imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PT7M8202

LDO Regulator

Features

- Output Current 300mA or more
- Ultra-Low-Noise for RF Application:
- 30µVRMS @1.2V
- Quick Start-Up (Typically 50µs)
- Dropout Voltage: 270mV@300mA for 3.3V
- Wide Operating Voltage Range: 1.8V to 5.5V
- Output Voltage Range: 1.2V to 3.3V(100 mV Step)
- Standby Current: 0.1µA
- High Ripple Rejection: 80dB@1kHz
- Output Current-Limit Protection
- Thermal Shutdown Protection
- Operating Temperature Range: -40°C~+85°C
- Low ESR Capacitor compatible: Ceramic capacitor
- Lead Free and Green Package: SOT23-5L, SC70-5L

Pin Configuration

Pin Description

Description

The PT7M8202 series are highly accurate, low dropout voltage regulators with low noise, high ripple rejection and low current consumption for portable RF and wireless applications.

The PT7M8202 includes a reference voltage source, an error amplifier, a driver transistor, a current limit protection, a thermal protection and an internal phase compensator.

A noise bypass pin is available for further reduction of output noise.

The output voltage for the regulator is set by factory trimming within a range of 1.2V to 3.3V in 100mV step includes 2.85V. The PT7M8202 series are stable with low ESR ceramic capacitors.

Applications

- Mobile phones (PDC, GSM, CDMA, IMT2000 etc.)
- Cordless phones and radio communication
- Digital still cameras and video cameras
- PDAs
- MP3 players
- Portable devices

Pin No. for SOT23-5L/SC70-5L	I/O	Name	Descriptions			
1	Ι	VIN	Regulator Supply Input. Supply voltage can range from 1.8V to 5.5V. Bypass with a 1 μ F ceramic capacitor (X5R/X7R) to GND.			
2	Р	GND	Ground.			
3	Ι	EN	ON/OFF Control of Regulator.			
4	-	BP	Reference Noise Bypass.			
5	0	VOUT	Output of Regulator. Bypass with a 1μ F ceramic capacitor (X5R/X7R) to GND.			
-	-	NC	No Connection.			

Maximum Ratings

Storage Temperature	55°C to +125°C
Ambient Temperature with Power Applied	40°℃ to +85°℃
Input Voltage	+6.0V
Output Voltage	0.3 to V_{CC} +0.3V
EN pin Voltage	+6.0V
DC Input/Output Current	700mA
Power Dissipation	SOT23/400mW
	SC70/300mW
	TDFN/600mW

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{CC}	Operating Voltage	1.8	-	5.5	V
T _A	Operating temperature	-40	25	85	°C

Electrical Characteristics (T_A=25°C, Bypass capacitor=22nF)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
Output Voltage	V _{OUT(E)} *2	$V_{IN} = V_{OUT(S)}^{*1} + 1.0V, I_{OUT} = 30mA$		V _{OUT(S)} *0.98	V _{OUT(S)}	V _{OUT(S)} *1.02	V
Maximum Output Current	I _{OUTMAX}	V _{IN}	$=V_{OUT(S)}+1.0V$	300	-	-	mA
			$1.7V \le V_{OUT(S)} \le 1.8V$	-	0.39	0.51	
Dropout Voltage	Vdif ^{*3}	$I_{OUT} = 300 \text{mA}$	$1.9V \le V_{OUT(S)} \le 2.3V$	-	0.33	0.43	v
Diopour voltage	Vull	1001 - 500000	$2.4V \le V_{OUT(S)} \le 2.7V$	-	0.30	0.39	
<u> </u>	T	X 7 X 7	$2.8V \le V_{OUT(S)} \le 3.3V$	-	0.27	0.35	
Supply Current	I _{SS}		$_{\text{DUT}(S)}$ +1.0V, no load	-	70	100	μA
Standby Current	I_{SB}	$V_{\rm IN}$	$= V_{OUT(S)} + 1.0V$ EN=OFF	-	0.1	1	μΑ
Line Regulation	$\Delta V_{OUT} / \Delta V_{IN} * V_{OUT}$]	$^{+1.0V \le V_{IN} \le 5.5V}_{I_{OUT}} = 30 \text{ mA}$	-	0.05	0.2	%/V
Load Regulation	ΔV_{OUT2}	$V_{IN} = V_{OUT(S)} + 1.0V,$ 1.0mA $\leq I_{OUT} \leq 300$ mA		-		0.6	%
Input Voltage	V _{IN}			1.8	-	5.5	V
Output Voltage Temperature Characteristic	ΔV _{OUT} / ΔTopr*V _{OUT}	I _{OUT} =30 mA -40°C≤Topr≤85°C		-	+/-100	-	ppm/℃
Ripple Rejection	PSRR	$V_{IN}=[V_{OUT(S)}+1.0]V_{DC}+1Vp-p AC$ $V_{OUT}=1.5V, I_{OUT}=30mA, f=1kHz$		-	80	-	dB
Current Limit	I _{LIM}	Vou	$V_{T} = V_{OUT(S)} * 0.9$	-	450	-	mA
Thermal Shutdown	T _{SD}				170		
Thermal Shutdown Hysteresis	ΔT_{SD}				40		°C
EN"High"Voltage	V _{ENH}	_		1.5	-	-	X 7
EN"Low"Voltage	V _{ENL}			-	-	0.3	V
EN"High"Current	I _{ENH}	$V_{IN} = V_{OUT(S)} + 1.0V$		-0.10	-	0.10	
EN"Low" Current	I _{ENL}	$V_{IN} = V_{OUT(S)} + 1.0V, EN = OFF$		-0.10	-	0.10	μA
Output Discharge Resistance	Rdis	$V_{IN} = V_{OUT(S)} + 1.0V$ $EN = OFF$		-	200	-	Ω
Output Noise Voltage Note: *1: Vour(s)=SE	e _{ON}	V _{OUT} =1.2V, 10Hz to 100kHz, I _{OUT} =30mA, C_{OUT} =1 μ F		-	30	-	μV_{RMS}

*1: V_{OUT(S)}=Specified output voltage.

*2: V_{OUT(E)}=Effective output voltage.

(I.e. the output voltage when " $V_{OUT(S)}$ +1.0V" is provided at the VIN pin while maintaining a certain I_{OUT} value). *3: Vdif={ $V_{INI}^{(*5)}$ - $V_{OUT1}^{(*4)}$ }. *4: V_{OUT1} =A voltage equal to 98% of the output voltage whenever an amply stabilized I_{OUT} { $V_{OUT(S)}$ +1.0V} is input.

*5: V_{IN1}=The input voltage when V_{OUT1} appears as input voltage is gradually decreased.

*6: Unless otherwise stated, V_{IN}=V_{OUT(S)}+1.0V

Typical Performance and Characteristics

1. Output Voltage vs. Output Current

PT7M8202 (1.2V)

2. Output Voltage vs. Input Voltage

Cin=1µF(Ceramics), Cout=1µF(Ceramics)

PT7M8202 (3.3V)

Cin=1µF(Ceramics), Cout=1µF(Ceramics)

07/10/12

3. Supply Current vs. Input Voltage

PT7M8202 (1.2V)

PT7M8202 (3.3V)

4.Dropout Voltage vs. Output Current

PT7M8202 (3.3V)

Cin=1µF(Ceramics), Cout=1µF(Ceramics)

5. Line Transient Response

PT7M8202 (3.3V) Cin=Cout=1µF(Ceramics), Iout=100mA Time (50µs/Div)

Vi IV	n 7/Div	(Vin=4-	5V		
				- 	 	
	out mV/Div	Va	out		1	
					V	

7. Supply Current vs. Ambient Temperature

PT7M8202 (3.3V)

8. Load Transient Response

PT7M8202 (3.3V)

9. PSRR

Function block diagram

Functional Description (Refer to Function Block Diagram)

Output Voltage

The divided output voltage is compared with the internal reference voltage by the error amplifier with internal phase compensator. The output of the error amplifier then drives the P-channel MOSFET to maintain a stable and constant output voltage.

Low ESR Capacitors

The internal phase compensator maintains the stable output voltage with low ESR ceramic input and output capacitors. 1μ F low ESR (X5R/X7R) ceramic capacitor located as close as possible to the IC's pins is recommended.

Current Limit and Thermal Shutdown Protections

Current limit protection is used to limit the output current when an overload condition occurs. As a result, the output voltage will drop. Thermal shutdown protection will turn off the output to reduce the power dissipation when the operation junction temperature exceeds 170° C.

Bypass Capacitor and Low Noise

A 22nF between the BP pin and GND pin significantly reduces noise on the regulator output, it is critical that the capacitor connection between the BP pin and GND pin be direct and PCB traces should be as short as possible. There is a relation ship between the bypass capacitor value and the LDO regulator turn on time. DC leakage on this pin can affect the LDO regulator output noise and voltage regulation performance.

EN Pin

The output of the regulator in PT7M8202A/B can be controlled with EN pin. The EN pin should be connected to a "VIN" or a "GND" voltage as a floating input applied to inverter input of the enable circuitry will increase the current consumption.

■ NOTE ON USE

- 1. Please use this IC within the stated absolute maximum ratings.
- 2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Please keep the resistance low between VIN and GND wiring in particular.
- 3. Please wire the input capacitor (Cin) and the output capacitor (Cout) as close to the IC as possible.

Application Circuit

Note: Cin=Cout=1µF, Cbp=22nF

Mechanical Information

TA5 (SOT23-5L)

C5 (SC70-5L)

Ordering Information

Part Number	Package Code	Package
PT7M8202①②③TAE	ТА	Lead free and Green SOT23-5L
PT7M8202①②③CE	С	Lead free and Green SC70-5L

Notes:

• "123" refer to different functions. See below Table 1 and Table 2.

• E = Pb-free and Green

• Adding X Suffix= Tape/Reel

Table 1 Option Definition Table

Designator	Symbol	Description	
1	А	Low active	
Regulators EN type	В	High active	
23 Regulator Output	12-33, 2A	Internally set sequential number relating output voltage of regulator, the detail is	
voltage	12-33, 2A	in Table 2	

Table 2 Definition of designator

Designator ②③	VOUT (V)	Designator ②③	VOUT (V)	Designator ②③	VOUT (V)
12	1.2	20	2.0	28	2.8
13	1.3	21	2.1	29	2.9
14	1.4	22	2.2	30	3.0
15	1.5	23	2.3	31	3.1
16	1.6	24	2.4	32	3.2
17	1.7	25	2.5	33	3.3
18	1.8	26	2.6	2A	2.85
19	1.9	27	2.7		

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com

Pericom reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance and to supply the best possible product. Pericom does not assume any responsibility for use of any circuitry described other than the circuitry embodied in Pericom product. The company makes no representations that circuitry described herein is free from patent infringement or other rights, of Pericom.