mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LIS302DL

MEMS motion sensor 3-axis - $\pm 2g/\pm 8g$ smart digital output "piccolo" accelerometer

Feature

- 2.16 V to 3.6 V supply voltage
- 1.8 V compatible IOs
- <1 mW power consumption</p>
- ± 2g/± 8g dynamically selectable full-scale
- I²C/SPI digital output interface
- Programmable multiple interrupt generator
- Click and double click recognition
- Embedded high pass filter
- Embedded self test
- 10000g high shock survivability
- ECOPACK® RoHS and "Green" compliant (see Section 9)

Description

The LIS302DL is an ultra compact low-power three axes linear accelerometer. It includes a sensing element and an IC interface able to provide the measured acceleration to the external world through l^2C/SPI serial interface.

The sensing element, capable of detecting the acceleration, is manufactured using a dedicated process developed by ST to produce inertial sensors and actuators in silicon.

The IC interface is manufactured using a CMOS process that allows to design a dedicated circuit which is trimmed to better match the sensing element characteristics.

The LIS302DL has dynamically user selectable full scales of \pm 2g/ \pm 8g and it is capable of measuring accelerations with an output data rate of 100 Hz or 400 Hz.

A self-test capability allows the user to check the functioning of the sensor in the final application.

The device may be configured to generate inertial wake-up/free-fall interrupt signals when a programmable acceleration threshold is crossed at least in one of the three axes. Thresholds and timing of interrupt generators are programmable by the end user on the fly.

The LIS302DL is available in plastic Thin Land Grid Array package (TLGA) and it is guaranteed to operate over an extended temperature range from -40 $^{\circ}$ C to +85 $^{\circ}$ C.

The LIS302DL belongs to a family of products suitable for a variety of applications:

- Free-fall detection
- Motion activated functions
- Gaming and virtual reality input devices
- Vibration monitoring and compensation

Part number	Temp range, $^{\circ}$ C	Package	Packing
LIS302DL	-40 to +85	LGA	Tray
LIS302DLTR	-40 to +85	LGA	Tape and reel (5000 pcs/reel)
LIS302DLTR8	-40 to +85	LGA	Tape and reel (8000 pcs/reel)

Table 1. Device summary

October 2008

Contents

1	Block	diagram and pin description
	1.1	Block diagram
	1.2	Pin description
2	Mech	anical and electrical specifications
	2.1	Mechanical characteristics 10
	2.2	Electrical characteristics 11
	2.3	Communication interface characteristics
		2.3.1 SPI - Serial Peripheral Interface
		2.3.2 I2C - inter IC control interface
	2.4	Absolute maximum ratings 14
	2.5	Terminology
		2.5.1 Sensitivity
		2.5.2 Zero-g level
		2.5.3 Self test
		2.5.4 Click and double click recognition
3	Func	tionality
	3.1	Sensing element
	3.2	IC interface
	3.3	Factory calibration
4	Appli	cation hints
	4.1	Soldering information 17
5	Digita	al interfaces
	5.1	I2C Serial Interface
		5.1.1 I2C operation
	5.2	SPI bus interface
		5.2.1 SPI Read
		5.2.2 SPI Write
		5.2.3 SPI Read in 3-wires mode

6	Regis	ster mapping	24
7	Regis	ster description	26
	7.1	WHO_AM_I (0Fh)	26
	7.2	CTRL_REG1 (20h)	26
	7.3	CTRL_REG2 (21h)	27
	7.4	CTRL_REG3 [Interrupt CTRL register] (22h) 22	28
	7.5	HP_FILTER_RESET (23h) 2	28
	7.6	STATUS_REG (27h)	29
	7.7	OUT_X (29h)	29
	7.8	OUT_Y (2Bh)	29
	7.9	OUT_Z (2Dh) 3	30
	7.10	FF_WU_CFG_1 (30h) 3	30
	7.11	FF_WU_SRC_1 (31h) 3	31
	7.12	FF_WU_THS_1 (32h) 3	31
	7.13	FF_WU_DURATION_1 (33h) 3	32
	7.14	FF_WU_CFG_2 (34h) 3	32
	7.15	FF_WU_SRC_2 (35h) 3	33
	7.16	FF_WU_THS_2 (36h)	33
	7.17	FF_WU_DURATION_2 (37h) 3	33
	7.18	CLICK_CFG (38h)	34
	7.19	CLICK_SRC (39h)	34
	7.20	CLICK_THSY_X (3Bh) 3	35
	7.21	CLICK_THSZ (3Ch) 3	35
	7.22	CLICK_TimeLimit (3Dh) 3	35
	7.23	CLICK_Latency (3Eh)	36
	7.24	CLICK_Window (3Fh) 3	36
8	Туріс	al performance characteristics	37
	8.1	Mechanical characteristics at 25°C	37
	8.2	Mechanical characteristics derived from measurement in the -40°C to +85° temperature range	
	8.3	Electro-mechanical characteristics at 25°C	39

9	Package information	40
10	Revision history	41

List of tables

Table 1.	Device summary	1
Table 2.	Pin description	9
Table 3.	Mechanical characteristics	
	(All the parameters are specified @ Vdd=2.5V, T = 25°C unless otherwise noted)	. 10
Table 4.	Electrical characteristics	
	(All the parameters are specified @ Vdd=2.5V, T= 25°C unless otherwise noted)	. 11
Table 5.	SPI slave timing values	. 12
Table 6.	I2C slave timing values	. 13
Table 7.	Absolute maximum ratings	
Table 8.	Serial interface pin description	. 18
Table 9.	Serial interface pin description	. 18
Table 10.	SAD+Read/Write patterns	. 19
Table 11.	Transfer when master is writing one byte to slave	. 19
Table 12.	Transfer when master is writing multiple bytes to slave	. 19
Table 13.	Transfer when Master is receiving (reading) one byte of data from slave	. 20
Table 14.	ransfer when master is receiving (reading)	. 20
Table 15.	Multiple bytes of data from slave	. 20
Table 16.	Register address map	. 24
Table 17.	WHO_AM_I (0Fh) register	. 26
Table 18.	CTRL_REG1 (20h) register	. 26
Table 19.	CTRL_REG1 (20h) register description	
Table 20.	CTRL_REG2 (21h) register	
Table 21.	CTRL_REG2 (21h) register description	
Table 22.	High pass filter cut-off frequency configuration.	
Table 23.	CTRL_REG3 (22h) register	
Table 24.	CTRL_REG3 (22h) register description	
Table 25.	CTRL_REG3 (22h) truth table	
Table 26.	STATUS_REG (27h) register	
Table 27.	STATUS_REG (27h) register desription	
Table 28.	OUT_X (29h) register	
Table 29.	OUT_Y (2Bh) register description.	
Table 30.	OUT_Z (2Dh) register	
Table 31.	FF_WW_CFG_1 (30h) register	
Table 32.	FF_WW_CFG_1(30h) register description	
Table 33.	FF_WU_SRC_1 (31h) register	
Table 34.	FF_WU_SRC_1 (31h) register description	
Table 35.	FF_WU_THS_1 (32h) register	
Table 36.	FF_WU_THS_1 (32h) register description	
Table 37.	FF_WU_DURATION_1 (33h) register	
Table 38.	FF_WU_DURATION_1 (33h) register description	
Table 39.	FF_WU_CFG_2 (34h) register	
Table 40.	FF_WU_CFG_2 (34h) register description	32
Table 41.	FF_WU_SRC_2 (35h) register	
Table 42.	FF_WU_SRC_2 (35h) register description	
Table 43.	FF_WU_THS_2 (36h) register	
Table 44.	FF_WU_THS_2 (36h) register description	
Table 45.	FF_WU_DURATION_2 (37h) register	
Table 46.	FF_WU_DURATION_2 (37h) register description	
1 4010 40.		

Table 47.	CLICK_CFG (38h) register	34
Table 48.	CLICK_CFG (38h) register description	
Table 49.	CLICK_CFG (38h) truth table	
Table 50.	CLICK_SRC (39h) register	
Table 51.	CLICK_SRC (39h) register description	
Table 52.	CLICK_THSY_X (3Bh) register	35
Table 53.	CLICK_THSY_X (3Bh) register description	35
Table 54.	CLICK_THSZ (3Ch) register	35
Table 55.	CLICK_THSZ (3Ch) register description.	35
Table 56.	CLICK_TimeLimit (3Dh) register.	35
Table 57.	CLICK_Latency (3Eh) register	36
Table 58.	CLICK_Window (3Fh) register	36
Table 59.	Document revision history	41

List of figures

Figure 1.	Block diagram	. 7
Figure 2.	Pin connection	. 7
Figure 3.	SPI slave timing diagram (2)	11
Figure 4.	I2C Slave timing diagram (4)	12
Figure 5.	LIS302DL electrical connection	16
Figure 6.	Read & write protocol	20
Figure 7.	SPI Read protocol	21
Figure 8.	Multiple bytes SPI Read protocol (2 bytes example)	21
Figure 9.	SPI Write protocol	21
Figure 10.	Multiple bytes SPI Write protocol (2 bytes example)	22
Figure 11.	SPI Read protocol in 3-wires mode	
Figure 12.	X axis zero-g level at 2.5V	36
Figure 13.	X axis sensitivity at 2.5V	
Figure 14.	Y axis zero-g level at 2.5V	36
Figure 15.	Y axis sensitivity at 2.5V	36
Figure 16.	Z axis zero-g level at 2.5V	36
Figure 17.	Z axis sensitivity at 2.5V	36
Figure 18.	X axis zero-g level change vs. temperature at 2.5V	
Figure 19.	X axis sensitivity change vs. temperature at 2.5V	
Figure 20.	Y axis zero-g level change vs. temperature at 2.5V	
Figure 21.	Y axis sensitivity change vs. temperature at 2.5V	
Figure 22.	Z axis zero-g level change vs. temperature at 2.5V	
Figure 23.	Z axis sensitivity change vs. temperature at 2.5V	37
Figure 24.	Current consumption in normal mode at 2.5V	
Figure 25.	Current consumption in power down mode at 2.5V	
Figure 26.	LGA 14: mechanical data and package dimensions.	39

1 Block diagram and pin description

1.1 Block diagram

Figure 1. Block diagram

1.2 Pin description

Pin#	Name	Function		
1	Vdd_IO	Power supply for I/O pins		
2	GND	0V supply		
3	Reserved	Connect to Vdd		
4	GND	0V supply		
5	GND	0V supply		
6	Vdd	Power supply		
7	CS	SPI enable I ² C/SPI mode selection (1: I ² C mode; 0: SPI enabled)		
8	INT 1	Inertial interrupt 1		
9	INT 2	Inertial interrupt 2		
10	GND	0V supply		
11	Reserved	Connect to Gnd		
12	SDO	SPI Serial Data Output I ² C less significant bit of the device address		
	SDA	I ² C Serial Data (SDA)		
13	SDI	SPI Serial Data Input (SDI)		
	SDO	3-wire Interface Serial Data Output (SDO)		
14	SCL	I ² C Serial Clock (SCL)		
17	SPC	SPI Serial Port Clock (SPC)		

Table 2. Pin description

2 Mechanical and electrical specifications

2.1 Mechanical characteristics

Table 3. Mechanical characteristics⁽¹⁾

(All the parameters are specified @ Vdd=2.5 V, T = 25°C unless otherwise noted)

Symbol	Parameter	Test conditions	Min.	Typ. ⁽²⁾	Max.	Unit
FS	Measurement range ⁽³⁾	FS bit set to 0	±2.0	±2.3		g
гэ	Measurement range	FS bit set to 1	±8.0	±9.2		
So	Sensitivity	FS bit set to 0	16.2	18	19.8	mg/digit
30	Sensitivity	FS bit set to 1	64.8	72	79.2	mg/uigit
TCSO	Sensitivity change vs temperature	FS bit set to 0		±0.01		%/°C
T./O#	Typical zero-g level offset	FS bit set to 0		±40		mg
TyOff	accuracy ^{(4),(5)}	FS bit set to 1		±60		mg
TCOff	Zero-g level change vs temperature	Max delta from 25°C		±0.5		mg/°C
		FS bit set to 0 STP bit used X axis	-32		-3	LSb
Vst	Self test output change ^{(6),(7),(8),(9)}	FS bit set to 0 STP bit used Y axis	3		32	LSb
		FS bit set to 0 STP bit used Z axis	3		32	LSb
BW	System bandwidth ⁽¹⁰⁾			ODR/2		Hz
Тор	Operating temperature range		-40		+85	°C
Wh	Product weight			30		mgram

1. The product is factory calibrated at 2.5V. The device can be used from 2.16V to 3.6V

2. Typical specifications are not guaranteed

- 3. Verified by wafer level test and measurement of initial offset and sensitivity
- 4. Typical zero-g level offset value after MSL3 preconditioning
- 5. Offset can be eliminated by enabling the built-in high pass filter
- 6. If STM bit is used values change in sign for all axes
- 7. Self Test output changes with the power supply. Vst at 3.3V is typically in the range [-74; -7] LSb for X axis and [7;74] LSb for Y and Z axes.
- "Self Test Output Change" is defined as OUTPUT[LSb]_(Self-test bit on ctrl_reg1=1) -OUTPUT[LSb]_(Self-test bit on ctrl_reg1=0)-1LSb=4.6g/256 at 8bit representation, ±2.3g Full-Scale
- 9. Output data reach 99% of final value after 3/ODR when enabling Self-Test mode due to device filtering
- 10. ODR is output data rate. Refer to Table 4 for specifications

2.2 Electrical characteristics

Table 4. Electrical characteristics⁽¹⁾

(All the parameters are specified @ Vdd=2.5 V, T= 25°C unless otherwise noted)

Symbol	Parameter	Test conditions	Min.	Typ. ⁽²⁾	Max.	Unit
Vdd	Supply voltage		2.16	2.5	3.6	V
Vdd_IO	I/O pins supply voltage ⁽³⁾		1.71		Vdd+0.1	V
ldd	Supply current	T = 25°C, ODR=100Hz		0.3	0.4	mA
IddPdn	Current consumption in power-down mode	T = 25°C		1	5	μA
VIH	Digital high level input voltage		0.8*Vdd _IO			V
VIL	Digital low level input voltage				0.2*Vdd _IO	V
VOH	High level output voltage		0.9*Vdd _IO			V
VOL	Low level output voltage				0.1*Vdd _IO	V
ODR	Output data rate	DR=0		100		Hz
ODR		DR=1		400		
BW	System bandwidth ⁽⁴⁾			ODR/2		Hz
Ton	Turn-on time ⁽⁵⁾			3/ODR		S
Тор	Operating temperature range		-40		+85	°C

1. The product is factory calibrated at 2.5V. The device can be used from 2.16V to 3.6V

2. Typical specification are not guaranteed

3. It is possible to remove Vdd maintaining Vdd_IO without blocking the communication busses, in this condition the measurement chain is powered off.

4. Filter cut-off frequency

5. Time to obtain valid data after exiting Power-Down mode

2.3 Communication interface characteristics

2.3.1 SPI - Serial Peripheral Interface

Subject to general operating conditions for Vdd and Top.

Symbol	Parameter	Valu	Unit	
Symbol	Farameter	Min.	Max.	Onit
tc(SPC)	SPI clock cycle	100		ns
fc(SPC)	SPI clock frequency		10	MHz
tsu(CS)	CS setup time	5		
th(CS)	CS hold time	8		
tsu(SI)	SDI input setup time	5		
th(SI)	SDI input hold time	15		ns
tv(SO)	SDO valid output time		50	
th(SO)	SDO output hold time	6		
tdis(SO)	SDO output disable time		50	

Table 5. SPI slave timing values

1. Values are guaranteed at 10MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production

- 2. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both Input and Output port
- 3. When no communication is on-going, data on CS, SPC, SDI and SDO are driven by internal pull-up resistors

2.3.2 I²C - inter IC control interface

Subject to general operating conditions for Vdd and Top.

Table 6.	I ² C slave timing values
----------	--------------------------------------

Cumbal	Parameter	I ² C stand	ard mode ⁽¹⁾	I ² C fast	mode ⁽¹⁾	l lucit
Symbol	Parameter	Min	Мах	Min	Max	Unit
f _(SCL)	SCL clock frequency	0	100	0	400	KHz
t _{w(SCLL)}	SCL clock low time	4.7		1.3		
t _{w(SCLH)}	SCL clock high time	4.0		0.6		μs
t _{su(SDA)}	SDA setup time	250		100		ns
t _{h(SDA)}	SDA data hold time	0	3.45 ⁽²⁾	0	0.9 ⁽²⁾	μs
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time		1000	20 + 0.1C _b ⁽³⁾	300	
$t_{f(SDA)} t_{f(SCL)}$	SDA and SCL fall time		300	20 + 0.1C _b ⁽³⁾	300	ns
t _{h(ST)}	START condition hold time	4		0.6		
t _{su(SR)}	Repeated START condition setup time	4.7		0.6		
t _{su(SP)}	STOP condition setup time	4		0.6		μs
t _{w(SP:SR)}	Bus free time between STOP and START condition	4.7		1.3		

Figure 4. I²C Slave timing diagram ⁽⁴⁾

1. Data based on standard I²C protocol requirement, not tested in production

2. A device must internally provide an hold time of at least 300ns for the SDA signal (referred to VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL

3. Cb = total capacitance of one bus line, in pF

4. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both port

2.4 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Maximum value	Unit	
Vdd	Supply voltage	-0.3 to 6	V	
Vdd_IO	I/O pins supply voltage	-0.3 to 6	V	
Vin	Input voltage on any control pin (CS, SCL/SPC, SDA/SDI/SDO)	-0.3 to Vdd_IO +0.3	V	
	Acceleration (one ovic newsred)(dd 0.5)()	3000g for 0.5 ms		
A _{POW}	Acceleration (any axis, powered, Vdd=2.5V)	10000g for 0.1 ms		
_	Acceleration (only ovic unnequered)	3000g for 0.5 ms		
A _{UNP}	Acceleration (any axis, unpowered)	10000g for 0.1 ms		
T _{OP}	Operating temperature range	-40 to +85	°C	
T _{STG}	Storage temperature range	-40 to +125	°C	
		4 (HBM)	kV	
ESD	Electrostatic discharge protection	1.5 (CDM)	kV	
		200 (MM)	V	

Table 7. Absolute maximum r	ratings
-----------------------------	---------

Note:

Supply voltage on any pin should never exceed 6.0V

This is a mechanical shock sensitive device, improper handling can cause permanent damages to the part

This is an ESD sensitive device, improper handling can cause permanent damages to the part

2.5 Terminology

2.5.1 Sensitivity

Sensitivity describes the gain of the sensor and can be determined e.g. by applying 1g acceleration to it. As the sensor can measure DC accelerations this can be done easily by pointing the axis of interest towards the center of the Earth, noting the output value, rotating the sensor by 180 degrees (point to the sky) and noting the output value again. By doing so, $\pm 1g$ acceleration is applied to the sensor. Subtracting the larger output value from the smaller one and dividing the result by 2 leads to the actual sensitivity of the sensor. This value changes very little over temperature and also very little over time. The Sensitivity Tolerance describes the range of Sensitivities of a large population of sensor.

2.5.2 Zero-g level

Zero-g level Offset (Off) describes the deviation of an actual output signal from the ideal output signal if there is no acceleration present. A sensor in a steady state on a horizontal surface will measure 0g in X axis and 0g in Y axis whereas the Z axis will measure 1g. The output is ideally in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as 2's complement number). A deviation from ideal value in this case is called Zero-g offset. Offset is to some extent a result of stress to a precise MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see "Zero-g level change vs. temperature". The Zero-g level of an individual sensor is stable over lifetime. The Zero-g level tolerance describes the range of Zero-g levels of a population of sensors.

2.5.3 Self test

Self Test allows to check the sensor functionality without moving it. The Self Test function is off when the self-test bit of CTRL_REG1 (control register 1) is programmed to '0'. When the self-test bit of ctrl_reg1 is programmed to '1' an actuation force is applied to the sensor, simulating a definite input acceleration. In this case the sensor outputs will exhibit a change in their DC levels which is related to the selected full scale through the device sensitivity. When Self Test is activated, the device output level is given by the algebraic sum of the signals produced by the acceleration acting on the sensor and by the electrostatic test-force. If the output signals change within the amplitude specified inside *Table 3*, than the sensor is working properly and the parameters of the interface chip are within the defined specification.

2.5.4 Click and double click recognition

The Click and Double Click recognition functions help to create man-machine interface with little software overload. The device can be configured to output an interrupt signal on dedicated pin when tapped in any direction.

If the sensor is exposed to a single input stimulus it generates an interrupt request on inertial interrupt pin (INT1 and/or INT2). A more advanced feature allows to generate and interrupt request when a "double click" with programmable time between the two events enabling a "mouse button like" use.

This function can be fully programmed by the user in terms of expected amplitude and timing of the stimuli.

57

3 Functionality

The LIS302DL is a ultracompact, low-power, digital output 3-axis linear accelerometer packaged in a LGA package. The complete device includes a sensing element and an IC interface able to take the information from the sensing element and to provide a signal to the external world through an I^2C/SPI serial interface.

3.1 Sensing element

A proprietary process is used to create a surface micro-machined accelerometer. The technology allows to carry out suspended silicon structures which are attached to the substrate in a few points called anchors and are free to move in the direction of the sensed acceleration. To be compatible with the traditional packaging techniques a cap is placed on top of the sensing element to avoid blocking the moving parts during the moulding phase of the plastic encapsulation.

When an acceleration is applied to the sensor the proof mass displaces from its nominal position, causing an imbalance in the capacitive half-bridge. This imbalance is measured using charge integration in response to a voltage pulse applied to the sense capacitor.

At steady state the nominal value of the capacitors are few pF and when an acceleration is applied the maximum variation of the capacitive load is in fF range.

3.2 IC interface

The complete measurement chain is composed by a low-noise capacitive amplifier which converts into an analog voltage the capacitive unbalancing of the MEMS sensor and by analog-to-digital converters.

The acceleration data may be accessed through an I²C/SPI interface thus making the device particularly suitable for direct interfacing with a microcontroller.

The LIS302DL features a Data-Ready signal (RDY) which indicates when a new set of measured acceleration data is available thus simplifying data synchronization in the digital system that uses the device.

The LIS302DL may also be configured to generate an inertial Wake-Up and Free-Fall interrupt signal accordingly to a programmed acceleration event along the enabled axes. Both Free-Fall and Wake-Up can be available simultaneously on two different pins.

3.3 Factory calibration

The IC interface is factory calibrated for sensitivity (So) and Zero-g level (Off).

The trimming values are stored inside the device by a non volatile memory. Any time the device is turned on, the trimming parameters are downloaded into the registers to be used during the normal operation. This allows the user to use the device without further calibration.

4 Application hints

Figure 5. LIS302DL electrical connection

The device core is supplied through Vdd line while the I/O pads are supplied through Vdd_IO line. Power supply decoupling capacitors (100 nF ceramic, 10 μ F AI) should be placed as near as possible to the pin 6 of the device (common design practice).

All the voltage and ground supplies must be present at the same time to have proper behavior of the IC (refer to *Figure 5*). It is possible to remove Vdd maintaining Vdd_IO without blocking the communication busses, in this condition the measurement chain is powered off.

The functionality of the device and the measured acceleration data is selectable and accessible through the I^2C/SPI interface. When using the I^2C , CS must be tied high.

The functions, the threshold and the timing of the two interrupt pins (INT 1 and INT 2) can be completely programmed by the user though the I^2C/SPI interface.

4.1 Soldering information

The LGA package is compliant with the ECOPACK®, RoHS and "Green" standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020C.

Leave "Pin 1 Indicator" unconnected during soldering.

Land pattern and soldering recommendation are available at <u>www.st.com/mems</u>.

5 Digital interfaces

The registers embedded inside the LIS302DL may be accessed through both the I²C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode.

The serial interfaces are mapped onto the same pads. To select/exploit the I²C interface, CS line must be tied high (i.e connected to Vdd_IO).

PIN name	PIN description
CS	SPI enable I ² C/SPI mode selection (1: I ² C mode; 0: SPI enabled)
SCL/SPC	I ² C Serial Clock (SCL) SPI Serial Port Clock (SPC)
SDA/SDI/SDO	I ² C Serial Data (SDA) SPI Serial Data Input (SDI) 3-wire Interface Serial Data Output (SDO)
SDO	SPI Serial Data Output (SDO)

Table 8.Serial interface pin description

5.1 I²C Serial Interface

The LIS302DL I^2C is a bus slave. The I^2C is employed to write the data into the registers whose content can also be read back.

The relevant I²C terminology is given in the table below.

Table 9.Serial interface pin description

Term	Description				
Transmitter	The device which sends data to the bus				
Receiver The device which receives data from the bus					
Master	The device which initiates a transfer, generates clock signals and terminates a transfer				
Slave	The device addressed by the master				

There are two signals associated with the I²C bus: the Serial Clock Line (SCL) and the Serial DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both the lines are connected to Vdd_IO through a pull-up resistor embedded inside the LIS302DL. When the bus is free both the lines are high.

The I²C interface is compliant with Fast Mode (400 kHz) I²C standards as well as the Normal Mode.

5.1.1 I²C operation

The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the Master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the Master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the Master.

The Slave ADdress (SAD) associated to the LIS302DL is 001110xb. **SDO** pad can be used to modify less significant bit of the device address. If SDO pad is connected to voltage supply LSb is '1' (address 0011101b) else if SDO pad is connected to ground LSb value is '0' (address 0011100b). This solution permits to connect and address two different accelerometer to the same l^2C lines.

Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data has been received.

The I²C embedded inside the LIS302DL behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a salve address is sent, once a slave acknowledge (SAK) has been returned, a 8-bit sub-address will be transmitted: the 7 LSb represent the actual register address while the MSB enables address auto increment. If the MSb of the SUB field is 1, the SUB (register address) will be automatically incremented to allow multiple data read/write.

The slave address is completed with a Read/Write bit. If the bit was '1' (Read), a repeated START (SR) condition will have to be issued after the two sub-address bytes; if the bit is '0' (Write) the Master will transmit to the slave with direction unchanged. *Table 10* explains how the SAD+Read/Write bit pattern is composed, listing all the possible configurations.

Command	SAD[6:1]	SAD[0] = SDO	R/W	SAD+R/W				
Read	001110	0	1	00111001 (39h)				
Write	001110	0	0	00111000 (38h)				
Read	001110	1	1	00111011 (3Bh)				
Write	001110	1	0	00111010 (3Ah)				

Table 10.	SAD+Read/Write	patterns
-----------	----------------	----------

lable 11. Iransfer when master is writing one byte to slave	Table 11.	sfer when master is writing one byte to slave
---	-----------	---

	-	-	_	•		-	_	-
Master	ST	SAD + W		SUB		DATA		SP
Slave			SAK		SAK		SAK	

Master	ST	SAD + W		SUB		DATA		DATA		SP
Slave			SAK		SAK		SAK		SAK	

						• •	•				
Master	ST	SAD + W		SUB		SR	SAD + R			NMAK	SP
Slave			SAK		SAK			SAK	DATA		

Table 13.	Transfer when Master is receiving (reading) one byte of data from slave
-----------	---

Table 14. ransfer when master is receiving (reading)

Master	ST	SAD + W		SUB		SR	SAD + R			MAK
Slave			SAK		SAK			SAK	DATA	

Table 15. Multiple bytes of data from slave

ſ	Master		MAK		NMAK	SP
	Slave	DATA		DATA		

Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit (MSb) first. If a receiver can't receive another complete byte of data until it has performed some other function, it can hold the clock line, SCL LOW to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver doesn't acknowledge the slave address (i.e. it is not able to receive because it is performing some real time function) the data line must be left HIGH by the slave. The Master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition.

In order to read multiple bytes, it is necessary to assert the most significant bit of the subaddress field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the address of first register to read.

In the presented communication format MAK is Master Acknowledge and NMAK is No Master Acknowledge.

5.2 SPI bus interface

The LIS302DL SPI is a bus slave. The SPI allows to write and read the registers of the device.

The Serial Interface interacts with the outside world with 4 wires: CS, SPC, SDI and SDO.

Figure 6. Read & write protocol

CS is the Serial Port Enable and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. **SPC** is the Serial Port Clock and it is controlled by the SPI master. It is stopped high when **CS** is high (no transmission). **SDI** and **SDO** are respectively the Serial Port Data Input and Output. Those lines are driven at the falling edge of **SPC** and should be captured at the rising edge of **SPC**.

Both the Read Register and Write Register commands are completed in 16 clock pulses or in multiple of 8 in case of multiple byte read/write. Bit duration is the time between two falling edges of **SPC**. The first bit (bit 0) starts at the first falling edge of **SPC** after the falling edge of **CS** while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of **CS**.

bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In latter case, the chip will drive **SDO** at the start of bit 8.

bit 1: MS bit. When 0, the address will remain unchanged in multiple read/write commands. When 1, the address will be auto incremented in multiple read/write commands.

bit 2-7: address AD(5:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that will be written into the device (MSb first).

bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb first).

In multiple read/write commands further blocks of 8 clock periods will be added. When \overline{MS} bit is 0 the address used to read/write data remains the same for every block. When \overline{MS} bit is 1 the address used to read/write data is incremented at every block.

The function and the behavior of SDI and SDO remain unchanged.

5.2.1 SPI Read

The SPI Read command is performed with 16 clock pulses. Multiple byte read command is performed adding blocks of 8 clock pulses at the previous one.

bit 0: READ bit. The value is 1.

bit 1: MS bit. When 0 do not increment address, when 1 increment address in multiple reading.

bit 2-7: address AD(5:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb first).

bit 16-... : data DO(...-8). Further data in multiple byte reading.

Figure 8. Multiple bytes SPI Read protocol (2 bytes example)

5.2.2 SPI Write

The SPI Write command is performed with 16 clock pulses. Multiple byte write command is performed adding blocks of 8 clock pulses at the previous one.

bit 0: WRITE bit. The value is 0.

bit 1: MS bit. When 0 do not increment address, when 1 increment address in multiple writing.

bit 2 -7: address AD(5:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that will be written inside the device (MSb first).

bit 16-... : data DI(...-8). Further data in multiple byte writing.

Figure 10. Multiple bytes SPI Write protocol (2 bytes example)

5.2.3 SPI Read in 3-wires mode

3-wires mode is entered by setting to 1 bit SIM (SPI Serial Interface Mode selection) in CTRL_REG2.

The SPI Read command is performed with 16 clock pulses:

bit 0: READ bit. The value is 1.

bit 1: $M\overline{S}$ bit. When 0 do not increment address, when 1 increment address in multiple reading.

bit 2-7: address AD(5:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb first).

Multiple read command is also available in 3-wires mode.

6 Register mapping

The table given below provides a listing of the 8 bit registers embedded in the device and the related address:

Nama	T	Register address		Default	0	
Name	Туре	Hex	Binary	Default	Comment	
Reserved (Do not modify)		00-0E			Reserved	
Who_Am_I	r	0F	000 1111	00111011	Dummy register	
Reserved (Do not modify)		10-1F			Reserved	
Ctrl_Reg1	rw	20	010 0000	00000111		
Ctrl_Reg2	rw	21	010 0001	00000000		
Ctrl_Reg3	rw	22	010 0010	00000000		
HP_filter_reset	r	23	010 0011	dummy	Dummy register	
Reserved (Do not modify)		24-26			Reserved	
Status_Reg	r	27	010 0111	00000000		
	r	28	010 1000		Not Used	
OutX	r	29	010 1001	output		
	r	2A	010 1010		Not Used	
OutY	r	2B	010 1011	output		
	r	2C	010 1100		Not Used	
OutZ	r	2D	010 1101	output		
Reserved (Do not modify)		2E-2F			Reserved	
FF_WU_CFG_1	rw	30	011 0000	00000000		
FF_WU_SRC_1(ack1)	r	31	011 0001	00000000		
FF_WU_THS_1	rw	32	011 0010	0000000x		
FF_WU_DURATION_1	rw	33	011 0011	00000000		
FF_WU_CFG_2	rw	34	011 0100	00000000		
FF_WU_SRC_2 (ack2)	r	35	011 0101	00000000		
FF_WU_THS_2	rw	36	011 0110	00000000		
FF_WU_DURATION_2	rw	37	011 0111	00000000		
CLICK_CFG	rw	38	011 1000	00000000		
CLICK_SRC (ack)	r	39	011 1001	00000000		
		ЗA			Not Used	
CLICK_THSY_X	rw	3B	011 1011	00000000		

Table 16.	Register	address map
-----------	----------	-------------

Nema	Turne	Register	address	Default	Comment
Name	Туре	Hex	Binary		
CLICK_THSZ	rw	3C	011 1100	0000000	
CLICK_TimeLimit	rw	3D	011 1101	00000000	
CLICK_Latency	rw	3E	011 1110	00000000	
CLICK_Window	rw	3F	011 1111	0000000	

 Table 16.
 Register address map (continued)

Registers marked as *Reserved* must not be changed. The writing to those registers may cause permanent damages to the device.

The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered-up.

