2SD1620

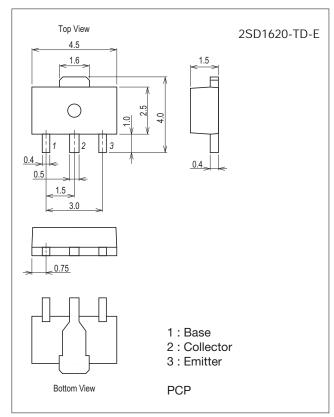
http://onsemi.com

Bipolar Transistor 10V, 3A, Low VCE(sat), NPN Single PCP

Features

- · Less power dissipation because of low VCE(sat), permitting more flashes of light to be emitted
- · Large current capacity and highly resistant to breakdown
- Excellent linearity of hFE in the region from low current to high current
- · Ultrasmall size supports high-density, ultrasmall-sized hybrid IC designs

Specifications

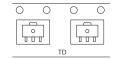

Absolute Maximum Ratings at Ta=25°C

Parameter	Symbol	Conditions	Ratings	Unit
Collector-to-Base Voltage	VCBO		30	V
Collector-to-Emitter Voltage	VCEX		20	V
Collector-to-Emitter Voltage	VCEO		10	V
Emitter-to-Base Voltage	VEBO		6	V
Collector Current	IC		3	А
Collector Current (Pulse)	ICP		5	А

Continued on next page.

Package Dimensions

unit : mm (typ) 7007B-004


Product & Package Information

• Package : PCP

• JEITA, JEDEC : SC-62, SOT-89, TO-243

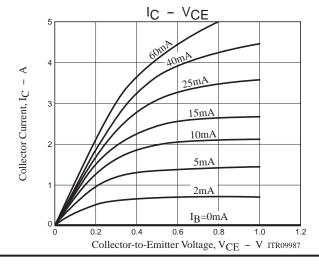
• Minimum Packing Quantity: 1,000 pcs./reel

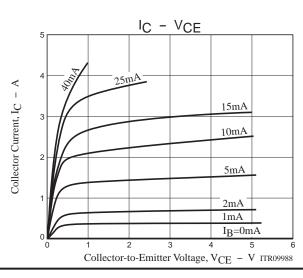
Packing Type: TD Marking

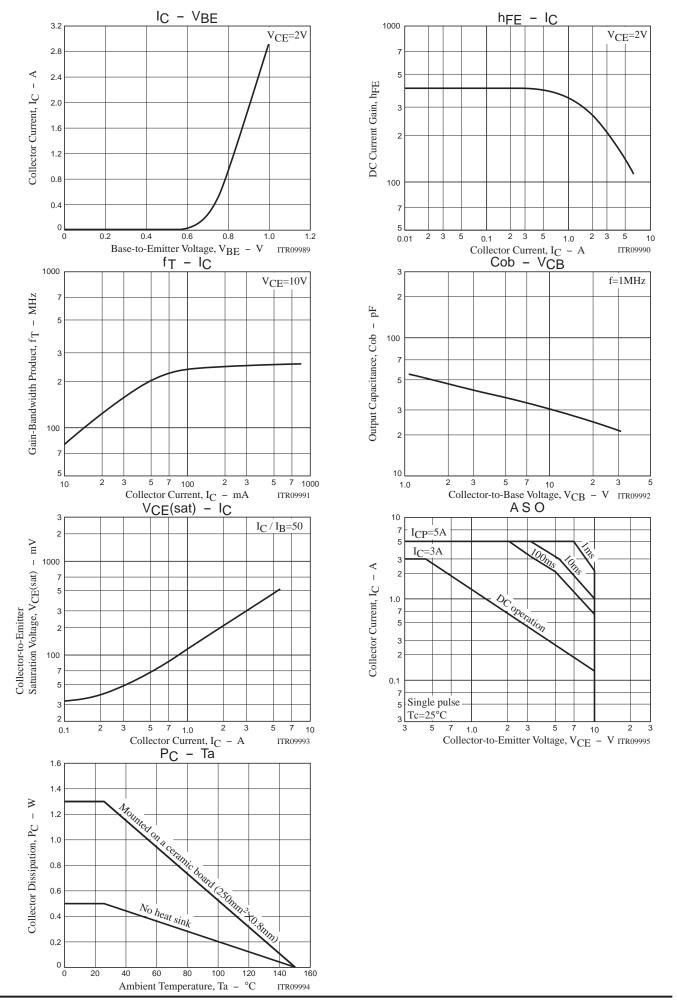
Electrical Connection

Continued from preceding page.

Parameter	Symbol	Conditions	Ratings	Unit
Collector Dissipation	PC		500	mW
		When mounted on ceramic substrate (250mm ² x0.8mm)	1.3	W
Junction Temperature	Tj		150	°C
Storage Temperature	Tstg		-55 to +150	°C

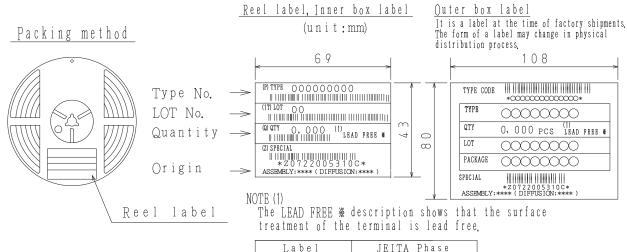

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


Electrical Characteristics at Ta=25°C


Parameter	Symbol	Conditions Ratings min typ max			Unit	
	Syllibol			typ	max	Office
Collector Cutoff Current	ICBO	V _{CB} =20V, I _E =0A			100	nA
Emitter Cutoff Current	IEBO	V _{EB} =4V, I _C =0A			100	nA
DC Current Gain	hFE	V _{CE} =2V, I _C =3A	140	210		
Gain-Bandwidth Product	fŢ	V _{CE} =10V, I _C =50mA		200		MHz
Output Capacitance	Cob	V _{CB} =10V, f=1MHz		30		pF
Collector-to-Emitter Saturation Voltage	V _{CE} (sat)	IC=3A, IB=60mA		0.3	0.4	V
Collector-to-Base Breakdown Voltage	V(BR)CBO	I _C =10μA, I _E =0A	30			V
Collector-to-Emitter Breakdown Voltage	V(BR)CEX	I _C =1mA, V _{BE} =3V	20			V
Collector-to-Emitter Breakdown Voltage	V(BR)CEO	IC=1mA, RBE=∞	10			V
Emitter-to-Base Breakdown Voltage	V(BR)EBO	I _E =10μA, I _C =0A	6			V

Ordering Information

Device	Package	Shipping	memo	
2SD1620-TD-E	PCP	1,000pcs./reel	Pb Free	



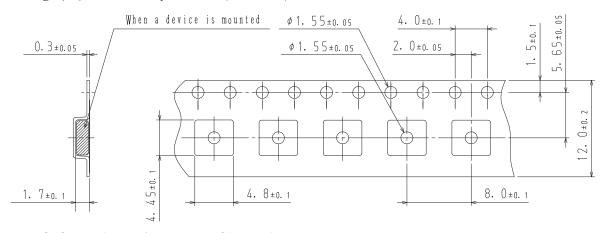
Bag Packing Specification

2SD1620-TD-E

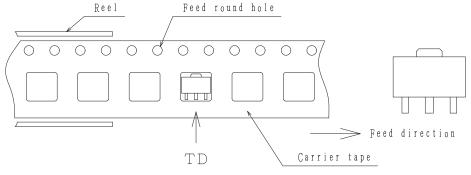
1. Packing Format

Package Name	Carrier Tape	Maximum Number of devices contained (pcs)			Packing	format		
	Туре	Reel	Inner box	Outer box	Inner BOX (C-1)	Outer BOX (A-7)		
PCP	PCP	1, 000	4,000	24,000	4 reels contained	6 inner boxes contained		
					Dimensions:mm (external)	Dimensions:mm (external)		
					183×72×185	440×195×210		

LEAD FREE 3

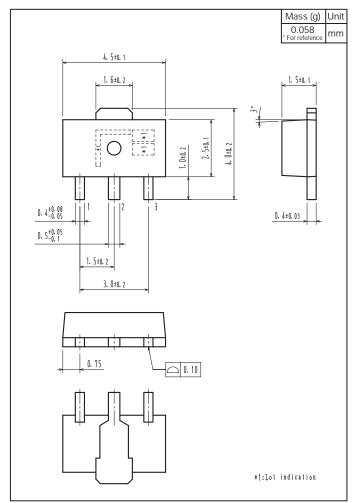

LEAD FREE 4

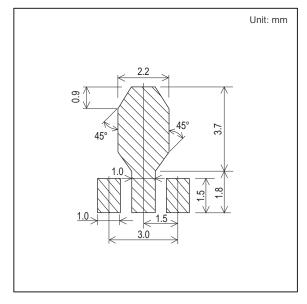
JEITA Phase 3A


JEITA Phase 3

2. Taping configuration

2-1. Carrier tape size (unit:mm)


2-2. Device placement direction


Those with pin 1 index on the feed hole side·····TD

Outline Drawing

2SD1620-TD-E

Land Pattern Example

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa