imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

RICHTEK®

1A, Ultra-Low Dropout, Ultra-Fast CMOS LDO Regulator

General Description

The RT9187 is a high-performance, 1A LDO regulator, offering extremely high PSRR and ultra-low dropout. Ideal for portable RF and wireless applications with demanding performance and space requirements.

A noise reduction pin is also available for further reduction of output noise. Regulator ground current increases only slightly in dropout, further prolonging the battery life. The RT9187 also works with low-ESR ceramic capacitors, reducing the amount of board space necessary for power applications, critical in hand-held wireless devices.

The RT9187 consumes less than 0.1μ A in shutdown mode and has fast turn-on time less than 40μ s. The other features include ultra-low dropout voltage, high output accuracy, current limiting protection, and high ripple rejection ratio. Available in the VDFN-8L 3x3 and SOP-8 (Exposed Pad) package.

Ordering Information

RT9187(-__)

Richtek products are :

Note :

- ▶ RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Features

- Ultra-Low-Noise for RF Application
- Ultra-Fast Response in Line/Load Transient
- Quick Start-Up (Typically 40μs)
- <0.1µA Standby Current When Shutdown
- Low Dropout : 240mV at 1A
- Wide Operating Voltage Ranges : 2.5V to 5.5V
- TTL-Logic-Controlled Shutdown Input
- Current Limiting Protection
- Thermal Shutdown Protection
- Only 2.2µF Output Capacitor Required for Stability
- High Power Supply Rejection Ratio
- RoHS Compliant and 100% Lead (Pb)-Free

Applications

- CDMA/GSM Cellular Handsets
- Battery-Powered Equipment
- Laptop, Palmtops, Notebook Computers
- Hand-Held Instruments
- Mini PCI & PCI-Express Cards
- PCMCIA & New Cards
- Portable Information Appliances

Marking Information

For marking information, contact our sales representative directly or through a RichTek distributor located in your area.

Pin Configuration

Typical Application Circuit

Figure 1. Fixed Operation

Figure 2. Adjustable Operation

$$V_{OUT} = 0.8 \text{ x} (1 + \frac{R_1}{R_2}) \text{ Volts}$$

Note : The value of R2 should be less than 80k to maintain regulation.

Pin	No.	Pin	
Fixed Output Voltage	Adjustable Output Voltage	Name	Pin Function
1	1	VIN	Supply input.
2	2	VIN	Supply input.
3	3	VOUT	Regulator output.
4	4	VOUT	Regulator output.
5		BP	Noise reduction. Connecting a 10nF capacitor to GND to reduce output noise.
	5	ADJ	If external feedback resistors are applied, the output voltage will be: V_OUT = $0.8 \times (1 + \frac{R_1}{R_2}) V$
6, 9 (Exposed Pad)	6, 9 (Exposed Pad)	GND	Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.
7	7	NC	No internal connection.
8	8	EN	Enable input logic, active high. When the EN goes to a logic low, the device is in shutdown mode.

Function Pin Description

Functional Block Diagram

Absolute Maximum Ratings (Note 1)

Supply Input Voltage	6V
EN Input Voltage	6V
• Power Dissipation, $P_D @ T_A = 25^{\circ}C$	
VDFN-8L 3x3	1.429W
SOP-8 (Exposed Pad)	1.33W
Package Thermal Resistance (Note 2)	
VDFN-8L 3x3, θ _{JC}	8.2°C/W
VDFN-8L 3x3, θ _{JA}	70°C/W
SOP-8 (Exposed Pad), θ_{JC}	15°C/W
SOP-8 (Exposed Pad), θ_{JA}	75°C/W
Lead Temperature (Soldering, 10 sec.)	260°C
Junction Temperature	150°C
Storage Temperature Range	–65°C to 150°C
ESD Susceptibility (Note 3)	
НВМ	2kV
MM	200V

Recommended Operating Conditions (Note 4)

Supply Input Voltage	2.5V to 5.5V
EN Input Voltage	0V to 5.5V
Junction Temperature Range	-40° C to 125°C
Ambient Temperature Range	–40°C to 85°C

Electrical Characteristics ($V_{IN} = V_{OUT} + 1V$, $V_{EN} = V_{IN}$, $C_{IN} = C_{OUT} = 2.2\mu$ F (Ceramic) & $C_{BP} = 10$ nF, $T_A = 25^{\circ}$ C unless otherwise specified)

Parameter		Symbol	Test Conditions	Min	Тур	Max	Unit	
Output Voltage Accuracy (Fixed Output Voltage)		ΔVουτ	I _{OUT} = 10mA	-1.5	0	1.5	%	
Output Voltage Range (Adjustable)	Vout_Adj		0.8		4.5	V	
Quiescent Current (N	ote 5)	lq	$V_{EN} \ge V_{IH}, \ I_{OUT}$ = 0mA		380	500	μA	
Standby Current (Note 6)		ISTBY	$V_{EN} \leq V_{IL}, V_{IN} = 3.3V$		0.1	1	μA	
Current Limit		ILIM	R _{LOAD} = 0.5Ω, V _{IN} = 3.3V	2	2.8	3	А	
			I _{OUT} = 0.25A (Note 9)		60	100		
Dropout Voltage (Not	e 7)	Vdrop	I _{OUT} = 0.5A		120	180	mV	
			I _{OUT} = 1.0A		240	360		
Load Regulation (Note 8) (Fixed Output Voltage)		ΔV_{LOAD}	V _{IN} = (V _{OUT} + 0.5V) 10mA < I _{OUT} < 1.0A		0.4		%/A	
Logic-Low		VIL	V _{IN} = 3.3V			0.6		
EN Threshold Voltage	Logic-High	VIH	V _{IN} = 3.3V	1.2				
Enable Pin Current		I _{EN}	V _{IN} = 3.3V, enable		0.1	1	μA	

RICHTEK

Parameter		Symbol	Test Conditions	Min	Тур	Max	Unit	
Power Supply	f = 100Hz	PSRR	$L_{\rm eve} = 200 {\rm m}$ Å		-60		dB	
Rejection Rate	f = 10kHz	PSRR	I _{OUT} = 300mA		-50			
Line Regulation		ΔV_{LINE}	V_{IN} = (V _{OUT} + 0.5) to 5.5V, I _{OUT} = 1mA		-	0.3	%	
Start-Up Time		T _{Start_Up}	$R_{LOAD} = 3\Omega, \ 1nF \le C_{BP} \le 0.1 \mu F$		40		μS	
Thermal Shutdown Temperature		TSD			170		•••	
Thermal Shutdown Hysteresis		ΔTsd			30		− °C	
ADJ								
Reference Voltage Tolerance		V _{REF}		0.784	0.8	0.816	V	
ADJ Pin Current		I _{ADJ}	V _{ADJ} = V _{REF}		10	100	nA	

- **Note 1.** Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.
- Note 2. θ_{JA} is measured in natural convection at $T_A = 25^{\circ}C$ on a high effective thermal conductivity four-layer test board of JEDEC 51-7 thermal measurement standard. The measurement case position of θ_{JC} is on the exposed pad of the package.
- Note 3. Devices are ESD sensitive. Handling precaution is recommended.
- Note 4. The device is not guaranteed to function outside its operating conditions.
- Note 5. Quiescent, or ground current, is the difference between input and output currents. It is defined by $I_Q = I_{IN} I_{OUT}$ under no load condition ($I_{OUT} = 0$ mA). The total current drawn from the supply is the sum of the load current plus the ground pin current.
- Note 6. Standby current is the input current drawn by a regulator when the output voltage is disabled by a shutdown signal ($V_{EN} > 1.8V$).
- Note 7. The dropout voltage is defined as V_{IN} V_{OUT}, which is measured when V_{OUT} is V_{OUT(NORMAL)} – Σ 100mV.
- **Note 8.** Regulation is measured at constant junction temperature by using a 2ms current pulse. Devices are tested for load regulation in the load range from 10mA to 1.0A.
- Note 9. Performance at -5°C \leq $T_A \leq$ 85°C is assured by design.

Copyright ©2017 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

RICHTEK

Copyright ©2017 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

RT9187

Outline Dimension

DETAIL A Pin #1 ID and Tie Bar Mark Options

Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
А	0.800	1.000	0.031	0.039	
A1	0.000	0.050	0.000	0.002	
A3	0.175	0.250	0.007	0.010	
b	0.200	0.300	0.008	0.012	
D	2.950	3.050	0.116	0.120	
D2	2.100	2.350	0.083	0.093	
E	2.950	3.050	0.116	0.120	
E2	1.350	1.600	0.053	0.063	
е	0.6	50	0.026		
L	0.425	0.525	0.017	0.021	

V-Type 8L DFN 3x3 Package

Copyright ©2017 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

8

Symbol		Dimensions I	n Millimeters	Dimensions In Inches		
		Min	Max	Min	Мах	
A		4.801	5.004	0.189	0.197	
В		3.810	4.000	0.150	0.157	
С		1.346	1.753	0.053	0.069	
D		0.330	0.510	0.013	0.020	
F		1.194	1.346	0.047	0.053	
Н		0.170	0.254	0.007	0.010	
I		0.000	0.152	0.000	0.006	
J		5.791	6.200	6.200 0.228 (
М		0.406	1.270	0.016	0.050	
Option 1	Х	2.000	2.300	0.079	0.091	
	Y	2.000	2.300	0.079	0.091	
Option 2	Х	2.100	2.500	0.083	0.098	
	Y	3.000	3.500	0.118	0.138	

8-Lead SOP (Exposed Pad) Plastic Package

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.