mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

N-channel 100 V 34.5 m Ω standard level MOSFET in TO220.

Rev. 02 — 1 March 2010

Objective data sheet

1. Product profile

1.1 General description

Standard level N-channel MOSFET in TO220 package qualified to 175C. This product is designed and qualified for use in a wide range of industrial, communications and domestic equipment.

1.2 Features and benefits

High efficiency due to low switching and conduction losses

1.3 Applications

- DC-to-DC converters
- Load switching

1.4 Quick reference data

Table 1. Quick reference

- Suitable for standard level gate drive
- Motor control
- Server power supplies

Table 1.	Quick reference					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C	-	-	100	V
I _D	drain current	$T_{mb} = 25 \text{ °C}; V_{GS} = 10 \text{ V};$ see <u>Figure 1</u>	-	-	32	A
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	-	86	W
Tj	junction temperature		-55	-	175	°C
Avalanc	he ruggedness					
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	$\begin{array}{l} V_{GS} = 10 \text{ V}; T_{j(init)} = 25 ^{\circ}\text{C}; \\ I_{D} = 32 \text{ A}; V_{sup} \leq 100 \text{ V}; \\ \text{unclamped}; \text{R}_{GS} = 50 \Omega \end{array}$	-	-	42	mJ
Dynamic	c characteristics					
Q _{GD}	gate-drain charge	$V_{GS} = 10 \text{ V}; \text{ I}_{D} = 15 \text{ A};$	-	6.9	-	nC
Q _{G(tot)}	total gate charge	$V_{DS} = 50 \text{ V}; \text{ see } \frac{\text{Figure } 12}{\text{and } \frac{13}{2}}$	-	23.8	-	nC
Static ch	naracteristics					
R_{DSon}	drain-source on-state resistance	$V_{GS} = 10 \text{ V}; I_D = 15 \text{ A};$ T _j = 100 °C; see <u>Figure 11</u>	-	-	62	mΩ
		V _{GS} = 10 V; I _D = 15 A; T _j = 25 °C; see <u>Figure 16</u>	-	29.3	34.5	mΩ

N-channel 100 V 34.5 mΩ standard level MOSFET in TO220.

2. Pinning information

Table 2.	Pinning	information		
Pin	Symbol	Description	Simplified outline	Graphic symbol
1	G	gate		-
2	D	drain	mb	
3	S	source		
mb	D	mounting base; connected to drain		mbb076 S

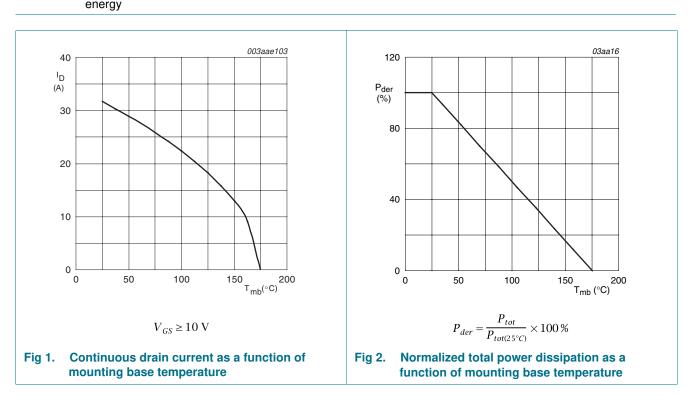
SOT78 (TO-220AB)

3. Ordering information

Table 3.Ordering information

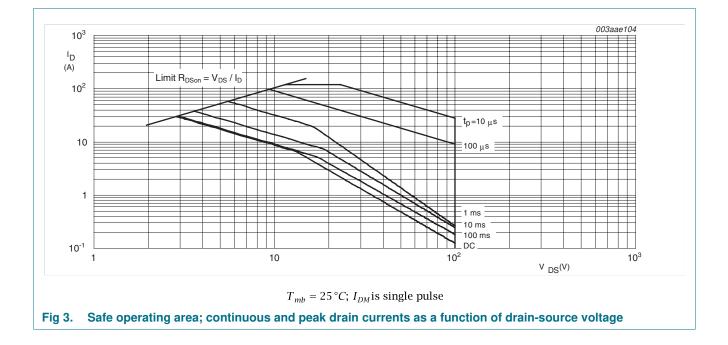
Type number	Package		
	Name	Description	Version
PSMN034-100PS	TO-220AB	plastic single-ended package; heatsink mounted; 1 mounting hole; 3-lead TO-220AB	SOT78

Objective data sheet


N-channel 100 V 34.5 mΩ standard level MOSFET in TO220.

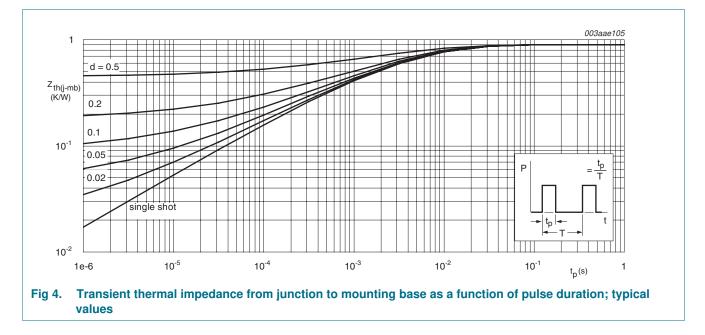
4. Limiting values

Table 4. Limiting values


In accordance with the Absolute Maximum Rating System (IEC 60134).

		5, (
Symbol	Parameter	Conditions	Min	Max	Unit
V _{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C	-	100	V
V _{DGR}	drain-gate voltage	$T_j \le 175 \text{ °C}; T_j \ge 25 \text{ °C}; R_{GS} = 20 \text{ k}\Omega$	-	100	V
V _{GS}	gate-source voltage		-20	20	V
I _D	drain current	V_{GS} = 10 V; T_{mb} = 100 °C; see <u>Figure 1</u>	-	22	А
		V_{GS} = 10 V; T_{mb} = 25 °C; see <u>Figure 1</u>	-	32	А
I _{DM}	peak drain current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^{\circ}C$; see Figure 3	-	127	А
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	86	W
T _{stg}	storage temperature		-55	175	°C
Tj	junction temperature		-55	175	°C
$T_{sld(M)}$	peak soldering temperature		-	260	°C
Source-dr	ain diode				
ls	source current	T _{mb} = 25 °C	-	32	А
I _{SM}	peak source current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^{\circ}C$	-	127	А
Avalanche	e ruggedness				
$E_{DS(AL)S}$	non-repetitive drain-source avalanche energy	V_{GS} = 10 V; $T_{j(init)}$ = 25 °C; I_{D} = 32 A; V_{sup} ≤ 100 V; unclamped; R_{GS} = 50 Ω	-	42	mJ

PSMN034-100PS


N-channel 100 V 34.5 m Ω standard level MOSFET in TO220.

N-channel 100 V 34.5 mΩ standard level MOSFET in TO220.

5. Thermal characteristics

Table 5.	Thermal characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-mb)}$	thermal resistance from junction to mounting base	see Figure 4	-	0.9	1.7	K/W
R _{th(j-a)}	thermal resistance from junction to ambient	vertical in free air	-	50	-	K/W

N-channel 100 V 34.5 mΩ standard level MOSFET in TO220.

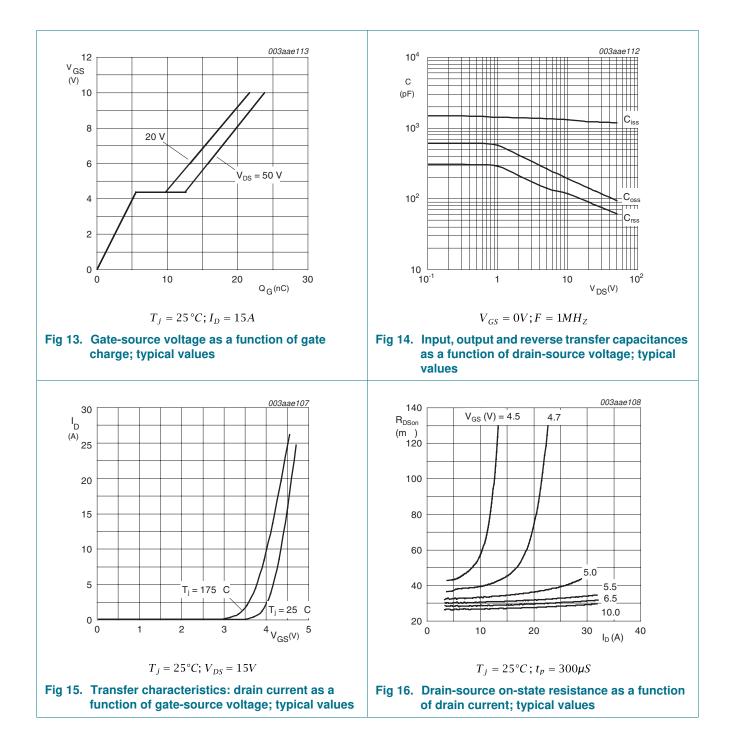
6. Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static cha	racteristics					
V _{(BR)DSS}	drain-source	I _D = 0.25 mA; V _{GS} = 0 V; T _i = -55 °C	90	-	-	V
(21)200	breakdown voltage	$I_{\rm D} = 0.25 \text{ mA}; V_{\rm GS} = 0 \text{ V}; T_{\rm i} = 25 \text{ °C}$	100	-	-	V
V _{GS(th)}	gate-source threshold	$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 175 \text{ °C}; \text{see } Figure 9$	1	-	-	V
	voltage	$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 25 \text{ °C}; \text{see } \frac{\text{Figure 10}}{\text{and } 9}$	2	3	4	V
		$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = -55 \text{ °C}; \text{see } \frac{\text{Figure 9}}{10}$ and $\frac{10}{10}$	-	-	4.8	V
I _{DSS}	drain leakage current	$V_{DS} = 100 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 125 \text{ °C}$	-	-	50	μA
		$V_{DS} = 100 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	0.02	1	μA
I _{GSS}	gate leakage current	$V_{GS} = 20 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	10	100	nA
		V _{GS} = -20 V; V _{DS} = 0 V; T _j = 25 °C	-	10	100	nA
R _{DSon}	drain-source on-state resistance	V _{GS} = 10 V; I _D = 15 A; T _j = 100 °C; see <u>Figure 11</u>	-	-	62	mΩ
		V _{GS} = 10 V; I _D = 15 A; T _j = 175 °C; see <u>Figure 11</u>	-	82.1	96	mΩ
		$V_{GS} = 10 \text{ V}; \text{ I}_{D} = 15 \text{ A}; \text{ T}_{j} = 25 \text{ °C}; \text{ see } \text{Figure 16}$	-	29.3	34.5	mΩ
R _G	internal gate resistance (AC)	f = 1 MHz	-	1	-	Ω
Dynamic o	haracteristics					
Q _{G(tot)}	total gate charge	$I_D = 15 \text{ A}; V_{DS} = 50 \text{ V}; V_{GS} = 10 \text{ V};$ see <u>Figure 12</u> and <u>13</u>	-	23.8	-	nC
		$I_D = 0 \text{ A}; V_{DS} = 0 \text{ V}; V_{GS} = 10 \text{ V}$	-	19	-	nC
Q _{GS}	gate-source charge	$I_D = 15 \text{ A}; V_{DS} = 50 \text{ V}; V_{GS} = 10 \text{ V};$ see <u>Figure 12</u> and <u>13</u>	-	5.5	-	nC
Q _{GS(th)}	pre-threshold gate-source charge	$I_D = 15 \text{ A}; V_{DS} = 50 \text{ V}; V_{GS} = 10 \text{ V};$ see Figure 12	-	3.6	-	nC
Q _{GS(th-pl)}	post-threshold gate-source charge		-	1.9	-	nC
Q _{GD}	gate-drain charge	$I_D = 15 \text{ A}; V_{DS} = 50 \text{ V}; V_{GS} = 10 \text{ V};$ see <u>Figure 12</u> and <u>13</u>	-	6.9	-	nC
V _{GS(pl)}	gate-source plateau voltage	$V_{DS} = 50 \text{ V}; \text{ see } \frac{\text{Figure } 12}{\text{ and } \frac{13}{2}}$	-	4.4	-	V
C _{iss}	input capacitance	$V_{DS} = 50 \text{ V}; V_{GS} = 0 \text{ V}; f = 1 \text{ MHz}; T_j = 25 \text{ °C};$	-	1201	-	pF
C _{oss}	output capacitance	see <u>Figure 14</u>	-	94	-	pF
C _{rss}	reverse transfer capacitance		-	61	-	pF
d(on)	turn-on delay time	$V_{DS}=50~V;~R_L=3.3~\Omega;~V_{GS}=10~V;$	-	12	-	ns
t _r	rise time	$R_{G(ext)} = 4.7 \ \Omega; T_j = 25 \ ^{\circ}C$	-	10	-	ns
t _{d(off)}	turn-off delay time		-	28	-	ns
t _f	fall time		-	9	-	ns

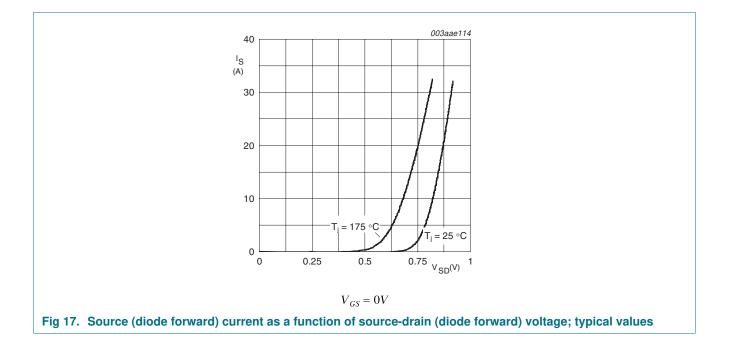
PSMN034-100PS

N-channel 100 V 34.5 m Ω standard level MOSFET in TO220.

nbol	Parameter	Conditions		Min	Тур	Мах	I
urce-dra	ain diode						
)	source-drain voltage	$I_{S} = 15 \text{ A}; V_{GS} = 0 \text{ V}; T_{j}$	= 25 °C; see <u>Figure 17</u>	-	0.85	1.2	`
	reverse recovery time	$I_{\rm S} = 5 \text{ A}; dI_{\rm S}/dt = 100 \text{ A}/$	$I_{S} = 5 \text{ A}; \text{ dI}_{S}/\text{dt} = 100 \text{ A}/\mu\text{s}; \text{ V}_{GS} = 0 \text{ V};$		38	-	I
	recovered charge	$V_{DS} = 50 V$		-	59	-	
		003aae110				003aae109	9
⁵⁰ g _{fs}			2000				-
(S)			C (pF)			C _{iss}	
40			1500				
			1500			C _{rss}	
30						100	
			1000				
20							
20							
			500				
10							
-							
0	D 10 20	30 40	0	4	8		
0	5 10 20	30 40 I _D (A)	0	4	0		2
	$T_j = 25^{\circ}C; V_{DS}$	= 10Vnce as a function of	V _D . Fig 6. Input and rev	s = 0V; ferse capa	$= 1MH_Z$	r _{GS} (V) . s as a fu	
		= 10Vnce as a function of	-	erse capa	= 1 <i>MH_z</i> acitance	s as a fu	
	orward transconducta	= 10Vnce as a function of	Fig 6. Input and rev	erse capa	= 1 <i>MH_z</i> acitance	s as a fu	nci
d	orward transconducta	= 10V nce as a function of lues	Fig 6. Input and rev gate-source v	erse capa	= 1 <i>MH_z</i> acitance	s as a fui alues	nc
100	orward transconducta	= 10V nce as a function of lues	Fig 6. Input and rev gate-source v	erse capa	= 1 <i>MH_z</i> acitance	s as a fui alues	nct
100 R _{DSon}	orward transconducta	= 10V nce as a function of lues	Fig 6. Input and rev gate-source v	erse capa	= 1 <i>MH_z</i> acitance	s as a fui alues	nct
d 100 ^R DSon (mΩ)	orward transconducta	= 10V nce as a function of lues	Fig 6. Input and rev gate-source v	erse capa voltage; t	= 1 <i>MH_z</i> acitance	s as a fui alues	nci
d 100 ^R _{DSon} (mΩ)	orward transconducta	= 10V nce as a function of lues	Fig 6. Input and rev gate-source v	erse capa voltage; t	= 1 <i>MH_z</i> acitance	s as a fui alues 003aae106	nci
d 100 ^R _{DSon} (mΩ)	orward transconducta	= 10V nce as a function of lues	Fig 6. Input and rev gate-source v	erse capa voltage; t	= 1 <i>MH_z</i> acitance	s as a fue alues 003aae106 4.7	
d 100 ^R DSon (mΩ) 80	orward transconducta	= 10V nce as a function of lues	Fig 6. Input and rev gate-source v	erse capa voltage; t	= 1 <i>MH_z</i> acitance	s as a fui alues 003aae106	
d 100 ^R _{DSon} (mΩ) 80 60	orward transconducta	= 10V nce as a function of lues	Fig 6. Input and rev gate-source v (A) 30 20	erse capa voltage; t	= 1 <i>MH_z</i> acitance	s as a fue alues 003aae106 4.7	
d 100 ^R DSon (mΩ) 80	orward transconducta	= 10V nce as a function of lues	Fig 6. Input and rev gate-source v	erse capa voltage; t	= 1 <i>MH_z</i> acitance	s as a fue alues 003aae106 4.7	
d 100 ^R _{DSon} (mΩ) 80 60	orward transconducta	= 10V nce as a function of lues	Fig 6. Input and rev gate-source v (A) 30 20	erse capa voltage; t	= 1MH _Z acitance ypical va	s as a fui alues 003aae106 4.7 4.7 4.5	
d 100 ^R _{DSon} (mΩ) 80 60 40	orward transconducta	= 10V nce as a function of lues	Fig 6. Input and rev gate-source v 40 (A) 30 20 10	erse capa voltage; t	= 1MH _Z acitance ypical va	s as a fue alues 003aae106 4.7	5 7
d 100 ^R _{DSon} (mΩ) 80 60	Forward transconductar	= 10V nce as a function of lues	Fig 6. Input and rev gate-source v (A) 30 20	erse capa voltage; t	= 1MH _Z acitance ypical va	s as a fui alues 003aae106 4.7 4.7 4.5 s (V) =-4	5 7
d 100 ^R DSon (mΩ) 80 60 40 20	Forward transconductar	$= 10V$ Coce as a function of busines $\frac{003aae111}{100}$	Fig 6. Input and rev gate-source v 40 (A) 30 10 10 20 10 0 1	erse capa voltage; t	= 1MH _Z acitance ypical va	s as a fue alues 003aae106 4.7 4.7 4.5 s (V) = 4	

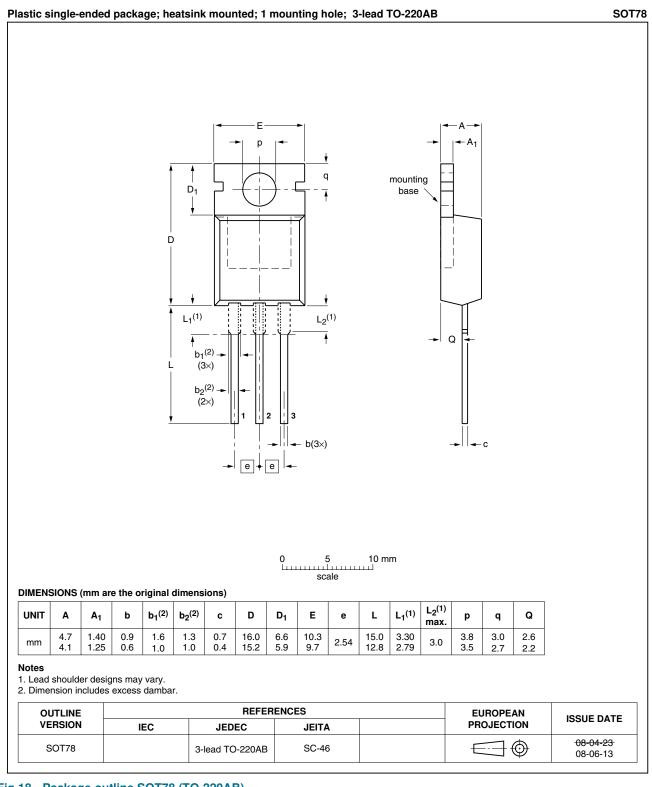

PSMN034-100PS

N-channel 100 V 34.5 mΩ standard level MOSFET in TO220.


PSMN034-100PS

N-channel 100 V 34.5 mΩ standard level MOSFET in TO220.

PSMN034-100PS


N-channel 100 V 34.5 mΩ standard level MOSFET in TO220.

PSMN034-100PS

N-channel 100 V 34.5 mΩ standard level MOSFET in TO220.

7. Package outline

Fig 18. Package outline SOT78 (TO-220AB)

All information provided in this document is subject to legal disclaimers.

N-channel 100 V 34.5 mΩ standard level MOSFET in TO220.

8. Revision history

Table 7. Revision hi	story			
Document ID	Release date	Data sheet status	Change notice	Supersedes
PSMN034-100PS_2	20100301	Objective data sheet	-	PSMN034-100PS_1
Modifications:	 Various ch 	anges to content.		
PSMN034-100PS_1	20100218	Objective data sheet	-	-

9. Legal information

9.1 Data sheet status

Document status [1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

9.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on a weakness or default in the customer application/use or the application/use of customer's third party customer(s) (hereinafter both referred to as "Application"). It is customer's sole responsibility to check whether the NXP Semiconductors product is suitable and fit for the Application planned. Customer has to do all necessary testing for the Application in order to avoid a default of the Application and the product. NXP Semiconductors does not accept any liability in this respect.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

N-channel 100 V 34.5 m Ω standard level MOSFET in TO220.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b)

10. Contact information

whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

TrenchMOS — is a trademark of NXP B.V.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

N-channel 100 V 34.5 m Ω standard level MOSFET in TO220.

11. Contents

1	Product profile1
1.1	General description1
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Limiting values
5	Thermal characteristics5
6	Characteristics6
7	Package outline11
8	Revision history12
9	Legal information13
9.1	Data sheet status
9.2	Definitions
9.3	Disclaimers
9.4	Trademarks14
10	Contact information14

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 1 March 2010 Document identifier: PSMN034-100PS_2