page write operation starts.

¢ When programming is completed, the FRDY bit in the Flash Status Register (FSR) is set. If
an interrupt was enabled by writing FCR.FRDY to one, an interrupt request is generated.

Two errors can be detected in the FSR register after a programming sequence:
* Programming Error: A bad keyword and/or an invalid command have been written in the
FCMD register.
* Lock Error: Can have two different causes:

— The page to be programmed belongs to a locked region. A command must be
executed to unlock the corresponding region before programming can start.

— A bus master without secure status attempted to program a page requiring secure
privileges.

Erase All Operation

The entire memory is erased if the Erase All command (EA) is written to the Flash Command
Register (FCMD). Erase All erases all bits in the flash array. The User page is not erased. All
flash memory locations, the general-purpose fuse bits, and the security bit are erased (reset to
OxFF) after an Erase All.

The EA command also ensures that all volatile memories, such as register file and RAMs, are
erased before the security bit is erased.

Erase All operation is allowed only if no regions are locked, and the BOOTPROT fuses are con-
figured with a BOOTPROT region size of 0. Thus, if at least one region is locked, the bit LOCKE
in FSR is set and the command is cancelled. If the LOCKE bit in FCR is one, an interrupt request
is set generated.

When the command is complete, the FRDY bit in the Flash Status Register (FSR) is set. If an
interrupt has been enabled by writing FCR.FRDY to one, an interrupt request is generated. Two
errors can be detected in the FSR register after issuing the command:

AIMEL 84

Y 5

* Programming Error: A bad keyword and/or an invalid command have been written in the
FCMD register.

e Lock Error: At least one lock region is protected, or BOOTPROT is different from 0. The erase
command has been aborted and no page has been erased. A “Unlock region containing
given page” (UP) command must be executed to unlock any locked regions.

8.5.3 Region Lock Bits

The flash memory has p pages, and these pages are grouped into 16 lock regions, each region
containing p/16 pages. Each region has a dedicated lock bit preventing writing and erasing
pages in the region. After production, the device may have some regions locked. These locked
regions are reserved for a boot or default application. Locked regions can be unlocked to be
erased and then programmed with another application or other data.

To lock or unlock a region, the commands Lock Region Containing Page (LP) and Unlock
Region Containing Page (UP) are provided. Writing one of these commands, together with the
number of the page whose region should be locked/unlocked, performs the desired operation.

One error can be detected in the FSR register after issuing the command:

¢ Programming Error: A bad keyword and/or an invalid command have been written in the
FCMD register.

The lock bits are implemented using the lowest 16 general-purpose fuse bits. This