imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Symbol

 V_{ces}

V_{CGR}

V_{ges} V_{gem}

I_____

I_{C90}

I_{cм} SSOA

 $\mathbf{P}_{\mathbf{c}}$

 \mathbf{T}_{1}

Т

T_{stq}

M,

Weight

(RBSOA)

(ŠCSOA)

High Voltage, High Gain BIMOSFET[™] Monolithic Bipolar MOS Transistor

Test Conditions

Continuous

Transient

 $T_c = 25^{\circ}C$

 $T_c = 90^{\circ}C$

 $T_c = 25^{\circ}C$

Maximum Lead temperature for soldering

1.6 mm (0.062 in.) from case for 10 s

 $T_c = 25^{\circ}C, 1 \text{ ms}$

Clamped inductive load

 $R_{g}^{I} = 33 \Omega$ non repetitive

 $T_{1} = 25^{\circ}C \text{ to } 150^{\circ}C$

 $T_{J} = 25^{\circ}C$ to $150^{\circ}C$; $R_{GE} = 1 M\Omega$

 $V_{GE} = 15 \text{ V}, \text{ } \text{T}_{VI} = 125^{\circ}\text{C}, \text{ } \text{R}_{G} = 33 \text{ } \Omega$

Maximum tab temperature for soldering SMD devices for 10 s

Mounting torque (M3) (TO-247)

 $V_{GE} = 15 \text{ V}, V_{CES} = 1200 \text{ V}, T_{J} = 125^{\circ}\text{C}$

IXBH 16N170A IXBT 16N170A

V_{CES}	=	1700	V
C25	=	16	A
V _{CE(sat)}	=	6.0	V
t _{fi(typ)}	=	50	ns

JE	

Maximum Ratings

٧

V

V

٧

А

А

А

А

٧

μS

W

°C

°C

°C

°C

°C

g

g

1700

1700

±20

±30

16

10

40

40

10

150

150

300

260

1.13/10 Nm/lb.in.

6

4

-55 ... +150

-55 ... +150

1350

 $\stackrel{\rm I_{CM}}{\rm V_{CES}}$

=

=	JU	ns

TO-268 (IXBT)

G = Gate, E = Emitter, C = Collector, TAB = Collector

Features

- Monolithic fast reverse diode
- High Blocking Voltage
- JEDEC TO-268 surface mount and JEDEC TO-247 AD packages
- Low switching losses
- · High current handling capability
- MOS Gate turn-on
 drive simplicity
- Molding epoxies meet UL94V-0
 flammability classification

Symbol	Test Conditions	Characteristic Values $(T_J = 25^{\circ}C, unless otherwise specified)$			
		min.	typ.	max.	
${f BV}_{CES} \ {f V}_{GE(th)}$	$ \begin{array}{ll} {\sf I}_{_{\rm C}} & = 250 \; \mu {\sf A}, {\sf V}_{_{\rm GE}} = 0 \; {\sf V} \\ {\sf I}_{_{\rm C}} & = 250 \; \mu {\sf A}, {\sf V}_{_{\rm CE}} = {\sf V}_{_{\rm GE}} \end{array} $	1700 2.5		5.5	V V
I _{CES}	$\begin{array}{l} V_{_{CE}} &= 0.8 \ V_{_{CES}} \\ V_{_{GE}} &= 0 \ V; \ Note \ 1 \end{array}$	T _J = 125°C		50 1.5	μA mA
I _{GES}	$V_{_{CE}} = 0 \text{ V}, V_{_{GE}} = \pm 20 \text{ V}$			±100	nA
V _{CE(sat)}	I _C = I _{C90} , V _{GE} = 15 V Note 2	T _J = 125°C	5.0	6.0	V V

TO-247

TO-268

Applications

- AC motor speed control
- Uninterruptible power supplies (UPS)
- Switched-mode and resonant-mode power supplies
- Capacitor discharge circuits

Advantages

- Lower conduction losses than MOSFETs
- · High power density
- Suitable for surface mounting
- Easy to mount with 1 screw, (isolated mounting screw hole)

98707 (02/23/00)

IXBH 16N170A IXBT 16N170A

Symbol	Test Conditions Characteristic $(T_1 = 25^{\circ}C, unless c)$		istic Values
	(1) = 20 0, amos c min.	typ.	max.
9 _{fs}	$\begin{split} I_{_{C}} &= I_{_{C90}}; V_{_{CE}} = 10 \; V, \\ Pulse \; test, t \leq 300 \; \mu s, duty \; cycle \leq 2 \; \% \end{split} {\begin{subarray}{c} 8 \\ \end{array} \end{subarray}} \end{subarray} \end{subarray} \end{subarray} \end{subarray}$	12.5	S
C _{ies}		1400	pF
C _{oes}	$V_{CE} = 25 V, V_{GE} = 0 V, f = 1 MHz$	90	pF
\mathbf{C}_{res}		31	pF
Q		65	nC
Q _{ge}	$I_{c} = I_{C90}, V_{GE} = 15 V, V_{CE} = 0.5 V_{CES}$	13	nC
Q _{gc}		22	nC
t _{d(on)}	Inductive load, $T_J = 25^{\circ}C$	15	ns
t _{ri}	$\begin{cases} I_{c} = I_{c_{90}}, V_{GE} = 15 V \\ V_{cE} = 0.8 V_{cES}, R_{G} = R_{off} = 10 \Omega \end{cases}$	25	ns
t _{d(off)}	Remarks: Switching times may	160	250 ns
t _{ri}	increase for V_{ce} (Clamp) > 0.8 • V_{ces} ,	50	100 ns
E _{off}	\int higher T _J or increased R_{g}	1.2	2.5 mJ
t _{d(on)}	\sim Inductive load, T ₁ = 125°C	15	ns
t _{ri}	$ I_{c} = I_{c90}, V_{GE} = 15 V$	28	ns
E _{on}	$V_{cE} = 0.8 V_{CES}, R_{g} = R_{off} = 10 \Omega$	2.0	mJ
t _{d(off)}		220	ns
t _{fi}	Remarks: Switching times may increase for V_{ce} (Clamp) > 0.8 • V_{ces} ,	150	ns
E _{off}	higher T_J or increased R_g	2.6	mJ
R _{thJC}			0.83 K/W
R _{thCK}	(TO-247)	0.25	K/W

TO-247 AD Outline				

Dim.	Millir Min.	neter Max.	Incł Min.	
A		20.32	0.780	0.800
B		21.46	0.819	0.845
C	15.75	16.26	0.610	0.640
D	3.55	3.65	0.140	0.144
E	4.32	5.49	0.170	0.216
F	5.4	6.2	0.212	0.244
G	1.65	2.13	0.065	0.084
H		4.5	-	0.177
J	1.0	1.4	0.040	0.055
K	10.8	11.0	0.426	0.433
L	4.7	5.3	0.185	0.209
M	0.4	0.8	0.016	0.031
Ν	1.5	2.49	0.087	0.102

TO-268AA (D³ PAK)

Dim.	Millimeter		Millimeter Inches	
	Min.	Max.	Min.	Max.
Α	4.9	5.1	.193	.201
A_1	2.7	2.9	.106	.114
A_2	.02	.25	.001	.010
b	1.15	1.45	.045	.057
b ₂	1.9	2.1	.75	.83
С	.4	.65	.016	.026
D	13.80	14.00	.543	.551
Е	15.85	16.05	.624	.632
E1	13.3	13.6	.524	.535
е	5.45	BSC	.21	5 BSC
Н	18.70	19.10	.736	.752
L	2.40	2.70	.094	.106
L1	1.20	1.40	.047	.055
L2	1.00	1.15	.039	.045
L3	0.25	5 BSC	.010) BSC
L4	3.80	4.10	.150	.161

Reverse	Dio	de (T ₁ = 25°C, unles		ristic Val	
Symbol		Test Conditions mir		max.	,
V _F		$ \begin{array}{ll} I_{F} &= I_{C90}, V_{GE} = 0 V, Pulse test, \\ t &\leq 300 us, duty cycle d \leq 2\% \end{array} $		5.0	V
I _{RM} t _{rr}	}	$I_{F} = I_{C90}, V_{GE} = 0 \text{ V}, -di_{F}/dt = 50 \text{ A/us}$ $v_{R} = 100 \text{ V}$	10 360		A ns

1

0.500 [12.70]

4

Notes:

1. Device must be heatsunk for high temperature leakage current measurements to avoid thermal runaway.

2. Pulse test, t \leq 300 μ s, duty cycle \leq 2 %.

© 2000 IXYS All rights reserved

 IXYS MOSFETS and IGBTs are covered by one or more of the following U.S. patents:

 4,835,592
 4,881,106
 5,017,508
 5,049,961
 5,187,117
 5,486,715

 4,850,072
 4,931,844
 5,034,796
 5,063,307
 5,237,481
 5,381,025

0.215 [5.46]

/ [5.00] 0.531 [13.49]

[21.95]

0.864

0.118 [3.00]

Min. Recommended Footprint

0.653 [16.59] -