

CMOS 1.8 V to 5.5 V, 2.5 Ω 2:1 Mux/SPDT Switch in SOT-23

ADG719-EP

FEATURES

1.8 V to 5.5 V single supply 4Ω (max) on resistance 0.75 Ω (typ) on resistance flatness -3 dB bandwidth > 200 MHz Rail-to-rail operation 6-lead SOT-23 package Fast switching times: $t_{ON} = 12 ns$ $t_{OFF} = 6 ns$ Typical power consumption: (< 0.01 μ W) TTL/CMOS compatible Military temperature range: -55°C to +125°C

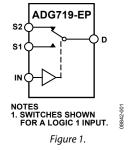
APPLICATIONS

Battery-powered systems Communication systems Sample-and-hold systems Audio signal routing Video switching Mechanical reed relay replacement

GENERAL DESCRIPTION

The ADG719-EP is a monolithic CMOS SPDT switch. This switch is designed on a submicron process that provides low power dissipation yet gives high switching speed, low on resistance, and low leakage currents.

The ADG719-EP can operate from a single-supply range of 1.8 V to 5.5 V, making it ideal for use in battery-powered instruments and with the new generation of DACs and ADCs from Analog Devices, Inc.


Each switch of the ADG719-EP conducts equally well in both directions when on. The ADG719-EP exhibits break-before-make switching action.

Because of the advanced submicron process, -3 dB bandwidths of greater than 200 MHz can be achieved.

The ADG719-EP is available in a 6-lead SOT-23 package.

Full details about this enhanced product are available in the ADG719 data sheet, which should be consulted in conjunction with this data sheet.

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

- 1. Supports defense and aerospace applications (AQEC standard).
- 2. Military temperature range: -55°C to +125°C.
- 3. Controlled manufacturing baseline.
- 4. One assembly and test site.
- 5. One fabrication site.
- 6. Enhanced product change notification.
- 7. Qualification data available on request.

Rev. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Product Highlights	1
Revision History	2
Specifications	3

Absolute Maximum Ratings	5
ESD Caution	
Pin Configuration and Function Descriptions	6
Typical Performance Characteristics	7
Test Circuits	9
Outline Dimensions	11
Ordering Guide	11

REVISION HISTORY

4/10—Revision 0: Initial Version

SPECIFICATIONS

 $V_{\rm DD}$ = 5 V \pm 10%, GND = 0 V.

Table 1.

Parameter	+25°C	–55°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 V to V _{DD}	V	
On Resistance (R _{ON})	2.5		Ωtyp	$V_{s} = 0 V \text{ to } V_{DD}, I_{s} = -10 \text{ mA};$
	4	7	Ωmax	see Figure 13
On Resistance Match Between Channels (ΔR _{ON})	0.1		Ωtyp	$V_s = 0 V$ to V_{DD} , $I_s = -10 \text{ mA}$
		0.4	Ωmax	
On Resistance Flatness (R _{FLAT(ON)})	0.75		Ωtyp	$V_s = 0 V$ to V_{DD} , $I_s = -10 \text{ mA}$
		1.5	Ωmax	
LEAKAGE CURRENTS Is (Off)				V _{DD} = 5.5 V
Source Off Leakage	±0.01		nA typ	$V_{s} = 4.5 \text{ V/1 V}, V_{D} = 1 \text{ V/4.5 V};$
	±0.25	1	nA max	see Figure 14
Channel On Leakage I _D , I _s (On)	±0.01		nA typ	$V_{s} = V_{D} = 1 V \text{ or } V_{s} = V_{D} = 4.5 V;$
_	±0.25	5	nA max	see Figure 15
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, VINL		0.8	V max	
Input Current				
IINL OF INH	0.005		μA typ	V _{IN} = V _{INL} or V _{INH}
		±0.1	µA max	
DYNAMIC CHARACTERISTICS ¹				
t _{on}	7		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
		12	ns max	$V_s = 3 V$; see Figure 16
t _{OFF}	3		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
		6	ns max	$V_s = 3 V$; see Figure 16
Break-Before-Make Time Delay, t _D	8		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$,
		1	ns min	$V_{s1} = V_{s2} = 3 V$; see Figure 17
Off Isolation	-67		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$
	-87		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
				see Figure 18
Channel-to-Channel Crosstalk	-62		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$
	-82		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
			,	see Figure 19
Bandwidth –3 dB	200		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 20
Cs (Off)	7		pF typ	
C _D , C _s (On)	27		pF typ	
POWER REQUIREMENTS				V _{DD} = 5.5 V
				Digital inputs = 0 V or 5.5 V
	0.001		μA typ	
			1 12 27	

¹ Guaranteed by design, not subject to production test.

$V_{\rm DD}$ = 3 V \pm 10%, GND = 0 V.

Table 2.

Parameter	+25°C	–55°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH		0 V to V _{DD}	V	
Analog Signal Range				
On Resistance (R _{ON})	6		Ωtyp	$V_{s} = 0 V \text{ to } V_{DD}$, $I_{s} = -10 \text{ mA}$;
		12	Ωmax	see Figure 13
On Resistance Match Between Channels (ΔR _{ON})	0.1		Ωtyp	$V_s = 0 V$ to V_{DD} , $I_s = -10 \text{ mA}$
		0.4	Ωmax	
On Resistance Flatness (R _{FLAT(ON)})		2.5	Ωtyp	$V_s = 0 V$ to V_{DD} , $I_s = -10 \text{ mA}$
LEAKAGE CURRENTS				$V_{DD} = 3.3 V$
Source Off Leakage Is (Off)	±0.01		nA typ	$V_{S} = 3 V/1 V$, $V_{D} = 1 V/3 V$;
	±0.25	1	nA max	see Figure 14
Channel On Leakage I _D , I _S (On)	±0.01		nA typ	$V_{s} = V_{D} = 1 V \text{ or } V_{s} = V_{D} = 3 V;$
	±0.25	5	nA max	see Figure 15
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, VINL		0.8	V max	
Input Current				
Inl or Inh	0.005		μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
		±0.1	µA max	
DYNAMIC CHARACTERISTICS ¹				
t _{on}	10		ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF$
		15	ns max	$V_s = 2 V$; see Figure 16
t _{OFF}	4		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
		8	ns max	$V_s = 2 V$; see Figure 16
Break-Before-Make Time Delay, t _D	8		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
, , , , , , , , , , , , , , , , , , ,		1	ns min	$V_{s1} = V_{s2} = 2 V$; see Figure 17
Off Isolation	-67		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$
	-87		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
	0,		0.0 ()	see Figure 18
Channel-to-Channel Crosstalk	-62		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$
	-82		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
	~-			see Figure 19
Bandwidth –3 dB	200		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 20
C _s (Off)	7		pF typ	$ _{L}$ $ _{SO(L)} = _{SO(L)} _{SO(L)} = _{SO(L)} _{SO(L)} _{SO(L)} = _{SO(L)} _{SO(L)} _{SO(L)} = _{SO(L)} _{SO(L)} _{SO(L)} _{SO(L)} _{SO(L)} = _{SO(L)} _{SO(L)} $
C_D, C_S (On)	27		pF typ	
POWER REQUIREMENTS	<i>L'</i>		P: 9P	V _{DD} = 3.3 V
1	0.001		u A ture	Digital inputs = 0 V or 3.3 V
I _{DD}	0.001		μA typ	
	1.0		μA max	

¹ Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 3.

Parameter	Rating
V _{DD} to GND	–0.3 V to +7 V
Analog, Digital Inputs ¹	-0.3 V to V _{DD} + 0.3 V or
	30 mA, whichever occurs first
Peak Current, S or D	100 mA
	(Pulsed at 1 ms, 10% duty cycle max)
Continuous Current, S or D	30 mA
Operating Temperature Range	–55°C to +125°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
SOT-23 Package	
θ _{JA} Thermal Impedance ²	186.45°C/W
Lead Soldering	
Reflow, Peak Temperature	260(+0/-5)°C
Time at Peak Temperature	20 sec to 40 sec
ESD	1 kV

¹Overvoltages at IN, S, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given ²Measured on a 4-layer board.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

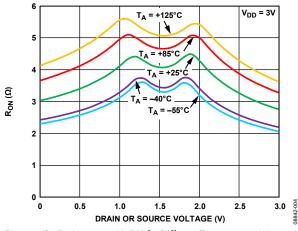
Only one maximum rating may be applied at any one time.

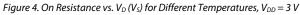
ESD CAUTION

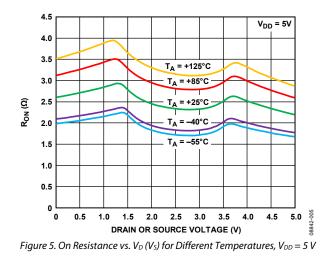
ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

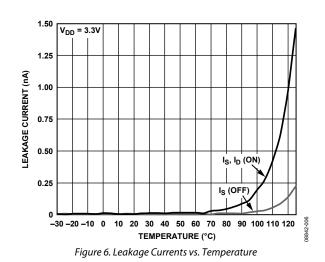
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. 6-Lead SOT-23 Pin Configuration


Table 4. Pin description			
Pin No.	Mnemonic	Description	
1	IN	Digital Switch Control Pin.	
2	VDD	Most Positive Power Supply Pin.	
3	GND	Ground (0 V) Reference Pin.	
4	S1	Source Terminal. Can be used as an input or output.	
5	D	Drain Terminal. Can be used as an input or output.	
6	S2	Source Terminal. Can be used as an input or output.	


Table 5. Truth Table


ADG719-EP IN	Switch S1	Switch S2
0	On	Off
1	Off	On


TYPICAL PERFORMANCE CHARACTERISTICS

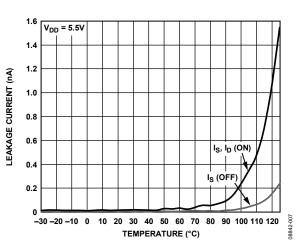


Figure 7. Leakage Currents vs. Temperature

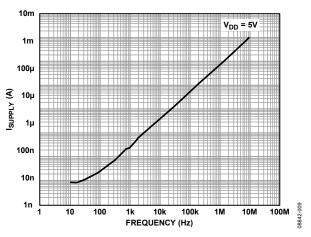
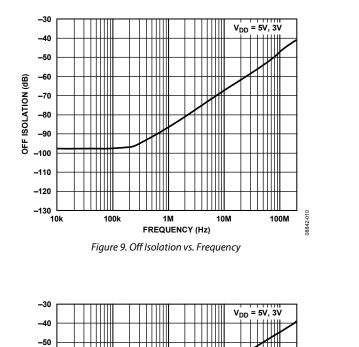


Figure 8. Supply Current vs. Input Switching Frequency

-60

-70

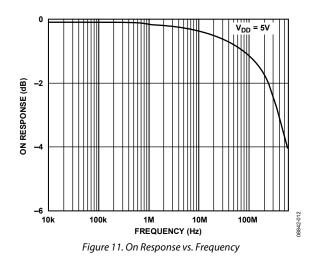
-80

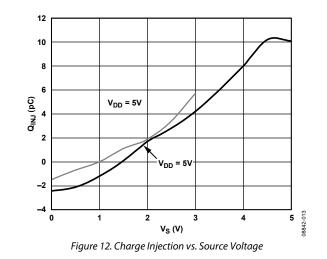

-90

-100

-110

-120 -130 10k 100k


CROSSTALK (dB)



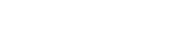

1M

Figure 10. Crosstalk vs. Frequency

FREQUENCY (Hz)

Ш

10M

100M

08842-011

TEST CIRCUITS V1 I_D (ON) I_S (OFF) I_D (OFF) s D s D s D σ r (\mathbf{A}) A vs ≟ 주 vs 8842-014 vs≟ 42-015 **38842-016** R_{ON} = V1/I_{DS} ٧D Figure 14. Off Leakage Figure 15. On Leakage Figure 13. On Resistance V_{DD} 0 0.1µF VIN 50% 50% £ V_{DD} 90% 90% D s $\nabla \begin{bmatrix} R_L \\ 300\Omega \end{bmatrix}$ VOUT o <u>``o</u> o v_{out} ⊥ c_L ↓ 35pF IN ٧s Ţ GND 38842-017 ton toff ₹ Figure 16. Switching Times v_{DD} Y 0.1µF ٦ŀ £ V_{IN} 50% - 50% V_{DD} **S**1 V_{S1} 7 D D2 CL2 35pF o v_{out} 50%

Figure 17. Break-Before-Make Time Delay, t_D

R_{L2} 300Ω

S2

IN

V_{S2}

7

GND

50%

8842-018

V_{OUT}

٥١

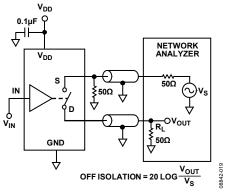


Figure 18. Off Isolation

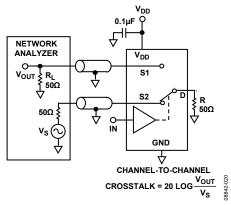


Figure 19. Channel-to-Channel Crosstalk

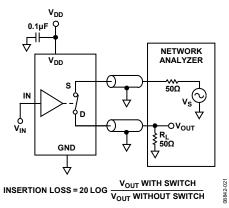
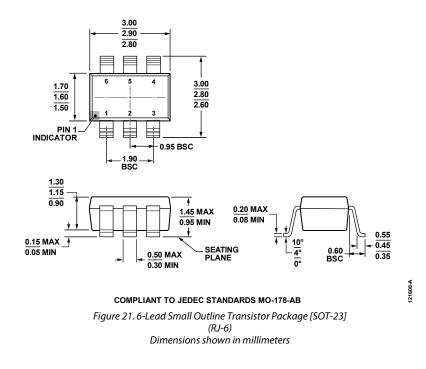



Figure 20. Bandwidth

OUTLINE DIMENSIONS

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding
ADG719SRJZ-EP-RL7	–55°C to +125°C	6-Lead SOT-23	RJ-6	S3T

 1 Z = RoHS Compliant Part.

NOTES

©2010 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D08842-0-4/10(0)

www.analog.com

Rev. 0 | Page 12 of 12