mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Product data sheet

1 General description

The BGU8063 is, also known as the BTS3001H, a high-linearity bypass amplifier for wireless infrastructure applications, equipped with fast shutdown to support TDD systems. The LNA has a high input and output return loss and is designed to operate between 2.5 GHz and 4.0 GHz. It is housed in a 3 mm × 3 mm × 0.85 mm 10-terminal plastic thin small outline package. The LNA is ESD protected on all terminals.

2 Features and benefits

- Low-noise performance: NF = 1.4 dB
- High-linearity performance: IP3_O = 34 dBm
- High-input return loss > 10 dB
- High-output return loss > 10 dB
- Unconditionally stable up to 20 GHz
- Small 10-terminal leadless package 3 mm × 3 mm × 0.85 mm
- ESD protection on all terminals
- Moisture sensitivity level 1
- · Fast shut down to support TDD systems
- +5 V single supply

3 Applications

- Wireless infrastructure
- · Low-noise and high-linearity applications
- LTE, W-CDMA, CDMA, GSM
- General-purpose wireless applications
- TDD or FDD systems
- Suitable for small cells

4 Quick reference data

Table 1. Quick reference data

f = 2500 MHz; $V_{CC} = 5 \text{ V}$; $T_{amb} = 25 \text{ °C}$; input and output 50 Ω ; unless otherwise specified. All RF parameters are measured on an application board with the circuit as shown in Figure 29 and components listed in Table 9 implemented. This board is optimized for f = 2500 MHz.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{CC}	supply current	LNA enable; bypass off	-	75	90	mA
		LNA disable; bypass on	-	3	5	mA
G _{ass}	associated gain	LNA enable; bypass off	17.0	18.5	20	dB
		LNA disable; bypass on	-2.2	-1.8	-	dB
NF	noise figure	LNA enable; bypass off [1]	-	1.4	2.2	dB
P _{L(1dB)}	output power at 1 dB gain compression	LNA enable; bypass off	17.5	19.0	-	dBm
IP3 ₀	output third-order intercept point	2-tone; tone spacing = 1 MHz; P_L = 5 dBm per tone				
		LNA enable; bypass off	31.0	34.0	-	dBm
		LNA disable; bypass on	-	43.0	-	dBm

[1] Connector and Printed-Circuit Board (PCB) losses have been de-embedded.

5 Ordering information

Table 2. Ordering information

Туре	Package					
number	Name	Description	Version			
BGU8063	HVSON10	plastic thermal enhanced very thin small outline package; no leads; 10 terminals; body 3 mm × 3 mm × 0.85 mm	SOT650-2			

6 Block diagram

BGU8063 Product data sheet

7 Pinning information

7.1 Pinning

7.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
VCTRL2	1	voltage control 2
i.c.	2, 4, 9	internally connected, can be grounded or left open in the application
RF_IN	3	RF input
n.c.	5	not connected
V _{CC}	6	supply voltage
n.c.	7	not connected
RF_OUT	8	RF output
VCTRL1	10	voltage control 1
GND	exposed die pad	ground

8 Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-	6	V
V _{i(CTRL1)}	input voltage on pin CTRL1		-	3.6	V
V _{i(CTRL2)}	input voltage on pin CTRL2		-	3.6	V
P _{i(RF)CW}	continuous waveform RF input power		-	20	dBm
T _{stg}	storage temperature		-40	+150	°C
Tj	junction temperature		-	150	°C
Р	power dissipation	$T_{case} \le 125 \ ^{\circ}C$ ^[1]	-	510	mW
V _{ESD}	electrostatic discharge voltage	Human Body Model (HBM) according to ANSI/ESDA/JEDEC standard JS-001-2010	-	2.0	kV
		Charged Device Model (CDM) according to JEDEC standard 22-C101B	-	1.0	kV

[1] Case is ground solder pad.

9 Recommended operating conditions

Table 5. Table 5. Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage		4.75	5	5.25	V
Z ₀	characteristic impedance		-	50	-	Ω

10 Thermal characteristics

Table 6. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{th(j-case)}	thermal resistance from junction to case	[1] [2]	-	55	-	K./W

[1] Case is ground solder pad.

[2] Thermal resistance measured using infrared measurement technique, device mounted on application board and placed in still air.

11 Characteristics

Table 7. Characteristics

f = 2500 MHz; $V_{CC} = 5 \text{ V}$; $T_{amb} = 25 \text{ °C}$; input and output 50 Ω ; unless otherwise specified. All RF parameters are measured on an application board with the circuit as shown in Figure 29 and components listed in Table 9 implemented. This board is optimized for f = 2500 MHz.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{CC}	supply current	LNA enable; bypass off	-	75	90	mA
		LNA disable; bypass on	-	3	5	mA
G _{ass}	associated gain	LNA enable; bypass off	17.0	18.5	20	dB
		LNA disable; bypass on	-2.2	-1.8	-	dB
G _{flat}	gain flatness	within 100 MHz bandwidth; LNA enable; bypass off				
		2500 MHz ≤ f ≤ 4000 MHz	-	0.4	-	dB
		3000 MHz ≤ f ≤ 3500 MHz	-	0.3	-	dB
NF	noise figure	LNA enable; bypass off [1]	-	1.4	2.2	dB
ΔG	gain variation	2500 MHz ≤ f ≤ 4000 MHz	-	4.9	-	dB
P _{L(1dB)}	output power at 1 dB gain compression	LNA enable; bypass off	17.5	19.0	-	dBm
IP3 ₀	output third-order intercept point	2-tone; tone spacing = 1 MHz; P _L = 5 dBm per tone				
		LNA enable; bypass off	31.0	34.0	-	dBm
		LNA disable; bypass on	-	43.0	-	dBm
RL _{in}	input return loss	LNA enable; bypass off	-	-10	-	dB
		LNA disable; bypass on	-	-20	-	dB
RL _{out}	output return loss	LNA enable; bypass off	-	-10	-	dB
		LNA disable; bypass on	-	-20	-	dB
ISL	isolation	LNA disable; bypass off	-	30	-	dB
		LNA enable; bypass off	-	25	-	dB
t _{s(pon)}	power-on settling time	$P_i = -20 \text{ dBm}$	-	0.5	-	μs
t _{s(poff)}	power-off settling time	$P_i = -20 \text{ dBm}$	-	0.1	-	μs
К	Rollett stability factor	both on-state and off-state up to f = 20 GHz	1			<u> </u>

[1] Connector and Printed-Circuit Board (PCB) losses have been de-embedded.

Table 8. Control truth table

 $V_{CC} = 5 V; T_{amb} = 25 °C.$

Control signal setting ^[1]		Mode of operation		
CTRL1	CTRL2	LNA	bypass	
LOW	HIGH	disable	on	
HIGH	HIGH	disable	on	
LOW	LOW	enable	off	
HIGH	LOW	disable	off	

[1] A logic LOW is the result of an input voltage on that specific pin between -0.3 V and +0.7 V.
 A logic HIGH is the result of an input voltage on that specific pin between 1.2 V and 3.6 V.

BGU8063

low-noise high-linearity amplifier

12 Graphics

BGU8063

BGU8063

BGU8063

BGU8063

BGU8063

BGU8063

13 Application information

Table 9. List of componentsSee Figure 29 for schematics.

Component	Description	Value	Remarks
C1	capacitor	100 nF	
C2, C3	capacitor	100 pF	
C4	capacitor	1 nF	
C5	capacitor	-	optional
C6	capacitor	10 nF	
C7	capacitor	1 µF	
L1	inductor	15 nH	
R1, R2	resistor	1 kΩ	

BGU8063 Product data sheet

14 Package outline

Figure 30. Package Outline SOT650-2 (HVSON10)

15 Abbreviations

Table 10. Abbreviations				
Acronym	Description			
CDMA	Code Division Multiple Access			
ESD	ElectroStatic Discharge			
FDD	Frequency-Division Duplexing			
GSM	Global System for Mobile communication			
LNA	Low Noise Amplifier			
LTE	Long Term Evolution			
TDD	Time-Division Duplexing			
W-CDMA	Wideband Code Division Multiple Access			

16 Revision history

Table 11. Revision	history			
Document ID	Release date	Data sheet status	Change notice	Supersedes
BGU8063 v.2	20170127	product data sheet	-	BGU8063 v.1
Modifications:	• Section 1: added	BTS3001H according to our n	ew naming convention	
BGU8063 v.1	20170118	product data sheet	-	-

BGU8063

low-noise high-linearity amplifier

Contents

General description	1
Features and benefits	1
Applications	1
Quick reference data	2
Ordering information	2
Recommended operating conditions	4
Thermal characteristics	4
Characteristics	5
Application information	14
Revision history	16
	General description Features and benefits Applications Quick reference data Ordering information Block diagram Pinning information Pinning Pin description Limiting values Recommended operating conditions Thermal characteristics Characteristics Graphics Application information Package outline Abbreviations Revision history

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP Semiconductors N.V. 2017.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 27 January 2017 Document identifier: BGU8063